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Downsampling Scattering Parameters for Rendering Anisotropic Media

Shuang Zhao1 ∗ Lifan Wu2 ∗ Frédo Durand3 Ravi Ramamoorthi2
1University of California, Irvine 2University of California, San Diego 3MIT

Reference
25.4 GB

Ours
45.6 MB

Relative error: 0% 100%

Figure 1: We present a new approach to compute scattering parameters at reduced resolutions. Many detailed appearance models involve
high-resolution volumetric representations (top-left). Such level of detail leads to high storage but is usually unnecessary especially when
the object is rendered at a distance. However, naïve downsampling often loses intrinsic shadowing structures and brightens resulting images
(see the insets). Our method computes scaled phase functions, a combined representation of single-scattering albedo and phase function, and
provides significantly better accuracy while reducing the data size by almost three orders of magnitude (top-right).

Abstract

Volumetric micro-appearance models have provided remarkably
high-quality renderings, but are highly data intensive and usually
require tens of gigabytes in storage. When an object is viewed
from a distance, the highest level of detail offered by these models
is usually unnecessary, but traditional linear downsampling weak-
ens the object’s intrinsic shadowing structures and can yield poor
accuracy. We introduce a joint optimization of single-scattering
albedos and phase functions to accurately downsample heteroge-
neous and anisotropic media. Our method is built upon scaled
phase functions, a new representation combining abledos and
(standard) phase functions. We also show that modularity can be
exploited to greatly reduce the amortized optimization overhead
by allowing multiple synthesized models to share one set of down-
sampled parameters. Our optimized parameters generalize well
to novel lighting and viewing configurations, and the resulting
data sets offer several orders of magnitude storage savings.

Keywords: radiative transfer, multi-resolution, level of details,
pre-filtering, global illumination

Concepts: •Computing methodologies→ Rendering;
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1 Introduction

Recently, detailed volumetric models [Jakob et al. 2010; Zhao
et al. 2011] have become increasingly more popular for handling
the appearance of materials with complex 3D structures (e.g.,
fabric and fur). These micro-appearance models explicitly cap-
ture objects’ microscopic level geometries and have brought the
quality of computer rendered complex materials to the next level.

Unfortunately, efficient use of these high-resolution models re-
mains challenging since they are usually highly data intensive,
and loading these data into memory alone can take minutes. For
many computer graphics applications, however, such extreme
high-resolution is unnecessary: especially when the object is
viewed from a distance. Greatly downsampled versions, which
require significantly less storage, would suffice in many situations.
In Figure 1, for instance, the reference scene involves 4.68×1012

effective voxels taking 25.4 GB of storage. Our models with re-
duced resolutions (see the second row of insets for levels of down-
sampling), on the other hand, result in only 45.6 MB of data.

Although lower-resolution operations have been developed for
plain textures and normal maps [Han et al. 2007], they are
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Figure 2: 2D demonstration of the weakening of self-occlusion
caused by downsampling of spatially varying densities.

largely lacking for light scattering parameters [Chandrasekhar
1960; Jakob et al. 2010]. Recently, Heitz et al. [2015] proposed a
new phase function formulation which offers easy (trilinear) pre-
filtering and is a valuable first-step toward this direction. How-
ever, linear downsampling is generally insufficient when handling
scattering parameters including spatially varying densities and
albedo values. This is because downsampling weakens intrinsic
shadowing structures (Figure 2), causing significant brightening
of resulting renderings (see the middle row of insets in Figure 1).

In this paper, we introduce a novel method to improve the accu-
racy of downsampled scattering parameters. In particular, our
approach optimizes single-scattering albedos and phase functions
jointly. Our contributions include:

• We introduce scaled phase functions combining albedos and
phase functions (§4).

• We develop an optimization based method to downsample
scaled phase functions (§5, §6).

• We show how modularity can be exploited by reusing a single
set of optimized parameters for multiple objects, significantly
reducing the amortized optimization overhead (§7).

Our approach is model-dependent: unlike traditional prefiltering
methods, our technique takes full input geometries into consider-
ation. Our optimization involves a few training renderings which
can take tens of CPU core hours but is comparable to rendering
one high-quality image. Fortunately, this process only needs to
be executed once: the resulting representations can be reused
in different virtual configurations. Furthermore, by exploiting
modularity, multiple objects can share one single optimization.
We also intend to release all our downsampled datasets so that
the detailed models in Figures 1, 18, and 19 can be directly used
by other researchers.

Our downsampled models offer several orders of magnitude stor-
age saving and greatly reduce the I/O time, which can be a signifi-
cant overhead for highly detailed scenes like Figure 1. In addition,
our models are less prone to aliasing and usually require fewer
sample paths to achieve similar rendering qualities (Figure 3).
Lastly, these benefits are “effort-free”: our technique allows the
user to replace original parameters using significantly downsam-
pled versions without modifying the core rendering algorithm.

2 Related Work

Radiative transfer. The scattering parameters considered in
this paper arise from radiative transfer [Chandrasekhar 1960]
which originally assumes random media with disorganized micro-
structures. Jakob et al. [2010] later relaxed this assumption by
modeling anisotropic media with structured micro-geometries.
[Heitz et al. 2015] has recently proposed a new anisotropic phase
function offering fast evaluation and easy (linear) interpolation.
We build our framework upon this state-of-the-art representation.

Micro-appearance models. Recently, a family of micro-
appearance modeling techniques [Zhao et al. 2011; Zhao et al.

Rendering time: 14 min

16 spp

Rendering time: 7 min

12 spp

(a) Original (b) (16×)3 Downsampled
Noise level: 2.35× 10−4 Noise level: 2.47× 10−4

Figure 3: Equal-quality renderings using volumes at original
(a) and (16×)3-downsampled (b) resolutions (computed with our
method). The lower-resolution representation requires fewer sam-
ples per pixel to obtain a similar resulting noise level (measured
using [Liu et al. 2012]).

2012] have been introduced. These methods represent material
geometries at unprecedented detail using ultra high-resolution
volumes. Leveraging anisotropic radiative transfer, they have
provided extremely high-quality renderings. However, the use of
large 3D volumes has yielded multi-gigabyte models. This paper
focuses on greatly reducing the resolution of these models while
maintaining good accuracy (Figures 1, 18, 19).

Handling high-resolution data/appearance. Several techniques
(e.g., [Kraus and Bürger 2008; Sicat et al. 2014]) have been
developed previously to interpolate voxelized data for efficient
3D visualization. Although these approaches could be adapted
to handle some scattering parameters, they normally offer lim-
ited accuracy. In addition, a number of techniques have been
introduced to efficiently handle surface-based reflectance profiles
(e.g., [Tan et al. 2005; Bruneton and Neyret 2012; Jarabo et al.
2014]), micro-geometry (e.g., [Westin et al. 1992; Cook et al.
2007; Jakob et al. 2014]), or specialized volumes [Meng et al.
2015]. Unfortunately, these methods are not easily applicable to
our problem.

Altering material properties. This paper aims to compute a ma-
terial’s scattering parameters at reduced resolutions. Previously,
a family of techniques focusing on altering material scattering
parameters are similarity relations [Zhao et al. 2014]. These
methods, however, need to be applied independently to each
point and generally do not allow changing model resolutions.
Our technique is completely orthogonal and complementary to
them.

Inverse rendering. Inverse rendering techniques solve for ma-
terial optical parameters given desired object appearance. Some
of them (e.g., [Gkioulekas et al. 2013; Hašan and Ramamoorthi
2013; Khungurn et al. 2015]) are also based on optimizations.
However, these methods effectively solve a special case of our
problem. That is, they assume homogeneity (i.e., spatially in-
variant parameters) and/or simple (single-lobe) phase functions.
Our approach performs a joint optimization of both albedo and
phase function, and supports heterogeneity.

3 Background

At the core of the radiative transfer framework [Chandrasekhar
1960] lies the radiative transfer equation (RTE)1

(ω · ∇)L(ω) = −σt L(ω) +σs

∫

S2
L(ω′) f (ω′→ ω)dω′, (1)

where σt (extinction coefficient), σs (scattering coefficient), and
f (phase function) are material scattering parameters, and L is

1A source term Q(ω) from the RHS of Eq. (1) is neglected as we focus
on nonemissive media. In addition, spatial dependencies of L, σt , σs,
and f are omitted for notational convenience.
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the resulting radiance field. In addition, single-scattering albedo
is defined as the ratio between σs and σt : α = σs/σt . Table 1
summarizes all symbols commonly used in this paper.

Jakob et al. [2010] generalized the RTE Eq. (1) to capture di-
rectional dependencies of the scattering parameters, yielding the
anisotropic RTE

(ω · ∇)L(ω) = −σt(ω)L(ω) +σs(ω)

∫

S2
L(ω′) f (ω′→ ω)dω′.

(2)
Under this formulation, the medium is modeled as a collection of
two-sided small mirrors, or micro-flakes, whose normal directions
m follow a statistical distribution D. Then, the scattering param-
eters in Eq. (2) are given by σt(ω) = ρσ(ω), σs(ω) = ασt(ω),

f (ω′→ ω) =
1

σ(ω′)

∫

S2
p(m,ω′→ ω)〈ω′,m〉D(m)dm, (3)

where ρ indicates the density of micro-flakes, α denotes the direc-
tionally independent albedo, p is the scattering profile for each
micro-flake, and σ(ω) =

∫

S2〈ω,ω′〉D(ω′)dω′ provides projected
area of the micro-flakes in direction ω. This generalized frame-
work collapses to the standard isotropic case (1) when D is set to
uniform [Jakob et al. 2010]. In addition, it has been shown to be
capable of closely capturing the appearance of complex materials
such as fabrics and fur [Jakob et al. 2010; Zhao et al. 2011; Zhao
et al. 2012; Heitz et al. 2015].

Recently, Heitz et al. [2015] introduced a SGGX-based represen-
tation for the micro-flake normal distribution:

D(m) :=
1

π
p

|S|(mT S−1m)2
, (4)

where S is a 3× 3 symmetric positive definite matrix. This dis-
tribution has been demonstrated to offer similar representative
power as state-of-the-art models [Jakob et al. 2010; Zhao et al.
2011] while being less expensive computationally. In the rest of
this paper, we use f SGGX(S) to denote the SGGX phase function
determined by S via Eq. (3) and Eq. (4).

Interpolation of SGGX phase function. To represent the av-
erage of n SGGX phase functions determined by matrices
S1, S2, . . . , Sn with one SGGX function with the matrix S̃,
Heitz et al. [2015] demonstrated that using the arithmetic av-
erage of those matrices, namely setting

S̃ =
1
n

�

n
∑

i=1

Si

�

, (5)

can lead to a good approximation.

Interpolation of density and albedo. Previously, Kraus and
Bürger [2008] demonstrated that independently interpolating
(i.e., averaging) density and single-scattering albedo generally
yields very poor results. Instead, given n extinction coefficients
σ

orig
t,1 , . . . , σorig

t,n and corresponding albedo αorig
1 , . . . , αorig

n , it is bet-
ter to set the interpolated extinction coefficient σ̄t and albedo ᾱ
using:

σ̄t =
1
n

n
∑

i=1

σ
orig
t,i and ᾱ=

∑n
i=1σ

orig
t,i α

orig
i

∑n
i=1σ

orig
t,i

. (6)

This simple scheme, however, can still lead to limited accuracy.
We use Eq. (6) to create all naïve downsampling results.

Table 1: Definitions of commonly used symbols.

Symbol Meaning Def.
σt Extinction coefficient (density) §3
σs Scattering coefficient §3
α Single-scattering albedo §3
f Phase function §3

f SGGX(S) SGGX function determined by S §3
f̂ Scaled phase function §4.1, Eq. (8)
f j (Normalized) phase function lobe §4.1, Eq. (8)

Wj Lobe weight §4.1, Eq. (8)
w j Lobe weight factor §6.2, Eq. (12)

V (i) Set of input voxels contained in §5
downsampled voxel i

V (i, j) The j-th cluster of V (i) §5
mean() Mean pixel intensity §6
meank() Restricted mean pixel intensity §6

4 Our Method

In this paper, we aim to numerically compute downsampled repre-
sentations of heterogeneous, anisotropic media with SGGX phase
functions.

As demonstrated in prior work [Zhao et al. 2011; Khungurn et al.
2015], material appearance is insensitive to small changes of
density σt (at a fixed resolution), and the relationship between
the two is highly complex. Thus, we focus on computing albedos
and phase functions with densities downsampled via Eq. (6).2

4.1 Combining Albedo and Phase Function

Because our goal is to compute albedos α and phase functions f
at reduced resolutions, it is desirable to have a framework combin-
ing these quantities. Given that σs(ω) = ασt(ω), the anisotropic
RTE (2) can be rewritten as

(ω ·∇)L(ω) = σt(ω)

�

−L(ω) +

∫

S2
L(ω′) f̂ (ω′→ ω) dω′

�

, (7)

where
f̂ (ω′→ ω) := α f (ω′→ ω),

is a scaled version of the phase function f and is allowed to
integrate to less than one. Our method focuses on numerically
computing f̂ at reduced resolutions. In particular, we treat f̂ as
a linear combination of m SGGX lobes. That is,

f̂ (ω′→ ω) =
m
∑

j=1

Wj f j(ω
′→ ω), (8)

where f j is the j-th SGGX lobe and Wj ∈ (0, 1] denotes the weight
of this lobe and satisfies

∑m
j=1 Wj ≤ 1.

Given a scaled phase function (8), the corresponding effective
albedo αeff and phase function f eff can be obtained easily with

αeff =
m
∑

j=1

Wj , f eff =
f̂
αeff

. (9)

When m = 1, the lobe weight W1 simply equals the effective
albedo αeff and f eff ≡ f1. When m > 1, each weight Wj affects
both αeff and f eff.

2It is also possible to compute and use downsampled albedos
and phase functions using original (non-downsampled) densities. Our
method is completely orthogonal and complementary to this aspect.
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Example 1 (Velvet)
︷ ︸︸ ︷

Example 2 (Twill)
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1
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Figure 4: Comparison between single- and multi-lobe SGGX fits. In each example, the goal is to fit the reference (a) which equals the
average of four SGGX lobes given by S1, S2, S3, and S4 (visualized in dashed box). Although the single-lobe fit (b) works well in Example 1,
it fails to capture the high anisotropy in Example 2. The two-lobe fit (c), in contrast, works much better in this case. See Figure 17 for
corresponding rendered images.

4.2 Input and Output

Our approach takes as input voxelized representations of
anisotropic media where each voxel i stores:

• Optical density σorig
t,i , single-scattering albedo αorig

i ;

• SGGX phase function f orig
i determined by 3×3 symmetric pos-

itive definite matrix Sorig
i . Namely, f orig

i = f SGGX(Sorig
i ).

The output of our approach is another volume with lower resolu-
tion where each voxel i contains:

• Downsampled density σ̄t,i given by Eq. (6);

• Scaled phase function f̂i determined by m SGGX lobes
fi,1, fi,2, . . . , fi,m (which in turn are given by matrices
Si,1, Si,2, . . . , Si,m) and m weights Wi,1, Wi,2, . . . , Wi,m ∈ (0, 1].

4.3 Overview

The rest of this paper focuses on finding a proper scaled phase
function f̂i for each downsampled voxel i. That is, we need to
determine the SGGX lobes fi, j (which is equivalent to finding
Si, j ∈ R3×3) as well as the lobe weights Wi, j for 1≤ j ≤ m. Since
there can be millions of voxels each of which has m unknown ma-
trices Si, j and m unknown weights Wi, j , the problem is extremely
under-constrained in general. To make it tractable, we start with
determining fi, j locally based on constituent (input) phase func-
tions (§5), and then optimize the weights Wi, j globally (§6).

5 Determining SGGX Lobes

The m SGGX lobes fi,1, fi,2, . . . , fi,m of a downsampled voxel i
describe the patterns under which light scatters inside this voxel.
Let V (i) denote the set of input voxels (at the original resolution)
that are contained in downsampled voxel i. Then, how light scat-
ters is ultimately determined by the input phase functions f orig

i′

with i′ ∈ V (i). We aim to find SGGX functions fi,1, fi,2, . . . , fi,m
capturing the accumulated scattering profile given by the input
phase functions f orig

i′ .

The previous phase function downsampling approach [Heitz et al.
2015] focuses on the special case of m= 1. In this case, fi,1 needs
to approximate

∑

i′∈V (i) f orig
i′ and can be obtained directly via

Eq. (5). Namely, fi,1 = f SGGX(Si,1) with Si,1 =
�∑

i′∈V (i) S
orig
i′

�

/n.

Although using a single SGGX function to approximate the aver-
age of multiple SGGX functions works adequately in many cases
(Figure 4, Example 1), it can lead to limited accuracy for highly
anisotropic materials (Figure 4, Example 2).

Phase Function Clustering. To allow m > 1, we partition the
input phase functions { f orig

i′ : i′ ∈ V (i)} into m clusters and apply
Eq. (5) to each cluster. That is, we set

fi, j = f SGGX

 

1
|V (i, j)|

∑

i′∈V (i, j)

Sorig
i′

!

, (10)

where V (i, j) ⊂ V (i) denotes the set containing the indices of all
input SGGX phase functions belonging to the j-th cluster. Figure 5
illustrates an example of this process. We compute the clustering
V (i, 1), V (i, 2), . . . , V (i, m) using K-means with Sorig

i′ treated as
9D vectors.

To determine the value of m, one can start with m = 1 and it-
eratively increase m until the approximation error, i.e., the L2

difference between fi, j and
�

∑

i′∈V (i, j) f orig
i′

�

/n, stops decreasing
rapidly. In practice, we also limit m to 3 for a good balance be-
tween model size and result accuracy. See §8.1 for more details.

6 Optimizing Lobe Weights

With the SGGX lobes fi,1, fi,2, , . . . , fi,m determined at each down-
sampled voxel i, the remaining task for obtaining the scaled
phase function f̂i is to compute the corresponding weight vector
Wi := (Wi,1, Wi,2, . . . , Wi,m).

Solving for m weights for each downsampled voxel is still a chal-
lenge due to the large number of unknowns. Fortunately, we
have a good initial guess to start with: the (linearly) downsam-
pled albedo ᾱi which can be computed using Eq. (6) for each
voxel i. Since the scaled phase function is defined as the product
of albedo and (normalized) phase function (Eq. (8)), the naïve
downsampling approach is equivalent to setting

W naïve
i, j = ᾱi |V (i, j)|/|V (i)|, (11)

where |V (i, j)|/|V (i)| captures the weight of fi, j due to phase
function clustering (see Eq. (10) and Figure 5). In this case, it is
easy to verify that αeff

i =
∑m

j=1 W naïve
i, j = ᾱi .

4
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fi1 fi2

fi3
fi4

orig orig

origorig

Downsampled voxel i

(a) (b)

fi,1

fi,2

Downsampled voxel i
Input

voxel i1

Input
voxel i3

Input
voxel i2

Input
voxel i4

Figure 5: An example downsampled voxel i containing four input
voxels (i.e., V (i) = {i1, i2, i3, i4}) is shown in (a), and a fitted two-
lobe result in (b). The four input phase functions are partitioned
into two clusters V (i, 1) = {i1} (in orange) and V (i, 2) = {i2, i3, i4}
(in yellow) based on their shapes. The resulting two-lobe represen-
tation is then obtained by applying Eq. (5) to each cluster. Note
that this step only determines the shape of each lobe: their weights
will be optimized globally in §6.

6.1 Overview

The rest of this section focuses on finding weight factors for each
downsampled voxel that can lead to good accuracy. These weight
factors scale the lobe weights given by Eq. (11). Because the num-
ber of downsampled voxels can be very large (in millions), solv-
ing for one set of weight factors per voxel is impractical. Instead,
we partition the voxels into K clusters and search for one set of
weight factors wk := (wk,1, wk,2, . . . , wk,m) for each cluster k.
Then, for each downsampled voxel i, the lobe weights become

Wi, j =W naïve
i, j wc(i), j = ᾱi

|V (i, j)|
|V (i)|

wc(i), j , (12)

where c(i) ∈ {1,2, . . . , K} indicates the index of the cluster to
which voxel i belongs.

We describe in §6.2 how to cluster the voxels and reorder the
phase function lobes fi, j so that each weight factor wi, j controls a
set of lobes with similar shapes. Then, §6.3 introduces our main
algorithm that numerically optimizes wk for each voxel cluster k.

6.2 Voxel Clustering

We cluster the voxels by applying K-means to the downsampled
albedos ᾱi . Our experiments indicate that a small number (e.g.,
two to five) of clusters can lead to high-quality results in practice.

When voxel cluster boundaries go across areas with smoothly
varying albedos, the rendered images can occasionally contain
visible seams. To ease this problem, we jitter the clusterings by
slightly perturbing each ᾱi when performing K-means. Please see
§8.1 for examples.

Lobe ordering. Since each weight factor wk is shared among
multiple voxels (i.e., those with c(i) = k), the ordering of phase
function lobes matters. Intuitively, we need to reorder the lobes
fi,1, fi,2, . . . , fi,m for each i so that those with the same indices
from different voxels have similar shapes (see Figure 6).

For each voxel cluster, we pick an arbitrary voxel i as a refer-
ence and keep its lobe ordering fixed. Then, for each of the
other voxels i′, we search a permutation π∗i′ of {1, 2, . . . , m} such
that the L2 difference between corresponding SGGX normal dis-
tributions D (which determines actual phase function lobes) is
minimized. Namely,

π∗i′ = argmin
π

m
∑

j=1

∫

S2

�

Di, j(m)− Di′ ,π( j)(m)
�2

dm. (13)

Downsampled voxel 1 (reference)

Lobe 1 Lobe 2 Lobe 3

f1,1 f1,2 f1,3

(a) Before lobe reordering (b) After lobe reordering

Downsampled voxel 2 (original)

Lobe 1 Lobe 2 Lobe 3

f2,1 f2,2
f2,3

Downsampled voxel 1 (reference)

Lobe 1 Lobe 2 Lobe 3

f1,1 f1,2 f1,3

Downsampled voxel 2 (reordered)

Lobe 1 Lobe 2 Lobe 3

f2,1 f2,2 f2,3

Figure 6: We reorder the phase function lobes so that those with
identical indices have similar shapes. In this example, after reorder-
ing the lobes of voxel 2 usingπ∗2 = (3, 1, 2), the shape of f1, j matches
that of f2, j for j = 1, 2,3.

We then use π∗i′ to reorder the lobes of voxel i′. In practice, since
the number of lobes m is usually very small, π∗i′ can be computed
in a brute-force manner.

6.3 Optimizing Weight Factors

We now present our method to search for proper weight factors
w1, w2, . . . , wK (where K is the number of voxel clusters). Our
goal is to make the resulting object appearance to closely match
the ground truth under identical smooth lighting conditions.3

To obtain the optimal weight factors, we minimize an error met-
ric based on differences between images rendered with original
and downsampled parameters. Specifically, we perform training
renderings with a number of lighting and viewing configurations,
yielding a pair of images Ir (ground truth) and Ĩr (approximated)
for each configuration r. Notice that the latter image Ĩr is a func-
tion of the weight factors w1, . . . , wK that we are looking for.

Training scene setup. To generate the training renderings I and
Ĩ , we need to design lighting and viewing configurations. For
ensuring our solved albedo values generalize well to different set-
tings, we perform the fitting using multiple lighting and viewing
configurations. In particular, we render the object from the six
directions (i.e., X-, X+, Y-, Y+, Z-, Z+) defined by its bounding
box (Figure 7). For each view, we render the object using a few
spherical harmonic lightings (see §8.1 for more details).

Error metric. To measure the difference between Ir and Ĩr for
each configuration r, we utilize a generalized version of the
L2 distance between mean pixel intensities. Given a rendered
image I , let mean(I) denote the average intensity of all (fore-
ground) pixels in I . Previous work [Zhao et al. 2011; Khungurn
et al. 2015] uses this measure to define their error metrics as
∑

r c2
r

�

mean( Ĩr)−mean(Ir)
�2

with cr = max(mean(Ir), 0.05)−1

being a normalization factor. This metric works well when Ĩr is
affected by a small set of spatially invariant parameters, but has
difficulties handling more general situations with parameter het-
erogeneity. In particular, the measure mean( Ĩr) only tells if the
whole image Ĩr is too dark or too bright with little information on
which voxel clusters are causing the problem, making it difficult
to tell which weight factor needs to be corrected. Consequently,
the optimization is prone to local minima.

We generalize mean(I) and define the restricted mean pixel in-
tensity, denoted as meank(I), as the average intensity evaluated

3Here the smoothness assumption about lighting is a common prac-
tice when deriving approximate material properties and is used by
the diffusion approximation [Ishimaru 1978] as well as similarity rela-
tions [Zhao et al. 2014].
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X+ Y+ Z+

X- Y- Z-

Figure 7: Six views we use for the training renderings.

among pixels to which downsampled voxels from cluster k are
“directly” visible (see Figure 8). This leads to our error metric:

EL2(w1, . . . ,wK) :=
∑

r

c2
r

K
∑

k=1

�

meank( Ĩr)−meank(Ir)
�2

. (14)

Our desired weights w∗1, . . . , w∗K minimize Eq. (14). Namely,

(w∗1, . . . , w∗K) = argmin
w1 , ..., wK

EL2(w1, . . . , wK). (15)

We solve this optimization problem using stochastic gradient de-
scent (SGD).

Gradient estimation. To solve Eq. (15) using SGD, the key is
to obtain an unbiased evaluation of the partial derivative of the
error metric (14) with respect to wk, j for any 1 ≤ k ≤ K and
1≤ j ≤ m. It holds that

∂ EL2

∂ wk, j
= 2

∑

r, k′

cr

�

meank′( Ĩr)−meank′(Ir)
� ∂meank′( Ĩr)

wk, j

= 2
∑

r, k′

cr

�

meank′( Ĩr)−meank′(Ir)
�

meank′

�

Ĩ ′r,k, j

�

,
(16)

where Ĩ ′r,k, j is the gradient image with respect to wk, j in which

each pixel p has intensity Ĩ ′r,k, j(p) = (∂ Ĩr/∂ wk, j)(p). We use path

tracing to obtain an unbiased evaluation of Ĩ ′r,k, j . Please refer
to Appendix A for more details. Figure 9 shows an example of
original and gradient images.

Stochastic gradient descent. With the gradient values, we can
apply stochastic gradient descent (SGD) to find weight factors
w1, . . . , wK minimizing Eq. (14). We use w(0)k = (1, . . . , 1) for
all k = 1,2, . . . , K as the initial guesses. In each iteration, we

Voxel cluster 1

Voxel cluster 2

Image
plane

pixel 1

pixel 2Camera
center

pixel 3

Figure 8: We define restricted mean pixel intensity that sep-
arates errors caused by different voxel clusters and yields better
convergence of the optimization. In this 2D example has three pix-
els and two voxel clusters, mean1() is computed over pixels 1 and
2 because (at least part of) voxel cluster 1 is visible through these
two pixels. Similarly, mean2() involves pixels 2 and 3.

Original image

Voxel cluster 1
Voxel cluster 2

Gradient images

Lobe 1 Lobe 2

Figure 9: Original and gradient images rendered with our ap-
proach. This fabric contains differently colored warp (in pink) and
weft (in yellow) yarns. Our method uses two voxel clusters (i.e.,
one for each type of yarn) and two phase function lobes per voxel.
The corresponding gradient images successfully capture the main
color of each cluster as well as anisotropy of the lobes. Furthermore,
the varying average intensities of the gradient images demonstrate
the correlation between voxel clusters and lobe weights: voxels in
cluster 1 have high weights for lobe 1, and vice versa.

update each weight factor wk, j via:

w(t+1)
k, j = w(t)k, j −δt

∂ EL2

∂ wk, j

�

�

�

�

w(t)k, j

, (17)

where δt is the step size of iteration t. The step size gradu-
ally decreases during iterations. In theory, δt needs to satisfy
∑∞

t=1 δt =∞ and
∑∞

t=1 δ
2
t <∞ for ensuring convergence. We

follow the common practice [Khungurn et al. 2015] of using the
divergent harmonic series by setting

δt = ak, j/(t + bk, j), (18)

where ak, j and bk, j are constants. How to obtain the values for
these constants is discussed in §8.1.

6.4 Handling Multiple Color Channels

All our derivations up to this point are for a single wavelength.
In principle, when the input has colored scattering parameters,
our downsampling pipeline needs to be executed per channel.

In practice, however, we found that the input parameters are
usually semi-colored: only albedos vary between color channels
while densities and phase functions stay constant. In this case,
we keep SGGX lobes fi, j and weight factors wi, j single-channel
and introduce an extra colored scaling factor sk := (sR

k , sG
k , sB

k )
for each voxel cluster k, so that the lobe weights Wi, j originally
defined in Eq. (12) become colored with

W clr
i, j = sc(i) ᾱ

clr
i

|V (i, j)|
|V (i)|

wc(i), j for clr ∈ {R, G, B}, (19)

where c(i) denotes the index of the cluster to which voxel i be-
longs, and ᾱclr

i is the corresponding (i.e., red, green, or blue)
component of the downsampled albedo at voxel i. We optimize
s1, . . . , sK together with the weight factors wi, j using SGD as
this is more efficient than optimizing wi, j for each color-channel
separately (see §8.1 for an example).

6.5 Discussion

When m= 1 and K = 1, the scaled phase function at each voxel i
becomes f̂i = ᾱi w fi,1, and the optimization reduces to searching

6
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Figure 10: Two (16×)3-downsampled results synthesized with the
same design but differently stacked exemplar volumes (whose tiled
versions are shown as insets). The two exemplar stacking schemes
have lead to visually identical results.

for a global weight factor w which effectively scales all albedos
uniformly. Furthermore, if the input model has homogeneous
albedo α, namely ᾱi ≡ α for all i, the search for w becomes
equivalent to finding an altered albedo α̃ := αw. This is precisely
what previous methods such as [Zhao et al. 2011] and [Khungurn
et al. 2015] do. Our method, on the other hand, is much more
general and allows multiple lobes and voxel clusters as well as
heterogeneous input albedos.

Voxel clustering. Our voxel clustering (§6.2) relies purely on
downsampled albedo ᾱi for each voxel i. This simple scheme
has yielded high-quality results for all our experiments (see §8).
In the future, more sophisticated features capturing spatial loca-
tions and/or phase functions can be used for handling input with
higher degrees of correlations.

7 Exploiting Modularity

Many micro-appearance models consist of multiple blocks each
of which comes form a predefined set of exemplars. For instance,
Zhao et al. [2012] introduced a structure-aware synthesis algo-
rithm that automatically constructs highly complex fabric models
based on exemplars with elementary weave patterns.

We exploit such modularity to accelerate the optimization of lobe
weights. Our high-level idea is to directly downsample the exem-
plars (using techniques introduced in §5 and §6) as precompu-
tation. Then, to obtain a synthesized model at lower-resolution,
we can directly replace its blocks with our downsampled versions.
Because a synthesized model is normally much larger (in terms
of the number of blocks) than the corresponding exemplars, it is
more efficient to downsample the latter. More importantly, this
allows many models synthesized from one set of exemplars to
share one precomputation, greatly reducing the amortized down-
sampling overhead.

Downsampling exemplars. We downsample all exemplars to-
gether by stacking them (randomly) into a single exemplar volume
and downsampling it using techniques introduced in §5 and §6.
Doing so has the following benefits. First, it guarantees downsam-
pled voxels from different exemplars to have similar scaled phase
functions if they contain similar input albedo and phase functions.
This consistency is important for avoiding visible discontinuities
in synthesized results. Second, it offers better performance than
optimizing each exemplar separately.

In theory, because of high-order multiple scattering across neigh-
boring exemplars, different ways of stacking can lead to varying
optimization results. Fortunately, as demonstrated in Figure 10,
we found that this hardly happens in practice: downsampled pa-
rameters using different stacking schemes generally yield visually
identical results. Therefore, we compose the exemplar volume by
stacking together individual exemplars in a randomized manner.

(8×)3 (8×)3 (8×)3

(a) Reference (b) 1 cluster (c) 2 clusters (d) 4 clusters
Rel. err: 0.105 Rel. err: 0.071 Rel. err: 0.067

Figure 11: Determining the number of voxel clusters. A hairy
ball made with two materials (a). Each of these materials requires
a distinctive albedo scaling to match the ground truth. If using only
one cluster, the two materials are forced to be treated equally, re-
sulting in poor accuracy (b). Using two clusters with our clustering
scheme, each of the two materials will be handled separately, offer-
ing better accuracy (c). Going beyond two clusters (d), on the other
hand, has limited benefits.

8 Results

Using our technique described in Sections 5, 6 and 7, scaled
phase functions (or, equivalently, albedos and phase functions)
can be computed at greatly reduced resolutions. This section
shows results generated using our method. In §8.1, we empir-
ically evaluate and justify several components of our approach.
Then, in §8.2 we show downsampled results for a range of objects
represented with high-resolution anisotropic volumes.

8.1 Evaluations and Justifications

Voxel clustering. As described in §6.2, our method groups
downsampled voxels into K clusters to make the optimization
of weight factors tractable. In our experience, using one to five
clusters generally provides a good balance between accuracy and
performance (see Figure 11). We also jitter the voxel clustering
for input with continuously changing albedos to ease potential
seams (Figure 12).

Lighting in training renderings. We use four SH lightings (i.e.,
first two bands) for our training renderings. Figure 13 shows an
example where we optimized the homogeneous twill (Figure 3)
using one, four, and nine SH lightings (corresponding to band-
zero, one, and two) and the six views shown in Figure 7. The
L2 errors are computed between the reference image and ones
rendered using parameters obtained after a certain number of
SGD iterations. The results indicate that using more than four
SH bases yields little benefit in terms of accuracy. Thus, we use
four SH lightings for our training renderings.

Harsh lighting. We use SH lighting for the training renderings
to allow the optimized parameters to generalize well to arbitrary
smooth lighting conditions. In theory, when these parameters
are rendered under harsh lighting, the resulting accuracy can
degrade. However, we did not observe such cases in practice:

Seam

(8×)3 (8×)3

(a) Reference (b) No jittering (c) With jittering

Figure 12: Avoiding visible seams by jittering voxel clustering.
When the input has smoothly changing albedos (a), neighboring
voxel clusters can have clear boundaries that may yield visible seams
(b). To ease this problem, we slightly jitter the clusters so that their
boundaries become fuzzier (c).

7
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1 2 3 4 5 6 7 8 9 10
Iteration #

0.06

0.07

0.08

0.09

0.10

0.11
L 2

 E
rro

r
Band-0 (1 Basis)
Band-1 (4 Bases)
Band-2 (9 Bases)

Reference

Figure 13: Selecting training lighting. The errors are evaluated
between a reference image and those rendered using optimized pa-
rameters after a certain number of SGD iterations. An area light
source is used to generate all these renderings. The results indicate
that going beyond four SH bases offers little improvement for accu-
racy. The small differences between L2 errors for band-1 and band-2
are mostly due to Monte Carlo noise.

our optimized parameters generalize well even to extremely high-
frequency lightings (see Figure 14 for two examples).

Handling multiple color channels. As described in §6.4, we op-
timize one extra term sk for each voxel cluster k to handle semi-
colored input where only single-scattering albedo varies between
different color channels. As shown in Figure 15, this is more
efficient than optimizing wi, j for each color-channel separately
while providing similar accuracy.

Number of phase function lobes. As discussed in §5, we deter-
mine the number of phase function lobes m by iteratively increas-
ing m until the approximation error stops descending rapidly. In
particular, we stop increasing m when the L2 error with (m+ 1)
lobes is greater than 50% of that with m lobes. Figure 16 shows
how the approximation error changes with the number of lobes
for the example from Figure 4. Based on the aforementioned
scheme, we use two lobes for the twill while one for the velvet.
Figure 17 contains the corresponding renderings justifying our
choices of lobe counts. Further, we limit m to 3 in all our experi-
ments for a good balance between model size and result accuracy.
Lastly, notice that when using only one lobe (i.e., m = 1), our
method effectively optimizes only the downsampled albedos α̃i .

8.2 Main Results

We evaluate the effectiveness of our approach using six exam-
ples. We tune ak, j and bk, j in Eq. (18) manually using a subset of
lighting/viewing conditions so that the error metric (14) changes
neither too quickly (resulting in oscillation) nor too slowly (lead-
ing to slow convergence). The overhead for this extra tuning is
less than 10% of the total optimization time. Since we use low-
resolution (around 100p) and noisy training renderings, the total
optimization time for each object is comparable to the rendering
time for one image at 720p. Our optimization configurations and
performance numbers are summarized in Table 2. The values of
all step sizes ak, j , bk, j as well as optimized weight factors wk, j and

(16×)3 (16×)3

(a1) Reference (b1) Ours (a2) Reference (b2) Ours

Figure 14: Although our training renderings use smooth SH light-
ings, the optimized parameters generalize well to harsh lighting
conditions. These two examples use local point light sources which
lead to sharp shadow boundaries on the ground.

(16×)3 (16×)3

(a) Reference (b) Joint opt. (c) Independent opt.

Figure 15: For semi-colored input, optimizing multiple color chan-
nels jointly (b) is more efficient than optimizing each channel inde-
pendently (c) while yielding similar resulting accuracy.

colored scaling factors sk are available as supplemental material.
We use a modified version of the Mitsuba renderer [Jakob 2013]
to generate all regular and gradient images.

Figure 18 shows lower-resolution volumes generated with our
approach. The first three examples have homogeneous albedos
while the last two have heterogeneous ones. Each object is ren-
dered under two environmental lightings that are significantly
more complicated than our training ones (i.e., four SH lightings).

The first row of Figure 18 contains a hairy bunny. After downsam-
pling at (4×)3, our optimized parameters using one lobe per voxel
generalize well to different environmental lightings. The second
row of Figure 18 shows a shiny twill fabric originally represented
with 4.76×1011 effective voxels. Because of the highly anisotropic
nature of this material, we use two lobes per voxel. Our result,
which contains only 1.07× 108 effective voxels, achieves more
than three orders of magnitude storage saving and successfully
preserves this material’s glossy appearance under both local (left)
and global (right) lighting. The third row of Figure 18 contains
a highly scattering velvet with 7.77× 1011 effective voxels. The
velvet’s highly detailed surface structure caused naïve downsam-
pling to have very poor accuracy. Our model computed with one
lobe per pixel, on the other hand, has 2.03× 107 effective vox-
els and maintains good accuracy while providing four orders of
magnitude data reduction. The quality of our optimized parame-
ters for this model is further demonstrated in the supplemental
video. In the fourth row, we show a hairy ball with gradually
changing colors. Our optimization uses five voxel clusters with
jittering (visualized in the insets) and one lobe per voxel. The re-
sult achieves good accuracy while reducing the storage by almost
three orders of magnitude. The bottom row of Figure 18 contains
another complex twill scene with differently colored warps and
wefts (identical to Figure 9). This heterogeneity results in dis-
tinctive dual-colored anisotropic highlights. Our result based on
two voxel clusters and two-lobe phase functions maintains the
appearance of this object well even at the yarn-level. Please refer
to the supplemental video for an animated result of this scene.

Figure 19 shows downsampled results from two damask fabrics
synthesized from a single set of 120 example blocks. We down-
sample the exemplars using three voxel clusters and three lobes
per voxel. This precomputation takes 60 core hours. Then, the
two downsampled damasks are obtained by stacking the pre-
downsampled example blocks. Based on the single precompu-

1 2 3
Number of Lobes

0
2
4
6
8

L 2
 E

rro
r (

×1
0−4

)

Twill
Velvet

Figure 16: Approximation error (measured in L2) decreases as
the number of phase function lobes increases.
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(a) Reference (b) Ours (1-lobe) (c) Ours (2-lobe)

(32×)3 (32×)3

0.0 / 2.1GB 0.0374 / 55.3KB 0.0382 / 119.3KB

(16×)3 (16×)3

0.0 / 1.9GB 0.0868 / 0.4MB 0.0637 / 0.9MB

(8×)3 (8×)3

0.0 / 2.7GB 0.0824 / 5.7 MB 0.0641 / 9.9MB

Figure 17: Optimized results using varying numbers of phase
function lobes. Relative error and data size are shown below each
image. For each example, optimizations corresponding to (b) and
(c) take similar time to converge. For the velvet (the top row),
one lobe suffices. For the twill (the bottom two rows) with high
anisotropy, on the other hand, using two lobes has led to superior
accuracy.

Table 2: Stochastic gradient descent settings (i.e., number of voxel
clusters K and number of phase function lobes per voxel m) and
optimization time (in CPU core hours) for all results in Figures 18
and 19. Our optimization time is comparable to the rendering time
(shown in the last column) for one image at 720p.

Object m K # Iter.
Opt. Render
time time

Bunny 1 1 8 12 8
Twill (homogeneous) 2 1 20 33 23
Velvet 1 1 15 35 74
Hairy ball 1 5 20 40 30
Twill (heterogeneous) 2 2 25 45 30
Damask 3 3 30 60 51

tation, our approach results in good accuracy while reducing the
amount of data by three orders of magnitude.

Limitations and future work. Our method is optimization based
and does not explicitly reason about how downsampling scat-
tering parameters affects light transport in participating media.
A theoretical analysis on this topic would be valuable and may
inspire future improvements to our optimization framework.

9 Conclusion

We have introduced an optimization based approach to com-
pute scaled phase functions, a combined representation of single-
scattering albedo and phase function, for downsampling vox-
elized anisotropic media. Our method starts with determining
phase function lobes locally by clustering input phase functions.
Then, we optimize lobe weight factors globally via stochastic gra-
dient descent. The resulting representation can offer several or-
ders of magnitude reduction in storage while maintaining good
accuracy. In addition, we demonstrated that modularity can be ex-
ploited for synthesized models to greatly reduce amortized down-
sampling overhead.
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(4×)3-downsampled. Data size: 2.6 GB (reference) / 41.8 MB (ours).
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(16×)3-downsampled. Data size: 1.9 GB (reference) / 0.9 MB (ours).
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(32×)3-downsampled. Data size: 2.1 GB (reference) / 55.3 KB (ours).
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(8×)3-downsampled. Data size: 7.9 GB (reference) / 17.2 MB (ours).

Tw
ill

(8×)3-downsampled. Data size: 2.7 GB (reference) / 9.9 MB (ours).

Figure 18: Main results. Our reduced-resolution representations provide good accuracy under general lighting with up to four orders of
magnitude storage saving. Environmental lightings used in these renderings are visualized in the top-right corner of individual reference
images. Those without lighting visualizations use local area light sources. Please refer to Table 2 for optimization and rendering times.
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(16×)3-downsampled. Data size: 9.7 GB (reference) / 5.8 MB (ours).

Figure 19: Exploiting modularity. The two downsampled damask fabrics sharing one optimization offer good accuracy and three orders
of magnitude storage saving. The corresponding environmental lightings are shown in top-right corners of the reference images. Please refer
to Table 2 for optimization and rendering times.
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A Rendering Gradient Images

Under the path tracing framework, the intensity Ĩr(p) of pixel p
in image Ĩr is estimated by a path integral

Ĩr(p) =

∫

Ω

f (x̄)dx̄, (20)

where Ω is the space containing all light paths connecting pixel p
and a light source and f (x̄) denotes the contribution of light path
x̄. Let x̄= (x0,x1, . . . ,xn+1) with segment (x0,x1) intersecting

pixel p on the virtual sensor and xn+1 lying on a light source. For
each 1≤ v ≤ n, let iv denote the index of the downsampled voxel
containing point xv . It holds that

f (x̄) =

�

n
∏

v=1

Tv σ̄t, iv Fv

�

Le(xn+1,xn), (21)

where Le denotes the attenuated incoming radiance, Tv is the
transmittance between xv−1 and xv , σ̄t, iv is the downsampled
density at voxel iv , and Fv is the scaled phase function at xv
evaluated with incoming and outgoing directions respectively
given by xv−1 and xv+1:

Fv := f̂iv

�

xv −xv−1

‖xv −xv−1‖
→

xv+1 −xv

‖xv+1 −xv‖

�

. (22)

Let w be a weight factor for some voxel cluster and lobe. Then,

Ĩ ′r(p) :=
∂

∂ w
Ĩr(p) =

∫

Ω

∂ f
∂ w
(x̄)dx̄. (23)

The problem then boils down to differentiating f ( x̄) with respect
to w. Assume without loss of generality that w affects the scaled
phase functions Fv for 1 ≤ v ≤ n0. Then f (x̄) = g(x̄)

∏n0
v=1 Fv ,

where g(x̄) captures all terms in Eq. (21) that do not depend on
w. It follows that

∂ f
∂ w
(x̄) = g(x̄)

∂

∂ w

n0
∏

v=1

Fv = g(x̄)
n0
∑

v=1





∂

∂ w
Fv

∏

v′ 6=v

Fv′



 , (24)

where ∂
∂ w Fv can be obtained via Eq. (22), Eq. (8) and Eq. (12). In

practice, we compute Eq. (23) using unidirectional path tracing.
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