
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Towards practical lattice-based cryptography

Permalink
https://escholarship.org/uc/item/0141w93p

Author
Lyubashevsky, Vadim

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0141w93p
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Towards Practical Lattice-Based Cryptography

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Vadim Lyubashevsky

Committee in charge:

Professor Daniele Micciancio, Chair
Professor Sanjoy Dasgupta
Professor Russell Impagliazzo
Professor Alexander Vardy
Professor Nolan Wallach

2008

.

Copyright

Vadim Lyubashevsky, 2008

All rights reserved.

The dissertation of Vadim Lyubashevsky is approved, and it

is acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2008

iii

To my family.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

Acknowledgements . viii

Vita . x

Abstract . xi

1 Introduction . 1
1..1 The Average-case / Worst-case Connection 2
1..2 The Source of Efficiency . 3
1..3 Thesis Outline . 4

1.A Collision-Resistant Hash Functions 5
1.A.1 Our Contributions and Related Work 5

1.B Signatures . 7
1.B.1 Results and Techniques . 9
1.B.2 Related Work . 11

1.C Identification Schemes . 12
1.C.1 Our Results . 13
1.C.2 Related Work . 13

1.D Open Problems and Future Directions 14

2 Definitions and Preliminaries . 16
2.A Lattices . 16
2.B Algebra and Conventions . 18
2.C The Polynomial Ring R . 20
2.D The Parameter θ(f), and Bounding ‖ab mod f‖∞ 21
2.E Ideal Lattices . 25
2.F The Hash Function and the Collision Problem 27
2.G Statistical Distance . 29
2.H Algorithms and Asymptotic Notation 29
2.I Witness Indistinguishability . 31
2.J Gaussian Distributions . 32

2.J.1 New Lemmas for the Gaussian Distribution Over Lattices . . . 33
2.K Cryptographic Primitives . 35

2.K.1 Digital Signatures . 35
2.K.2 Identification Schemes . 36
2.K.3 The Random Oracle Model . 36

v

3 Hash Function . 39
3.A Introduction . 39

3.A.1 Basing Security On All Ideal Lattices 40
3.B Proof of Theorem 3.1 . 41
3.C Finding Collisions In Zp[x]/〈xn − 1〉 46
3.D Cyclic Lattices . 47
3.E Connection with Algebraic Number Theory 48

4 One-time Signature . 54
4.A The One-Time Signature Scheme . 54
4.B Proof of Security . 57

5 Identification Scheme . 63
5.A Probabilistic Lemmas . 63
5.B Identification Scheme . 65
5.C Proof of Security . 67

6 Tree-less Signature Scheme . 72
6.A Probabilistic Lemmas . 73
6.B Signature Scheme . 75
6.C Proof of Security . 76

A New Bounds on Gaussian Distributions Over Lattices 84

Bibliography . 92

vi

LIST OF FIGURES

Figure 2.1 Interactive Protocol . 30

Figure 4.1 One-time Signature Scheme Key-Generation 55
Figure 4.2 One-time Signature Scheme Signing and Verification 56

Figure 5.1 Identification Scheme Parameters 64
Figure 5.2 Identification Scheme . 65
Figure 5.3 Interaction Outcomes . 70

Figure 6.1 Signature Scheme Parameters . 73
Figure 6.2 Signature Scheme . 75

vii

ACKNOWLEDGEMENTS

My graduate school experience has been a road littered with successes and

failures. As the completion of this arduous journey is coming to an end, I have been

retrospecting on the many decisions made along its way and wondering whether I

would make the same choices again. While there are certainly things that I would

have liked to change, it brings me great happiness to know that the most important

decision would, unequivocally, remain the same. It has been an honor and a pleasure

to work under my advisor, Daniele Micciancio. Most of everything that I have learned

and accomplished came as a result of his inspired guidance, enthusiasm, and patience.

For this, I will always remain grateful.

I am also thankful to Russell Impagliazzo whose deep insights always re-

sulted in me learning much more than just the answers to the questions I asked of

him. I would like to thank Sanjoy Dasgupta for teaching some wonderful AI classes

and being a really good guy to just talk to. I want to thank Nolan Wallach and Alex

Vardy for being on my thesis committee. I want to thank Alon Orlitsky for being on

my thesis proposal committee, even though it resulted in my indentured servitude

as his TA. I want to additionally thank Sanjoy and Alon for being the ones who, by

their wonderful teaching of undergraduate classes while I was their TA, had great

influence on the development of my teaching style.

I have to certainly acknowledge my friends in the department and outside

of it with whom I have spent many enjoyable non-working hours. It gives me great

pleasure to thank you all in alphabetical order. Thank you, Nuno, Chris, Sashka,

Anjum, Ragesh, Kirill, Yi-Kai, Tita, Petros, Sara, Anton, Saurabh, Tom, Todor,

Nate, Sarah, Panos, and Scott.

Finally, I am deeply indebted to Adriana, whose perpetual love and kind-

ness made all the problems and disappointments encountered in my studies appear

irrelevant. When I think back on my happiest times, you are always there.

Chapter 3 and Appendix A are, in part, a reprint, of the paper “Generalized

Compact Knapsacks Are Collision Resistant” co-authored with Daniele Micciancio

and appearing in the proceedings of ICALP 2006. The dissertation author was the

viii

primary investigator and author of this paper.

Chapter 4 is, in part, a reprint of the paper “Asymptotically Efficient

Lattice-Based Digital Signatures” co-authored with Daniele Micciancio and appear-

ing in the proceeding of TCC 2008. The dissertation author was the primary inves-

tigator and author of this paper.

Chapter 5 is an extension of the results of the paper “Lattice-Based Identi-

fication Schemes Secure Under Active Attacks” appearing in the proceedings of PKC

2008. The dissertation author was the primary investigator and author of this paper.

ix

VITA

2002 Bachelor of Science in Computer Science
Columbia University, New York, NY, USA

2008 Doctor of Philosophy in Computer Science
University of California, San Diego, CA, USA

x

ABSTRACT OF THE DISSERTATION

Towards Practical Lattice-Based Cryptography

by

Vadim Lyubashevsky

Doctor of Philosophy in Computer Science

University of California, San Diego, 2008

Professor Daniele Micciancio, Chair

Lattice-based cryptography began with the seminal work of Ajtai (Ajtai

‘96) who showed that it is possible to build families of cryptographic functions in

which breaking a randomly chosen element of the family is as hard as solving worst-

case instances of lattice problems. This work generated great interest and resulted

in constructions of many other cryptographic protocols with security based on worst-

case lattice problems. An additional advantage of lattice-based primitives is that,

unlike their counterparts based on factoring and discrete log, they are conjectured

to be secure in the advent of quantum computing. The main disadvantage of lattice-

based constructions is that they generally involve operations on, and storage of, large

n× n matrices. This resulted in the schemes being rather inefficient and unsuitable

for practical use. To cope with this inherent inefficiency, Micciancio proposed to build

lattice-based primitives based on the worst-case hardness of lattices that have some

additional structure. In (Micciancio ’02), he showed how to build one-way functions,

computable in almost linear time, with security based on worst-case problems on

such lattices.

While interesting from a theoretical perspective, one-way functions are not

very useful in practice. Our goal in this thesis is to present constructions of practical

and efficient cryptographic protocols whose security is based on worst-case hardness

of lattice problems. We first show how to build collision-resistant hash functions

whose security is based on the hardness of lattice problems in all lattices with a

xi

special structure. The special structure that the lattices possess is that they are ide-

als of certain polynomial rings. The hash functions that we build have almost linear

running time, and in practice turn out to be essentially as efficient as ad-hoc construc-

tions that have no provable security. We also give constructions of provably-secure

identification and signature schemes whose asymptotic running times are almost lin-

ear (up to poly-logarithmic factors), and so these schemes are much more efficient

than comparable primitives with security based on factoring and discrete log. Thus

our work implies that by considering ideal lattices, it is possible to have the best of

both worlds: security based on worst-case problems and optimal efficiency.

xii

1

Introduction

Lattice-based cryptography began with the seminal work of Ajtai [Ajt96],

who showed that random instances of a certain problem are at least as hard to solve

as worst-case instances of lattice problems. The initial construction of a one-way

function in [Ajt96] as well as the numerous subsequent constructions of other cryp-

tographic primitives, such as collision-resistant hash functions [Ajt96,GGH96,MR07],

identification schemes [MV03], and encryption schemes [AD97,Reg03,Reg05,PW08]

are very interesting from a theoretical point of view because they are essentially the

only problems for which such a worst-case / average-case connection is known. Ad-

ditionally, schemes based on lattices are conjectured to remain secure in the advent

of quantum computers, which is in sharp contrast to schemes based on factoring and

discrete log which would become completely insecure [Sho97]. Despite such security

advantages, the cryptographic functions proposed in the above works are not efficient

enough to be practical. The source of impracticality is that working with lattices

requires the storage of, and operations on, large n× n integer matrices. This results

in cryptographic functions with key size and computation time at least quadratic in

the security parameter n.

A first step in the direction of creating cryptographic functions based on

worst-case hardness that are efficient in practice, and still provably secure, was taken

by Micciancio in [Mic07]. In that paper, the author showed how to create a family

of efficiently computable one-way functions whose security is based on a certain

problem for a particular class of lattices, called cyclic lattices. These lattices admit

1

2

a much more compact representation than general ones, and the resulting functions

can be described and evaluated in time almost linear in n. However, one-wayness is

a rather weak security property, interesting mostly from a theoretical point of view.

By contrast, the (less efficient) functions based on general lattices discussed in the

previous paragraph perform a myriad of considerably stronger and much more useful

cryptographic tasks.

In this thesis, we take the next step in creating efficient cryptographic func-

tions with security based on worst-case hardness assumptions. We show how to cre-

ate efficient collision-resistant hash functions, signatures, and identification schemes

whose security is based on standard lattice problems for a special class of lattices,

that we call ideal lattices. In addition to the strong security guarantees, some of

the schemes that we present are also more efficient (in an asymptotic sense) than all

other known schemes based on any hardness assumption.

1..1 The Average-case / Worst-case Connection

A major draw of lattice-based cryptographic constructions is that schemes

can be built based on the hardness of worst-case problems. This is rather different

from the average-case hardness security guarantees that accompany practically all

other schemes. We will now briefly explain the advantage of having security based

on worst-case problems. Consider, for example, any cryptographic scheme in which

one can prove that breaking the scheme implies factoring some number N . The

question now is: how should such a hard-to-factor N be chosen? We certainly

cannot ask someone to provide us with such an N , because this third party may

know a factorization and then can break our scheme. So the only choice we have is

to generate it ourselves, but how? Choosing a random N in some range is certainly

a bad idea because half the numbers are even, and are thus easy to factor. Perhaps

just choosing two primes and then multiplying them together would produce an N

that’s hard to factor, but one must be careful in how the primes are chosen so as to

not make their product vulnerable to specialized factorization algorithms. In short,

it is not enough to believe that factoring is hard in the worst-case, we also need to

know of a distribution over which factoring is hard.

3

Lattice-based schemes, on the other hand, don’t have this problem. Ajtai

showed that if uniformly random instances of a certain problem A can be solved, then

certain other problems can be solved for all lattices [Ajt96]. Notice that coming up

with a hard instance of problem A is now trivial – it’s just generated uniformly at

random. Now one can build cryptographic schemes based on the hardness of random

instances of problem A, and be sure that the cryptographic scheme is as hard to

break as worst-case lattice problems.

1..2 The Source of Efficiency

Ajtai’s collision-resistant hash function can be roughly described as follows:

the function family H consists of functions hA indexed by n× k matrices A ∈ Zn×k
p ,

where k > n log p and the inputs to the function are {0, 1}-vectors in Zk. The output

hA(y) is simply the product Ay mod p. Ajtai showed that finding two distinct

vectors y,y′ such that Ay mod p = Ay′ mod p for random A is as hard as solving

certain lattice problems for all lattices [Ajt96, GGH96]. This implies that H is a

family of collision-resistant hash functions. But notice that because A is an n × k
matrix, the multiplication of Ay requires nk > n2 operations, and so the functions

are somewhat inefficient.

One way to increase efficiency is to somehow pick the n × k matrix A so

that the multiplications Ay take less than O(n2) time. While it’s certainly easy

to construct matrices A such that multiplication takes linear time (consider, for

example, having all columns of the matrix be the same), the difficult part is in

ensuring that it’s still hard to find y,y′ ∈ {0, 1}k such that Ay mod p = Ay′ mod p.

An idea of Micciancio [Mic07] was to construct A by picking the first column at

random, and then have the next n − 1 columns be rotations of the first. that is, if

the first column is (a1, . . . , an)T , then the ith column will be (ai, . . . , an, a1, . . . , ai−1).

Then the n+1st column of A is chosen at random again, and the next n−1 columns

are rotations of that column. This procedure is repeated until all k columns of A are

filled. Notice that in order to populate the entire matrix A, we only need to create

k/n random columns, and so the matrix can be represented with just k elements in

Zp instead of nk, as was previously required. The multiplication of Ay can now be

4

interpreted as the sum of k/n products of polynomials of degree n − 1 (see Section

2.D). Each polynomial multiplication can be performed in time Õ(n) using the Fast

Fourier Transform, and then we just need to sum up the k/n = O(log n) resulting

vectors, for a total running time of Õ(n) (the notation, Õ(n) means O(n logc n) for

any constant c). In [Mic07], Micciancio was able to show that in addition to being

efficient, the above function enjoys some security properties as well. In particular, he

showed that if lattice problems for a certain class of lattices, he called cyclic lattices

are hard in the worst case, then the above function family is one-way, but not (as we

will show) collision-resistant. One of the results of this thesis will be showing how to

create the matrix A such that computing Ay takes Õ(n) time and finding collisions

implies solving lattice problems for all lattices in a certain class.

The idea of imposing algebraic structure on the description of the function

in order to speed up its computation has long been used in the context of codes

(e.g. cyclic codes), and even in lattice-based cryptography in the context of the

NTRU cryptosystem [HPS98]. But what is unique about the results in [Mic07]

and the results in this thesis is that the cryptographic constructions have a proof

of security. Indeed, while the NTRU cryptosystem remains resistant to attacks, a

proposed version of the NTRU signature scheme was recently completely broken

[NR06]. Thus it is our belief that provable security is of great practical value.

1..3 Thesis Outline

In Chapter 2, we present the relevant definitions that we will be using

throughout the work. Most important is Section 2.F, which describes the hash

function family that we will be proving collision-resistant. The hardness of finding

collisions for functions in this family, while interesting in its own right, is also what

the security of our signature and identification schemes is based on. We prove the

collision-resistance of the function family in Chapter 3, and the only result that we

will need from that chapter for the later chapters is Theorem 3.1, which describes

the connection between finding collisions in random members of the hash function

family and solving lattice problems for all lattices of a certain class. In Chapter 4,

we build an asymptotically efficient one-time signature whose security is based on

5

the hardness of finding collisions in our hash function (which in turn is based on

the worst-case hardness of lattice problems). This one-time signature can then be

combined with a standard tree construction to achieve a full-fledged digital signature

scheme whose efficiency is only a factor of O(log n) worse. In Chapter 5, we construct

a provably secure identification protocol which is likewise asymptotically efficient,

and in Chapter 6, we present a signature scheme that is secure in the random oracle

model, that would seem to be more efficient in practice than the signature scheme

from Chapter 4.

1.A Collision-Resistant Hash Functions

Collision-resistant hash functions are functions h that map some domain

D to a smaller range such that it is computationally hard to find two elements

x1, x2 ∈ D with the property that h(x1) = h(x2). One use of collision-resistant

functions is in digital signatures, where rather than signing a long message x, we

may instead sign a much shorter digest h(x). Because of the collision-resistance

of h, it is computationally infeasible to find another message y such that h(y) =

h(x), and therefore a signature of h(x) is just as binding as a signature of x. The

standardized hash functions of today are all designed in an ad-hoc fashion and lack

provable security, and recently people have demonstrated some weaknesses in their

constructions [WLF+05,WY05,BCJ+05]. We therefore believe that it may be a good

time to consider building efficient collision-resistant hash functions that have a proof

of security.

1.A.1 Our Contributions and Related Work

In [Mic07], it was shown how to create an efficient one-way function based

on worst case hardness of problems for lattices which can be thought of as ideals in

the ring Z[x]/〈xn − 1〉. In our work, we show how to construct collision-resistant

hash functions based on the hardness of problems for lattices that can be represented

as ideals of the ring Z[x]/〈f〉 where f can be one of infinitely many other polynomi-

als (including xn − 1). Thus our result has two desirable features: it weakens the

6

complexity assumption while strengthening the cryptographic primitive.

Our hash functions also admit extremely efficient implementations. The

time complexity for computing the image of an element in the domain is roughly

Õ(n), and a practical instantiation of our function [LMPR08] is essentially of the

same complexity as the ad-hoc hash functions (e.g. SHA-256).

We now give an informal description of the hash function families that

we will be proving collision resistant. Given a ring R = Zp[x]/〈f〉 (with the usual

polynomial addition and multiplication operations) where f ∈ Z[x] is some monic,

irreducible polynomial of degree n and p is an integer of order roughly n1.5, generate

m random elements a1, . . . ,am ∈ R where m is some small (logarithmic or constant)

number. The ordered m-tuple h = (a1, . . . ,am) ∈ Rm is our hash function. It will

map elements from Dm, where D is a strategically chosen subset of R, to R. For an

element b̂ = (b1, . . . ,bm) ∈ Dm, the hash is h(b̂) =
m∑

i=1
aibi. Notice that the size

of the key (the hash function) is O(mn log p) = Õ(n), and the operation aibi can be

performed in time Õ(n) by using the Fast Fourier Transform. Since m is at most

O(log n), we can hash a message in time mÕ(n) = Õ(n). Then to prove that our

hash function family is collision resistant, we will show that if there is a polynomial

time algorithm that (for a randomly chosen hash function h ∈ Rm,) succeeds with

non-negligible probability in finding b̂ 6= b̂′ ∈ Dm such that h(b̂) = h(b̂′), then the

Shortest Vector Problem (SVP) is solvable in polynomial time for every lattice that

corresponds to an ideal of the ring Z[x]/〈f〉.
There is very little known about the hardness of SVP for lattices that are

ideals in Z[x]/〈f〉. Another result of our work is a connection between finding short

vectors in such lattices and computational problems from algebraic number theory

that appeared to have been studied before, but with little success. This at least gives

some evidence as to the hardness of SVP for such lattices.

Concurrently with, and independently from our work, Peikert and Rosen

[PR06] have shown how to construct collision resistant hash functions based on the

hardness of finding the shortest vector for lattices which correspond to ideals in

the ring Z[x]/〈xn − 1〉. While our more general result is interesting from a purely

theoretical standpoint, it turns out that choices of certain f other than xn−1 (such as

7

xn +1) result in somewhat more efficient hash functions (see [LMPR08]), making our

generalization also of practical use. Also, our hardness assumptions are formulated

in a way that leads to natural connections with algebraic number theory.

There have been many proposed cryptographic primitives whose hardness

relied on the knapsack problem (e.g. [MH78], [Dam], [CR88]) but the attacks against

them (e.g. [Sha84], [JG94], [Vau01]) rendered the primitives impractical. The attacks,

though, all attack a group-based knapsack problem, and it is unclear how to apply

them to our ring-based one. Also, none of those primitives had a reduction to worst-

case instances of lattice problems. Of course, the hardness of our primitive is based

on worst-case problems for ideal lattices, and very little is known about them. Still, it

seems as if there are currently no algorithms that are able take advantage of the ring

structure that they possess and we think that determining the worst-case hardness

of lattice problems for these lattices is a very interesting open problem.

1.B Signatures

Digital signature schemes, initially proposed in Diffie and Hellman’s seminal

paper [DH76] and later formalized by Goldwasser, Micali and Rivest, [GMR88], are

among the most important and widely used cryptographic primitives. Still, our

understanding of these intriguing objects is somehow limited.

The definition of digital signatures clearly fits within the public key cryp-

tography framework. However, efficiency considerations aside, the existence of se-

cure digital signatures schemes can be shown to be equivalent to the existence

of conventional (symmetric) cryptographic primitives like pseudorandom genera-

tors, one-way hash functions, private key encryption, or even just one-way func-

tions [NY89,Rom90]. There is a big gap, both theoretical and practical, between the

efficiency of known constructions implementing public-key and private-key cryptog-

raphy. In the symmetric setting, functions are often expected to run in time which

is linear or almost linear in the security parameter k. However, essentially all known

public key encryption schemes with a supporting proof of security are based on alge-

braic functions that take at least Ω(k2) time to compute, where 2k is the conjectured

8

hardness of the underlying problem. For example, all factoring based schemes must

use keys of size approximately Θ(k3) to achieve k bits of security to counter the best

known sub-exponential time factoring algorithms, and modular exponentiation raises

the time complexity to over ω(k4) even when restricted to small k-bit exponents and

implemented with an asymptotically fast integer multiplication algorithm.

When efficiency is taken into account, digital signatures seem much closer

to public key encryption schemes than to symmetric encryption primitives. Most

signature schemes known to date employ the same set of number theoretic tech-

niques commonly used in the construction of public key encryption schemes, and

result in similar complexity. Digital signatures based on arbitrary one-way hash

functions have also been considered, due to the much higher speed of conjectured

one-way functions (e.g., instantiated with common block ciphers as obtained from

ad-hoc constructions) compared to the cost of modular squaring or exponentiation

operations typical of number theoretic schemes. Still, the performance advantage

of one-way functions is often lost in the process of transforming them into digital

signature schemes: constructions of signature schemes from non-algebraic one-way

functions almost invariably rely on Lamport and Diffie’s [DH76] one-time signature

scheme (and variants thereof) which requires a number of one-way function appli-

cations essentially proportional to the security parameter. So, even if the one-way

function can be computed in linear time O(k), the complexity of the resulting signa-

ture scheme is again at least quadratic Ω(k2).

Therefore, a question of great theoretical and practical interest, is whether

digital signature schemes can be realized at essentially the same cost as symmetric

key cryptographic primitives. While a generic construction that transforms any one-

way function into a signature scheme with similar efficiency is impossible [BMG07],

one may wonder if there are specific complexity assumptions that allow to build more

efficient digital signature schemes than currently known. Ideally, are there digital

signature schemes with O(k) complexity, which can be proved as hard to break as

solving a computational problem which is believed to require 2Ω(k) time?

9

1.B.1 Results and Techniques

Tree-Based Signature Scheme

The main result of Chapter 4 is a construction of a provably secure one-time

digital signature scheme (i.e., a signature scheme that allows to securely sign a single

message) with key size and computation time almost linear (up to poly-logarithmic

factors) in the security parameter. In other words, we give a new one-time digital

signature scheme with complexity O(k logc k) which can be proved to be as hard to

break as a lattice problem which is conjectured to require 2Ω(k) time to solve.

A full-fledged signature scheme can then be constructed via a standard

transformation from one-time signatures to general signature schemes. We remark

that the same transformation from one-time signatures to unrestricted signature

schemes was also employed by virtually all previous constructions of digital signatures

from arbitrary one-way functions (e.g., [Mer89,NY89,Rom90]). This transformation,

which combines one-time signatures together with a tree structure, is relatively effi-

cient and allows one to sign messages with only a logarithmic number of applications

of a hash function and a one-time signature scheme [Szy04]. The bottleneck in one-

way function based signature schemes is the construction of one-time signatures from

one-way functions. The reason for the slowdown is that the one-way function is typ-

ically used to sign a k-bit message one bit at a time, so that the entire signature

requires k evaluations of the one-way function. In fact, a recent result of Barak and

Mahmoody-Ghidary [BMG07] states that it is impossible to convert one-way func-

tions, treated as black boxes, into one-time signatures (that have the same security)

with less than Ω(k) calls to the one-way function. Therefore any construction that

hopes to be more efficient must use the one-way functions in a non-black-box way. In

this paper we give a direct construction of one-time signatures, where each signature

requires just two applications of the lattice based collision-resistant hash function

that is described in this work. The same lattice based hash function can then be

used to efficiently transform the one-time signature into an unrestricted signature

scheme via a hash-tree with only a logarithmic loss in performance.

The high level structure of our lattice-based one-time signature scheme

10

is easily explained. Let h be the collision-resistant function described in Section

1.A. When the user wants to generate a key for the one-time signature scheme, he

simply picks two “random” inputs k̂, l̂ ∈ Dm, and computes their images under the

hash function (h(k̂), h(̂l)). (The key (a1, . . . ,am) to the hash function h can also

be individually chosen by the user, or shared among all the users of the signature

scheme.) The secret key is the pair (k̂, l̂), while the public key is given by their

hashes (h(k̂), h(̂l)). Then, the signature of a message z is simply obtained as a “linear

combination” k̂z+ ŷ of the two secret vectors (the multiplication k̂z is defined as the

ring multiplication of each coordinate of k̂ by z). Signatures can be easily verified

using the homomorphic properties of the lattice based hash function h(k̂z + l̂) =

h(k̂)z + h(̂l). If the domain Dm were closed under addition and multiplication, then

one could show that the public key h(k̂), h(̂l) and signature k̂z + l̂ do not reveal any

information about the secret key (k̂, l̂), and a forgery relative to a different secret

key yields a collision to the hash function. The crucial point is that Dm being closed

would guarantee the existence of a different secret key that could have been used

to sign z. But since the domain is restricted, there is a possibility that the signer’s

secret key was the only one that could have produced h(k̂), h(̂l) and signature k̂z+ l̂.

This turns out to be the main difficulty in carrying out our proof.

We solve this technical problem by choosing the secret key elements k̂, l̂

according to a carefully crafted (non-uniform) probability distribution, which can be

intuitively thought as a “fuzzy” subset of the full domain Rm. It turns out that if the

appropriate distribution on Dm is used, then h is one-way when the input is chosen

according to the distribution on Dm, and the distribution is closed under the ring

operations in an approximate probabilistic sense.

Random Oracle Based Signature Scheme

In Chapter 6, we show that by using a random oracle, we can construct a

signature scheme that does not require the use of a tree, thus increasing the efficiency

of the scheme in Chapter 4 by a factor of log n. One way to view our signature scheme

is as a transformation of the one-time signature scheme constructed in Chapter 4

into an ID-scheme (described in Chapter 5) and then into a signature scheme via the

11

Fiat-Shamir heuristic. Converting an ID-scheme into a signature scheme via the Fiat-

Shamir heuristic is a very popular technique that has been used in the construction

of many well-known signature schemes (e.g. [FS86, Sch91, GQ88, Oka92a, GPS06]).

One could also argue that the identification schemes in the preceding protocols were

fairly straightforward conversions from one-time signature schemes (see [BS07] for a

discussion of the relationship between one-time signatures and ID-schemes). So it

seems that it is plausible that using similar techniques, our one-time signature can

be converted into a signature scheme that’s secure in the random oracle model. But

a difficulty arises because the one-time signature “leaks” some information about the

secret key, which didn’t cause a problem in the one-time signature because the key

is used only once. But using the secret key many times in an identification scheme

would result in the complete leakage of the key. We will explain how we overcome this

problem in Chapter 5, where we build the identification scheme. Then in Chapter 6,

we give a self-contained proof of security of the signature scheme.

1.B.2 Related Work

Lamport showed the first construction of a one-time signature based on the

existence of one-way functions. In that scheme, the public key consists of the values

f(x0), f(x1), where f is a one-way function and x0, x1 are randomly chosen elements

in its domain. The elements x0 and x1 are kept secret, and in order to sign a bit

i, the signer reveals xi. This construction requires one application of the one-way

function for every bit in the message. Since then, more efficient constructions have

been proposed in (e.g. [Mer87,BC92,BM84,EGM96,BM96a,BM96b]), but there was

always an inherent limitation in the number of bits that could be signed efficiently

with one application of the one-way function.

Preceding our work, there have been other lattice-based signature scheme

proposals: most notably the GGH scheme [GGH97] and the NTRU signature scheme

[HHGP+03]. Unfortunately, neither of these schemes possessed a proof of security,

and recently they were completely broken by Nguyen and Regev [NR06]. Another

construction of a lattice-based signature scheme was recently discovered by Gentry

et.al [GPV08]. Their construction, while having the same flavor as the GGH scheme,

12

is provably secure in the random oracle model and it resists the attacks of [NR06].

An instantiation of the scheme in [GPV08] with security, in the random oracle model,

based on the hardness of SVP in ideal lattices requires Õ(n2) time for signing and

Õ(n) time for verification. So even when instantiated with ideal lattices, the scheme

of [GPV08] is not as efficient as ours.

1.C Identification Schemes

Public key identification (ID) protocols allow a party holding a secret key

to prove its identity to any other entity holding the corresponding public key. The

minimum security of such protocols should be that a passive observer who sees the

interaction should not then be able to perform his own interaction and successfully

impersonate the prover. In a more realistic model, the adversary should first be

allowed to interact with the prover in a “dishonest” way in hopes of extracting

some information, and then try to impersonate the prover. Identification schemes

resistant to such impersonation attempts are said to be secure in the active attack

model [FFS88], and this is currently the de facto security notion.

Since Fiat and Shamir’s seminal paper [FS86], there have been many pro-

posals for constructing secure ID protocols. With a few notable exceptions, most

of these protocols (e.g. [GQ88, Sch91, Oka92b, Sho99, Poi00, GPS06]) are based on

problems from number theory, and as such, they require fairly costly multiplication

and exponentiation operations. Another potential problem, as mentioned earlier, is

that the security of these protocols is based on problems that are easy if (when)

practical quantum computers become reality [Sho97]. Thus it is prudent to have

viable alternative schemes based on different hardness assumptions.

The identification protocols not based on number theory problems (e.g.

[Sha89, Ste96]) are generally combinatorial in nature. Because of this lack of alge-

braic structure, these combinatorial schemes all seem to have an inherent shortcom-

ing in that they require a lot more rounds of communication than their algebraic

counterparts. This problem arises because the proof of security is established by

showing that the schemes are zero-knowledge proofs of knowledge. It is shown that

13

the prover (or adversary) who successfully proves his identity, actually “knows” the

secret (as defined in [FFS88]), yet the protocol is zero-knowledge, and as such, the

prover doesn’t reveal anything about his secret key. The problem is that in order

for the protocol to have negligible soundness error, it must be repeated a polynomial

number of times. But zero-knowledge is not preserved under parallel-repetition, and

so the protocol has to be run sequentially in order for it to maintain the claimed

security.

1.C.1 Our Results

In Chapter 5, we present an asymptotically-efficient ID scheme with security

based on the hardness of problems on ideal lattices. We prove security by showing

that an adversary who successfully attacks our scheme can be used to find collisions

in the hash function described in 1.A.

We believe that the technical details of our ID protocol may also be of

independent interest. While our scheme has the structure of a standard 3-move

commit-challenge-response protocol, for security reasons, an honest prover sometimes

“aborts” the protocol during the response stage. It can be shown that if the prover

always responds to the verifier, then his secret key is leaked to even a passive observer.

On the other hand, by strategically refusing to reply, each round of the protocol can

be shown to be witness-indistinguishable. And since witness-indistinguishability is

preserved under parallel-composition, all the rounds can be performed in parallel.

1.C.2 Related Work

The one place in the literature that mentions constructions of lattice-based

identification schemes is the work of Micciancio and Vadhan [MV03] on statistical

zero knowledge relating to lattice problems. In this work, the authors show an

efficient-prover SZK proof system for certain lattice problems and mention that one

can convert the proof system into an identification scheme. But there does not seem

to be a way to make the scheme of [MV03] as efficient as the one presented here. It

seems that in order to achieve 2Ω(n) security, the identification protocol would have

to run in time Õ(n2).

14

1.D Open Problems and Future Directions

We have shown that some very efficient cryptographic protocols derive their

security from the hardness of solving problems for ideal lattices. Thus a very impor-

tant direction of future research is on establishing some hardness results for these

problems. At the present it is not even known whether SVP is NP-hard for ideal

lattices (whereas the NP-hardness of SVP under randomized reductions for general

lattices has been known for a while). One of our results concerns a connection

between ideal lattices and algebraic number fields, and we believe that algebraic

number theory could play a prominent role in helping us understand more about

these lattices. Following our work, Peikert and Rosen explored the connection be-

tween lattices and algebraic number theory further, and were able to establish some

interesting connections between average-case problems and worst-case problems in

algebraic number theory [PR07]. But the hardness of problems for ideal lattices still

remains wide open.

One thing that will not be discussed much in this work is practical instanti-

ations of our protocols. At the present, we have only implemented our hash function

and it seems to be very competitive (see [LMPR08]), but it is unclear how efficient

our other protocols are in practice. For example, our signature scheme is compu-

tationally very efficient, but the signatures will be much longer than the signatures

outputted by number-theoretic schemes. Also, the fact that our scheme is provably

secure only guarantees that the structure of our scheme is sound, but says very little

about what are the minimum parameters needed for the schemes to be secure in

practice. For establishing practical security, it is necessary to understand the best

algorithms that attack our schemes. Our schemes are based on the hardness of lat-

tice problems, and we believe that algorithms that look for short vectors in lattices

are the best forms for attack against our schemes. Unfortunately, little is known

about the practical performance of such algorithms. Recently, there have been some

experimental results by Nguyen and Gama that showed a somewhat tight bound on

the performance of the most widely-used lattice reduction algorithm [GN08b], but

the same authors later discovered a theoretically better algorithm [GN08a] which

15

happens to perform worse in practice. The one thing that is evident is that there

is still much to learn about the hardness of lattice reduction, and therefore it seems

prudent to put off proposing specific parameters for our schemes.

A problem that is of more imminent interest is whether the hardness as-

sumptions needed for our signature and identification scheme can be weakened to

the point that they are the same as for our hash function. It will turn out that the

hardness assumption that is needed for our hash function is essentially finding vec-

tors within a factor n of the shortest vector in ideal lattices. For our signature and

identification schemes, however, the security assumption is finding vectors within

a factor nc of the shortest vector (where c is between 2 and 3 depending on the

scheme). Figuring out whether it is somehow possible to reduce this c to 1 (via

new constructions) is an important open problem that will have consequences on the

practical instantiations of the schemes.

Of course, another direction that we believe should be pursued is construct-

ing other efficient protocols based on the hardness of ideal lattices. We have demon-

strated that, at least in an asymptotic sense, ideal lattice-based protocols are ex-

tremely efficient. Thus we believe that with some additional novel techniques, it

should be possible to construct practically efficient protocols based on the worst-

case hardness of ideal lattice problems. At the present, it is only known how

to construct collision-resistant hash functions [LM06,PR06], identification schemes

[MV03, Lyu08], and signatures [LM08, GPV08], but we are very hopeful that the

future will bring many other constructions.

2

Definitions and Preliminaries

2.A Lattices

A full-rank n-dimensional lattice is the set of all integer combinations

{
n∑

i=1

xibi : xi ∈ Z

}

of n linearly independent vectors b1, . . . ,bn in Rn. The set of vectors b1, . . . ,bn

is called a basis for the lattice, and can be compactly represented by the matrix

B = [b1| . . . |bn] ∈ Rn×n having the basis vectors as columns. The lattice generated

by B is denoted L(B). For any basis B, we define the fundamental parallelepiped

P(B) = {Bx : ∀i.0 ≤ xi < 1}. The following lemma states that one can sample

lattice points uniformly at random from the fundamental parallelepiped associated

to a given sublattice.

Lemma 2.1 ([MG02, Proposition 8.2]). There is a probabilistic polynomial time

algorithm that on input a lattice basis B and a full rank sublattice S ⊂ L(B), outputs

a lattice point x ∈ L(B) ∩ P(S) chosen uniformly at random.

The lattices that are most relevant to us are integer lattices, i.e., lattices

L(B) ⊆ Zn all of whose vectors have integer coordinates. The dual of a lattice

L(B) (denoted L(B)∗) is the lattice generated by the matrix B−T , and consists of

all vectors that have integer scalar product with all lattice vectors. For any vector

x = (x1, . . . , xn)T , define the cyclic rotation rot(x) = (xn, x1, . . . , xn−1)
T . A lattice

16

17

L(B) is cyclic if it is closed under the rotation operation, i.e., if x ∈ L(B) implies

rot(x) ∈ L(B).

The minimum distance of a lattice L(B) is the minimum distance between

any two (distinct) lattice points and equals the length of the shortest nonzero lattice

vector. The minimum distance can be defined with respect to any norm. For any p ≥
1, the `p norm of a vector x is defined by ‖x‖p = p

√∑
i |xi|p and the corresponding

minimum distance is denoted

λp
1(L(B)) = min{‖x− y‖p : x 6= y ∈ L(B)} = min{‖x‖p : x ∈ L(B) \ {0}}.

Each norm gives rise to a corresponding computational problem SVP
p
γ (the γ-

approximate Shortest Vector Problem in the `p norm): given a lattice L(B), find

a nonzero vector v ∈ L(B) such that ‖v‖p ≤ γλp
1(L(B)). We also consider the re-

striction of SVP to specific classes of lattices. The restriction of SVP to some class

of lattices C is denoted C-SVP. (E.g, [Mic07] considers Cyclic-SVP).

The notion of minimum distance can be generalized to define the ith suc-

cessive minimum (in the `p norm) λp
i (L(B)) as the smallest radius r such that the

closed sphere B̄p(r) = {x : ‖x‖p ≤ r} contains i linearly independent lattice points:

λp
i (L(B)) = min{r : dim(span(L(B) ∩ B̄p(r))) ≥ i}.

In this work, we focus on the infinity norm ‖x‖∞ = limp→∞ ‖x‖p = maxi |xi|
since it is the most natural and convenient norm when dealing with polynomials, but

most of our results are easily translated to other norms as well. The shortest vector

problem in the infinity norm SVP
∞
γ was proved to be NP-hard by van Emde Boas

for γ = 1 [van81] and shown to be NP-hard for factor up to γ(n) = n1/ log log n by

Dinur [Din02], where n is the dimension of the lattice. The asymptotically fastest

algorithm for computing the shortest vector exactly takes time 2O(n) [AKS01,BN07]

and the best polynomial time algorithm approximates the shortest vector to within

a factor of 2O(n log log n
log n

) [AKS01,Sch87,LLL82]. It is conjectured that approximating

the shortest vector to within a polynomial factor is a hard problem, although it is

shown that (under standard complexity assumptions) for small polynomial factors it

is not NP-hard [AR05,GG00].

18

2.B Algebra and Conventions

Let Z[x] and R[x] be the sets of polynomials (in an indeterminate variable x)

with integer and real coefficients respectively. A polynomial is monic if the coefficient

of the highest power of x is one. A polynomial (in Z[x]) is irreducible if it cannot

be represented as a product of lower degree polynomials (in Z[x]). In this paper we

identify polynomials (of degree less than n) with the corresponding n-dimensional

vectors having the coefficients of the polynomial as coordinates. This allows to

translate notation and definitions from one setting to the other. E.g., we define the

`p norm ‖g‖p of a polynomial g ∈ Z[x] as the norm of the corresponding vector,

and the product of two n-dimensional vectors xy as the (2n− 1)-dimensional vector

associated to the product of the corresponding polynomials.

Let R be a ring. An ideal I of R is an additive subgroup of R closed under

multiplication by arbitrary ring elements. The smallest ideal of R containing a subset

S ⊆ R is denoted 〈S〉. In particular, for any ring element f ∈ R, 〈f〉 denotes the

set of all multiples of f . Two ring elements g,h ∈ R are equivalent modulo an ideal

I ⊆ R if g − h ∈ I. When I = 〈f〉 is the ideal generated by a single ring element f ,

then we say that g and h are equivalent modulo f . The quotient R/I is the set of

all equivalence classes (g + I) of R modulo I.

Much of our work deals with the rings Z[x]/〈f〉 where f is monic and

irreducible. When f is a monic polynomial of degree n, every equivalence class

(g + 〈f〉) ∈ Z[x]/〈f〉 has a unique representative g′ ∈ (g + 〈f〉) of degree less than

n. This representative is denoted (g mod f) and can be efficiently computed using

the standard division algorithm. The same holds true if we are dealing with the ring

R[x]/〈f〉. That is, every equivalence class (g+ 〈f〉) ∈ R[x]/〈f〉 has a unique represen-

tative g′ ∈ (g + 〈f〉) of degree less than n which is similarly denoted (g mod f). To

avoid cumbersome notation, when we refer to elements g ∈ Z[x]/〈f〉 (or R[x]/〈f〉),
we will always be assuming that g is reduced modulo f (i.e. the degree of g is at

most n−1). Another shorthand that we use is denoting the quotient ring Z[x]/〈p, f〉
for some positive integer p and polynomial f as Zp[x]/〈f〉.

When multiplying two polynomials g,h is some ring, we will always assume

19

that the product gh automatically gets reduced into that ring. So for example, if

g,h ∈ Z[x]/〈f〉, then we will assume that the product gh is reduced modulo f . If,

on the other hand, the domains of the multiplicands are different, we will assume

that the product belongs to the larger domain. So for example, if g ∈ Z[x]/〈f〉, while

h ∈ R[x], then the product gh will be a polynomial in R[x] that is not reduced

modulo f .

Irreducible polynomials that satisfy a certain addtional property play a

major role in our work. This additional property will be discussed in detail in Section

2.D, but here we will just prove the irreducibility of these polynomials.

The below lemma states that xn−1 +xn−2 + . . .+ 1 is irreducible whenever

n is a prime. This is a classical result, the proof of which can be found in standard

algebra textbooks.

Lemma 2.2. The polynomial xn−1 + xn−2 + . . . + 1 is irreducible over the integers

if and only if n is prime.

The next lemma states that the polynomial xn +1 is irreducible if and only

if n is a power of two. The following proof of this fact was communicated to us by

Chris Peikert [Pei].

Lemma 2.3. The polynomial xn + 1 is irreducible over the integers if and only if

n = 2k for any k ≥ 0.

Proof. If Φd(x) represents the dth cyclotomic polynomial1, then any polynomial of

the form xn − 1 can be written as

xn − 1 =
∏

d|n

Φd(x).

Using the above, we can rewrite xn + 1 as

xn + 1 =
x2n − 1

xn − 1
=

∏
d|2n Φd(x)
∏

d|n Φd(x)
=

∏

{d:d|2n∧d-n}

Φd(x)

Since all cyclotomic polynomials are irreducible, the above equality implies that

xn + 1 will be irreducible if and only if the set {d : d|2n∧ d - n} contains exactly one

element, and this happens exactly when n is a power of 2.

1The dth cyclotomic polynomial is a polynomial whose roots are exactly the primitive dth roots
of unity with multiplicity 1

20

2.C The Polynomial Ring R

We will now describe the polynomial ring that will be central throughout

this work. Let R = Zp[x]/〈f〉 be a ring where p is some small odd prime (i.e.

p = poly(n)) and f is a monic polynomial irreducible over Z. For the rest of this

thesis, the variables n and p will always be associated with the ring R. We will

denote elements in R by bold letters and elements of Rm, for some positive integer

m, by a bold letter with a hat. That is, â = (a1, . . . ,am) ∈ Rm when all the

ai’s are in R. For an element â = (a1, . . . ,am) ∈ Rm and an element z ∈ R, we

define âz = (a1z, . . . ,amz). For two elements â, b̂ ∈ Rm, addition is defined as

â + b̂ = (a1 + b1, . . . ,am + bm) and the dot product as â� b̂ = a1b1 + . . .+ ambm.

Notice that with the operations that we defined, the set Rm is an R-module.

That is, Rm is an abelian additive group such that for all â, b̂ ∈ Rm and r, s ∈ R,

we have

1. (â + b̂)r = âr + b̂r

2. (âr)s = â(rs)

3. â(r + s) = âr + âs

We will now give a definition for the “length” of elements in R. To do so,

we will first need to specify their representations in the ring. For our application,

we will represent elements in R by a polynomial of degree n − 1 having integer

coefficients in the range [−p−1
2 , p−1

2], and so when we talk about reduction modulo

p, we mean finding an equivalent element modulo p in the aforementioned range.

For an element a = a0 + a1x + . . . + an−1x
n−1 ∈ R, we define ‖a‖∞ = maxi(|ai|).

Similarly, for â = (a1, . . . ,am) ∈ Rm, we define ‖â‖∞ = maxi (‖ai‖∞). Notice that

‖·‖∞ is not exactly a norm because ‖αa‖∞ 6= α‖a‖∞ for all integers α (because of

the reduction modulo p), but it still holds true that ‖a + b‖∞ ≤ ‖a‖∞ + ‖b‖∞ and

‖αa‖∞ ≤ α‖a‖∞.

While putting an upper-bound on ‖a + b‖∞ is straight-forward, it turns

out that upper-bounding ‖ab‖∞ is somewhat more involved. Suppose that we are

trying to determine the upper bound on ‖ab‖∞. For a moment, let’s pretend that

21

a and b are polynomials in Z[x]. Then, the product ab will have degree at most

2n − 2 and the absolute value of the maximum coefficient of ab will be at most

n‖a‖∞‖b‖∞. Reducing ab modulo p will not increase the absolute value of the

maximum coefficient, but reducing modulo the polynomial f can (and usually does).

So if we want to upper bound ‖ab‖∞, we need to account for the increase in the

coefficient size when we reduce a polynomial in Z[x] of degree 2n − 2 modulo f .

Dealing with this issue is the main topic of the next section.

2.D The Parameter θ(f), and Bounding ‖ab mod f‖∞

In the previous section, we were interested in bounding the maximum co-

efficient of the product ab in Z[x]/〈f〉. In this section, we will deal with this general

question. In other words, given two polynomials a,b ∈ R[x] of degree n, and a monic

polynomial f ∈ Z[x], what is the maximum that ‖ab mod f‖∞ can be? It turns out

that for certain f , the product of ‖ab mod f‖∞ could actually be exponentially larger

than ‖a‖∞ and ‖b‖∞. For example, if f = xn−2xn−1, then if a = b = xn−1, we have

‖ab mod f‖∞ = 2n−1xn−1. Throughout our work, it will be very important that the

polynomials f do not behave in such a way, and in this section we will explain how

to test whether a polynomial exhibits such behavior. Throughout this section, we

will assume that a,b ∈ R[x], but all the results apply equally well to polynomials

a,b in other rings such as Z[x],Z[x]/〈f〉, and Zp[x]/〈f〉.
It turns out that the behavior of multiplication of two polynomials modulo

f very much depends on the behavior of the multiplication of a polynomial with a

power of x.

Definition 2.4.

θ(f) = min{j : ∀a ∈ R[x] of degree < n and 0 ≤ i ≤ n− 1, ‖axi mod f‖∞ ≤ j‖a‖∞}

It is not clear from the above definition that we can determine the value θ(f)

when given an f , but in the next lemma we show that we can obtain an upper-bound

for θ(f) by performing just a few modular reductions.

22

Lemma 2.5.

θ(f) ≤ n · max
0≤i≤2n−2

[‖xi mod f‖∞]

Proof. For any a ∈ R[x] of degree less than n, we can rewrite ‖axi mod f‖∞, for any

0 ≤ i ≤ n− 1 as

‖axi mod f‖∞ = ‖a0x
i+. . .+an−1x

i+n−1 mod f‖∞ ≤ n‖a‖∞ max
0≤j≤2n−2

‖xj mod f‖∞,

and by definition of θ(f), we have the claim in the lemma.

The above bound on θ(f) is very general, and does not take into account

any specific structure that the polynomial f might have, and it turns out that we

can obtain better bounds for some polynomials which will be important throughout

the thesis. For example, if f = xn − 1, Lemma 2.5 tells us that θ(f) ≤ n, but in fact

θ(f) = 1. This looseness in the bound exists for other polynomials that will be used

in our work, such as xn + 1 and the cyclotomic polynomial xn−1 + xn−2 + . . . + 1.

The next lemmas give tight bound on the value of θ(f) for these polynomials.

Lemma 2.6. θ(xn − 1) = θ(xn + 1) = 1.

Proof. Notice that when f = xn − 1, the product bx mod f for any polynomial b =

b0 + . . .+bn−2x
n−2 +bn−1x

n−1 is bn−1 +b0x+ . . .+bn−2x
n−1, and so ‖bx mod f‖∞ =

‖b‖∞. Thus ‖bxi mod f‖∞ = ‖b‖∞. The proof for when f = xn + 1 is very similar.

Note that bx mod f for any polynomial b = b0 + . . . + bn−2x
n−2 + bn−1x

n−1 is

−bn−1 + b0x + . . .+ bn−2x
n−1, and so ‖bx mod f‖∞ = ‖b‖∞.

Lemma 2.7. If f = xn−1 + xn−2 + . . .+ 1, then θ(f) = 2.

Proof. Let a be any polynomial in Z[x]/〈f〉. We need to show that for all 0 ≤ i ≤
n−2, ‖axi mod f‖∞ ≤ 2‖a‖∞. Notice that since f is a factor of xn−1, we can write

axi mod f =
(
axi mod xn − 1

)
mod f .

If we define a′ = axi mod xn−1, then the degree of a′ is at most n−1, and by Lemma

2.6 we know that ‖a′‖∞ = ‖a‖∞. Now we just need to reduce a′ modulo f . If an−1

is the coefficient of a′ corresponding to the term xn−1, then a′ mod f = a′ − an−1f .

Therefore

‖a′ mod f‖∞ ≤ ‖a′‖∞ + |an−1|‖f‖∞ ≤ ‖a′‖∞ + ‖a′‖∞ = 2‖a′‖∞,

23

and so ‖axi‖∞ ≤ 2‖a‖∞.

We are now almost ready to put a bound on the product of two polynomials

modulo f , but first we note a convenient way of looking at the multiplication of two

polynomials modulo f . A multiplication of two polynomials a = a0 + a1x + . . . +

an−1x
n−1 and b = b0 + b1x + . . .+ bn−1x

n−1 in R[x] modulo f can written as

a0b + a1bx + . . .+ an−1bxn−1 mod f , (2.1)

and thus it can be written as a vector/matrix multiplication over R between a 1×n
vector consisting of the coefficients of a and an n×nmatrix whose ith row corresponds

to the polynomial bxi mod f . Using this interpretation of polynomial multiplication,

we can give a bound on ‖ab mod f‖∞.

Lemma 2.8.

‖ab mod f‖∞ ≤ nθ(f)‖a‖∞‖b‖∞

Proof. Using equation (2.1), we can write

‖ab mod f‖∞ = ‖a0b + a1bx + . . . + an−1bxn−1 mod f‖∞

≤ n‖a‖∞ max
0≤i≤n−1

‖bxi mod f‖∞.

By definition of θ(f), we know that max0≤i≤n−1 ‖bxi mod f‖∞ ≤ θ(f)‖b‖∞, and so

we have

‖ab mod f‖∞ ≤ nθ(f)‖a‖∞‖b‖∞,

and we have the claim in the lemma.

We now turn to the problem in which one of the multiplicands (a or b) is

chosen at random. We will show that if the coefficients of b are chosen randomly with

mean 0, then with high probability, ‖ab‖∞ ≈
√
nθ(f)‖a‖∞‖b‖∞. Before proceeding,

we will state the well-known Hoeffding bound as well as another lemma that will also

be useful in other contexts.

Lemma 2.9 (Hoeffding Bound). Let X1, . . . ,Xn be independent random variables

with mean µ taking values in the real interval [a, b] and let X = X1 + . . .+Xn. Then

for any k, we have

Pr[|X − µn| ≥ k] ≤ 2e
−2k2

n(b−a)2

24

Lemma 2.10. Let z be a polynomial of degree at most 2n− 2 in R[x]. Then

‖z mod f‖∞ ≤ (1 + θ(f))‖z‖∞

Proof. We can rewrite z = z1 + z2 where z1 = z0 + z1x + . . . + zn−1x
n−1 and

z2 = znx
n + . . .+ z2n−2x

2n−2. Now we can write,

‖z mod f‖∞ = ‖z1 + z2 mod f‖∞ ≤ ‖z1‖∞ + ‖z2 mod f‖∞

= ‖z1‖∞ + ‖(znx + . . .+ z2n−2x
n−1)xn−1 mod f‖∞

≤ ‖z1‖∞ + θ(f)‖znx + . . .+ z2n−2x
n−1‖∞

= ‖z1‖∞ + θ(f)‖z2‖∞

≤ (1 + θ(f))‖z‖∞

Lemma 2.11. Let a be any polynomial in R[x] of degree less than n. Let b be a

polynomial in R[x] of degree less than n where every coefficient of b is uniformly and

independently distributed in the range [−b, b] with mean 0. Then

Pr[‖ab mod f‖∞ ≥ θ(f)b‖a‖∞
√
n log n] ≤ 4ne

− log2 n
8

Proof. The product of a = a0+a1x+. . .+an−1x
n−1 and b = b0+b1x+. . .+bn−1x

n−1

will have the form z = z0 + z1x + . . . + zn−2x
n−2 where

zi =

i∑

j=0

ajbi−j (we define ai, bi = 0 for i ≥ n).

Since every coefficient of b is an independent random variable in the range

[−b, b] with mean 0, it implies that every zi is a sum of at most n independent random

variables in the range [−b‖a‖∞, b‖a‖∞] with mean 0. Applying the Hoeffding Bound,

we get that for every i,

Pr[|zi| ≥
1

2
b‖a‖∞

√
n log n] ≤ 2e

− log2 n
8 .

Taking the union bound over all i, we have,

Pr[∃i, |zi| ≥
1

2
b‖a‖∞

√
n log n] ≤ 4ne

− log2 n
8 .

25

So we have determined that all the coefficients of z will have small coeffi-

cients, and now we need to show that z mod f has small coefficients as well. For this,

we apply Lemma 2.10, and obtain that with probability at least 1− 4ne
− log2 n

8 ,

‖z mod f‖∞ ≤ (1 + θ(f))‖z‖∞ ≤ 2θ(f)‖z‖∞ ≤ θ(f)b‖a‖∞
√
n log n.

2.E Ideal Lattices

While general integer lattices are just additive subgroups of Zn, ideal lattices

are lattices that are also closed under a multiplication operation. So while general

lattices are subgroups of a group, ideal lattices are ideals of some ring. The ring that

we will be using is the polynomial ring Z[x]/〈f〉 where f is a monic polynomial of

degree n. If we have an ideal I = 〈g1, . . . ,gm〉 in the ring Z[x]/〈f〉, then we can also

represent the set I as the set of all integer combinations of the elements

g1,g1x, . . . ,g1x
n−1, . . . ,gm,gmx, . . . ,gmxn−1,

and using the Hermite Normal Form algorithm (cf. [Coh96]), we can find a set of at

most n linearly-independent elements of I that form a basis for I . And so we can

think of I as being an integer lattice of dimension n.

We will say that a vector v = (v0, v1, . . . , vn−1) ∈ Zn corresponds to a

polynomial w = w0 +w1x+ . . .+wn−1x
n−1 ∈ Z[x]/〈f〉 if for all i, vi = wi. Similarly,

a lattice Λ and an ideal I correspond to each other if every vector (v0, . . . , vn−1) is

in Λ, if and only if the polynomial v0 + v1x + . . . + vn−1x
n−1 is in I. Thus an ideal

lattice is a lattice that corresponds to an ideal in some specified ring Z[x]/〈f〉.
An important feature of ideal lattices in Z[x]/〈f〉 for irreducible f is that

they have to be full-rank.

Lemma 2.12. Let Λ be a lattice corresponding to a non-zero ideal in the ring Z[x]/〈f〉
where f is a monic, irreducible polynomial. Then Λ is a full-rank lattice of dimension

n.

26

Proof. Let I = 〈g1, . . . ,gm〉 be the ideal of Z[x]/〈f〉 that the lattice Λ corresponds

to. One of the gi’s must be non-zero, so assume it’s g1. We will show that the vectors

corresponding to the ring elements g1,g1x, . . . ,g1x
n−1 are linearly independent over

Z. This will show that the lattice corresponding to I contains n linearly independent

vectors, and thus must have dimension n.

If g1,g1x, . . . ,g1x
n−1 are linearly dependent, then g1(a0 + a1x + . . . +

an−1x
n−1) = fh ∈ 〈f〉 for some polynomial h ∈ Z[x]. Since f is irreducible and

Z[x] is a unique factorization domain, f is also prime. Thus either f |g1 or f |a0 +

a1x + . . . + an−1x
n−1. But both of those polynomials have degree less than f , and

since f is irreducible, this cannot be unless either g1 or a0 + a1x + . . .+ an−1x
n−1 is

0.

Notice that in the proof of the previous theorem, we made an observation

that the vectors corresponding to polynomials g,gx, . . . ,gxn−1 are linearly indepen-

dent for any non-zero polynomial g. So if g happens to correspond to the shortest

vector of the lattice, and θ(f) is small, then all the vectors g,gx, . . . ,gxn−1 are short,

and so λn(Λ) will be small as well. This observation leads to the following lemma.

Lemma 2.13. For all lattices Λ corresponding to some ideal of Z[x]/〈f〉, where f is

a monic, irreducible polynomial of degree n, we have λ∞n (Λ) ≤ θ(f)λ∞1 (Λ)

Proof. Let g be the polynomial n such that ‖g‖∞ = λ∞1 (Λ). Then the polynomials

g,gx, . . . ,gxn−1 are linearly independent. And by definition of θ(f), we have that

λ∞n (Λ) ≤ max
i
‖gxi‖∞ ≤ θ(f)‖g‖∞ ≤ θ(f)λ∞1 (Λ)

We now define the shortest vector problem when restricted to lattices cor-

responding to ideals in the ring Z[x]/〈f〉 for some monic polynomial f .

Definition 2.14. For any γ ≥ 1, monic polynomial f , and a lattice Λ corresponding

to an ideal in the ring Z[x]/〈f〉, the f -SVPγ(Λ) problem asks to find an element g in

Λ such that ‖g‖∞ ≤ γλ∞1 (Λ).

27

Even though ideal lattices have more structure than general lattices, there

are no known algorithms that can take any significant advantage of it (see [Mic07] for

a discussion of this). Therefore it is reasonable to make the conjecture that solving

f -SVP is as hard as solving SVP.

Conjecture 2.1. For any monic polynomial f of degree n and any constant c, solving

the f -SVPγ problem in the worst case requires 2Ω(n) time when γ = O(nc).

2.F The Hash Function and the Collision Problem

In this section, we will present the hash function whose collision-resistance

we will prove in Chapter 3. This hash function will also serve as a building block for

all the other cryptographic constructions in this thesis.

Definition 2.15. For any D ⊆ R, the function family H(R,D,m) mapping Dm to

R is defined as

H(R,D,m) = {hâ : â ∈ Rm}, where for any ẑ ∈ Dm, hâ(ẑ) = â� ẑ.

If D = R, we will simply denote the functions as H(R,m). Notice that the families

H(R,m) and H(R,D,m) are exactly the same, and so the D in H(R,D,m) is merely

used for convenience to remind the reader that we are considering the restriction of

the domain to Dm.

Throughout the paper, we will write h rather than hâ with the understand-

ing that there is an â associated with the function h.

The efficiency of all the cryptographic primitives that we will describe in

this thesis is due to the fact that for any h ∈ H(R,m), computing h(ẑ) takes time

mÕ(n).

Claim 2.16.

1. For any f and p = nO(1), any two elements in Zp[x]/〈f〉 can be multiplied in

time Õ(n).

28

2. For any f and p = nO(1) and h ∈ H(R,m) for R = Zp[x]/〈f〉, h(ẑ) can be

computed in time mÕ(n).

Proof. Computing h(ẑ) requires m additions of the products aizi. Since ai and zi

are polynomials of degree n with logarithmic-length coefficients, their product can

be computed in time Õ(n) using the Fast Fourier Transform.

We now make the observation that the functions in H(R,m) are module

homomorphisms.

Claim 2.17. H(R,m) is a set of module homomorphisms. That is, for every ŷ, ẑ ∈
Rm, c ∈ R, and h ∈ H(R,m), the following two conditions are satisfied:

1. h(ŷ + ẑ) = h(ŷ) + h(ẑ)

2. h(ŷc) = h(ŷ)c

Proof. By the definition of the hash function h, we have

1. h(ŷ + ẑ) = â� (ŷ + ẑ) = â� ŷ + â� ẑ = h(ŷ) + h(ẑ)

2. h(ŷc) = â� (y1c, . . . ,ymc) = a1y1c + . . .+ amymc = (a1y1 + . . .+ amym)c =

(â� ŷ)c = h(ŷ)c

Another observation that will be useful in Chapter 4 is that the kernel of h

contains many elements that have small norm.

Lemma 2.18. For every positive integer c and for every h ∈ H(R,m), there exist

at least cmn elements ŷ ∈ Rm such that ‖ŷ‖∞ ≤ cp1/m and h(ŷ) = 0.

Proof. Let S be the set containing all elements in Rm with coefficients between 0

and cp1/m. Since |S| = (bcp1/mc + 1)mn > cmnpn and |R| = pn, by the pigeonhole

principle, there exists a t ∈ R and a subset S′ ⊆ S such that |S′| > cmn and

for all ŝ′ ∈ S′, h(̂s′) = t. Let S′ = {ŝ′1, ŝ′2, . . . , ŝ′k} and consider the set Y =

{ŝ′1 − ŝ′1, ŝ
′
1 − ŝ′2, . . . , ŝ

′
1 − ŝ′k} of size |S′| . Note that for each ŷ ∈ Y , ‖ŷ‖∞ ≤ cp1/m

and h(ŷ) = 0 because of the homomorphic property of h.

29

We will define the collision problem Col(h,D) as follows:

Definition 2.19. Given an element h ∈ H(R,m), the collision problem Col(h,D)

(where D ⊆ R) asks to find two distinct elements ẑ, ẑ′ ∈ Dm such that h(ẑ) = h(ẑ′).

2.G Statistical Distance

Let X and Y be random variables over a set A with probability density

functions δX and δY respectively. The statistical distance between X and Y , denoted

∆(X,Y), is

∆(X,Y) =
1

2

∫

a∈A
|δX(a)− δY (a)|da.

If the set A is a discrete set, then the statistical distance ∆(X,Y) can be

rewritten as

∆(X,Y) =
1

2

∑

a∈A

|Pr[X = a]− Pr[Y = a]|.

The statistical distance satisfies the following useful properties:

∆(f(X), f(Y)) ≤ ∆(X,Y) (2.2)

∆((X1, . . . ,Xk), (Y1, . . . , Yk)) ≤
k∑

i=1

∆(Xi, Yi) (2.3)

(2.4)

for any function f and independent random variables X1, . . . ,Xk and Y1, . . . , Yk.

2.H Algorithms and Asymptotic Notation

An algorithm is a sequence of steps that produces some output. If A is

an algorithm, then A(x) denotes the output of A when it is given the input x. A

randomized (or probabilistic) algorithm A is an algorithm that is allowed to have

access to a purely random bit-generator during its execution, or equivalently, it is a

deterministic algorithm that is given a uniformly random bit-string ρ as an auxiliary

input. We will sometimes write A(x; ρ) to denote that the input is x and the random

string is ρ. We will use the notation y
$← S to denote that the value for y is being

chosen uniformly at random from the set S.

30

A0(x) A1(y) A0(x
1, . . . , xl) A1(y

1, . . . , yl)

y1
-

y1
1, . . . , y

l
1
-

x1
�

x1
1, . . . , x

l
1

�

.

.

yk
-

y1
k, . . . , y

l
k
-

xk
�

x1
k, . . . , x

l
k

�

Figure 2.1 On the left is an interactive protocol between algorithms A0 and A1 whose
inputs are x and y, respectively. On the right is a parallel execution of l protocols
between A0 and A1.

An interactive algorithm is an algorithm that, before producing its final

output, may produce some intermediate outputs or wait for additional inputs. An

interactive protocol between two interactive algorithms A0 and A1, denoted (A0, A1),

is a protocol where the intermediate outputs of Ai are used as intermediate inputs of

algorithm A1−i. The output of the protocol consists of all the outputs produced by

the two algorithms. If algorithms A0 and A1 are given inputs x and y, respectively,

at the start of the protocol, then the protocol is denoted as (A0(x), A1(y)). Running l

copies of a protocol between A0 andA1sequentially means performing the interactions

(A0(x
1), A1(y

1)), . . . , (A0(x
l), A1(x

l)) one after the other. A parallel composition of

l copies of a protocol between A0 and A1 involves outputting all intermediate results

for all l copies of the protocol at every step where intermediate results are outputted

(see Figure 2.1).

We use standard asymptotic notation symbols O, o,Ω, ω, and Θ to measure

the running-time complexity of algorithms. We recall their definitions here.

Definition 2.20.

• f(x) = O(g(x)) if lim
x→∞

f(x)
g(x) 6=∞.

• f(x) = o(g(x)) if lim
x→∞

f(x)
g(x) = 0.

• f(x) = Ω(g(x)) if lim
x→∞

f(x)
g(x) 6= 0.

31

• f(x) = ω(g(x)) if lim
x→∞

f(x)
g(x) =∞.

• f(x) = Θ(g(x)) if lim
x→∞

f(x)
g(x) = c, where c is some constant.

We will often use the “soft-Oh” (i.e., Õ) notation to suppress poly-logarithmic

factors. For example, if f(n) = O(n2 log3 n), we may simply write f(n) = Õ(n2).

2.I Witness Indistinguishability

The concept of witness indistinguishability was introduced by Feige and

Shamir in [FS90]. For a string x and relation R, a witness set WR(x) consists of all

strings w such that R(w, x) = 1. For example, x could be a boolean formula and

the relation R could be defined as R(x,w) = 1 iff w is an assignment that makes x

evaluate to 1. Then the set WR(x) is the set of all assignments that make x evaluate

to 1. In our case, the witness will correspond to the secret key and the string x is

the public key.

Let P and V be two randomized interactive algorithms and (P,V) be a pro-

tocol between P and V. We denote by VP(x,w)(x, y) the output of V after participating

in the protocol (P,V). We say that (P,V) is statistically witness-indistinguishable

if for all V ′, all large enough x, any y, and any two w,w′ ∈WR(x),

∆
(
V ′P(x,w)(x, y),V ′P(x,w′)(x, y)

)
< 2−ω(log |x|).

In other words, every cheating verifier V ′ with any auxiliary input y, cannot

distinguish whether the witness that P is using in the protocol is w or w′. An impor-

tant feature of witness indistinguishability is that it is closed under parallel composi-

tion. In other words, if the protocol (P,V) is witness-indistinguishable, then running

polynomially-many copies of the protocol in parallel is witness-indistinguishable as

well. If

∆
(
V ′P(x,w)(x, y),V ′P(x,w′)(x, y)

)
= 0,

we say that the protocol (P,V) is perfectly witness-indistinguishable.

32

2.J Gaussian Distributions

In this work, we will be using techniques developed in [AR05,Reg03,MR07]

that involve Gaussian distributions over lattices. In this section we recall all the

relevant definitions and results from [MR07]. We will also present some new results

about gaussian distributions on lattices.

For any vectors c,x and any s > 0, let ρs,c(x) = e−π‖(x−c)/s‖2 be a Gaussian

function centered in c scaled by a factor of s. The total measure associated to ρs,c

is
∫
x∈Rn ρs,c(x)dx = sn. So,

∫
x∈Rn(ρs,c(x)/sn)dx = 1 and ρs,c/s

n is a probability

density function.

The distribution ρs,c/s
n can be efficiently approximated using standard

techniques (see [MR07]), so in the rest of the paper we make the simplifying assump-

tion that we can sample from ρs,c/s
n exactly and work with real numbers.

Functions are extended to sets in the usual way; e.g., ρs,c(A) =
∑

x∈A ρs,c(x)

for any countable set A. For any s, c and lattice Λ, define the discrete probability

distribution (over the lattice Λ) DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ) , where x ∈ Λ. Intuitively, DΛ,s,c

is the conditional probability2 that (ρs,c/s
n) = x given (ρs,c/s

n) ∈ Λ. For brevity,

we sometimes omit s or c from the notation ρs,c and DΛ,s,c. When c or s are not

specified, we assume that they are the origin and 1 respectively.

In [MR07], Gaussian distributions are used to define a new lattice invariant

called the smoothing parameter.

Definition 2.21. For an n-dimensional lattice Λ, and positive real ε > 0, the smooth-

ing parameter ηε(Λ) is the smallest s such that ρ1/s(Λ
∗ \ {0}) ≤ ε.

In [MR07], many important properties of the smoothing parameter are es-

tablished. Here we only need the following few bounds. The first one shows that the

smoothing parameter is the amount of Gaussian noise that needs to be added to a

lattice in order to get an almost uniform distribution.

Lemma 2.22 ([MR07, Lemma 4.1]). Let ρs/s
n mod B be the distribution obtained

by sampling a point according to the probability density function ρs/s
n and reduc-

2We are conditioning on an event that has probability 0; this can be made rigorous by standard
techniques.

33

ing the result modulo B. For any lattice L(B), the statistical distance between

ρs/s
n mod B and the uniform distribution over P(B) is at most 1

2ρ1/s(L(B)∗ \ {0}).
In particular, if s ≥ ηε(L(B)), then the distance ∆(ρs/s

n mod B, U(P(B))) is at

most ε/2.

It’s useful to note that since every coset of Rn/L(B) has a unique represen-

tative in P(B), we can think of the distribution of ρs/s
n, for s ≥ ηε(L(B)), to be an

almost uniform distribution on the cosets of Rn/L(B).

The next property bounds the smoothing parameter in terms of λn. In

[MR07], the authors are working with the l2 norm,while we will be primarily concen-

trating on the l∞ norm. This is why the next lemma differs from the one in [MR07]

by a factor of
√
n.

Lemma 2.23 ([MR07, Lemma 3.3]). For any n-dimensional lattice Λ and positive

real ε > 0,

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λ2

n(Λ) ≤
√
n ln(2n(1 + 1/ε))

π
· λ∞n (Λ).

The next lemma states that if x ∼ DΛ,s,c for a large enough s, then x is

not concentrated on one value. The lemma is even stronger in [MR07], but we do

not need its full power here3.

Lemma 2.24 ([MR07]). Let Λ be any n-dimensional lattice and let s be such that

s > 2ηε(Λ) for ε ≤ 1/100, and let c ∈ Rn be any point. Then for all x′ ∈ Λ,

Prx∼DΛ,s,c
[x = x′] ≤ 99/100.

2.J.1 New Lemmas for the Gaussian Distribution Over Lattices

In this subsection, we state a new result for Gaussian distributions over

lattices which strengthens a result from [MR07], and thus might be of independent

interest. In [MR07], the authors showed that for any c and a large enough s, the first

few moments of the distribution DΛ,s,c behave essentially the same as the moments

of the continuous Gaussian distribution ρs/s
n. In this work, though, we need much

higher moments of DΛ,s,c. In appendix A we prove that all the moments of DΛ,s,c

3This lemma only appears in the conference version of [MR07]

34

behave like the moments of ρs/s
n plus a little error. The precise statement of this

is given in Lemma A.6. This result allows us to prove the following lemma, whose

proof can also be found in Appendix A. We remark that following our work [LM06],

Peikert was able to obtain the same results in the context of a more general analysis of

the distributions of sums of discrete gaussians [Pei07]. (In this section, the notation

〈a,b〉 denotes the vector dot product of a and b.)

Lemma 2.25. For any n-dimensional lattice Λ, point c ∈ Rn, a vector u such that

‖u‖ = 1, positive real s > 2ηε(Λ) where ε < (log n)−2 log n,

Prx∼DΛ,s,c
[|〈x− c,u〉| ≥ s log n] = n−ω(1)

Lemma 2.26. For any n-dimensional lattice Λ, positive reals ε < (log n)−2 log n,

s > 2ηε(Λ), polynomials c, z ∈ R[x] of degree less than n, and any monic polynomial

f of degree n,

Prd∼DΛ,s,c
[‖(d − c)z mod f‖∞ ≥ 2θ(f)‖z‖∞s

√
n log n] = n−ω(1)

Proof. Define n-dimensional vectors z(i) as follows:

z(i) =

(zi, zi−1, . . . , z0, 0, . . . , 0) for 0 ≤ i ≤ n− 1

(0, . . . , 0, zn−1, . . . , zi+2−n, zi+1−n) for n ≤ i ≤ 2n− 2

With the above notation, the polynomial product of (d− c)z in R[x] can be written

as

(d− c)z =

2n−2∑

i=0

〈d− c, z(i)〉xi

Thus,

‖(d− c)z‖∞ = max
i
|〈d− c, z(i)〉| = max

i

∣∣∣∣∣‖z
(i)‖

〈
d− c,

z(i)

||z(i)||

〉∣∣∣∣∣

≤ ‖z‖max
i

∣∣∣∣∣

〈
d− c,

z(i)

||z(i)||

〉∣∣∣∣∣ ≤
√
n‖z‖∞max

i

∣∣∣∣∣

〈
d− c,

z(i)

||z(i)||

〉∣∣∣∣∣

By Lemma 2.25 and the union bound, we get

Prd∼DΛ,s,c

[
max

i

∣∣∣∣∣

〈
d− c,

z(i)

||z(i)||

〉∣∣∣∣∣ ≥ s log n

]
≤ 2n · n−ω(1) = n−ω(1)

35

and we can now apply Lemma 2.10 to obtain that with probability 1− n−ω(1)

‖(d− c)z mod f‖∞ ≤ 2θ(f)‖(d − c)z‖∞ ≤ 2θ(f)
√
n‖z‖∞s log n

2.K Cryptographic Primitives

2.K.1 Digital Signatures

We recall the definitions of signature schemes and what it means for a

signature scheme to be secure.

Definition 2.27. A signature scheme consists of a triplet of polynomial-time (pos-

sibly probabilistic) algorithms (G,S, V) such that for every pair of outputs (s, v) of

G(1n) and any n-bit message m,

Pr[V (v,m, S(s,m)) = 1] = 1

where the probability is taken over the randomness of algorithms S and V .

In the above definition, G is called the key-generation algorithm, S is the

signing algorithm, V is the verification algorithm, and s and v are, respectively, the

signing and verification keys.

A signature scheme is said to be secure if there is only a negligible proba-

bility that any forger, after seeing signatures of messages of his choosing, can sign a

message whose signature he has not already seen [GMR88].

Definition 2.28. A signature scheme (G,S, V) is said to be secure if for every

polynomial-time (possibly randomized) forger F , the probability that after seeing the

public key and {(µ1, S(s, µ1)), . . . , (µq, S(s, µq))} for any q messages µi of its choosing

(where q is polynomial in n), F can produce (µ 6= µi, σ) such that V (v, µ, σ) = 1, is

negligibly small. The probability is taken over the randomness of G, S, V , and F .

A weaker notion of security, called “one-time security” means that a forger,

after seeing a signature of only a single message of his choosing, cannot produce a

valid signature of a different message.

36

Definition 2.29. A signature scheme (G,S, V) is said to be one-time secure if for

every polynomial-time (possibly randomized) forger F , the probability that after seeing

the public key and (m,S(s,m)) for any message m of its choosing, F can produce

(m′ 6= m,σ′) such that V (v,m′, σ′) = 1, is negligibly small. The probability is taken

over the randomness of G, S, V , and F .

In the standard security definition of a signature scheme, the forger should

not be able to produce a signature of a new message. A stronger notion of security,

called strong unforgeability requires that in addition to the above, a forger shouldn’t

even be able to come up with a different signature for a message whose signature he

has already seen. The schemes presented in this paper satisfies this stronger notion

of unforgeability.

2.K.2 Identification Schemes

An identification scheme consists of a key-generation algorithm and a de-

scription of an interactive protocol between a prover, possessing the secret key, and

verifier possessing the corresponding public key. In general, it is required that the

verifier accepts the interaction with a prover who behaves honestly with probability

one. In this work, though, we need to relax this definition, and only require that

the verifier accepts an honest prover with probability negligibly close to one (i.e

1− 2−ω(log n)).

The standard active attack model against identification schemes proceeds

in two phases [FFS88]. In the first phase, the adversary interacts with the prover

in an effort to obtain some information. In the second stage, the adversary plays

the role of the prover and tries to make a verifier accept the interaction. We remark

that in the second stage, the adversary no longer has access to the honest prover.

The adversary succeeds if he is able to make an honest verifier accept with some

non-negligible probability.

2.K.3 The Random Oracle Model

A random oracle is a truly random function, and proving security of cryp-

tographic protocols in the random oracle model assumes that all the parties par-

37

ticipating in the protocol have access to a random oracle. While accessing a truly

random function is practically infeasible, protocols proven secure in the random or-

acle model are still secure if the random function is replaced by a trusted third

party. Relying on trusted third parties, however, is usually the very antithesis of

cryptography’s purpose, and so in practice, the random oracle methodology involves

repalcing the trusted third party with a cryptographic hash function (such as SHA).

The effect of this is that the security proof no longer applies and there are in fact

constructions of “artificial” cryptographic protocols that can be proven secure in the

random oracle model, yet are insecure whenever any real function is substituted for

the trusted third party [CGH04]. Nevertheless, starting with the work of Bellare and

Rogaway [BR93], who advocated the use of the random oracle methodology in the

design of cryptographic protocols, many useful and seemingly secure primitives have

been constructed in this way. While the role of random oracles in provable security

remains somewhat controversial, it is generally accepted that a proof in the random

oracle model is much better than no proof at all.

The General Forking Lemma

The following lemma of Bellare and Neven [BN06] will be very useful for

proving that our signature scheme in Chapter 6 is secure in the random oracle model.

We point out that the lemma itself has no mention of signatures or random oracles,

but simply gives a bound on the probability that an algorithm will output something

when run twice on slightly different inputs.

We now give a very rough overview of the lemma’s statement. Suppose

that A is an algorithm that takes as input (x, h1, . . . , hq; ρ), where all the hi’s are

chosen randomly from some set H, and A is required to output one of the hi’s. If

this algorithm outputs hI , where 1 ≤ I ≤ q, then the probability that hI 6= h′I and

the output of A(x, h1, . . . , hI−1, h
′
I , h
′
I+1, . . . , h

′
q; ρ) (where h′i

$← H) will be h′I , is not

too small.

Lemma 2.30 (Lemma 1 of [BN06]). Fix an integer q ≥ 1 and a set H of size h ≥ 2.

Let A be a randomized algorithm that on input x, h1, . . . , hq returns a pair, the first

element of which is an integer in the range 0, . . . , q and the second element of which

38

we refer to as a side output. Let IG be a randomized algorithm that we call the input

generator. The accepting probability of A, denoted acc is defined as the probability

that J ≥ 1 in the experiment

x
$← IG;h1, . . . , hq

$← H; (J, σ)
$← A(x, h1, . . . , hq).

The forking algorithm FA associated to A is the randomized algorithm that takes

input x and proceeds as follows:

FA(x)

1: Pick bit-string ρ for A at random

2: h1, . . . , hq
$← H

3: (I, σ)
$← A(x, h1, . . . , hq; ρ)

4: if I = 0 then

5: return (0, ε, ε)

6: end if

7: h′I , . . . , h
′
q

$← H

8: (I ′, σ′)← A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
q; ρ)

9: if I = I ′ and hI 6= h′I then

10: return (1, σ, σ′)

11: else

12: return (0, ε, ε)

13: end if

Let

frk = Pr
x

$
←IG,(b,σ,σ′)

$
←FA(x)

[b = 1].

Then

frk ≥ acc ·
(
acc

q
− 1

h

)
.

3

Hash Function

3.A Introduction

This chapter is devoted to proving the hardness of the collision problem in

Definition 2.19. We will be showing that for any ring R = Zp[x]/〈f〉 and some set

D ⊂ R, if there is a polynomial-time algorithm that can solve Col(h,D) for a random

h ∈ H(R,D,m) with some non-negligible probability, then there is a polynomial-time

algorithm that can find an approximate shortest vector in all lattices that correspond

to ideals in the ring Z[x]/〈f〉.

Theorem 3.1. Let R = Zp[x]/〈f〉 be a ring where f is a monic, irreducible polyno-

mial of degree n and define the set D = {y ∈ R : ‖y‖∞ ≤ d} for some integer d. Let

H(R,D,m) be a hash function family as in Definition 2.15 such that m > log p
log 2d and

p ≥ 4θ(f)2dmn1.5 log n. If there is a polynomial-time algorithm that solves Col(h,D)

for a random h ∈ H(R,D,m) with some non-negligible probability, then there is a

polynomial-time algorithm that can solve f -SVPγ(Λ) for every lattice Λ corresponding

to an ideal in Z[x]/〈f〉 , where γ = 16θ(f)2dmn log2 n.

To achieve the smallest value for the approximation factor γ, we can set

m = Θ(log n+ log θ(f)) and d = Θ(log n). This makes γ = Õ(n)θ(f)2. For purposes

of being able to compute the function faster, though, it is useful to have m be

smaller than Θ(log n). It is possible to make m constant at the expense of being

able to approximate the shortest vector only to a factor of γ = Õ(n1+δ)θ(f)2. To be

39

40

able to set m to a constant, we can set d = nδ for some δ > 0. Then we can set

m = log (θ(f))
δ log n + 2+δ

δ + o(1).

Note that the factor θ(f) plays a prominent role in the approximation factor

for the solution to f -SVP. Therefore it is prudent to choose polynomials f for which

θ(f) is small. We saw in Section 2.D that if f = xn +1 or xn−1 +xn−2 + . . .+1, then

θ(f) = 1 and 2 respectively. It is our belief that the hardness of f -SVP doesn’t really

depend on the particular f , and so we would recommend choosing an f such that

θ(f) is as small as possible in order to make the reduction from f -SVP to Col(h,D)

as tight as possible.

3.A.1 Basing Security On All Ideal Lattices

Theorem 3.1 says that being able to solve Col(h,D) for h ∈ H(R,m) implies

being able to solve f -SVPγ for a particular f . So for example, we can have collision-

resistant hash functions based on the hardness of f -SVPγ when f = xn + 1, but we

will need a different hash function if we want to base security on the hardness of

f -SVPγ for f = xn +xn−1 + . . .+1. So a natural question is whether we can have one

hash function that is based on the hardness of f -SVP for every monic, irreducible

polynomial f . In this section, we describe such a function.

The idea is actually very simple. Currently, our hash functions take as

inputs polynomials in the ring Zp[x]/〈f〉 and perform all operations in that ring.

But now consider the same hash functions performing their operations over the ring

Zp[x]. In other words, everything stays the same, except we don’t perform a reduction

modulo f . Formally, consider the function family

H(Zp[x],m) = {hâ : â ∈ Zp[x]}, where for any ẑ ∈ Zp[x]m, hâ(ẑ) = â� ẑ.

Notice that if the degree of all the ai, zi in â, ẑ is less than n, then the degree of

the polynomial h(ẑ) will be at most 2n− 2, and so the size of the range of h will be

p2n−1. We can define the UCol (Universal Collision) problem as

Definition 3.2. In the UCol(h,D, n) problem, we are given an an hâ ∈ H(Zp[x],m)

where each hâ is defined by m ai of degree less than n, and are asked to find distinct

ẑ, ẑ′ ∈ Dm such that h(ẑ) = h(ẑ′).

41

Lemma 3.3. If m > 2 log p
log |D| , then there is a reduction from solving Col(h,D) where

h ∈ H(R,D,m) and R = Zp[x]/〈f〉 to UCol(d,D, n).

Proof. Given an h ∈ H(R,m), we treat it as a hash function in H(Zp[x],m). Since

m > 2 log p
log |D| , the function h will be compressing and will therefore contain collisions.

Therefore, we can solve the UCol(d,D, n) problem to obtain a ẑ, ẑ′ ∈ Dm such that

h(ẑ) = h(ẑ′) and of course, this also means that h(ẑ mod f) = h(ẑ′ mod f), and

therefore ẑ and ẑ′ are solutions to Col(h,D).

Therefore finding collisions in the hash function family H(Zp[x],m) is as

hard as solving f -SVP for every f . The only downside of using hash functions from

H(Zp[x],m) rather than from H(R,m) is that the output size of functions from

H(Zp[x],m) is about twice the size of the output of the functions from H(R,m).

3.B Proof of Theorem 3.1

In this section, we will prove Theorem 3.1. We will be finding the approxi-

mate shortest vector by finding incrementally smaller vectors in the lattice. We will

show that by having access to an oracle who can solve Col(h,D), we will be able to

find a vector that is half the size of the shortest current vector (until a certain point).

More precisely, we will be using solutions to Col(h,D) for random h ∈ H(R,m) to

repeatedly solve the following problem:

Given: a lattice Λ, g ∈ Λ such that g 6= 0 and ‖g‖∞ > 16θ(f)2dmn log2 nλ∞1 (Λ)

Find: h ∈ Λ, such that h 6= 0 and ‖h‖∞ ≤ ‖g‖∞/2.

Define a number s as

s =
‖g‖∞

16θ(f)
√
n log ndm

≥ θ(f)
√
n(log n)λ∞1 (Λ) ≥

√
n(log n)λ∞n (Λ) ≥ ηε(Λ)

for ε = (log n)−2 log n, where the last inequality follows by Lemma 2.23, and the

inequality before that is due to Lemma 2.13. By Lemma 2.22, it follows that if

y ∈ Rn where y ∼ ρs/s
n, then ∆(y + Λ, U(Rn/Λ)) ≤ (log n)−2 log n/2. (That is,

y is in an almost uniformly random coset of Rn/Λ). We will now try to create an

42

h ∈ Λ which is smaller than g using the procedure below. In the procedure, it may

not be obvious how each step is performed, and the reader is referred to Lemma

3.4 for a detailed explanation of each step. Also, let I be the ideal in Z[x]/〈f〉 that

corresponds to the lattice Λ.

1: for i = 1 to m do

2: generate a uniformly random coset of I/〈g〉 and let vi be a polynomial in that

coset

3: generate yi ∈ Rn such that yi has distribution ρs/s
n and consider yi as a

polynomial in R[x]

4: let wi be the unique polynomial in R[x] of degree less than n with coefficients

in the range [0, p) such that p(vi + yi) ≡ gwi in Rn/〈pg〉
5: ai = [wi] mod p (where [wi] means round each coefficient of wi to the nearest

integer)

6: set â = (a1, . . . ,am)

7: use oracle C to solve Col(hâ,D), and using its output obtain polynomials

z1, . . . , zm such that ‖zi‖∞ ≤ 2d and
∑

ziai ≡ 0 in the ring Zp[x]/〈f〉
8: end for

9: output h =
m∑

i=1

(
g(wi−[wi])

p − yi

)
zi mod f .

To complete the proof, we will have to show five things: first, we have to

prove that the above procedure runs in polynomial time, this is done in Lemma 3.4.

Then, in Lemma 3.5, we show that in step (6) we are feeding the oracle C with

an h ∈ H(R,m) where the distribution of h is statistically close to uniform over

H(R,m). In Lemma 3.6, we show that the resulting polynomial h is in the ideal I.

We then show that if C outputted a collision, then with non-negligible probability,

‖h‖∞ ≤ ‖g‖∞/2 and that h 6= 0. This is done in Lemmas 3.7 and 3.8 respectively.

If we happen to fail, we can just repeat the procedure again. Since each run of the

procedure is independent, we will obtain a shorter vector in polynomial time.

Lemma 3.4. The above procedure runs in polynomial time.

Proof. We will show that each step in the algorithm takes polynomial time. In step

(2), we need to generate a random element of I/〈g〉. By Lemma 2.12, the ideals I

43

and 〈g〉 can be thought of as Z-modules of dimension n. Since 〈g〉 ⊆ I, the group

I/〈g〉 is finite. Thus by Lemma 2.1, we can efficiently generate a random element of

I/〈g〉. Step (4) of the algorithm will be justified in Lemma 3.5. In step (5), we are

just rounding each coefficient of wi to the nearest integer and then reducing modulo

p. Now each ai can be thought of as an element of Zp[x]/〈f〉, so hâ in step (6) is

an element of Rm, and we ask oracle C to solve Col(hâ,D). The oracle will return

(α1, . . . ,αm), (β1, . . . ,βm) where αi,βi ∈ Z[x]/〈f〉 such that ‖αi‖∞, ‖βi‖∞ ≤ d and
∑

aiαi ≡
∑

aiβi in the ring Zp[x]/〈f〉. Thus if we set zi = αi − βi, we will have

‖zi‖∞ ≤ 2d and
∑

ziai ≡ 0 in the ring Zp[x]/〈f〉.

Lemma 3.5. Consider the polynomials ai as elements in Zn
p . Then,

∆((a1, . . . ,am), U(Zn×m
p)) ≤ mε/2.

Proof. We know that vi is in a uniformly random coset of I/〈g〉 and let’s assume

for now that yi is in a uniformly random coset of Rn/I. This means that vi + yi

is in a uniformly random coset of Rn/〈g〉 and thus the distribution of p(vi + yi)

is in a uniformly random coset of Rn/〈pg〉. A basis for the additive group 〈pg〉 is

pg, pgx, . . . , pgxn−1, thus every element of Rn/〈pg〉 has a unique representative of

the form α0pg + α1pgx + . . . + αn−1pgx
n−1 = g(pα0 + pα1x + . . . + pαn−1x

n−1)

for αi ∈ [0, 1). So step (4) of the algorithm is justified, and since p(vi + yi) is

in a uniformly random coset of Rn/〈pg〉, the coefficients of the polynomial wi =

pα0 + pα1x + . . . + pαn−1x
n−1 are uniform over the interval [0, p), and thus the

coefficients of [wi] are uniform over the integers modulo p. The caveat is that yi is

not really in a uniformly random coset of Rn/I, but is very close to it. By our choice

of s, we have that ∆(ρs/s
n + I, U(Rn/I)) ≤ ε/2, and since ai is a function of yi, by

equation 2.2 we have that ∆(ai, U(Zn
p)) ≤ ε/2. Since all the ai’s are independent, by

equation 2.3, we have that ∆((a1, . . . ,am), U(Zn×m
p)) ≤ mε/2.

Lemma 3.6. h ∈ I

Proof. In step (4) of the algorithm, assume that p(vi + yi) + kigp = gwi for some

44

ki ∈ Z[x]. Then,

h =
m∑

i=1

(
g(wi − [wi])

p
− yi

)
zi mod f

=

m∑

i=1

(vi + yi + gki − gai/p− yi)zi mod f

=

m∑

i=1

(vi + gki)zi mod f − g
∑

aizi

p
mod f

Since vi ∈ I and g ∈ I, we have that vi + gki mod f ∈ I and therefore
∑

(vi + gki)zi mod f ∈ I. Also, since
∑

aizi mod f ≡ 0(mod p), we have that
∑

aizi

p ∈ Z[x], and since g ∈ I, we have that g
∑

aizi

p mod f ∈ I.

Lemma 3.7. With probability negligibly different from 1, ‖h‖∞ ≤ ‖g‖∞2 .

Proof. We rewrite ‖h‖∞ as,

‖h‖∞ =

∣∣∣∣∣

∣∣∣∣∣

m∑

i=1

(
g(wi − [wi])

p
− yi

)
zi mod f

∣∣∣∣∣

∣∣∣∣∣
∞

≤
m∑

i=1

∣∣∣∣

∣∣∣∣
(

g(wi − [wi])

p

)
zi mod f

∣∣∣∣

∣∣∣∣
∞

+

m∑

i=1

||yizi mod f ||∞

We will first bound the term on the left using Lemma 2.8.

∣∣∣∣

∣∣∣∣
(

g(wi − [wi])

p

)
zi mod f

∣∣∣∣

∣∣∣∣
∞

≤ nθ(f)

p
||g(wi − [wi]) mod f ||∞||zi||∞

Assume for a moment that the coefficients of wi are independently, uniformly dis-

tributed in the range [0, p). Thus the coefficients of wi − [wi] are independently,

uniformly distributed in the range [−1/2, 1/2]. We also notice that wi is completely

independent from g. Thus we can apply Lemma 2.11 and conclude that with prob-

ability negligibly close to 1,

‖g(wi − [wi]) mod f‖∞ ≤ θ(f)‖g‖∞
√
n log n.

The preceding is all based on the assumption that the distribution of the coefficients

of wi is uniform, and the coefficients are independent, but in Lemma 3.5, we showed

that the distribution of the n coefficients of wi is statistically close to uniform over

45

[0, p)n. So, the preceding inequality still holds with probability negligibly close to 1.

Thus, with probability negligibly close to 1,

m∑

i=1

∣∣∣∣

∣∣∣∣
(

g(wi − [wi])

p

)
zi mod f

∣∣∣∣

∣∣∣∣
∞

≤ ‖g‖∞θ(f)
2dmn1.5 log n

p
<
‖g‖∞

4

where the last inequality follows because of our choice of p.

Now we will bound
∑ ‖yizi mod f‖∞. We will show

Pryi∼ρs/sn [||yizi mod f ||∞ > 2θ(f)‖zi‖∞s
√
n log n|(a1, . . . , am), (z1, . . . , zm)] (3.1)

= n−ω(1) (3.2)

for each i. First, we will make the following observation. For any fixed coset of Rn/I,

call it y′i + I, the distribution of ai given yi is the same for all yi ∈ y′i + I. Thus,

given that yi ∈ y′i + I, the distribution of yi is independent of (a1, . . . ,am) because

ai is a randomized function of y′i + I and aj 6=i is independent of yi. And thus given

that yi ∈ y′i + I, the distribution of yi is also independent of (z1, . . . , zm) because

(z1, . . . , zm) is a (randomized) function of (a1, . . . ,am). So we have

Pr[yi|yi ∈ y′i + I] =
ρs(yi)

ρs(y
′
i + I)

=
ρs,−y′

i
(yi − y′i)

ρs,−y′

i
(I)

and so the conditional distribution of (yi − y′i) ∈ I is DI,s,−y′

i
. Thus, we have

Pryi∼ρs/sn [||yizi mod f ||∞ > 2θ(f)||zi||∞s
√
n log n|yi ∈ y′i + I]

= Pr(yi−y′

i)∼DI,s,−y
′

i

[||((yi − y′i)− (−y′i))zi mod f ||∞ ≥ 2θ(f)||zi||∞s
√
n log n]

and by Lemma 2.26, we have

Pr(yi−y′

i)∼DI,s,−y
′

i

[||((yi − y′i)− (−y′i))zi mod f ||∞ ≥ 2θ(f)||zi||∞s
√
n log n] = n−ω(1)

The bound on Equation (3.1) follows by averaging over all possible y′i + I. Summing

for all i, we get

Pr

[
m∑

i=1

||yizi mod f ||∞ ≥ 4θ(f)dms
√
n log n

]
= n−ω(1)

And since ‖g‖∞ = 16θ(f)dms
√
n log n, we get that with probability negligibly close

to 1, ‖h‖∞ < ‖g‖∞
2 .

46

Lemma 3.8. Pr[h 6= 0|(a1, . . . ,am), (z1, . . . , zm)] = Ω(1)

Proof. Since some zi has to be non-zero, assume without loss of generality that z1 is

a non-zero polynomial. Then h = 0 if and only if

y1z1 mod f =

m∑

i=1

g(wi − [wi])zi

p
mod f −

m∑

i=2

yizi mod f

Notice that as in Lemma 3.7, if we are given the coset of Rn/I that y1 belongs to

(call it y′1 + I), then y1 is independent of all ai and zi and all yi>1. So we want to

bound

Pry1∼ρs/sn

[
y1z1 mod f =

m∑

i=1

g(wi − [wi])zi

p
mod f −

m∑

i=2

yizi mod f

∣∣∣∣y1 ∈ y′1 + I

]

(3.3)

and averaging over all y′1 + I will give us the final result. Notice that if y1z1 = c,

then for each given z1, there is only one value that y1 can have because the ring

Z[x]/〈f〉 is an integral domain and we assumed that z1 6= 0. Thus equation 3.3 is

equivalent to

Pry1∼ρs/sn [y1|y1 ∈ y′1 + I] =
ρs(y1)

ρs(y′1 + I)
=
ρs,−y′

i
(yi − y′i)

ρs,−y′

i
(I)

which is the probability that x = y1 − y′1 given that x ∼ DI,s,−y′

1
. By Lemma 2.24,

this probability is at most 99/100. Thus with probability Ω(1), h 6= 0.

3.C Finding Collisions In Zp[x]/〈xn − 1〉

In this section we show how to find collisions if the family of hash functions

H(R,m) is instantiated with a polynomial f = xn−1. This answers an open problem

posed in [Mic07] as well as illustrates the value of provable security. Indeed, there

is only a seemingly minor difference between having the function be computed over

the ring Zp[x]/〈xn + 1〉 and Zp[x]/〈xn − 1〉, yet in one case the function is provably

secure, and in the other case it is completely insecure, as we will now show.

The intuitive reason we can find collisions is that the ring Zp[x]/〈xn − 1〉
has an ideal that is small and consists of elements with small norms. That ideal is

J = 〈xn−1 + xn−2 + . . . + 1〉. It’s not hard to see that |J | = p and that all elements

47

of J have the form α(xn−1 + xn−2 + . . .+ 1) for integers 0 ≤ α ≤ p− 1. So the idea

for solving Col(h,D) (for any set D ⊂ R) is to choose (y1, . . . ,ym) 6= (z1, . . . , zm)

such that yi, zi ∈ J and yi, zi ∈ D. This would force both h(y1, . . . ,ym) and

h(z1, . . . , zm) to be in J . There are |D| possibilities for each yi, thus there are a

total of Dm possibilities for (y1, . . . ,ym). Thus if |D|m ≥ p, then a collision is

guaranteed to exist and will take time on the order of p to find. But in order for h

to be a hash function, we needed |D|nm to be greater than pn, and thus |D|m > p,

which is exactly the condition we need to find a collision in J .

3.D Cyclic Lattices

A cyclic lattice is a lattice corresponding to an ideal of the ring Z[x]/〈xn−1〉.
In a way, they are the simplest and most natural lattices that correspond to ideals be-

cause they are simply lattices where if (v1, . . . , vn) is a vector, then (vn, v1, . . . , vn−1)

must be a vector as well. It is precisely on the hardness of the shortest vector problem

of these lattices that Micciancio one-way function had its security based on. But we

showed that Micciancio’s one-way functions are not collision-resistant, and so it’s not

clear whether collision-resistant hash functions can be built based on the hardness

of cyclic lattice problems. In this section, we show that we can indeed build hash

functions with such security.

Theorem 3.9. For a prime n, let Φn(x) = xn−1 + xn−2 + . . . + 1. Then,

(xn − 1)-SV P4γ ≤ Φn(x)-SV Pγ

Proof. Let Λ be any cyclic lattice and let I be the ideal that corresponds to Λ. Also,

let v be a polynomial in I such that ‖v‖∞ = λ∞1 (I). There are two cases to consider.

The first case is that v is in the ideal generated by Φn(x). Since the ideal 〈Φn(x)〉 is

generated by a polynomial of degree n−1, the intersection 〈Φn(x)〉∩I has dimension

1, and so we can easily find the vector v in the lattice (of dimension 1) corresponding

to the ideal 〈Φn(x)〉 ∩ I.
In the second case, we have v /∈ 〈Φn(x)〉. This means that the polynomial

v′ = v mod Φn(x) 6= 0, and therefore if we define the ideal I ′ = I mod Φn(x), the

48

polynomial v′ will be a non-zero polynomial in the ideal I ′. Notice that since the

degree of v is n and the degree of Φn(x) is n − 1, we have ‖v′‖∞ ≤ 2‖v‖∞. Also

observe that I ′ is an ideal of Z[x]/〈Φn(x)〉 (because Φn(x)|xn−1), and therefore our

algorithm that solves Φn(x)-SV Pγ will find a non-zero polynomial w′ in I ′ such that

‖w′‖∞ ≤ γλ∞1 (I ′) ≤ γ‖v′‖∞ ≤ 2γ‖v‖∞ = 2γλ∞1 (I).

Now we notice that since w′ ∈ I ′, the polynomial w′ · (x − 1) must be in I. This

is because w′ = w mod Φn(x) = w − αΦn(x) (for some polynomial α), and so

w′(x − 1) = w(x − 1) − α(xn − 1) ∈ I. Also, the degree of w′ is at most n − 2, so

w′(x− 1) is not 0 in the ring Z[x]/〈xn − 1〉. Therefore the polynomial w′(x− 1) is

in I and

‖w′(x− 1)‖∞ ≤ ‖w′x‖∞+‖w′‖∞ ≤ θ(xn−1)‖w′‖∞+‖w′‖∞ = 2‖w′‖∞ ≤ 4γλ∞1 (I).

Corollary 3.10. Let n be a prime, let f = xn−1 +xn−2 + . . .+1, and let H(R,D,m)

be a family of hash functions for the parameters in Theorem 3.1. If we can solve

Col(h,D) where h is chosen uniformly at random from H(R,D,m), then we can

solve (xn − 1)-SV Pγ for γ = Õ(n).

3.E Connection with Algebraic Number Theory

In this subsection, we relate the problem of finding the shortest polynomial

in an ideal to a certain problem from algebraic number theory. Our goal will be to

show that finding collisions in h implies finding certain elements in number fields.

The connection between algebraic number theory and the ring Z[x]/〈f〉 comes from

the following lemma.

Lemma 3.11. If f ∈ Z[x] is monic and is the minimum polynomial1 of θ, then

Z[x]/〈f〉 ∼= Z[θ].

1the minimum polynomial of θ is the monic polynomial in Z[x] with the smallest degree that has
θ as a root

49

Proof. Let the degree of f be n and assume α ∈ Z[θ] is represented as an integer

combination of powers of θ. That is, α = α0 + α1θ + . . . + αn−1θ
n−1. Then the

function σ : Z[θ] → Z[x]/〈f〉 which maps α to α0 + α1x + . . . + αn−1x
n−1 is an

isomorphism. We will not prove this, but it is not hard to show using basic algebraic

number theory.

Definition 3.12. Let θ be an algebraic integer of degree n. Then for any α ∈
Q(θ) where α = α0 + α1θ + . . . + αn−1θ

n−1, define the function maxCoeffθ(α) to be

max(|α0|, . . . , |αn−1|).

From Lemma 3.11, we can see that finding an element with the smallest

norm in an ideal I of Z[x]/〈f〉 is equivalent to finding the element α in the ideal

σ−1(I) of Z[θ] (where θ is a zero of f) such that maxCoeffQ(θ)(α) is the smallest of

all the α′ ∈ σ−1(I). This is not too interesting of a problem because it is exactly the

shortest vector problem in ideal lattices with the indeterminate x replaced by θ. A

more interesting result is relating the norm of elements in Z[x]/〈f〉 to the conjugates

of elements in Z[θ].

Definition 3.13. For any α ∈ C, define the function maxConj(α) to be

max(|φ1|, . . . , |φn|) where φi are the zeros of the minimum polynomial of α over Q.

Notice that maxCoeffθ(α) depends on the particular representation of α,

while maxConj(α) does not. Now we define the smallest conjugate problem.

Definition 3.14. Let θ be an algebraic integer of degree n. Let K = Q(θ) be a

number field, and let Z[θ] be a subring of K. Let I be any ideal of Z[θ]. In the

approximate Smallest Conjugate Problem SCPγ(I), we are asked to find an element

α ∈ I such that maxConj(α) ≤ γ ·maxConj(α′) for all α′ ∈ I.

The problem of finding elements with small conjugates is somewhat related

to the “Polynomial Reduction Problem” in [Coh96, Section 4.4.2] for which no poly-

nomial time algorithm seems to be known.

As we did for SV P , we can consider the restriction of SCP to certain classes

of ideals. Let f be an irreducible integer polynomial. We will write f -SCP to mean

the problem SCP restricted to ideals of the ring Z[θ] where θ is a zero of f .

50

Now we will prove a theorem relating f -SCP to f -SVP for some values of f

such as f = xn + xn−1 + . . .+ 1 and f = xn + 1. The key reason that we are able to

get such a relationship is that when θ is a zero of such f ’s, then for any α ∈ Q(θ),

maxConj(α) and maxCoeffθ(α) differ by at most a factor of n. This is proved by

Lemmas 3.17, 3.18, and 3.19. Lemmas 3.17, 3.18 give us the sufficient conditions

under which there is such a close relationship, and Lemmas 3.19, 3.20 show that

when the minimum polynomial of θ is either xn +xn−1 + . . .+1 or xn +1, then those

conditions are satisfied.

Theorem 3.15. Let f = xn + xn−1 + . . . + 1 be irreducible, and let σ : Z[θ] →
Z[x]/〈f〉 be an isomorphism as in Lemma 3.11. Then f -SVPγn2 ≤ f -SCPγ(σ−1(I))

and f -SCPγn2 ≤ f -SVPγ(I).

Proof. Let θ be a zero of f . First, we will show f -SCPγn2 ≤ f -SVPγ . Consider

an ideal I of Z[θ] given to us by its generators g1, . . . , gk represented as a linear

combination of powers of θ. That is gi = gi,0 + gi,1θ + . . . + gi,n−1θ
n−1. We use the

oracle for f -SVPγ to find the element h ∈ σ(I) whose norm is less than γλ∞1 (σ(I))

and let α = σ−1(h). Thus maxCoeffθ(α) ≤ γ ·maxCoeffθ(α
′) for all α′ ∈ I. And so

applying Lemma 3.19 twice, we get

maxConj(α) ≤ n ·maxCoeffθ(α)

≤ nγ ·maxCoeffθ(α
′) for all α′ ∈ I

≤ n2γ ·maxConj(α′) for all α′ ∈ I

and so we have a γn2 approximation for f -SCP.

Now we show f -SVPγn2 ≤ f -SCPγ . Consider an ideal I of Z[x]/〈xn +xn−1 + . . .+ 1〉
given to us by its generators g1, . . . ,gk. We use the oracle for f -SCPγ to find the

element α ∈ σ−1(I) such that maxConj(α) ≤ γ ·maxConj(α′) for all α′ ∈ σ−1(I).

And by applying Lemma 3.19 twice, we get

maxCoeffθ(α) ≤ n ·maxConj(α)

≤ nγ ·maxConj(α′) for all α′ ∈ σ−1(I)

≤ n2γ ·maxCoeffθ(α
′) for all α′ ∈ σ−1(I)

51

This means that the infinity norm of σ(α) is at most γn2λ∞1 (I), and thus we have a

γn2 approximation of f -SVP.

Theorem 3.16. Let f = xn + 1 be irreducible, and let σ : Z[θ] → Z[x]/〈f〉 be an

isomorphism as in Lemma 3.11. Then f -SVPγn ≤ f -SCPγ(σ−1(I)) and f -SCPγn ≤
f -SVPγ(I).

Proof. The proof of this is analogous to the proof of Theorem 3.15, except that

instead of using Lemma 3.19 to obtain a connection between the maximum coefficient

and the maximum conjugate, we use Lemma Lemma 3.20.

Lemma 3.17. Let f ∈ Z[x] be a monic irreducible polynomial of degree n with

zeros θ1, . . . , θn ∈ C such that for all i, |θn−1
i | ≤ t. Let K = Q(θ1) and α =

α0 + α1θ1 + . . .+ αn−1θ
n−1
1 ∈ K. Then maxConj(α) ≤ nt ·maxCoeffθ1

(α).

Proof. Let σ1, . . . , σn : K → C be the n distinct embeddings of K into C. Then the

field polynomial of α is fldα(x) =
n∏

i=1
(x − σi(α)). Since the field polynomial is a

power of the minimum polynomial of α, the set of zeros of the minimal polynomial

of α is exactly the set {σi(α)}. Since σi(θ1) = θi, we have that σi(α) = α0 + α1θi +

. . .+ αn−1θ
n−1
i . Since |θn−1

i | ≤ t, we have the claim in the lemma.

Lemma 3.18. Let f ∈ Z[x] be a monic, irreducible polynomial of degree n with zeros

θ1, . . . , θn ∈ C. Let K = Q(θ1) be a number field. If there exists an integer m ≥ n

such that for all 1 ≤ i ≤ n and j ≤ m − 1 we have 1 ≤ |θj
i | ≤ t, and

∣∣∣∣
n∑

i=1
θm
i

∣∣∣∣ ≥ n

and for all j 6= 0(mod m), we have

∣∣∣∣
n∑

i=1
θj
i

∣∣∣∣ ≤ s ≤ 1, then for all α ∈ K, we have

maxCoeffθ1
(α) ≤ nt

n(1−s)+smaxConj(α).

Proof. Let σ1, . . . , σn : K → C be the n distinct embeddings of K into C. Then

the set of zeros of the minimum polynomial of α is {σi(α)}. Let k = maxi(|σi(α)|).
For each 0 ≤ j ≤ n − 1, we can set up the following system of n inequalities: for

1 ≤ i ≤ n, |σi(α)θm−n+j
i | ≤ tk. The preceding is true because |σi(α)| ≤ k and

|θm−n+j
i | ≤ t. Now we take a closer look at the system of inequalities for a particular

52

j. Let α = α0 + α1θ1 + . . . + αn−1θ
n−1
1 .

|σ1(α)θm−n+j
1 | = |α0θ

m−n+j
1 + . . .+ αn−jθ

m
1 + . . . + αn−1θ

m+j−1
1 | ≤ kt

|σ2(α)θm−n+j
2 | = |α0θ

m−n+j
2 + . . .+ αn−jθ

m
2 + . . . + αn−1θ

m+j−1
2 | ≤ kt

. . . = . . .

|σn(α)θm−n+j
n | = |α0θ

m−n+j
n + . . .+ αn−jθ

m
n + . . . + αn−1θ

m+j−1
n | ≤ kt

If we let A =
n∑

i=1
|αi| and Sj =

n∑
i=1

θm−n+j
i then

n|αn−j | − s(A− |αn−j |) =

n|αn−j | − s(|α0|+ . . .+ |αn−j−1|+ |αn−j+1|+ . . .+ |αn−1|) ≤

|αn−jSn| − (|α0Sj |+ . . .+ |αn−j−1Sn−1|+ |αn−j+1Sn+1|+ . . .+ |αn−1Sn−1+j|) ≤

|αn−jSn| − |α0Sj + . . . + αn−j−1Sn−1 + αn−j+1Sn+1 + . . .+ αn−1Sn−1+j| ≤

|α0Sj + . . .+ αn−j−1Sn−1 + αn−jSn + αn−j+1Sn+1 + . . .+ αn−1Sn−1+j| ≤

|σ1(α)θm−n+j
1 |+ . . . + |σn(α)θm−n+j

n | ≤ nkt

So for all αi, we have the inequality

|αi| ≤
nkt+ sA

n+ s

Setting B = nkt+sA
n+s , we get that A ≤ nB, and thus B ≤ nkt

n(1−s)+s and since |αi| ≤ B,

we get the claim in the lemma.

Lemma 3.19. Let f = xn +xn−1 + . . .+1 be an irreducible polynomial and θ ∈ C be

one of its zeros. Let K = Q(θ) and let α be an element of K. Then maxCoeffθ(α) ≤
n ·maxConj(α) and maxConj(α) ≤ n ·maxCoeffθ(α).

Proof. To prove that maxConj(α) ≤ n ·maxCoeffθ(α), we will apply Lemma 3.17.

Since f is the cyclotomic polynomial, all of its zeros have norm 1 and so we apply

Lemma 3.17 with t = 1 and we obtain the desired inequality.

To show that maxCoeffθ(α) ≤ n ·maxConj(α), we will need to apply Lemma 3.18.

In that lemma, we will set t = 1 and m = n+ 1. If θ is a zero of xn + xn−1 + . . .+ 1,

then θn+1 = (θn + . . .+1)(θ−1)+1 = 1, and so

∣∣∣∣
n∑

i=1
θm
i

∣∣∣∣ = n. Since f is a cyclotomic

polynomial, it has a zero, call it θ1, such that θi = θi
1 for all i. And since we already

53

showed that θn+1
i = 1, we know that θj

i = θ
j mod (n+1)
i . Thus for all j such that

j mod (n + 1) 6= 0, we have
∣∣∣∣∣

n∑

i=1

θj
i

∣∣∣∣∣ =

∣∣∣∣∣

n∑

i=1

θ
j mod (n+1)
i

∣∣∣∣∣ =

∣∣∣∣∣

n∑

i=1

θ
i(j mod (n+1))
1

∣∣∣∣∣ =

∣∣∣∣∣

n∑

i=1

θi
j mod (n+1)

∣∣∣∣∣ = | − 1| = 1

Thus Lemma 3.18 applies with s = 1. And so we have

maxCoeffθ(α) ≤ n ·maxConj(α)

as claimed.

Lemma 3.20. Let f = xn + β ∈ Z[x] be an irreducible polynomial and θ ∈ C be one

of its zeros. Let K = Q(θ) and let α be an element of K. Then maxCoeffθ(α) ≤
|β| ·maxConj(α) and maxConj(α) ≤ |β|n ·maxCoeffθ(α).

Proof. Let θ1 = θ, θ2, . . . , θn be the zeros of f . To prove that maxConj(α) ≤ n|β| ·
maxCoeffθ(α), we will apply Lemma 3.17. For any θi, we have |θi|n = |θn

i | = |β|.
Therefore, |θn−1

i | = |θi|n−1 ≤ |β|, and we apply Lemma 3.17 with t = |β|. To show

that maxCoeffθ(α) ≤ |β| ·maxConj(α), we will need to apply Lemma 3.18. We will

apply that lemma with t = |β|, s = 0, and m = n. We already showed that |θj
i | ≤ |β|

for 0 ≤ j ≤ n − 1, and it’s easy to see that

∣∣∣∣
n∑

i=1
θn
i

∣∣∣∣ = |βn| ≥ n (because θn
i = −β).

Now we will show that for all j 6= 0(mod n),

n∑

i=1

θj
i = 0. (3.4)

First, assume that 1 ≤ j < n. Then equation 3.4 follows by applying Newton’s

formulas for symmetric polynomials [Coh96, Proposition 4.3.3]. If j > n and j 6=
0(mod n), then there exists an integer k such that 1 ≤ j − kn ≤ n− 1 and we have

n∑

i=1

θj
i =

n∑

i=1

(θkn
i θj

i − kn) =
n∑

i=1

(θkn
i θj−kn

i) = −β
n∑

i=1

θj−kn
i = 0

Thus Lemma 3.18 applies with t = |β|, s = 0, and m = n and we have the claimed

result.

Chapter 3 is, in part, a reprint, of the paper “Generalized Compact Knap-

sacks Are Collision Resistant” co-authored with Daniele Micciancio and appearing

in the proceedings of ICALP 2006. The dissertation author was the primary inves-

tigator and author of this paper.

4

One-time Signature

In this section we present our one-time signature scheme. The security of

the scheme will be ultimately based on the worst-case hardness of approximating

the shortest vector in all lattices corresponding to ideals in the ring Z[x]/〈f〉 for any

irreducible polynomial f . The key-generation algorithm for the signature scheme

allows us to specify the polynomial f that we want to use for the hardness assumption,

and by the same reasoning as in the hash function chapter, we want to pick an f such

that θ(f) is small. In Figure 4.1, we describe the key-generation algorithm, and in

Figure 4.2, we present the procedures for signing a message and verifying a signature.

4.A The One-Time Signature Scheme

The public key of the signature scheme consists of a randomly chosen hash

function h from H(R,m) and the hashes h(k̂) and h(̂l) of two appropriately chosen

small elements k̂, l̂ ∈ Rm. The secret keys are k̂ and l̂. The messages will be

polynomials z ∈ R such that ‖z‖∞ ≤ 1 and the signature of z is ŝ = k̂z+ l̂. To verify

a signature ŝ of a message z, the verifier checks that ‖ŝ‖∞ is “small” and also that

h(k̂)z + h(̂l) = h(̂s).

We would like to draw the reader’s attention to the particulars of how the

key-generation algorithm generates the secret signing key (k̂, l̂). Because of the way

that the integer j is generated, the secret key k̂ (resp. l̂) gets chosen uniformly at

random from the set DKj (resp. DLj) with probability 2−j for 1 ≤ j < blog2 nc

54

55

Key-Generation Algorithm:

Input: 1n, irreducible polynomial f ∈ Z[x] of degree n.

1: Set p← Θ((θ(f)n)3), m← dlog ne, R← Zp[x]/〈f〉
2: For all positive i, let the sets DKi and DLi be defined as:

DKi = {ŷ ∈ Rm such that ‖ŷ‖∞ ≤ 5ip1/m}

DLi = {ŷ ∈ Rm such that ‖ŷ‖∞ ≤ 5inθ(f)p1/m}

3: Choose uniformly random h ∈ H(R,m)

4: Pick a uniformly random string r ∈ {0, 1}blog2 nc

5: if r = 0blog
2 nc then

6: set j = blog2 nc
7: else

8: set j to the position of the first 1 in the string r

9: end if

10: Pick k̂, l̂ independently and uniformly at random from DKj and DLj

respectively

11: Signing Key: (k̂, l̂). Verification Key: (h, h(k̂), h(̂l))

Figure 4.1 Key-Generation Algorithm.

and with probability 2−j+1 for j = blog2 nc. Since DK1 ⊂ DK2 ⊂ . . . ⊂ DKblog2 nc

and DL1 ⊂ DL2 ⊂ . . . ⊂ DLblog2 nc, the keys k̂ and l̂ end up being chosen from

the sets DKblog2 nc and DLblog2 nc, but not uniformly at random. Notice that keys

with smaller coefficients are more likely to be chosen, and it’s also extremely unlikely

that we will ever end up with keys that are not in DKblog2 nc−1 and DLblog2 nc−1.

So with probability negligibly close to 1, there will always be valid secret keys that

are “larger” than the ones generated by the key-generation algorithm. This will be

crucial to the proof of security.

We will first show that the verification algorithm always accepts the signa-

ture generated by the signing algorithm on any message z ∈ R with ‖z‖∞ ≤ 1. Note

56

Signing Algorithm:

Input: Message z ∈ R such that ‖z‖∞ ≤ 1; signing key (k̂, l̂)

Output: ŝ← k̂z + l̂

Verification Algorithm:

Input: Message z; signature ŝ; verification key (h, h(k̂), h(̂l))

1: if ‖ŝ‖∞ ≤ 10θ(f)p1/mn log2 n and h(̂s) = h(k̂)z + h(̂l) then

2: “ACCEPT”

3: else

4: “REJECT”

5: end if

Figure 4.2 Signing and Verification Algorithms.

that the signing keys k̂, l̂ are contained in sets DKlog2 n and DLlog2 n respectively.

Thus ‖k̂‖∞ ≤ 5p1/m log2 n and ‖̂l‖∞ ≤ 5θ(f)p1/mn log2 n. Therefore,

‖ŝ‖∞ = ‖k̂z + l̂‖∞ ≤ ‖k̂z‖∞ + ‖̂l‖∞ ≤ θ(f)n‖k̂‖∞‖z‖∞ + ‖̂l‖∞ ≤ 10θ(f)p1/mn log2 n

Also, by the homomorphic property of functions h ∈ H(R,m),

h(̂s) = h(k̂z + l̂) = h(k̂)z + h(̂l).

We now show that the key-generation, signature, and verification proce-

dures can be executed in time Õ(n).

Lemma 4.1. The key-generation, signature, and verification algorithms in Figures

4.1 and 4.2 can be performed in time Õ(n)

Proof. The most time-intensive computation in the key-generation algorithm is com-

puting h(k̂) and h(̂l). Since k̂, l̂ ∈ Rm, by Claim 2.16, computing h(k̂) and h(̂l) takes

time mÕ(n) = Õ(n). Signing requires the multiplication of k̂ by z, (which just in-

volves m multiplications of elements in R, and thus takes time mÕ(n) = Õ(n)), as

well as adding the result to l̂, which takes the same amount of time. The verification

algorithm requires computing h(̂s) and some polynomial multiplications, which can

all be done in time Õ(n)

57

4.B Proof of Security

We next show that the above signature scheme is secure against forgery.

More precisely, we show that forging a signature implies being able to solve the

Col(h,D) problem, which in turn implies being able to approximate λ1(Λ) for any

lattice Λ that corresponds to an ideal in the ring Z[x]/〈f〉 (Theorem 4.4).

Theorem 4.2. If there exists a polynomial-time forger that, after seeing the public

key h(k̂), h(̂l), and a signature ŝ = k̂z + l̂ of an adaptively chosen message z, can

output a valid signature of another message z′ with probability 1/poly(n), then there

exists a polynomial time algorithm that can solve the Col(h,D) problem for D = {d :

‖d‖∞ ≤ 10θ(f)p1/mn log2 n}.

Proof. Let F be a forger who can break the one-time signature scheme. This means

that after seeing a signature for any message of his choice, F can then successfully

sign a different message of his choice.

Before proceeding any further, we point out that a forger who succeeds in

forging a signature with non-negligible probability must succeed with non-negligible

probability in the case that j < blog2 nc in the key-generation step. This is because

j equals blog2 nc with probability only 2−blog
2 nc+1, and so a forger must also be

able to forge signatures for other values of j if he is to have a non-negligible success

probability. In the remainder of the proof, we will be assuming that the j generated

in the key-generation step was less than blog2 nc. In other words, we’ll be assuming

that k̂ ∈ DKblog2 n−1c and l̂ ∈ DLblog2 n−1c.

The algorithm below uses the forger F to solve the Col(h,D) problem for

the parameters specified in Theorem 4.2.

Col(h,D)

1: Run the Key-Generation algorithm (but use the given h instead of generating a

random one).

2: Receive message z from F .

3: Send k̂z + l̂ to F .

4: Receive message z′ and its signature ŝ′ from F

58

5: Output ŝ′ and k̂z′ + l̂

We now need to show that the outputs of the above algorithm are a col-

lision for the function h with non-negligible probability. If F succeeds in forging a

signature ŝ′ for z′ (which happens with non-negligible probability), then ‖ŝ′‖∞ ≤
10θ(f)p1/mn log2 n and h(̂s′) = h(k̂)z′+h(̂l) = h(k̂z′+ l̂). So if ŝ′ 6= k̂z′+ l̂, then our

algorithm outputted two distinct elements that form a collision for the function h.

On the other hand, if ŝ′ = k̂z′ + l̂, then we do not get a collision. To

complete the proof of Theorem 4.2, we will show that it’s extremely unlikely that a

forger (even one with unlimited computational power) can produce an ŝ′ and a z′

such that ŝ′ = k̂z′+ l̂. This will be done in two steps. In the first step, we show that

being able to produce such an ŝ′ and z′ implies uniquely determining the signing key

(k̂, l̂). Then in the second step we show that given the public key (h, h(k̂), h(̂l)) and a

signature k̂z+ l̂ of message z, it is information theoretically impossible to determine

the signing key (k̂, l̂). This means that if F is able to forge a signature ŝ′ for some

message z′, then almost certainly ŝ′ 6= k̂z′ + l̂.

We now show that obtaining an ŝ′ and a z′ such that ŝ′ = k̂z′ + l̂ uniquely

determines k̂, l̂. Since we know that ŝ = k̂z + l̂ and ŝ′ = k̂z′ + l̂, it follows that

ŝ − ŝ′ = k̂(z − z′). Since ‖k̂‖∞ ≤ 5p1/m log2 n and ‖z − z′‖∞ ≤ 2, multiplying k̂

by z − z′ in the ring Zp[x]/〈f〉 is the same as multiplying them in the ring Z[x]/〈f〉
because the coefficients never get big enough to get reduced modulo p. This is

because

‖k̂(z− z′)‖∞ ≤ 10θ(f)p1/mn log2 n

= 10θ(f)Θ
(
(θ(f)n)

3
log n

)
n log2 n

= 10θ(f)θ(f)
3

log n Θ
(
n

3
log n

)
n log2 n

= 80θ(f)
1+ 3

log nn log2 n

= θ(f)1+o(1) · o(n2),

but in order to get reduced modulo p, the absolute value of the coefficients would

have to be at least p/2 = Θ(θ(f)3n3), which is a much larger quantity. Now, since

the ring Z[x]/〈f〉 is an integral domain and z − z′ 6= 0, there cannot exist another

59

key k̂′ 6= k̂ such that k̂′(z− z′) = k̂(z− z′). And so the key k̂ is uniquely determined

(and is equal to ŝ−ŝ′

z−z′
), and similarly the key l̂ = ŝ− k̂z is also unique.

Now we move on to showing that by knowing only h, h(k̂), h(̂l), z, and k̂z+l̂,

it is information theoretically impossible to determine the signing key (k̂, l̂) (and thus,

information theoretically impossible to come up with ŝ′, z′ such that ŝ′ = k̂z′+l̂). The

idea is to show that for every h, h(k̂), h(̂l), z, k̂z + l̂ there is an exponential number

of signing keys (k̂′, l̂′), other than (k̂, l̂), that satisfy h(k̂) = h(k̂′), h(̂l) = h(̂l′), and

k̂z + l̂ = k̂′z + l̂′. And in addition, the total probability that one of these other

keys was chosen in the key-generation step (conditioned on h, h(k̂), h(̂l), z, k̂z + l̂) is

almost one.

We point out that we are not proving witness-indistinguishability. It’s ac-

tually quite possible that for every other key (k̂′, l̂′), the probability that it was the

key that was used to sign the message is exponentially smaller than the probability

that (k̂, l̂) was the key. What we will be showing is that the sum of probabilities of

all other possible keys combined being the secret key is exponentially larger than the

probability that (k̂, l̂) was the key.

Lemma 4.3. Let (h,K,L) be the verification key of the signature scheme and ŝ

is the signature of some message z. Then for any signing key (k̂, l̂) such that k̂ ∈
DKblog2 n−1c, l̂ ∈ DLblog2 n−1c, h(k̂) = K, h(̂l) = L and ŝ = k̂z+ l̂, the probability that

this was the actual signing key generated by the key-generation algorithm is negligibly

small.

Proof. We define the set Y to be the elements of the kernel of h that have “small

lengths”. In particular,

Y = {ŷ ∈ Rm such that ‖ŷ‖∞ ≤ 5p1/m and h(ŷ) = 0}.

For every ŷ ∈ Y , consider the elements k̂′ = k̂− ŷ and l̂′ = l̂ + ŷz. Notice that

h(k̂′) = h(k̂− ŷ) = h(k̂)− h(ŷ) = K− 0 = K,

h(̂l′) = h(̂l + ŷz) = h(̂l) + h(ŷ)z = L + 0 = L,

k̂′z + l̂′ = (k̂− ŷ)z + l̂ + ŷz = k̂z + l̂ = ŝ.

60

Thus, for every ŷ ∈ Y , if k̂′ happens to be in DKblog2 nc and l̂′ happens to be in

DLblog2 nc, then (k̂′, l̂′) is another valid signing key that could have been used to sign

the message z. Since ‖ŷ‖∞ ≤ 5p1/m and ‖ŷz‖∞ ≤ 5nθ(f)p1/m, we get the following

bounds on the norms of k̂′ and l̂′:

‖k̂′‖∞ ≤ ‖k̂‖∞ + ‖ŷ‖∞ ≤ ‖k̂‖∞ + 5p1/m,

‖̂l′‖∞ ≤ ‖̂l‖∞ + ‖ŷz‖∞ ≤ ‖̂l‖∞ + 5nθ(f)p1/m.

For the remainder of the proof, let i be the smallest integer such that k̂ and

l̂ are contained in DKi and DLi respectively. Then k̂′ and l̂′ are definitely contained

in DKi+1 and DLi+1 for every ŷ ∈ Y . And since we assumed that k̂ ∈ DKblog2 n−1c

and l̂ ∈ DLblog2 n−1c, it turns out that (k̂′, l̂′) is a perfectly valid signing key. To

prove the lemma, we will need to upper-bound the probability that the generated

secret keys were k̂, l̂ given that the public keys are K = h(k̂) and L = h(̂l) and the

signature of z is ŝ = k̂z + l̂. Let E be the event that the verification key are K and

L and the signature of z is ŝ.

Pr[signing key = (k̂, l̂)|E] =
Pr[key = (k̂, l̂)&E]

Pr[E]
=
Pr[key = (k̂, l̂)]

Pr[E]

We now calculate the probability that the keys were k̂, l̂. This is computed

by noting that k̂, l̂ were generated by selecting j ≥ i with probability 2−j and then

selecting k̂, l̂ from DKj and DLj. Since k̂ and l̂ are chosen uniformly and indepen-

dently at random from DKj and DLj, the probability that they are both chosen is

1
|DKj|·|DLj |

. So,

Pr[signing key = (k̂, l̂)] =
1

2i|DKi||DLi|
+

1

2i+1|DKi+1||DLi+1|
+ . . . (4.1)

To calculate the probability of event E, we need to figure out the probability

that the keys chosen will result in public keys K and L and when given the message

z, the signature will be ŝ. We have shown above that for every ŷ ∈ Y , choosing the

keys k̂− ŷ, l̂+ ŷz will produce public keys K,L and signature ŝ. Since we know that

k̂− ŷ and l̂ + ŷz are contained in DKi+1 and DLi+1 respectively, we get

Pr[E] >
|Y |

2i+1|DKi+1||DLi+1|
+

|Y |
2i+2|DKi+2||DLi+2|

+ . . . (4.2)

61

If we let q = Pr[signing key = (k̂, l̂)], then combining (4.1) and (4.2) we get

Pr[E] > |Y |
(
q − 1

2i|DKi||DLi|

)

and so,

Pr[signing key = (k̂, l̂)]

Pr[E]
<

q

|Y |
(
q − 1

2i|DKi||DLi|

) =
q2i|DKi||DLi|

|Y |(q2i|DKi||DLi| − 1)

=
1

|Y |

(
1 +

1

q2i|DKi||DLi| − 1

)

Before proceeding, we will state the following inequality that will be used later,

|DKi+1||DLi+1|
|DKi||DLi|

=
(2 · 5(i+ 1)p1/m)mn(2 · 5(i+ 1)nθ(f)p1/m)mn

(2 · 5ip1/m)mn(2 · 5inθ(f)p1/m)mn

=

(
1 +

1

i

)2mn

≤ 22mn = 4mn

Now we use the above inequality to lower bound the quantity q2i|DKi||DLi|. Recall

that q was defined to be the probability that the signing key is (k̂, l̂), and so from

Equation (4.1), we obtain

q2i|DKi||DLi| = 2i|DKi||DLi|
(

1

2i|DKi||DLi|
+

1

2i+1|DKi+1||DLi+1|
+ . . .

)

> 2i|DKi||DLi|
(

1

2i|DKi||DLi|
+

1

2i+1|DKi+1||DLi+1|

)

= 1 +
|DKi||DLi|

2|DKi+1||DLi+1|
≥ 1 +

1

2 · 4mn

Using the above inequality, we obtain

Pr[signing key = (k̂, l̂)]

Pr[E]
<

1

|Y |

(
1 +

1

q2i|DKi||DLi| − 1

)
≤ 1

|Y |(1 + 2 · 4mn)

and since by Lemma 2.18 we know that |Y | ≥ 5mn, we are done.

This concludes the proof Theorem 4.2.

Strong unforgeability

We now show that our one-time signature scheme also satisfies a stronger

notion of security, called strong unforgeability. In the previous section we showed

62

that if a forger can produce a signature for an unseen message, then Col(h,D) can

be solved in polynomial time. Now we point out that Col(h,D) can be solved in

polynomial time even if the forger is able to produce a different signature of a message

whose signature he has seen. Suppose that after seeing the signature ŝ = k̂z + l̂ of a

message z, the forger F sends back another valid signature ŝ′ 6= ŝ of z. Then ŝ and

ŝ′ form a collision for h. This is because

h(̂s′) = h(k̂)z + h(̂l) = h(k̂z + l̂) = h(̂s).

Corollary 4.4. For any monic irreducible f ∈ Z[x], if there exists a polynomial-

time forger that breaks the one-time strong signature scheme described in Figures

4.1 and 4.2, then there is a polynomial-time algorithm that solves f -SVPγ(Λ) for

γ = θ(f)3+o(1)Õ(n2) for every lattice Λ that corresponds to an ideal in Z[x]/〈f〉.

Proof. From Theorem 4.2, and the above discussion about strong unforgeability, we

know that breaking the signature implies solving Col(h,D), where

D = {d : ‖d‖∞ ≤ 10θ(f)p1/mn log2 n = θ(f)1+o(1)Õ(n)}

and h is a random function from H(R,D,m). All the parameters satisfy the condi-

tions of Theorem 3.1, and therefore solving Col(h,D) implies solving f -SVPγ .

Chapter 4 is, in part, a reprint of the paper “Asymptotically Efficient

Lattice-Based Digital Signatures” co-authored with Daniele Micciancio and appear-

ing in the proceeding of TCC 2008. The dissertation author was the primary inves-

tigator and author of this paper.

5

Identification Scheme

In this chapter, we describe an identification scheme that is asymptotically

efficient up to logarithmic factors. We will give a construction of a 3-round public

coin ID scheme in which the interaction takes time Õ(n) with security based on the

hardness of solving f -SVPγ for some polynomial factor γ, which is conjectured to be

a problem requiring 2Ω(n) time. In order to slightly simplify the presentation, we will

only prove the scheme secure for f = xn +1, but it’s fairly straightforward to extend

our results, with appropriate modifications, for other polynomials f . The parameters

used in the ID scheme are described in Table 5.1.

5.A Probabilistic Lemmas

The following simple, yet crucial, lemma will be used to prove that our

identification scheme does not abort too often (Lemma 5.3). The lemma basically

states that the number of ŷ ∈ Dm
y such that ŵ + ŷ ∈ Gm (for parameters Dy and G

in Table 5.1) is the same for every ŵ that is small enough.

Lemma 5.1. For any ŵ such that ‖ŵ‖∞ ≤ n,

Pr
ŷ

$
←Dm

y

[ŵ + ŷ ∈ Gm] =

(
2(mn2 − n) + 1

2mn2 + 1

)mn

=
1

e
− o(1)

Proof. Given some ŵ such that ‖ŵ‖∞ ≤ n, let’s look at it as a vector of dimension

mn with coefficients (call them wj , for 1 ≤ j ≤ mn) having absolute value at most n.

63

64

n integer that is a power of 2

p prime of order Θ(n4)

m 3 log n

R field Zp[x]/〈xn + 1〉
D {g ∈ R : ‖g‖∞ ≤ mn2}
Dc {g ∈ R : ‖g‖∞ ≤ 1}
Ds {g ∈ R : ‖g‖∞ ≤ 1}
Dy {g ∈ R : ‖g‖∞ ≤ mn2}
G {g ∈ R : ‖g‖∞ ≤ mn2 − n}

Figure 5.1 ID-scheme Variable Definitions.

The sum ŵ+ ŷ will be in Gm if for every coefficient wj , the corresponding coefficient

of ŷ (call it yj) is in the range

[−mn2 + n− wj ,mn
2 − n− wj]. (5.1)

Because every coefficient yj is generated randomly in the range

[−mn2,mn2],

the probability that it is in the range (5.1) is exactly

2(mn2 − n+ 1)

2mn2 + 1
. (5.2)

Notice that in the above equation, we made crucial use of the fact that the range

in equation (5.1) is completely contained in the range of possible coefficients yj of ŷ

(this is because |wj | ≤ n). The probability that ŵ + ŷ ∈ Gm is just the quantity in

equation (5.2) raised to the power mn.

Pr
ŷ

$
←Dm

y

[ŵ + ŷ ∈ Gm|‖ŵ‖∞ ≤ n] =

(
2(mn2 − n) + 1

2mn2 + 1

)mn

>

(
1− 1

mn

)mn

=
1

e
− o(1)

The next lemma establishes that when we choose the public key for the

identification scheme, there will be (with high probability) at least two different

secret keys that could correspond to it.

65

Private key: ŝ
$← Dm

s

Public key: h
$←H(R,m),S← h(̂s)

Prover Verifier

ŷ
$← Dm

y

Y ← h(ŷ)

Y
-

c
$← Dc

c
�

ẑ← ŝc + ŷ

if ẑ /∈ Gm then ẑ←⊥
ẑ

-

d←

1 if ẑ ∈ Gm and h(ẑ) = Sc + Y

0 otherwise

Figure 5.2 Identification Scheme.

Lemma 5.2. If we pick an ŝ uniformly at random from Dm
s , then with probability

1− 2−Ω(n log n), there will be another ŝ′ ∈ Dm
s such that h(̂s) = h(̂s′).

Proof. The range of h (which is R) consists of pn elements. This means that there

are at most pn elements ŝ ∈ Dm
s that do not collide with any other element in Dm

s .

Since the set Dm
s contains 3mn elements, the probability of randomly selecting a

non-colliding element is at most

(p

3m

)n
= 2−Ω(n log n).

5.B Identification Scheme

We present our identification scheme in Figure 5.2. More precisely, we

present one round of our scheme, and the full identification scheme will consist of

66

ω(log n) rounds performed in parallel. The prover will only need to succeed in one

round of the scheme in order to be accepted by the verifier. The reason that we need

ω(log n) rounds is for completeness because the prover may not want to respond in

every round for security reasons that we will describe shortly.

To generate the keys, we pick a hash function h
$← H(R,m) and a secret

key ŝ
$← Dm

s . The public key consists of the function h and an element S ∈ R where

S = h(̂s). In the first step of the protocol, the prover picks a ŷ ∈ Dm
y and sends the

commitment Y = h(ŷ) to the verifier. The verifier sends a random challenge c
$← Dc

and the prover then computes ẑ = ŝc + ŷ. If ẑ is in the set Gm, then the prover

sends ẑ to the verifier, but if ẑ /∈ Gm, the prover aborts the protocol and sends ⊥
to signify his action. If the prover does not abort, then the verifier checks whether

ẑ ∈ Gm and h(ẑ) = Sc + ŷ.

The reason that the prover needs to sometimes abort is because if he sends

a ẑ = ŝc+ ŷ that is not in Gm, he will be revealing some information about his secret

key ŝ (for example, if ŝ has many non-zero coefficients, then ‖ŝc + ŷ‖∞ will tend to

be large). On the other hand, by sending ẑ ∈ Gm, and aborting otherwise, the prover

ensures that the protocol will be witness-indistinguishable (Theorem 5.5). That is,

it will be impossible to tell which of the many possible ŝ’s that satisfy h(̂s) = S

is the secret key. Because witness-indistinguishability is preserved under parallel

composition, the protocol can be repeated in parallel and the verifier will accept if

and only if in any one round, he set d = 1. We will show that the prover will abort

approximately 1− 1/e fraction of the time (Lemma 5.3), and therefore the expected

number of rounds needed is 1/e. If the protocol has ω(log n) rounds, then the honest

prover will be accepted all but a negligible fraction of the time.

Lemma 5.3. A prover in possession of an ŝ ∈ Dm
s such that h(̂s) = S will be

accepted with probability 1/e− o(1).

Proof. Because ‖ŝ‖∞ = 1 and ‖c‖∞ = 1, we have ‖ŝc‖∞ ≤ θ(xn + 1)n = n. We

now apply Lemma 5.1 and conclude that ẑ = ŝc + ŷ will be in Gm with probability

1/e− o(1). And also

h(ẑ) = h(̂sc + ŷ = h(̂s)c + h(ŷ) = Sc + Y.

67

Lemma 5.4. The running-time of the identification protocol is Õ(n).

Proof. The first move of the protocol requires the prover to compute h(ŷ), which

takes time Õ(n) (2.16). The response of the prover requires the computation of

ŝc + ŷ, which also takes Õ(n) time. The verifier then needs to compute h(ẑ) and

Sc + Y, which again takes Õ(n) time.

5.C Proof of Security

We will now present the proof of witness-indistinguishability of the identi-

fication scheme in Figure 5.2. In other words, we will show that the distribution of

Y, c, ẑ is completely independent of the secret key ŝ such that h(̂s) = S. We will

show is that for any two ŝ, ŝ′ such that h(̂s) = h(̂s′), no (possibly cheating) verifier

V can distinguish whether the secret key is ŝ or ŝ′.

The witness-indistinguishability of the protocol will be then used in Theo-

rem 5.6 to show that the adversary cannot know the exact secret key, and therefore

cannot control the exact information being extracted from it.

Theorem 5.5. For every h ∈ H(R,m), and every (possibly cheating) verifier V with

any auxiliary input α

∆
(
VP(h,S,̂s)(h,S, α),VP(h,S,̂s′)(h,S, α)

)
= 0,

where ŝ and ŝ′ are any two elements in Dm
s such that h(̂s) = h(̂s′) = S.

Proof. Because the value of c is independent of the particular value of ŷ ∈ h−1(Y),

we can rewrite the identification protocol so that ŷ is picked after the verifier picks

the challenge c. We consider the following protocol:

1. Prover picks γ̂
$← Dm

y and sends Y = h(γ̂) to the verifier.

2. Verifier picks c ∈ Dc and sends it to the prover.

3. Prover picks ŷ
$← h−1(Y) ∩Dm

y , and computes ẑ = ŝc + ŷ.

If ẑ ∈ Gm, send ẑ to the verifier. Otherwise, send ⊥.

68

Because the distribution of γ̂ in step 1 is identical to the distribution of

ŷ in step 3, the distribution of ẑ in the above protocol and the protocol in Figure

5.2 is identical as well. Notice that the witness ŝ only affects ẑ, and so to prove the

theorem, we only need to show that the distribution of ẑ is not affected by the choice

of the witness in the domain h−1(S) ∩Dm
s and the challenge c ∈ Dc.

Let ŝ and ŝ′ be any two elements in h−1(S) ∩ Dm
s and c be any challenge

in Dc. Notice that for any ŷ ∈ h−1(Y) ∩Dm
y such that ŝc + ŷ = ẑ ∈ Gm, the value

ŝ′c+ ŷ′ for ŷ′ = ŷ+ ŝc− ŝ′c is also equal to ẑ. Therefore if ŷ′ is also in h−1(Y)∩Dm
y ,

then the fact that for every ŷ there is a corresponding ŷ′ such that ŝc+ ŷ = ŝ′c+ ŷ′

proves that for every ẑ ∈ Gm, the probability that ẑ will be output by the prover

is independent of the ŝ ∈ h−1(S) ∩ Dm
s . Furthermore, the above also proves that

the number of elements ŷ ∈ h−1(Y) ∩Dm
y such that ŝc + ŷ /∈ Gm is equal for every

ŝ ∈ h−1(S)∩Dm
s . Therefore proving that ŷ′ ∈ h−1(Y)∩Dm

y will prove the theorem.

We first prove that ŷ′ ∈ h−1(Y) by showing that h(ŷ) = h(ŷ′). By the

homomorphic property of h, we have

h(ŷ′) = h(ŷ + ŝc− ŝ′c) = h(ŷ) + (h(̂s)− h(̂s′))c = h(ŷ).

We now show that ŷ′ ∈ Dm
y . By Lemmas 2.8 and 2.6 we know that

‖ŝ′c‖∞ ≤ nθ(xn + 1)‖ŝ′‖∞‖c‖∞ ≤ n,

and by the asumption that ŷ + ŝc ∈ Gm, we obtain

‖ŷ′‖∞ = ‖ŷ + ŝc− ŝ′c‖∞ ≤ ‖ŷ + ŝc‖∞ + ‖ŝ′c‖∞ ≤ mn2 − n+ n = mn2.

Therefore ŷ′ ∈ h−1(Y) ∩Dm
y .

We now show that our ID-scheme is secure by showing how to use an ad-

versary who successfully attacks the ID scheme to solve the Col(h,D) problem.

Theorem 5.6. If h is any function in H(R,m) for the parameters defined in Table

5.1 and there exists a polynomial-time adversary who can break the ID scheme with

probability q in the active attack model, then there exists a polynomial-time algorithm

that solves Col(h,D) with probability at least q
4

(
q − 1

|Dc|

)
− 2−Ω(n log n).

69

Proof. We will now describe how to solve the Col(h,D) problem when given access

to an adversary who breaks the ID scheme. Given a random function h ∈ H(R,m),

we create a secret key ŝ ∈ Dm
s , and compute the public key S = h(̂s). We give the

public key h,S to the adversary. In the first stage of the attack, when the adversary

acts as the verifier, we can perfectly simulate the interaction between him and the

prover because we have the secret key. In the second stage of the attack, when it’s

the adversary’s turn to impersonate the honest prover, he will initiate the interaction

by sending some Y, and we will respond with a random c ∈ Dc. The adversary will

(with probability at least q) output a ẑ such that ẑ ∈ Gm and h(ẑ) = Sc + Y. We

will then rewind the adversary, and send him a different random challenge c′ from

Dc. The adversary will output a ẑ′ such that ẑ′ ∈ Gm and h(ẑ′) = Sc′ + Y. The

following claim concerning the outputs of the adversary will be will be proved after

the theorem.

Claim 5.7. If challenges c and c′ are chosen at random from Dc, then the probability

that c 6= c′ and the adversary produces valid responses ẑ, ẑ′ to both challenges (i.e.

h(ẑ) = Sc + Y and h(ẑ′) = Sc′ + Y) is at least q
2

(
q − 1

|Dc|

)
.

Assuming that the adversary gave valid answers both times, we can combine

his two responses and obtain

h(ẑ)− Sc = h(ẑ′)− Sc′.

Using the homomorphic properties of h and the fact that we know an ŝ such that

h(̂s) = S, we can obtain the equality

h(ẑ − ŝc) = h(ẑ′ − ŝc′).

Because ‖ŝ‖∞ = ‖c‖∞ = 1, we have ‖ŝc‖∞ ≤ n, and also we know that ẑ, ẑ′ ∈ Gm,

and therefore ẑ − ŝc, ẑ′ − ŝ′c′ ∈ D. So we have a solution to Col(h,D), except

in the case that ẑ − ŝc = ẑ′ − ŝc′. By Lemma 5.2, we know that for a randomly

chosen ŝ, there is a 1 − 2−Ω(n log n) probability that there is another ŝ′ ∈ Dm
s such

that h(̂s) = h(̂s′). By the perfect witness-indistinguishability property of the protocol

established in Theorem 5.5, the adversary cannot know with probability greater than

1/2 whether the secret key was ŝ or ŝ′. We will now show that if ẑ − ŝc = ẑ′ − ŝc′

70

r1 r2 r3 . . . r2ρ

c1 1 1

c2 1 1 1

c3 1 1 1

. . .

c|Dc| 1 1 1

Figure 5.3 Interaction Outcomes.

then ẑ− ŝ′c 6= ẑ′− ŝ′c′ and therefore the probability that we will obtain a colision is

at least 1/2. For contradiction, assume that ẑ− ŝc = ẑ′ − ŝc′ and ẑ− ŝ′c = ẑ′− ŝ′c′.

Combining these two equalities, we obtain that

(̂s− ŝ′)(c − c′) = 0.

Since we are doing the multiplication in the ring Zp[x]/〈xn + 1〉, which is not an in-

tegral domain, we cannot automatically conclude that the preceding equality implies

that either ŝ − ŝ′ or c − c′ is 0. But we can make the following observation: since

all the coordinates of ŝ, ŝ′, c, and c′ have absolute value at most 1, the differences

ŝ − ŝ′ and c − c′ have coordinates whose absolute value is at most 2. When we

multiply such polynomials together in the ring Z[x]/〈xn + 1〉, the absolute values of

the coefficients of the product are never above 4n. In order to be reduced modulo

p = Θ(n4), the absolute value of the coefficients would have to be greater than p/2,

but 4n is much smaller than that. Therefore if the product (̂s− ŝ′)(c− c′) is 0 in the

ring Zp[x]/〈xn + 1〉, it also must be 0 in the ring Z[x]/〈xn + 1〉. But because xn + 1

is irreducible over the integers, Z[x]/〈xn + 1〉 is an integral domain, and therefore

either ŝ− ŝ′ or c− c′ is 0. Since we know that e 6= e′, it must be that ŝ = ŝ′, and we

have a contradiction.

Proof of Claim 5.7. The adversary impersonating a prover is a randomized algo-

rithm, which can be represented as a deterministic Turing machine with a random

tape r consisting of ρ binary digits, where ρ is bounded by the running time of the

adversarial prover. We will represent the possible outcomes of the interaction be-

tween the adversarial prover and an honest verifier in Figure 5.3. A 1 in a cell at

the intersection of ci and ri means that if the prover’s random tape is ri and the

71

challenge is ci, then the prover succeeds in the impersonation. Because we assumed

that the probability (over the choice of the random tape and the challenges) with

which the adversary can break the ID scheme is q, we know that a q-fraction of all

the cells in the table must have a 1. By a counting argument, we can say that at least

half of the columns must have at least q|Dc| ones in them. Therefore the probability

that two random challenges are distinct and the prover successfully responds to them

when given a randomly chosen random tape is at least

1

2

(
q|Dc|
|Dc|

)(
q|Dc| − 1

|Dc| − 1

)
>
q

2

(
q − 1

|Dc|

)
.

The above theorem together with Theorem 3.1 imply the following corollary,

which gives a relationship between breaking the ID scheme and solving f -SVPγ(Λ)

for all lattices that correspond to ideals in Z[x]/〈f〉.

Corollary 5.8. If the identification scheme in Figure 5.2 is insecure against active

attacks for the parameters in Table 5.1, then there is polynomial-time algorithm that

can solve f -SVPγ(Λ) for γ = Õ(n3) for every lattice Λ corresponding to an ideal in

the ring Z[x]/〈f〉.

Proof. By Theorem 5.6, we know that breaking the ID scheme implies solving the

Col(h,D) problem where h is any function in H(R,D,m) for the parameters in

Table 5.1. It’s easy to check that the parameters satisfy Theorem 3.1, and therefore

solving Col(h,D) for random h ∈ H(R,D,m) implies that we can solve f -SVPγ(Λ)

for γ = 16θ(f)2(mn2)n log2 n = Õ(n3) for every lattice Λ corresponding to an ideal

in Z[x]/〈f〉.

Chapter 5 is an extension of the results of the paper “Lattice-Based Iden-

tification Schemes Secure Under Active Attacks” appearing in the proceedings of

PKC 2008. The dissertation author was the primary investigator and author of this

paper.

6

Tree-less Signature Scheme

In this chapter we describe a signature scheme whose security, in the ran-

dom oracle model, is based on the hardness of solving f -SVPγ(Λ) for all lattices

corresponding to ideals in the ring Z[x]/〈f〉. As for the identification scheme in the

previous chapter, we will only present the proof for f = xn +1. But with appropriate

modifications, it’s fairly straightforward to extend our results to other polynomials

f . Unlike for the identification scheme, we will not need the ring Zp[x]/〈f〉 to be a

field.

Since we already have an identification scheme that we proved to be secure,

we can construct a signature scheme by simply applying the Fiat-Shamir heuristic

in a black-box fashion (see for example [AABN02]). But it turns out that in our

case, we can construct a slightly more efficient signature scheme when we put a

little “twist” on the Fiat-Shamir transform. Recall that a single round of the ID

scheme from the previous chapter did not have perfect completeness because the

prover sometimes chose to abort the interaction. But because there is no interaction

in signature schemes, there is no point in having the rounds that lead to an abort

be included in the transformation. Thus, the signer may choose as many potential

commitments ŷ as he wants, and get “challenges” c from the random oracle until he

gets a value of ŝc + ŷ that is in the set Gm, and it’s only that “round” of the ID

protocol that will be used in the signature.

The parameters used in our signature scheme are given in Table 6.1, and

we will prove our scheme secure by showing that the signing algorithm is witness-

72

73

n integer that is a power of 2

p prime of order Θ(n4)

m 3 log n

R ring Zp[x]/〈xn + 1〉
D {f ∈ R : ‖f‖∞ ≤ mn1.5 log n+

√
n log n}

Dc {f ∈ R : ‖f‖∞ ≤ 1}
Ds {f ∈ R : ‖f‖∞ ≤ 1}
Dy {f ∈ R : ‖f‖∞ ≤ mn1.5 log n}
G {f ∈ R : ‖f‖∞ ≤ mn1.5 log n−√n log n}

Figure 6.1 Signature Scheme Variable definitions.

indistinguishable and a proof of knowledge of an element in α̂ ∈ Dm such that h(α̂)

is the public key. Using this knowledge-extractor, we will be able to find two elements

in Dm that evaluate to the same value by the hash function h which is randomly

chosen from H(R,D,m). Notice that the set D is smaller than it was in the ID

scheme chapter. This savings of
√
n is mainly due to the fact that in this chapter we

are using a random oracle to generate elements that correspond to “challenges”, while

in the ID scheme, the verifier challenges could have been chosen in an adversarial

fashion.

6.A Probabilistic Lemmas

This section contains some auxiliary lemmas that will be used in our proofs.

The first lemma is analogous to Lemma 5.1 and states that the number of ŷ ∈ Dm
y

such that ŵ + ŷ ∈ Gm is the same for every ŵ that is small enough.

Lemma 6.1. For any ŵ such that ‖ŵ‖∞ ≤
√
n log n,

Pr
ŷ

$
←Dm

y

[ŵ + ŷ ∈ Gm] =

(
2(mn1.5√n−√n log n) + 1

2mn1.5 log n+ 1

)mn

=
1

e
− o(1)

Proof. Given some ŵ such that ‖ŵ‖∞ ≤
√
n log n, let’s look at it as a vector of

dimension mn with coefficients (call them wj, for 1 ≤ j ≤ mn) having absolute

value at most
√
n log n. The sum ŵ + ŷ will be in Gm if for every coefficient wj, the

corresponding coefficient of ŷ (call it yj) is in the range

[−mn1.5 log n+
√
n log n− wj ,mn

1.5 log n−
√
n log n− wj]. (6.1)

74

Because every coefficient yj is generated randomly in the range

[−mn1.5 log n,mn1.5 log n],

the probability that it is in the range (6.1) is exactly

2(mn1.5 log n−√n log n) + 1

2mn1.5 log n+ 1
. (6.2)

Notice that in the above equation, we made crucial use of the fact that the range

in equation (6.1) is completely contained in the range of possible coefficients yj of

ŷ (this is because |wj | ≤
√
n log n). The probability that ŵ + ŷ ∈ Gm is just the

quantity in equation (6.2) raised to the power mn.

Pr
ŷ

$
←Dm

y

[ŵ + ŷ ∈ Gm|‖ŵ‖∞ ≤
√
n log n] =

(
2(mn1.5√n−√n log n) + 1

2mn1.5 log n+ 1

)mn

>

(
1− 1

mn

)mn

=
1

e
− o(1)

The following simple corollary states that if c and ŷ are chosen at random

from the domains Dc and Dm
y , then there is a high probability that ŝc + y will be

in Gm for any ŝ ∈ Dm
s . The reason that we need c to be random is that we can

upper-bound ‖ŝc‖∞ ≤
√
n log n, whereas if c were any element in Dc, we could only

say that ‖ŝc‖∞ ≤ n.

Corollary 6.2. For any ŝ ∈ Dm
s ,

Pr
c

$
←Dc,ŷ

$
←Dm

y

[̂sc + ŷ ∈ Gm] =
1

e
− o(1)

Proof. We lower-bound

Pr
c

$
←Dc,ŷ

$
←Dm

y

[̂sc + ŷ ∈ Gm]

by

Pr
c

$
←Dc,ŷ

$
←Dm

y

[̂sc + ŷ ∈ Gm] ≥ Pr
c

$
←Dc

[‖ŝc‖∞ ≤
√
n log n] (6.3)

· Pr
ŷ

$
←Dm

y

[̂sc + ŷ ∈ Gm|‖ŝc‖∞ ≤
√
n log n]. (6.4)

75

Signing Key: ŝ
$← Dm

s

Verification Key: h
$← H(R,m),S← h(̂s)

Random Oracle: H : {0, 1}∗ → Dc

Sign(µ, h, ŝ)

1: ŷ
$← Dm

y

2: e← H(h(ŷ), µ)

3: ẑ← ŝe + ŷ

4: if ẑ ∈ Gm then

5: output (ẑ, e)

6: else

7: goto step 1

8: end if

Verify(µ, ẑ, e, h,S)

1: if ẑ ∈ Gm and e = H(h(ẑ) − Se, µ)

then

2: ACCEPT

3: else

4: REJECT

5: end if

Figure 6.2 Signature Scheme

By using Lemma 2.11 and the union bound, we obtain that

Pr
c

$
←Dc

[‖ŝc‖∞ ≤
√
n log n] ≥ 1− 4mne−

log2 n
8 = 1− n−ω(1).

Then by using Lemma 6.1, we get that

Pr
ŷ

$
←Dm

y

[̂sc + ŷ ∈ Gm|‖ŝc‖∞ ≤
√
n log n] =

1

e
− o(1).

Combining the above two results gives us the claim in the corollary.

6.B Signature Scheme

We present our signature scheme in Figure 6.2. Notice that steps 1,2 and

3 of the signing protocol are exactly the same as we would have under the normal

Fiat-Shamir transform of the ID scheme in Figure 5.2. In step 4, however, we need

to check whether it will be safe to send our signature of the message µ. If it is safe,

then we send the signature, and otherwise we just generate another signature of µ

until we get one that is safe to send. In the next lemma, we will show that all the

algorithms associated with the signature scheme run in time Õ(n).

76

Lemma 6.3. The key-generation, signing, and verification algorithms in our signa-

ture scheme take time Õ(n).

Proof. The key-generation step of the scheme first selects an ŝ from Dm
s , which

simply involves picking mn = 2n log n random numbers from the set {−1, 0, 1},
and selecting a hash function h ∈ H(R,m), which involves picking mn random

numbers from the set
{
−p−1

2 ,−p−1
2 + 1, . . . , p−1

2

}
. Then we need to compute S =

h(̂s), which by Claim 2.16 takes time Õ(n). The verification step involves evaluating

h(ẑ), multiplying Se, subtracting the two quantities, and making one random oracle

call. Each of those operations take Õ(n) time. The signing algorithm generates a

ŷ ∈ Dm
y , computes h(ŷ), makes a random oracle call, and then computes ẑ = ŝe+ ŷ.

All the preceding operations take time Õ(n). But unless ẑ ∈ Gm, we will need

to repeat those operations again until we do obtain a ẑ ∈ Gm. By Corollary 6.2,

we know that ẑ will be in Gm with constant probability 1/e − o(1), and so with

probability negligibly close to 1, we will have to repeat the operations no more than

ω(log n) times (while the expected number of repetitions is less than 3). Thus the

signing algorithm also takes time Õ(n).

In the following lemma, we observe that a valid signature will always be

accepted by the Verify algorithm.

Lemma 6.4. If (ẑ, e) is a signature of µ produced by running Sign(µ, h, ŝ), then

Verify(µ, ẑ, e, h,S) always accepts.

Proof. In order for Verify(µ, ẑ, e, h,S) to accept, we need ẑ to be in Gm and e =

H(h(ẑ)−Se, µ). Since the Sign algorithm always outputs a ẑ ∈ Gm, that part is OK.

Also, the ẑ output by the signing algorithm equals ŝe + ŷ, where e = H(h(ŷ), µ).

Thus e = H(h(ẑ− ŝe), µ) = H(h(ẑ)− h(̂s)e, µ) = H(h(ẑ)− Se, µ).

6.C Proof of Security

We now move to showing witness-indistinguishability of the scheme. By

witness-indistinguishability, we mean that for any secret key ŝ , the signature of any

message is statistically indistinguishable whether it’s signed using ŝ or any other key

77

ŝ′ such that h(̂s) = h(̂s′). At first, it might seem a little surprising that the signature

scheme is witness-indistinguishable because if the norm of ŝe is larger than the norm

of ŝ′e, then the expected norm of ŝe+ ŷ will be larger than that of ŝ′e+ ŷ. And since

we are sending both ẑ and e, it should be possible to look at the norm and figure

out whether the secret key is ŝ or ŝ′. But our scheme is witness-indistinguishable

because we choose the “masking parameter” ŷ from a large-enough set Dm
y and only

send elements from another carefully-chosen set Gm ⊂ Dm
y which essentially has the

effect of filtering out the values of ŝc + ŷ that have large norms.

Theorem 6.5. For any h ∈ H(R,m), message µ, and any two ŝ, ŝ′ ∈ Dm
s such that

h(̂s) = h(̂s′), we have

∆((ẑ, e), (ẑ′, e)) = n−ω(1)

where ẑ and e are the random variables representing the output of Sign(µ, h, ŝ), and

ẑ′ and e′ are the random variables representing the output of Sign(µ, h, ŝ′).

Proof. Define the set Dc(̂s, ŝ
′) as

Dc(̂s, ŝ
′) = {c ∈ Dc : ‖ŝc‖∞, ‖ŝ′c‖∞ ≤

√
n log n}.

Then by Lemma 2.11 and the union bound, we can conclude that for any two ŝ, ŝ′ ∈
Dm

s , almost all of the elements of Dc are in Dc(̂s, ŝ
′). More precisely, we have that

|Dc (̂s, ŝ
′)|

|Dc|
= 1− n−ω(1) (6.5)

We now rewrite ∆((ẑ, e), (ẑ′, e)) as

∆((ẑ, e), (ẑ′, e)) =
1

2

∑

α̂,β

|Pr[(ẑ, e) = (α̂,β)]− Pr[(ẑ′, e′) = (α̂,β)]| (6.6)

=
1

2

∑

α̂,β∈Dc (̂s,̂s′)

|Pr[(ẑ, e) = (α̂,β)]− Pr[(ẑ′, e′) = (α̂,β)]| (6.7)

+
1

2

∑

α̂,β/∈Dc (̂s,̂s′)

|Pr[(ẑ, e) = (α̂,β)]− Pr[(ẑ′, e′) = (α̂,β)]| (6.8)

78

We will first show that the quantity in Equation (6.8) is negligibly small. We write

1

2

∑

α̂,β/∈Dc (̂s,̂s′)

|Pr[(ẑ, e) = (α̂,β)]− Pr[(ẑ′, e′) = (α̂,β)]| (6.9)

≤ 1

2

∑

β/∈Dc (̂s,̂s′)

|Pr[e = β]− Pr[e′ = β]| (6.10)

≤
∑

β/∈Dc (̂s,̂s′)

Pr[e = β] (6.11)

= Pr[e /∈ Dc(̂s, ŝ
′)] = Pr[H(h(ŷ), µ) /∈ Dc(̂s, ŝ

′)] = 1− |Dc (̂s, ŝ
′)|

|Dc|
= n−ω(1) (6.12)

where the last equality follows from Equation (6.5) and the equality before that

follows from the fact that H is modeled as a random oracle and so the distribution

of H(h(ŷ), µ) is uniform over Dc.

We will now proceed with the proof that the value of (6.7) is 0. We will do

this by showing that for every α̂ ∈ Gm and β ∈ Dc(̂s, ŝ
′), we will have

Pr[(ẑ, e) = (α̂,β)] = Pr[(ẑ′, e′) = (α̂,β)]. (6.13)

We first rewrite Pr[(ẑ, e) = (α̂,β)] as

Pr[(ẑ, e) = (α̂,β)] = Pr[ẑ = α̂ ∧ e = β]

= Pr[e = β ∧ ŝe + ŷ = α̂]

= Pr[e = β ∧ ŷ = α̂− ŝβ]

= Pr[e = β|ŷ = α̂− ŝβ]Pr[ŷ = α̂− ŝβ]

= Pr[H(h(ŷ), µ) = β|ŷ = α̂− ŝβ]Pr[ŷ = α̂− ŝβ]

= Pr[H(h(α̂− ŝβ), µ) = β]Pr[ŷ = α̂− ŝβ]

and we similarly write

Pr[(ẑ′, e′) = (α̂,β)] = Pr[H(h(α̂− ŝ′β), µ) = β]Pr[ŷ′ = α̂− ŝ′β].

To prove the equality in Equation (6.13), we will show that

1. Pr[H(h(α̂ − ŝβ), µ) = β] = Pr[H(h(α̂ − ŝ′β), µ) = β]

2. Pr[ŷ = α̂− ŝβ] = Pr[ŷ′ = α̂− ŝ′β]

79

To show (1), we notice that

h(α̂− ŝβ) = h(α̂)− h(̂s)β = h(α̂)− h(̂s′)β = h(α̂− ŝ′β),

and so H(h(α̂− ŝβ), µ) = H(h(α̂− ŝ′β), µ).

To prove (2), we make use of the fact that β ∈ Dc(̂s, ŝ
′), and so we have

‖ŝβ‖∞, ‖ŝ′β‖∞ ≤
√
n log n. Since α̂ ∈ Gm, we have ‖α̂‖∞ ≤ mn1.5 log n−√n log n,

and so

‖α̂− ŝβ‖∞, ‖α̂ − ŝ′β‖∞ ≤ mn1.5 log n.

Notice that both ŷ and ŷ′ are chosen uniformly at random from Dm
y , which contains

the entire range of possibilities for the values of both α̂− ŝβ and α̂− ŝ′β. Thus

Pr[ŷ = α̂− ŝβ] = Pr[ŷ′ = α̂− ŝ′β] =
1

|Dy|m

and this completes the proof of the theorem.

In the following theorem, we will show that if there exists a forger who

is able to obtain a forgery with some non-negligible probability, then there exists

an algorithm that can solve the Col(h,D) problem with non-negligible probability.

The proof uses the “forking lemma” [PS00,BN06] in order to obtain two signatures

using the same random oracle query. By using these two signatures and the fact

that the protocol is witness-indistinguishable, we will be able to obtain a solution to

Col(h,D). We remind the reader that we are claiming that the scheme is strongly

unforgeable, which means that a valid forgery may either consist of a signature of

an unseen message, or it may consist of a different signature of a message whose

signature the forger has already seen.

Theorem 6.6. Suppose there exists a polynomial-time forger F who makes at most ζ

queries to the signer, ψ queries to the random oracle H, and succeeds in forging with

probability δ. Then for a randomly-chosen h ∈ H(R,m), there exists an algorithm

of the same time-complexity that outputs a solution to Col(h,D) with probability at

least (
1

2
− n−ω(1)

)(
δ − 1

|Dc|

)(
δ − 1/|Dc|

ψ + ω(log n)ζ
− 1

|Dc|

)
.

80

Proof. Given an h ∈ H(R,m), we pick a secret signing key ŝ ← Dm
s , and then

compute and publish the corresponding public verification keys h,S = h(̂s). Define

q as the bound on the number of times the the random oracle H is called during F ’s

attack. A random oracle query can be made by the forger directly, or by the signing

algorithm when the forger asks to see a signature of some message. In Lemma 6.3, we

observed that the signing algorithm will need to make at most ω(log n) queries to H

to produce a signature, and so the value q is bounded by ψ+ω(log n)ζ. We then pick

random coins ρ for the forger and σ for the signer, and we also pick r1, . . . , rq
$← Dc,

which will correspond to the responses of the random oracle. We now consider a

subroutineA, which takes as input (h, ŝ, ρ, σ, r1, . . . , rq). The subroutineA initializes

F by giving it the public key (h,S) and the random coins ρ, and then proceeds to

run F . Whenever F wants some message signed, A uses the secret key ŝ and the

signer’s random coins σ to produce a valid signature. During signing, queries to H

will have to be made, and the response of H will be first ri in the list (r1, . . . , rq)

that hasn’t been used yet. Of course, A will have to keep a table of all the queries to

H, so in case the same query is made twice, it will have to reply with the previously

answered ri. The forger F can also make queries to the random oracle, in which case

the reply will similarly be the first unused ri in the list (r1, . . . , rq) (unless the query

is not being made for the first time). Once F finishes running and outputs a forgery

(with probability δ), our subroutine A simply outputs F ’s output.

With probability δ, F will output a message µ and its signature (ẑ, e) such

that e = H(h(ẑ)−Se, µ). Notice that if F did not query H on the input (h(ẑ)−Se, µ),

then it only has a 1/|H| chance of producing an e such that e = H(h(ẑ) − Se, µ).

Thus with probability 1 − 1/|Dc|, e must be one of the ri’s, and so the probability

that F succeeds in a forgery and e is one of the ri’s, is at least δ − 1/|Dc|. Let j be

such that e = rj . There are two possibilities: rj was a response to a random oracle

query made by F , or it was a response to a query made during signing. We will deal

with the latter case first because in this case we do not need to “fork”.

Suppose that the signer made a random oracle query H(h(ŷ′), µ′) and got

output e = rj and then computed ẑ′ = ŝe + ŷ′. Then one of two things could have

happened: either ẑ′ ∈ Gm or ẑ′ /∈ Gm. If ẑ′ ∈ Gm, then the the signer would output

81

the signature ẑ′, e. In this case, if the forger outputs a valid forgery (µ, ẑ, e), then

either µ 6= µ′ or ẑ 6= ẑ′ (or both are unequal), because otherwise the forger is just

outputting a signature and a message that he has already seen. If µ 6= µ′, then we

have a collision in the random oracle H. This is because

H(h(ẑ)− Se, µ) = e = H(h(ẑ′)− Se, µ′). (6.14)

If µ = µ′, then we must have ẑ 6= ẑ′ and

H(h(ẑ)− Se, µ) = e = H(h(ẑ′)− Se, µ). (6.15)

So we see that either h(ẑ)−Se 6= h(ẑ′)−Se, in which case we have a collision for H,

or we have that h(ẑ)−Se = h(ẑ′)−Se, in which case we have h(ẑ) = h(ẑ′), which is

a collision for h. And since ẑ, ẑ′ ∈ Gm ⊂ Dm, we have found a solution to Col(h,D).

We now deal with the case that ẑ′ /∈ Gm. In this case, if the forger outputs a valid

forgery (µ, ẑ, e), then either µ 6= µ′ or ẑ 6= ẑ′ (or both are unequal), because (ẑ′, e) is

not a valid signature of µ (since ẑ′ /∈ Gm). If µ 6= µ′, then we have a collision in the

random oracle H because of (6.14). Similarly, if µ = µ′ and ẑ 6= ẑ′, then by (6.15),

we either have a collision in H or we have h(ẑ) = h(ẑ′), which is a collision for h. We

also know that ẑ ∈ Gm ⊂ Dm, and

‖ẑ′‖∞ = ‖ŝrj + ŷ‖∞ ≤ ‖ŝrj‖∞ + ‖ŷ‖∞ ≤
√
n log n+mn1.5 log n,

and so ẑ′ is also in Dm, and we have a solution to Col(h,D). Notice that after q

queries to the random oracle, the probability of getting a collision in H is less than

q/|Dc|, and so the probability that the forger F outputs a forgery which is a solution

to Col(h,D) is at least δ − q/|Dc|. But we will see below that the probability of

obtaining a solution to Col(h,D) when rj was a response to a random oracle query

made by F is smaller than δ − q/|Dc|, and so it will serve as the lower bound of the

success probability of solving Col(h,D).

We now turn to the case that rj was a response to a random oracle query

made by F . In this case, we first record the output (µ, ẑ, rj) of F , and then generate

fresh random elements r′j, . . . , r
′
q

$← Dc. We then run the subroutine A again with

inputs (h, ŝ, ρ, σ, r1, . . . , rj−1, r
′
j , . . . , r

′
q). By Lemma 2.30, we obtain that the proba-

bility that r′j 6= rj and the forger uses the random oracle response r′j (and the query

82

associated to it) in its forgery is at least

(
δ − 1

|Dc|

)(
δ − 1/|Dc|

q
− 1

|Dc|

)
,

and thus with the above probability, F outputs a signature (ẑ′, e′) of the message µ

where e′ = r′j and h(ẑ′) − Se′ = h(ẑ)− Se. Because we know the secret key ŝ such

that h(̂s) = S, we can use the homomorphic properties of h to obtain the equality

h(ẑ − ŝe) = h(ẑ′ − ŝe′) (6.16)

So if ẑ− ŝe 6= ẑ′− ŝe′, then we have a collision for h. This is where we use the witness-

indistinguishability of the signature scheme. By Lemma 5.2, there is another possible

secret key ŝ′ ∈ Dm
s such that h(̂s) = h(̂s′) and from Theorem 6.5, we know that it’s

statistically impossible to tell with probability greater than 1/2+n−ω(1) which of the

two secret keys are being used by the signer. Thus there is a 1/2−n−ω(1) probability

that the secret key was not ŝ, but rather some other ŝ′. We will now show that

if ẑ − ŝe = ẑ′ − ŝe′, then for any other ŝ′, we will have ẑ − ŝ′e 6= ẑ′ − ŝ′e′. For

contradiction assume that

ẑ− ŝe = ẑ′ − ŝe′ and ẑ− ŝ′e 6= ẑ′ − ŝ′e′.

By subtracting the two equations, we obtain that (̂s − ŝ′)(e − e′) = 0. Since we

are doing the multiplication in the ring Zp[x]/〈xn + 1〉, which is not an integral

domain, we cannot automatically conclude that the preceding equality implies that

either ŝ− ŝ′ or e− e′ is 0. But we can make the following observation: since all the

coordinates of ŝ, ŝ′, e, and e′ have absolute value at most 1, the differences ŝ− ŝ′ and

e − e′ have coordinates whose absolute value is at most 2. When we multiply such

polynomials together in the ring Z[x]/〈xn +1〉, the absolute values of the coefficients

of the product are never above 4n. In order to be reduced modulo p = Θ(n4),

the absolute value of the coefficients would have to be greater than p/2, but 4n is

much smaller than that. Therefore if the product (̂s − ŝ′)(e − e′) is 0 in the ring

Zp[x]/〈xn + 1〉, it also must be 0 in the ring Z[x]/〈xn + 1〉. But because xn + 1 is

irreducible over the integers, Z[x]/〈xn+1〉 is an integral domain, and therefore either

ŝ− ŝ′ or e− e′ is 0. Since we know that e 6= e′, it must be that ŝ = ŝ′, and we have

83

a contradiction. Thus ẑ− ŝe 6= ẑ′− ŝe′ with probability at least 1/2−n−ω(1) and we

have a collision for h. All that’s left to check is that ‖ẑ− ŝe‖∞ and ‖ẑ′ − ŝe′‖∞ are

in the set Dm. Since all the random oracle replies ri are are uniformly random in

Dc, we can use Lemma 2.11 and the union bound to conclude that with probability

1− n−ω(1) the norm ‖ŝri‖∞ for all ri is at most
√
n log n. And since ẑ, ẑ′ ∈ Gm, we

have ‖ẑ− ŝe‖∞, ‖ẑ′ − ŝe′‖∞ ≤ mn1.5 log n. This concludes the proof of the theorem.

Corollary 6.7. If the signature scheme in Figure 6.2 for the parameters in Table

6.1 is not strongly unforgeable, then there is a polynomial-time algorithm that can

solve f -SVPγ(Λ) for γ = Õ(n2.5) for every lattice Λ corresponding to an ideal in the

ring Z[x]/〈f〉.

Proof. By Theorem 6.6, we know that breaking the signature scheme implies solving

the Col(h,D) problem where h is chosen at random from H(R,D,m) for the param-

eters in Table 6.1. It’s straightforward to check that the parameters satisfy Theorem

3.1, and therefore solving Col(h,D) for random h ∈ H(R,D,m) means that we can

solve f -SVPγ(Λ) for γ = 16θ(f)2(mn1.5 log n+
√
n log n)n log2 n = Õ(n2.5) for every

lattice Λ corresponding to an ideal in Z[x]/〈f〉.

Appendix A

New Bounds on Gaussian

Distributions Over Lattices

In this appendix, we will provide a proof of Lemma 2.25. In all that follows,

let ρ be defined the same way as in subsection 2.J, and let ρ̂ be the fourier transform

of ρ. That is, for vectors x and y, ρ̂(y) =
∞∫
−∞

ρ(x)e−2πi〈x,y〉dx. Next, we state some

general properties of the fourier transform. If h is defined by h(x) = g(x + v) for

some function g and vector v then

ĥ(w) = e2πi〈v,w〉ĝ(w). (A.1)

Another important fact is that the Gaussian is its own Fourier transform,

i.e., ρ̂ = ρ. More generally, for any s > 0 it holds that ρ̂s = snρ1/s. We use the

following formulation of the Poisson summation formula.

Lemma A.1. For any lattice Λ and any1 function f : Rn → C, f(Λ) = det(Λ∗)f̂(Λ∗)

where f̂ denotes the Fourier transform of f .

The below proposition is just the value of the mth moment of a standard

normal gaussian. We do not provide a proof for it, although it is easily proved by

integrating by parts.

1For this formula to hold, f needs to satisfy certain niceness assumptions. These assumptions
always hold in our applications. See [Ebe02] for more details.

84

85

Proposition A.2.

∫ ∞

−∞
xme−πx2

dx =

m!
(m/2)!(4π)m/2 if m is even,

0 if m is odd.

In the next lemma, we state the closed form of the fourier transform of the

mth moment of the standard normal gaussian.

Lemma A.3. For all values of y and integers m ≥ 0, we have

∫ ∞

−∞
xme−πx2

e−2πixydx =

(−i)mm!

bm
2
c∑

j=0

(−1)jym−2j

j!(m− 2j)!(4π)j

 ρ̂(y)

(Note that when y = 0 and m is even, the term 00 will appear in the sum. But since

when y = 0 proposition A.2 applies, in order to make this lemma include proposition

A.2, we’ll assume that 00 = 1.)

Proof. The proof is by induction. We will need to establish base cases for m = 0 and

m = 1. For m = 0, the equality clearly holds. For m = 1, we need to show that

∫ ∞

−∞
xe−πx2

e−2πixydx = −iyρ̂(y) (A.2)

It’s not difficult to show the above by integrating by parts.

Now we assume that the lemma is true for all values of y and all k < m+ 2. We will

prove that

∫ ∞

−∞
xk+2e−πx2

e−2πixydx =

(−i)k+2(k + 2)!

bk+2
2
c∑

j=0

(−1)jyk+2−2j

j!(k + 2− 2j)!(4π)j

 ρ̂(y)

(A.3)

86

Integrating the the above by parts and using the induction hypothesis, we get

∫ ∞

−∞
xk+2e−πx2

e−2πixydx (A.4)

=
k + 1

2π

∫ ∞

−∞
xke−πx2

e−2πixydx− iy
∫ ∞

−∞
xk+1e−πx2

e−2πixydx (A.5)

=
k + 1

2π

(−i)kk!
bk

2
c∑

j=0

(−1)jyk−2j

j!(k − 2j)!(4π)j

 ρ̂(y) (A.6)

− iy

(−i)k+1(k + 1)!

bk+1
2
c∑

j=0

(−1)jyk+1−2j

j!(k + 1− 2j)!(4π)j

 ρ̂(y) (A.7)

= (−i)k+2(k + 2)! (A.8)

 −1

2π(k + 2)

bk
2
c∑

j=0

(−1)jyk−2j

j!(k − 2j)!(4π)j
+

1

k + 2

bk+1
2
c∑

j=0

(−1)jyk+2−2j

j!(k + 1− 2j)!(4π)j

 ρ̂(y) (A.9)

We will show that equation (A.9) is equivalent to the right side of equation (A.3)

by showing that the coefficients of like powers of y are equivalent. The (−i)k+2(k +

2)!ρ̂(y) part is the same in both equations, so we’ll be ignoring it. Notice that to get

the coefficient of the term yk+2−2l, we need to look at the coefficient of the term we

get for j = l − 1 in the first sum of equation (A.9) and for j = l in the second sum.

Some special cases occur when l = 0 or l = bk+2
2 c (then j = l − 1 and j = l may

not exist as terms in both sums) but let’s first handle the general case first (i.e. the

coefficient of yk+2−2l comes from both terms of equation (A.9)). We need to show

that

−1

2π(k + 2)
· (−1)l−1yk−2(l−1)

(k − 2(l − 1))!(l − 1)!(4π)l−1
+

1

k + 2
· (−1)lyk+2−2l

(k + 1− 2l)!l!(4π)l
(A.10)

=
(−1)lyk−2l+2

(k + 2− 2l)!l!(4π)l
(A.11)

The above equality is not too hard to show with a little algebra manipulation. Now

we come to the special cases. If l = 0, then the coefficient of yk+2−2l comes entirely

from the second sum of equation (A.9). Plugging in, we get

1

k + 2
· (−1)0yk+2−2·0

0!(k + 1− 2 · 0)!(4π)0
=

yk+2

(k + 2)!

and thus the coefficients of the yk+2 term are the same in equations (A.9) and (A.3).

Now we consider the case when l = bk+2
2 c. Here, two subcases arise. The simple one

87

is if k is odd. In this subcase, bk+2
2 c = bk+1

2 c, and thus the coefficient of yk+2−2l

comes from both sums of equation (A.9) and this case has been already handled by

equation (A.10). In the other subcase, bk+2
2 c 6= bk+1

2 c, and so k must be even, and

thus l = k
2 + 1. In this subcase, the coefficient of yk+2−2l = y0 comes from only the

first sum of equation (A.9). That coefficient is what we get when j = k
2 , and it’s

−1

2π(k + 2)
· (−1)

k
2

(k
2)!(4π)

k
2

=
(−1)

k
2
+1

4π(k
2 + 1)(k

2)!(4π)
k
2

=
(−1)

k
2
+1

(k
2 + 1)!(4π)

k
2
+1

which is exactly the term in equation (A.3) when j = k
2 + 1.

In the next two lemmas, we define the function gm(x) = (x1 − c1)mρc(x)

(where x1 and c1 are the first coordinates of x and c respectively) and will bound

the absolute value of its fourier transform. The reason for doing this will become

clear in Lemma A.6

Lemma A.4. If gm(x) = (x1 − c1)mρc(x), then

ĝm(y) =

(−i)mm!

bm
2
c∑

j=0

(−1)jym−2j
1

j!(m − 2j)!(4π)j

 ρ̂c(y)

(The same caveat applies here as in Lemma A.3, i.e. if y1 = 0 and m is even, then

00 will appear in the sum. And again for notational convenience, let 00 = 1 in this

case.)

Proof. Define the function

fm(x) = gm(x + c) = xm
1 ρc(x + c) = xm

1 ρ(x)

This means that the fourier transform of gm(x) is

ĝm(y) = f̂m(y)e−2πi〈c,y〉 (A.12)

Define x′ to be the vector x with the first coordinate removed, and similarly

let y′ be the vector y with the first coordinate removed So,

fm(x) = xm
1 ρ(x) = xm

1 ρ(x1)ρ(x
′) (A.13)

88

and

f̂m(y) =

(∫ ∞

−∞
xm

1 e
−πx2

1e−2πix1y1dx1

)
ρ̂(y′) (A.14)

=

(−i)mm!

bm
2
c∑

j=0

(−1)jym−2j
1

j!(m− 2j)!(4π)j

 ρ̂(y1)ρ̂(y
′) (A.15)

=

(−i)mm!

bm
2
c∑

j=0

(−1)jym−2j
1

j!(m− 2j)!(4π)j

 ρ̂(y) (A.16)

where the second equality follows from Lemma A.3. And since

ρ̂c(y) = ρ̂(y)e−2πi〈c,y〉

we combine equations (A.12) and (A.16) to obtain the claim in the lemma.

Lemma A.5.

|ĝm(y)| ≤

m!
(m/2)!(4π)m/2 if m is even and y = 0,

0 if m is odd and y = 0,

m2mρ2(y) in all other cases.

Proof. Since |ρ̂c(y)| = ρ(y), we have by Lemma A.4,

|ĝm(y)| =

∣∣∣∣∣∣
(−i)mm!

bm
2
c∑

j=0

(−1)jym−2j
1

j!(m− 2j)!(4π)j

∣∣∣∣∣∣
ρ(y) (A.17)

Now we will quickly dispatch of the case where y = 0. In this case ρ(y) = 1 and

all the terms in the sum in equation (A.17) will cancel out except possibly y
m−2bm

2
c

1

(because remember that we assumed that 00 = 1). If m is odd, then the exponent

will not be 0, thus the sum will be 0, and if m is even, then the exponent will be 0.

Thus, the sum will have the value of the term when j = m
2 , which is what is claimed

in the lemma. Now we will handle an easy subcase of the “all other cases.” The

subcase is when y 6= 0 but y1 = 0. In this subcase, the sum in equation (A.17) is

equal to 0 when m is odd and is equal to m!
(m/2)!(4π)m/2 when m is even. Either way,

the product of this sum with ρ(y) is less than m2mρ2(y). Now we will handle all the

89

remaining cases (i.e. when y1 6= 0).

|ĝm(y)| =

∣∣∣∣∣∣
(−i)mm!

bm
2
c∑

j=0

(−1)jym−2j
1

j!(m− 2j)!(4π)j

∣∣∣∣∣∣
ρ(y) (A.18)

≤ m!

bm
2
c∑

j=0

∣∣∣∣∣
(−1)jym−2j

1

j!(m− 2j)!(4π)j

∣∣∣∣∣ ρ(y) (A.19)

Note that if |y1| ≤ 1, then

∣∣∣∣
(−1)jym−2j

1

j!(m−2j)!(4π)j

∣∣∣∣ ≤ 1 and thus equation (A.19) is at most

(bm2 c + 1)m!ρ(y) which is less than m2mρ2(y). So let’s now assume that |y1| ≥ 1.

Then we have

|ĝm(y)| ≤ m!

bm
2
c∑

j=0

∣∣∣∣∣
(−1)jym−2j

1

j!(m− 2j)!(4π)j

∣∣∣∣∣ ρ(y)

≤
(m

2
+ 1
)
m!ym

1 ρ(y)

=
(m

2
+ 1
)
m!m2m/3 ym

1

m2m/3
ρ(y1)ρ(y

′)

≤ m2m ym
1

m2m/3
ρ(y1)ρ2(y

′)

where we recall that y′ is defined as the vector y with the first component removed.

So all that is left to complete the proof of the lemma is to show that

ym
1

m2m/3
ρ(y1) ≤ ρ2(y1) (A.20)

Consider the case where y1 ≤ m2/3. Then equation (A.20) is clearly true. In the

case where y1 > m2/3, we need to show that

ym
1 e
−πy2

1 ≤ e−π(
y1
2

)2

or equivalently that

m log y1 ≤
3

4
πy2

1

Since y1 > m2/3, we have

3

4
πy2

1 =
3

4
πy

1
2
1 y

3
2
1 >

3

4
πy

1
2
1 m > m log y1

This proves equation (A.20) and thus the lemma.

The next lemma is a generalization and closely follows the outline of Lemma

4.2 of [MR07]. The main difference is the technique for bounding the function ĝm,

which was done in Lemmas A.4 and A.5.

90

Lemma A.6. For any n-dimensional lattice Λ, point c ∈ Rn, unit vector u, positive

real s > 2ηε(Λ), and all positive integers m,

∣∣Expx∼DΛ,s,c
[〈x− c,u〉m]

∣∣ ≤

sm

(
m!

(m/2)!(4π)m/2
+m2mε

1−ε

)
if m is even

sm
(

m2mε
1−ε

)
if m is odd

Proof. For any positive real s > 0, define Λ′ = Λ/s, c′ = c/s. Notice that, for any x,

Pr{DΛ,s,c = sx} =
ρs,c(sx)

ρs,c(Λ)
=

ρc′(x)

ρc′(Λ′)
= Pr{DΛ′,c′ = x},

i.e., the distribution DΛ,s,c is equal to DΛ′,c′ scaled by a factor of s. Therefore, it is

enough to prove the lemma for s = 1. The general case follows by scaling the lattice

by a factor s.

In the rest of the proof, we assume s = 1. We want to estimate the quantity

Expx∼DΛ,c
[〈x − c,u〉m]. Without loss of generality, assume that u is the vector

(1, 0, . . . , 0) We will show the lemma true for s = 1 and the general case will follow

by scaling the lattice by a factor s.

Notice that

Exp
x∼DΛ,c

[〈x− c,u〉m] = Exp
x∼DΛ,c

[(x1 − c1)m] =
gj(Λ)

ρc(Λ)
.

Applying Poisson’s summation formula (Lemma A.1) to the numerator and denom-

inator, the above fraction can be rewritten as

Exp
x∼DΛ,c

[〈x− c,u〉m] =
det(Λ∗) · ĝm(Λ∗)

det(Λ∗) · ρ̂c(Λ∗)
=
ĝm(Λ∗)

ρ̂c(Λ∗)
. (A.21)

The Fourier transform ρ̂c is easily computed using Equation A.1: ρ̂c(y) =

ρ(y)e−2πi〈y,c〉. In particular, ρ̂c(0) = 1, |ρ̂c(y)| = ρ(y), and

|ρ̂c(Λ∗)| =

∣∣∣∣∣∣
1 +

∑

y∈Λ∗\{0}

ρ̂c(y)

∣∣∣∣∣∣
≥ 1− ρ(Λ∗ \ {0}). (A.22)

Thus, we get the equation

Expx∼DΛ,s,c
[〈x− c,u〉m] =

ĝm(Λ∗)

ρ̂c(Λ∗)
≤ ĝm(Λ∗)

1− ε =

∑
y∈Λ∗

ĝm(y)

1− ε (A.23)

=

ĝm(0) +
∑

y∈Λ∗\{0}

ĝm(y)

1− ε (A.24)

91

Now we apply Lemma A.5 to get

∣∣Expx∼DΛ,s,c
[〈x− c,u〉m]

∣∣ ≤
|ĝm(0)|+

∑
y∈Λ∗\{0}

m2mρ2(y)

1− ε

=
|ĝm(0)|+m2mρ2(Λ

∗ \ {0})
1− ε

which gives us the claim in the lemma.

Proof of Lemma 2.25

Proof. For simplicity, assume that blog nc is an even integer. Then by Lemma A.6

we have

∣∣∣Expx∼DΛ,s,c

[
〈x− c,u〉blog nc

]∣∣∣ ≤ sblog nc

(log n)!

((log n)/2)!(4π)(log n)/2 + (log n)2 log nε

1− ε

(A.25)

≤ 2sblog nc(log n)
log n

2 (A.26)

Using the above equation, we obtain

Prx∼DΛ,s,c
[|〈x − c,u〉| ≥ s log n] = Prx∼DΛ,s,c

[
〈x− c,u〉blog nc ≥ (s log n)blog nc

]

≤
∣∣Expx∼DΛ,s,c

[
〈x− c,u〉blog nc

]∣∣
(s log n)blog nc

≤ 2sblog nc(log n)
log n

2

(s log n)blog nc

≤ n− log log n
3 = n−ω(1)

where the first inequality follows by Markov’s inequality.

Appendix A is, in part, a reprint, of the paper “Generalized Compact Knap-

sacks Are Collision Resistant” co-authored with Daniele Micciancio and appearing

in the proceedings of ICALP 2006. The dissertation author was the primary inves-

tigator and author of this paper.

Bibliography

[AABN02] M. Abdalla, J.H. An, M. Bellare, and C. Namprempre, From identifica-
tion to signatures via the Fiat-Shamir transform: Minimizing assump-
tions for security and forward-security, EUROCRYPT, 2002, pp. 418–
433.

[AD97] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-
case/average-case equivalence, STOC, 1997, pp. 284–293.

[Ajt96] M. Ajtai, Generating hard instances of lattice problems, STOC, 1996,
pp. 99–108.

[AKS01] M. Ajtai, R. Kumar, and D. Sivakumar, A sieve algorithm for the short-
est lattice vector problem, STOC, 2001, pp. 601–610.

[AR05] D. Aharonov and O. Regev, Lattice problems in NP ∩ coNP, Journal of
the ACM 52 (2005), no. 5, 749–765.

[BC92] J. Bos and D. Chaum, Provably unforgeable signatures, CRYPTO, 1992,
pp. 1–14.

[BCJ+05] E. Biham, R. Chen, A. Joux, P. Carribault, W. Jalby, and C. Lemuet,
Collisions of SHA-0 and reduced SHA-1, EUROCRYPT, 2005.

[BM84] M. Blum and S. Micali, How to generate cryptographically strong se-
quences of pseudo-random bits, SIAM J. Comput. 13 (1984), no. 4,
850–864.

[BM96a] D. Bleichenbacher and U. Maurer, On the efficiency of one-time digital
signatures, ASIACRYPT, 1996, pp. 145–158.

[BM96b] , Optimal tree-based one-time digital signature schemes, STACS,
1996, pp. 363–374.

[BMG07] B. Barak and M. Mahmoody-Ghidary, Lower bounds on signatures from
symmetric primitives, FOCS, 2007, pp. 680–688.

[BN06] M. Bellare and G. Neven, Multi-signatures in the plain public-key model
and a general forking lemma, ACM Conference on Computer and Com-
munications Security, 2006, pp. 390–399.

92

93

[BN07] J. Blömer and S. Naewe, Sampling methods for shortest vectors, closest
vectors and successive minima, ICALP, 2007, pp. 65–77.

[BR93] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm
for designing efficient protocols, ACM Conference on Computer and
Communications Security, 1993, pp. 62–73.

[BS07] M. Bellare and S. Shoup, Two-tier signatures, strongly unforgeable sig-
natures, and Fiat-Shamir without random oracles, Public Key Cryptog-
raphy, 2007, pp. 201–216.

[CGH04] R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodol-
ogy, revisited, J. ACM 51 (2004), no. 4, 557–594.

[Coh96] H. Cohen, A course in computational algebraic number theory, Springer,
1996.

[CR88] B. Chor and R. L. Rivest, A knapsack type public-key cryptosystem based
on arithmetic in finite fields, IEEE Trans. Inform. Theory 34 (1988),
no. 5, 901–909.

[Dam] I. Damgard, A design principle for hash functions, CRYPTO ’89,
pp. 416–427.

[DH76] W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans-
actions on Information Theory IT-22 (1976), no. 6, 644–654.

[Din02] I. Dinur, Approximating SV P∞ to within almost-polynomial factors is
NP-hard., Theor. Comput. Sci. 285 (2002), no. 1, 55–71.

[Ebe02] W. Ebeling, Lattices and codes, Friedr. Vieweg & Sohn., 2002.

[EGM96] S. Even, O. Goldreich, and S. Micali, On-line/off-line digital signatures,
J. Cryptology 9 (1996), no. 1, 35–67.

[FFS88] U. Feige, A. Fiat, and A. Shamir, Zero-knowledge proofs of identity., J.
Cryptology 1 (1988), no. 2, 77–94.

[FS86] A. Fiat and A. Shamir, How to prove yourself: Practical solutions to
identification and signature problems., CRYPTO, 1986, pp. 186–194.

[FS90] U. Feige and A. Shamir, Witness indistinguishable and witness hiding
protocols, STOC, 1990, pp. 416–426.

[GG00] O. Goldreich and S. Goldwasser, On the limits of nonapproximability of
lattice problems, J. Comput. Syst. Sci. 60 (2000), no. 3.

[GGH96] O. Goldreich, S. Goldwasser, and S. Halevi, Collision-free hashing from
lattice problems, Electronic Colloquium on Computational Complexity
(ECCC) 3 (1996), no. 42.

[GGH97] , Public-key cryptosystems from lattice reduction problems,
CRYPTO, 1997, pp. 112–131.

94

[GMR88] S. Goldwasser, S. Micali, and R. Rivest, A digital signature scheme
secure against adaptive chosen-message attacks, SIAM J. Comput. 17

(1988), no. 2, 281–308.

[GN08a] N. Gama and P. Q. Nguyen, Finding shortest vectors with Mordell’s
inequaity, STOC, 2008.

[GN08b] , Predicting lattice reduction, EUROCRYPT, 2008.

[GPS06] M. Girault, G. Poupard, and J. Stern, On the fly authentication and
signature schemes based on groups of unknown order, J. Cryptology 19

(2006), no. 4, 463–487.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan, Trapdoors for hard lat-
tices, and new cryptographic constructions, STOC, 2008, (To appear.).

[GQ88] L. Guillou and J.J. Quisquater, A ”paradoxical” indentity-based signa-
ture scheme resulting from zero-knowledge., CRYPTO, 1988, pp. 216–
231.

[HHGP+03] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and
W. Whyte, Ntrusign: Digital signatures using the NTRU lattice, CT-
RSA, 2003, pp. 122–140.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: A ring-based public
key cryptosystem., ANTS, 1998, pp. 267–288.

[JG94] A. Joux and L. Granboulan, A practical attack against knapsack based
hash functions, EUROCRYPT’94, 1994, pp. 58–66.

[LLL82] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovasz, Factoring polynomials
with rational coefficients, Mathematische Annalen (1982), no. 261, 513–
534.

[LM06] V. Lyubashevsky and D. Micciancio, Generalized compact knapsacks are
collision resistant., ICALP (2), 2006, pp. 144–155.

[LM08] , Asymptotically efficient lattice-based digital signatures, TCC,
2008, pp. 37–54.

[LMPR08] V. Lyubashevsky, D. Micciancio, C. Peikert, and R.Rosen, SWIFFT: a
modest proposal for FFT hashing., FSE, 2008.

[Lyu08] V. Lyubashevsky, Lattice-based identification schemes secure under ac-
tive attacks, Public Key Cryptography, 2008, pp. 162–179.

[Mer87] R. Merkle, A digital signature based on a conventional encryption func-
tion, CRYPTO, 1987, pp. 369–378.

[Mer89] , A certified digital signature, CRYPTO, 1989, pp. 218–238.

[MG02] D. Micciancio and S. Goldwasser, Complexity of lattice problems: A
cryptographic perspective, Kluwer Academic Publishers, 2002.

95

[MH78] R.C. Merkle and M.E. Hellman, Hiding information and signatures in
trapdoor knapsacks, IEEE Transactions on Information Theory IT-24

(1978), 525–530.

[Mic07] D. Micciancio, Generalized compact knapsacks, cyclic lattices, and effi-
cient one-way functions, Computational Complexity 16 (2007), no. 4,
365–411, (Preliminary version in FOCS 2002).

[MR07] D. Micciancio and O. Regev, Worst-case to average-case reductions
based on Gaussian measures, SIAM J. on Computing 37 (2007), no. 1,
267–302.

[MV03] D. Micciancio and S. Vadhan, Statistical zero-knowledge proofs with effi-
cient provers: Lattice problems and more, CRYPTO, 2003, pp. 282–298.

[NR06] P.Q. Nguyen and O. Regev, Learning a parallelepiped: Cryptanalysis of
ggh and ntru signatures, EUROCRYPT, 2006, pp. 271–288.

[NY89] M. Naor and M. Yung, Universal one-way hash functions and their
cryptographic applications, STOC, 1989, pp. 33–43.

[Oka92a] T. Okamoto, Provably secure and practical identification schemes and
corresponding signature schemes., CRYPTO, 1992, pp. 31–53.

[Oka92b] , Provably secure and practical identification schemes and corre-
sponding signature schemes, CRYPTO, 1992, pp. 31–53.

[Pei] C. Peikert, Private Communication.

[Pei07] , Limits on the hardness of lattice problems in `p norms, IEEE
Conference on Computational Complexity, 2007, pp. 333–346.

[Poi00] D. Pointcheval, The composite discrete logarithm and secure authenti-
cation, Public Key Cryptography, 2000, pp. 113–128.

[PR06] C. Peikert and A. Rosen, Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices, TCC, 2006.

[PR07] , Lattices that admit logarithmic worst-case to average-case con-
nection factors, STOC, 2007.

[PS00] D. Pointcheval and J. Stern, Security arguments for digital signatures
and blind signatures, J. Cryptology 13 (2000), no. 3, 361–396.

[PW08] C. Peikert and B. Waters, Lossy trapdoor functions and their applica-
tions, STOC, 2008.

[Reg03] O. Regev, New lattice based cryptographic constructions, STOC, 2003,
pp. 407–416.

[Reg05] , On lattices, learning with errors, random linear codes, and
cryptography, STOC, 2005.

96

[Rom90] J. Rompel, One-way functions are necessary and sufficient for secure
signatures, STOC, 1990, pp. 387–394.

[Sch87] C. P. Schnorr, A hierarchy of polynomial time basis reduction algo-
rithms, Theoretical Computer Science 53 (1987), 201–224.

[Sch91] C.P. Schnorr, Efficient signature generation by smart cards., J. Cryp-
tology 4 (1991), no. 3, 161–174.

[Sha84] A. Shamir, A polynomial time algorithm for breaking the basic Merkle-
Hellman cryptosystem, IEEE Transactions on Information Theory IT-

30 (1984), no. 5, 699–704.

[Sha89] A. Shamir, An efficient identification scheme based on permuted kernels
(extended abstract), CRYPTO, 1989, pp. 606–609.

[Sho97] P. Shor, Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer, SIAM J. Comput. 26 (1997),
no. 5, 1484–1509.

[Sho99] V. Shoup, On the security of a practical identification scheme., J. Cryp-
tology 12 (1999), no. 4, 247–260.

[Ste96] Stern, A new paradigm for public key identification, IEEE Transactions
on Information Theory 42 (1996).

[Szy04] M. Szydlo, Merkle tree traversal in log space and time, EUROCRYPT,
2004, pp. 541–554.

[van81] P. van Emde Boas, Another NP-complete problem and the complexity of
computing short vectors in a lattice., Tech. Report Technical Report 81-
04, University of Amsterdam, http://turing.wins.uva.nl/ peter/, 1981.

[Vau01] S. Vaudenay, Cryptanalysis of the Chor–Rivest cryptosystem, Journal
of Cryptology 14 (2001), no. 2, 87–100.

[WLF+05] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu, Cryptanalysis for hash
functions MD4 and RIPEMD, EUROCRYPT, 2005.

[WY05] X. Wang and H. Yu, How to break MD5 and other hash functions, EU-
ROCRYPT, 2005.

