
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
A New Approach to Policy-based Routing in The Internet

Permalink
https://escholarship.org/uc/item/015285r5

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2005

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/015285r5
https://escholarship.org
http://www.cdlib.org/

Chapter 1

A NEW APPROACH TO POLICY-BASED

ROUTING IN THE INTERNET

Bradley R. Smith
University of California, Santa Cruz
Corresponding Author

brad@soe.ucsc.edu

J.J. Garcia-Luna-Aceves
University of California, Santa Cruz

jj@soe.ucsc.edu

1. Introduction

The architecture of today’s Internet is based on the catenet model of
internetworking defined in Cerf, 1978; Cerf and Cain, 1983; Cerf and
Kahn, 1974. In the catenet model, networks are built by the concate-
nation of disparate networks through the use of routers. The primary
goals of the catenet model, and therefore the Internet architecture, were
to support packet-switched communication between computers over in-
ternets composed of networks based on diverse network technologies,
and to encourage the development and integration of new networking
technologies into these internets. To achieve these goals, a simple but
powerful routing architecture was adopted.

The Internet routing architecture is based on a best effort commu-
nication model in which traffic is forwarded through an internet along
paths that minimize a single, typically delay-related metric (which often
is simply hop-count), and such that packets may be dropped or deliv-
ered out of order. These paths are constructed by a distributed routing
computation where destination address-based packet forwarding state is
computed autonomously by each router for a single forwarding class
which provides minimum delay delivery.

2

There are a number of strengths of the Internet routing architecture.
It is robust in the sense that it co-locates the routing process with the
state it computes, manifesting a design principle called fate-sharing first
described by Clark, 1988. This ensures that the failure of any single
component of an internet does not invalidate state located elsewhere in
the internet, effectively localizing the affects of any failures.

The Internet routing architecture is efficient and responsive for a cou-
ple of reasons. By implementing distributed control of forwarding state it
requires only simplex communication of topology change events. Specif-
ically, since the routing process is co-located with the forwarding state
it controls, a router only requires one-way (simplex) notification of the
event from a remote router local to the event that detects it. By as-
suming a distributed, hop-by-hop routing model, the Internet routing
architecture enables the use of more efficient and responsive routing algo-
rithms that can operate with partial information regarding the topology
of the network.

This best-effort, distributed, hop-by-hop routing architecture has proven
surprisingly powerful. Indeed, much of the success of the Internet ar-
chitecture can be attributed to its routing model. However, largely as
a product of its own success, limitations of this model are being en-
countered as it is applied to more demanding applications (see Braden
et al., 1994). The primary limitation of this routing model is that it
only supports a single path between any given source and destination.
Specifically, Internet forwarding state is composed of a single entry for
each destination. Each entry is composed of the next-hop router on the
chosen path to the destination. As a result, the Internet routing architec-
ture only supports one path for any given destination, and that path is
computed to optimize a single metric, typically delay or hop-count. This
model has been extended to multi-path, equal-cost routing, which im-
proves robustness but retains the limitations of only supporting a single
performance class. Therefore, assumptions of uniform network perfor-
mance requirements and network usage policies have been “hard-coded”
into the Internet architecture. Specifically, the Internet routing archi-
tecture assumes all applications using an internet require minimization
of the same performance parameter, and traffic from these applications
may traverse any link in the internet to reach their destination. Clearly,
such a model is not adequate for many of the demanding applications
to which the Internet is currently being applied.

It is easy to find examples of diverse network performance require-
ments in the Internet today. While the minimum delay paths used in
the best-effort communications model are well suited for the data ser-
vices (e.g. e-mail, telnet, http, etc.) prevalent in the early Internet, they

A New Approach to Policy-Based Routing 3

are inadequate for new applications of Internet technologies. For exam-
ple, the on-demand delivery of isochronous streams of data (i.e. data
requiring delivery within specific time constraints, such as video and
audio) requires low delay variance (called jitter), while the interactive
delivery of isochronous data (e.g. Internet telephony) requires both low
delay and low delay variance. Similarly, the delivery of streaming video
requires high bandwidth, and is relatively loss-tolerant, while streaming
audio requires relatively low bandwidth, but is loss-intolerant. Due to
the single-class forwarding model used in the Internet architecture, only
one of such a set of diverse service models can be effectively supported in
an internet today. While some service models satisfy the requirements of
others (e.g. a high-bandwidth, low delay, and low delay variance model
can satisfy the requirements of both video and audio conferencing) this
approach does not utilize the network resources as effectively as a set of
custom service models.

Similarly, it is easy to find examples of network resource usage po-
lices. The inability to provide differentiated services has become a stum-
bling block to realizing the commercial potential of Internet technologies.
Commercial Internet Services Providers (ISPs) would benefit from the
ability to provide different levels of services (e.g., bronze, silver, or gold),
and a suite of service options (e.g., on-demand video or audio, and in-
teractive video or audio conferencing) that would allow them to extract
additional revenue from existing infrastructure. Non-commercial appli-
cation of similar capabilities would enable the management of network
resources. For example, portions of a network could be allocated along
departmental (e.g., accounting, engineering, or sales), functional (e.g.,
instruction vs. research), and usage (e.g., video, audio, web, or e-mail)
lines. Such service differentiation and resource management capabilities
are not, in general, possible in the single forwarding class communica-
tions model used in the Internet today.

As a special case of service differentiation, the issues of security and
trust have become critical for many modern applications of Internet
technology. While security was important in the design of the Internet
architecture, its implementation and deployment took lower priority to
the implementation and deployment of the basic technology for what
was still a very proof-of-concept communications architecture. More re-
cent work (e.g. SSL, Allen and Dierks, 1999, and SSH) has focused on
application-level, end-to-end security. This has left network-layer secu-
rity and trust largely unresolved. In general, security and trust in the
network layer revolve around questions of who can see traffic as it tra-
verses an internet, and who can generate traffic load targeted at some
point in an internet. The former represents a disclosure threat even for

4

end-to-end protected traffic where traffic analysis may result in signifi-
cant disclosures. The latter represents a critical denial-of-service threat
as has been demonstrated in the many large-scale DDoS attacks perpe-
trated in the Internet. Given the single forwarding class communications
model underlying the current Internet architecture, these vulnerabilities
are fundamentally unresolvable. While end-to-end solutions like those
mentioned above can help mitigate the problems, the basic vulnerabili-
ties remain.

The fundamental challenge of policy-based routing is to enhance the
Internet routing architecture to support diverse network performance
requirements and usage policies, without compromising the robustness,
efficiency, and responsiveness of the existing distributed, hop-by-hop
routing model. The remainder of this chapter reviews previously pro-
posed solutions to this problem and identifies their limitations. It then
presents an enhanced Internet routing architecture that supports these
requirements for diverse policies without sacrificing the strengths of the
original architecture. Lastly, it presents a new family of path-selection
algorithms required by the new architecture that efficiently compute
paths in the context of network performance and usage policies.

2. Previous Work

We define policy-based routing as the routing of traffic over paths in
an internet that honor policies defining performance and resource uti-
lization requirements of the internet. Based on this definition, quality-
of-service routing (QoS) is the special case of routing in the context of
performance policies, and traffic engineering is routing in the context
of resource-utilization policies. This definition of traffic engineering is
a generalization of that in current use. The current definition of traffic
engineering can be stated as the management of network resources to
minimize or eliminate congestion without the use of per-flow resource
reservations. The generalized definition used here is the management
of network resources to implement arbitrary policies without the use of
per-flow resource reservations. Historically, QoS and traffic engineer-
ing have been addressed separately. The solution presented here is the
first integrated solution to both. There are three main components to
a policy-based routing solution: resource management, a routing archi-
tecture, and path-selection algorithms.

2.1 Policy-Based Resource Management

Two QoS architectures have been developed representing fundamen-
tally different approaches to solving the problem of resource management

A New Approach to Policy-Based Routing 5

in the context of performance requirements. The goal of the integrated
services (intserv) architecture (Braden et al., 1994) was to define an in-
tegrated Internet service model that supports best-effort, real-time, and
controlled link sharing requirements. Intserv made the assumption that
network resources must be explicitly controlled, and defines an architec-
ture where applications reserve the network resources required to im-
plement their functionality, and an infrastructure of admission control,
traffic classification, and traffic scheduling mechanisms which implement
the reservations.

In contrast, the differentiated services (diffserv) architecture provides
resource management without the use of explicit reservations. In diff-
serv, a small set of per-hop forwarding behaviors (PHBs) is defined within
a diffserv domain which provide resource management services appro-
priate to a class of application resource requirements. Traffic classifiers
are deployed at the edge of a diffserv domain which classify traffic for
one of these PHBs. Inside a diffserv domain, routing is performed using
traditional hop-by-hop, single-forwarding class mechanisms.

Resource management for traffic engineering involves the specification
of traffic classification rules to identify the policy-significant traffic in
an internet, and the definition of resource utilization policies in terms
of these traffic classes. The resource utilization policies are used as
constraints in the path selection function to compute paths for difference
traffic classes. Current proposals (Awduche et al., 1999) define resource-
utilization policies by assigning network resources to resource classes,
and then specifying what resource classes can be used for forwarding
each traffic class.

2.2 Policy-Based Routing Architectures

A policy-based routing architecture defines path-selection mechanisms
for computing paths through an internet that honor performance and
resource-utilization policies, and forwarding mechanisms for forwarding
traffic over these paths. While both the intserv and diffserv QoS re-
source management solutions support the use of single-forwarding-class
routing models, the use of policy-based routing solutions results in sig-
nificantly improved resource utilization. In contrast, traffic engineering
resource management solutions require the use of a policy-based routing
architecture.

Currently proposed policy-based routing architectures are based on
an on-demand, virtual-circuit routing model where routes are computed
on-demand (e.g. on receipt of the first packet in a flow, or on request
by a network administrator), and forwarding is source-specified through

6

the use of source routing or path setup (Davie and Rekhter, 2000) tech-
niques. These solutions are less robust, efficient, and responsive than
the original distributed, hop-by-hop Internet routing architecture.

Specifically, these solutions are less robust due to their use of central-
ized control of state. For example, the forwarding paths in on-demand
routing are brittle because the ingress router controls remote forward-
ing state in routers along paths it has set up. Furthermore, these so-
lutions are less efficient and responsive due to their use of centralized
control of state, and requirement of overly complex mechanisms for im-
plementing some functions. Due to its centralized nature, on-demand
routing requires the use of duplex communication of topology change
events. Since the routing process controls remote forwarding state, a
router requires two-way (duplex) communication to receive notification
of an event, and then send forwarding state updates back into the in-
ternet. Additionally, on-demand routing is less efficient and responsive
due to its requirement of complex mechanisms to implement their func-
tionality. On-demand routing requires the use of full-topology routing
algorithms to ensure that every router can compute optimal paths to
any destination in an internet. Lastly, on-demand routing requires the
use of more complex state management mechanisms, such as soft-state
timers and repair mechanisms to manage forwarding state.

2.3 Policy-Based Path Selection

Policy-based path-selection supports traffic engineering by the compu-
tation of paths in the context of administrative constraints on the type
of traffic allowed over links in an internet. Analogously, policy-based
path-selection supports QoS by the computation of paths in the con-
text of multi-component weights (Sobrinho, 2002) assigned to the links
in an internet. The metrics used in these computations are assigned to
individual links in the network. For a given routing application, a set
of link metrics is identified for use in computing the path metrics used
in the path-selection decision. Link metrics can be assigned to one of
two classes based on how they are combined into path metrics. Con-
cave (or minmax) metrics are link metrics for which the minimum (or
maximum) value (called the bottleneck value) of a set of link metrics
defines the path metric of a path composed of the given set of links.
Examples of concave metrics include residual bandwidth, residual buffer
space, and administrative traffic constraints. Additive metrics are link
metrics for which the sum (or product, which can be converted to a sum
of logarithms) of a set of link metrics defines the path metric of the path

A New Approach to Policy-Based Routing 7

composed of the given set of links. Examples of additive metrics include
delay, delay jitter, cost, reliability, and packet loss..

The foundational work on the problem of computing paths in the
context of more than one additive metric was done by Jaffe, 1984, who
defined the multiply-constrained path problem (MCP) as the computa-
tion of paths in the context of two additive metrics, which is known to
be NP-Complete (Garey and Johnson, 1979). He presented an enhanced
distributed Bellman-Ford algorithm that solved this problem with time
complexity of O(n4b log(nb)), where n is the number of nodes in a graph,
and b is the largest possible metric value. Since Jaffe, a number of so-
lutions have been proposed for computing exact paths in the context of
multiple metrics for special situations. Wang and Crowcroft, 1996 were
the first to present the solution to computing paths in the context of
a concave and an additive metric discussed above. Ma and Steenkiste,
1997 presented a modified Bellman-Ford algorithm that computes paths
satisfying delay, delay-jitter, and buffer space constraints in the con-
text of weighted-fair-queuing scheduling algorithms in polynomial time.
Cavendish and Gerla, 1998 presented a modified Bellman-Ford algo-
rithm with complexity of O(n3) which computes multi-constrained paths
if all metrics of paths in an internet are either non-decreasing or non-
increasing as a function of the hop count. Recent work by Siachalou
and Georgiadis, 2003 on MCP has resulted in an algorithm with com-
plexity O(nW log(n)), where W is the maximumum link weight. This
algorithm is a special case of the policy-based path-selection presented
in Section 1.4 of this chapter. As described in Section 1.4, we have de-
veloped special case versions of the algorithm presented there for QoS
and traffic engineering that provide significant improvements on exist-
ing solutions such as that presented in Siachalou and Georgiadis, 2003.
However, comparisons with these solutions are not presented here due
to space constraints.

While significant improvements in the performance of solutions to the
general MCP problem have been obtained (as described above), these
solutions still suffer from worst-case runtime that is exponential in the
size of the graphs (specifically, worst-case runtimes are pseudopolyno-
mial, Garey and Johnson, 1979). To address this problem several algo-
rithms have been proposed that compute approximate solutions to the
MCP problem. Both Jaffe, 1984 and Chen and Nahrstedt, 1998 pro-
pose algorithms which map a subset of the metrics comprising a link
weight to a reduced range, and show that using such solutions, the cost
of a policy-based path computation can be controlled at the expense of
the accuracy of the selected paths. Similarly, a number of researchers (
Jaffe, 1984; Mieghem et al., 2001) have presented algorithms which com-

8

pute paths based on a function of the multiple metrics comprising a link
weight. In summary, the drawbacks of the current policy-based path
selection solutions are that they have poor average case performance,
they implement inflexible path selection models, and those based on al-
gorithms that compute approximate solutions result in significant loss
in fidelity of the path costs.

In summary, while existing proposals for QoS resource management
will work with the traditional single-forwarding-class routing architec-
ture, their effectiveness is severely limited. Furthermore, traffic en-
gineering resource management cannot work with such routing archi-
tectures at all. To realize the potential of policy-based resource man-
agement, policy-based path-selection mechanisms must be used. Exist-
ing policy-based path-selection architectures are based on on-demand,
virtual-circuit routing models which are inherently less robust, efficient,
and responsive than the distributed, hop-by-hop model adopted by the
Internet architecture. Furthermore, the performance of proposed exact
solutions will not support the requirements of a distributed architecture.

3. Distributed Label-Swap Routing

Policy-based routing requires the ability to compute and forward traf-
fic over multiple paths for a given destination. This is clearly the case
for traffic engineering where multiple paths may exist that satisfy dis-
joint network usage policies. It is also true for QoS due to the fact
that there may not exist a universally “best” route to a given node in
a graph. For example, which of two paths is best when one has delay
of 5ms and jitter of 4ms, and the other has delay of 10ms and jitter of
1ms depends on which metric is more critical for a given application.
For FTP traffic, where delay is important and jitter is not, the former
would be more desirable. Conversely, for video streaming, where jitter
is very important and delay is relatively un-important, the latter would
be preferred. Such weights are said to be incomparable. In contrast, it is
possible for one route to be clearly “better” than another in the context
of multi-dimensional link weights. For example, a route with delay of
5ms and jitter of 1ms is clearly better than a route with delay of 10ms
and jitter of 5ms for all possible application requirements. Such weights
are said to be comparable.

The goal of routing in the context of multi-dimensional link weights is
to find the largest set of paths to each destination with weights that are
“better-than” all other routes in the graph with comparable weights (this
definition will be made precise in Section 1.4.2). The weights in such a
set are called the performance classes of a destination. (Formally, the

A New Approach to Policy-Based Routing 9

“better-than” relation is a partial ordering on the set of path weights,
and the goal of a routing computation is to find the paths with the
maximal set of path weights). Such a set of routes is not supported by
the current Internet routing architecture because, as described above,
the Internet only supports a single path between any given source and
destination.

The solution proposed here is to use label-swap forwarding technology
as a generalized forwarding mechanism to implement multiple paths per
destination computed by policy-based path-selection algorithms. The
path-selection algorithms compute a set of paths per destination that
provide all combinations of performance and use policies existing in an
internet. By replacing IP addresses with semantically neutral labels,
routes can be assigned a local label, and label-swap forwarding can then
be used to forward traffic for each class along an appropriate path. This
combination of distributed, hop-by-hop routing with label-swap forward-
ing is called distributed label-swap routing (DLSR).

Traditionally, label-swap forwarding has only been seen as an appro-
priate match with an on-demand, source-driven routing model. Indeed,
to a large extent, the virtual-circuit nature of these previous solutions has
been attributed to their use of label-swap forwarding. Contrary to this
view, we submit that host addresses and labels are largely equivalent al-
ternatives for representing forwarding state, and that the virtual-circuit
nature of prior architectures derives from their use of a source-driven
forwarding model. The primary conceptual difference between address
and label-swap forwarding is that label-swap forwarding provides a clean
separation of the control and forwarding planes (Swallow, 1999) within
the network layer, where address-based forwarding semantically ties the
two planes together unnecessarily. The distinguishing characteristic of
DLSR forwarding, as compared with MPLS (Davie and Rekhter, 2000) is
that label-swap forwarding state is pre-computed in a distributed man-
ner for all destinations, as compared with on-demand route computation
in MPLS. This separation provides what might be called a topological
anonymity of the forwarding plane that is critical to the implementation
of policy-based routes.

Chandranmenon and Varghese, 1995 present a similar notion, which
they call threaded indices, where neighboring routers share the indexes
into their routing tables for specific routes which are then included in
forwarded packets to allow rapid forwarding table lookups. In addition,
they present a modified Bellman-Ford algorithm that exchanges these
indices among neighbors. Distributed label-swap forwarding general-
izes the threaded index concept to use generic labels (with no direct
forwarding-table semantics), then uses these labels to represent rout-

10

ing policies computed by the routing protocols, and defines a family of
routing protocols to exchange local labels among neighbors.

W
N

ex
t H

op

L
oc

al
 L

ab
el

A
dd

re
ss

 P
re

fi
x

W
Y
Z
X

1
2
3
4

−
Y

X

−
1
2Y
2

N
ex

t H
op

 L
ab

el

W
X
Z
Y

1
2
3
4

W
−
Z
Z

1
−
4
3

W
X
Y
Z

1
2
3
4

X
X
Y
−

1
2
1
−

Y
Z
W
X

1
2
3
4

−
Z
W
Z

−
4
1
2

Y

Z

X

Figure 1.1. Labels with Address-Based Forwarding

3

W
X
Y
Z
Z

AB
AB
AB
A
B

1
2
3
4
5

−
X
Y
X
Y

−
2
3
4
4

Y

Z

X

W

A
dd

re
ss

 P
re

fi
x

N
ex

t H
op

L
oc

al
 L

ab
el

A
dm

in
is

tr
at

iv
e

C
la

ss
es

W
X
Y
Z
Z

AB
AB
AB
B
A

1
2
3
4
5

W
W
−
Z
W

1
2
−
6
4

W
W
X
X
Y

A
B
A
B
A

1
2
3
4
5

X
Y
X
Y

−

1
1
2
2

−

W
X
Y
Z
Z

AB
AB
AB
A
B

1
2
3
4
5

W
−
W
Z
W

1
−
3
6
5

A

BAB

AB

N
ex

 H
op

 L
ab

el

Z
Y

AB
B

6
7

X

Y

3

Figure 1.2. Labels with Policy-Based Forwarding

As illustrated in Figure 1.1 for traffic engineering, distributed label-
swap forwarding can be used in the context of traditional address-based
forwarding. This figure shows a four node network, with the forwarding
tables at each node. In this example the forwarding table is referenced
for both traffic classification (through the “address prefix” field), and for
label-swap forwarding (through the “local label” field). The difference
between DLSR forwarding and virtual-circuit mechanism (e.g. ATM
and MPLS) is the use of topology-driven vs. on-demand routing com-
putation. Specifically, in DLSR forwarding routes are pre-computed for
all destination and traffic classes.

The benefit of this mechanism for traffic forwarding is that it can be
generalized to handle policy-based forwarding. Specifically, distributed
label-swap forwarding can be used to implement traffic engineering via

A New Approach to Policy-Based Routing 11

the assignment of traffic to administrative classes that are used to select
different paths for traffic to the same destination depending on the label-
ing of links in the network with administrative class sets. For example,
Figure 1.2 shows a small network with four nodes, two administrative
classes A and B, and the given forwarding state for reaching the other
nodes. The benefits of this architecture are that it is based on for-
warding state that is agnostic to the definition of forwarding classes,
which allows the data forwarding plane to remain simple yet general.
Second, it concentrates the path computation functions in the routing
protocol, which is the least time critical, and most flexible component
of the network layer. This concept can be generalized to handle QoS in
a straightforward manner.

The resulting routing architecture can be seen as analogous to the Re-
duced Instruction Set Computer (RISC) processor architecture in which
researchers shifted much of the intelligence for managing the use of pro-
cessor resources to the compilers that were able to bring a higher-level
perspective to the task, thus allowing much more efficient use of the
physical resources, as well as freeing the hardware designers to focus on
performance issues of much simpler processor architectures. Similarly,
the communications architecture proposed here requires a shift in intelli-
gence for customized (i.e. policy-based) path composition to the routing
protocols and frees the network layer to focus solely on hop-by-hop for-
warding issues, adding degrees of freedom to the network hardware en-
gineering problem that allow for significant advances in the performance
and effectiveness of network infrastructure.

The enhancement of traditional unicast routing systems with the
policy-based routing technology presented above is straight forward. The
routing protocol must be enhanced to carry the additional link metrics
required to implement the desired policies. This requires the use of
either a link-state or link-vector routing protocol (Garcia-Luna-Aceves
and Behrens, 1995) that exchanges information describing link state.
However, for a system depending on on-demand routing computations,
a topology broadcast protocol is required to ensure an ingress router
has the information it needs to compute an optimal route. In contrast,
hop-by-hop based routing systems can work with partial-topology pro-
tocols as each routing process is ensured of learning a topology from its
neighbors containing optimal routes for reaching all destinations in an
internet.

The forwarding state must be enhanced to include local and next hop
label information in addition to the destination and next hop informa-
tion existing in traditional forwarding tables. Traffic classifiers must be
placed at the edge of an internet, where “edge” is defined to be any point

12

Process

Label−Swap
Forwarding

Traffic
Classifier

Local Processes

Y

N

N

Y

Local? Labelled?

Routing

Figure 1.3. Traffic Flow in Policy-Enabled Router

from which traffic can be injected into the internet. Since each router
represents a potential traffic source (for CLI and network management
traffic), this effectively means a traffic classification component must be
present in each router. As illustrated in Figure 1.3, the resulting traffic
flow requirements are that all non-labeled traffic (sourced either from a
router itself, or from a directly connected host or non-labeling router)
must be passed through the traffic classifier first, and all labeled traffic
(sourced either from the traffic classifier or a directly connected labeling
router) must be passed to the label-swap forwarding process.

4. Policy-Based Path-Selection Algorithm

We model a network as a weighted undirected graph G = (N,E),
where N and E are the node and edge sets, respectively. By convention,
the size of these sets are given by n = |N | and m = |E |. Elements of
E are unordered pairs of distinct nodes in N . A(i) is the set of edges
adjacent to i in the graph. Each link (i, j) ∈ E is assigned a weight,
denoted by ωij. A path is a sequence of nodes < x1, x2, . . . , xd > such
that (xi, xi+1) ∈ E for every i = 1, 2, . . . , d−1, and all nodes in the path

are distinct. The weight of a path is given by ωp =
∑d−1

i=1 ωxixi+1
. The

nature of these weights, and the functions used to combine these link
weights into path weights are specified for each algorithm.

4.1 Administrative Policies

We use a declarative model of administrative policies in which con-
straints on the traffic allowed in an internet are specified by expressions
in a boolean traffic algebra. The traffic algebra is composed of the stan-

A New Approach to Policy-Based Routing 13

dard boolean operations on the set {0, 1}, where a set of p primitive
propositions (variables) represent statements describing characteristics
of network traffic or global state that are either true or false. The syntax
for expressions in the algebra is specified by the BNF grammar:

ϕ ::= 0 | 1 | v1 . . . vp | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)

The set of primitive propositions, indicated by vi in the grammar, can

gold

Customers Servers

bronze v silver v gold

silver v gold

Figure 1.4. Traffic Engineering Example

be defined in terms of network traffic characteristics or global state. For
example (referring to Figure 1.4) gold could be a variable that is true
(has the value 1) if the source or destination IP address of the current
packet is that of a “gold” customer who has subscribed to a premium
level of service from their Internet service provider (ISP), with silver
and bronze defined similarly. In this context, Figure 1.4 illustrates the
portion of the ISP’s network connecting customers and the ISP’s server
farm that provides the services offered by the ISP. By assigning the link
predicates as shown, the service provider has defined a network resource
usage policy that grants gold customers access to all client-server inter-
connections, silver customers access to two-thirds of this connectivity,
and bronze customers to one-third. Consequently, premium customers
get quantifiably improved service relative to lower-priority customers,
both in terms of reliability and performance.

In addition, a SAT (ϕ) primitive is required for expressions in the
traffic algebra which is the SATISFIABILITY problem of traditional
propositional logic. Satisfiability must be tested in two situations by the
algorithms presented below for the implementation of traffic-engineering
computations. First, an extension to a known route should only be
considered if classes of traffic exist that are authorized to use both the
path represented by the known route and the link used to extend the
path. This is true iff the conjunction of these expressions is satisfiable
(i.e., SAT (εi ∧ εij) where εi is the predicate for the path to i, and εij is
the predicate for the link from i to j). Second, given that classes of traffic
exist that are authorized to use a path represented by a new route, the
algorithms must determine whether all traffic supported by that route

14

has also been satisfied by other previously discovered shorter routes.
This is true iff the new route’s traffic expression implies the disjunction of
the traffic expressions for all known better routes (i.e., (εi → εi1 , εi2 , ..)
is valid, which is denoted by (εi → Ei) in the algorithms). Determining if
an expression is valid is equivalent to determining if the negation of the
expression is unsatisfiable. Therefore, expressions of the form ε1 → ε2

are equivalent to ¬SAT (¬(ε1 → ε2)) (or ¬SAT (ε1 ∧ ¬ε2)).
SATISFIABILITY is the prototypical NP-complete problem (Garey

and Johnson, 1979). As is typical with NP-complete problems, it has
many restricted versions that are computable in polynomial time. An
analysis of strategies for defining computationally tractable traffic alge-
bras is beyond the scope of this paper; however, we have implemented
an efficient, restricted solution to the SAT problem by implementing the
traffic algebra as a set algebra with the set operations of intersection,
union, and complement on the set of all possible forwarding classes.

In summary, administrative policies are specified for an internet by
a set of link and global predicates. These predicates define a set of
forwarding classes, and constrain the topology that traffic for each for-
warding class is authorized to traverse, as required by the administrative
policies.

4.2 Performance Characteristics

As described in Section 1.2.3, path weights are composed of multi-
component metrics that capture all important performance measures of
a link such as delay, delay variance (“jitter”), available bandwidth, etc.
As discussed in Section 1.3, there is not a universally “best” route be-
tween two nodes in a graph in the context of multi-component weights.
To address this fact, the routing algorithm presented here is based on an
enhanced version of the path algebra defined by Sobrinho, 2002, which
supports the computation of a set of routes for a given destination con-
taining the “best” set of routes for each destination.

Formally, the path algebra P = <W,⊕,�,v, 0,∞> is defined as a
set of weights W, with a binary operator ⊕, and two order relations, �
and v, defined on W. There are two distinguished weights in W, 0 and
∞, representing the least and absorptive elements of W, respectively.
Operator ⊕ is the original path composition operator, and relation �,
called “lighter-than,” is the original total ordering from Sobrinho, 2002.
Operator ⊕ is used to compute path weights from link weights. The
routing algorithm uses relation � to build the forwarding set, starting
with the minimal element, and by the forwarding process to select the

A New Approach to Policy-Based Routing 15

minimal element of the forwarding set whose parameters satisfy a given
QoS request.

A new relation on routes, v, called “better-than,” is added to the
algebra and used to define classes of comparable routes and select maxi-
mal elements of these classes for inclusion in the set of forwarding entries
for a given destination. Relation v is a partial ordering (reflexive, anti-
symmetric, and transitive) with the following, additional property:

Property 1.1 (ωx v ωy) ⇒ (ωx � ωy).

This relation is equivalent to the concept of dominated paths (Henig,
1985). A route rm is a maximal element of a set R of routes in a graph
if the only element r ∈ R where rm v r is rm itself. A set Rm of routes
is a maximal subset of R if, for all r ∈ R either r /∈ Rm, or r ∈ Rm and
for all s ∈ R − {r}, ¬(r v s). The maximum size of a maximal subset
of routes is the smallest range of the components of the weights (for
the two component weights considered here). An example path algebra
based on weights composed of delay and cost is as follows:

ωi ≡ (di, ci)

0 ≡ (0, 0)

∞ ≡ (∞,∞)

ωi ⊕ ωj ≡ (di + dj , ci + cj)

ωi � ωj ≡ (di < dj) ∨ ((di = dj) ∧ (ci ≤ cj))

ωi v ωj ≡ (dj ≤ di) ∧ (cj ≤ ci)

C

∞

∞

0
0

A

B

D

E

F
G

H

I

Cost

La
te

nc
y

Figure 1.5. � relation

Figure 1.5 is a graphical depiction of the relation � on a set of weights
for routes (labeled A through I) to a given destination in an internet
where x � y is depicted as x → y. Figure 1.6 illustrates the relation
v where each route is represented as a subset of the plane with upper

16

Cost ∞

∞

0
0

A

B
C

D

E

F

H

I

G

La
te

nc
y

Figure 1.6. v relation

Cost ∞

∞

0
0

A

C
D

F

La
te

nc
y

Figure 1.7. Forwarding table

left-hand corner at the coordinates for the route. The intuition commu-
nicated here is that a route satisfies any constraint pair contained in its
sub-region of the plane. Building on this intuition, the relation v de-
fines an ordering on routes in terms of the containment (subset) of one
route’s region within another’s, i.e. if ωi v ωj, then the set of constraint
pairs that route i can satisfy is a subset of those satisfiable by route
j. The maximal subset of a set of such routes (the set of routes shown
with solid lines in Figure 1.6) contain routes that satisfy all constraint
pairs satisfiable by any route in the internet, and is the goal of the rout-
ing computation. Clearly, any pair of routes in the maximal subset of
routes overlap, and can both satisfy some set of constraint pairs. The
relation � is used to select one of the set of satisfying routes for a given
constraint. As defined in this example, the relation � has the effect of
truncating the extent of a route’s region at the first overlapping route to
the right in the maximal subset of routes (as shown in Figure 1.7). As
a result, forwarding table lookups in this example involve choosing the
lowest delay route with acceptable cost.

A New Approach to Policy-Based Routing 17

Table 1.1. Notation.

P ≡ Queue of permanent routes to all nodes.
Pn ≡ Queue of permanent routes to node n.
T ≡ Heap of temporary routes.
Tn ≡ Entry in T for node n.
Bn ≡ Balanced tree of routes for node n.
En ≡ Summary of traffic expression for all routes in Pn.

The goal of routing in the context of multi-component link weights
is to find the largest set of paths to each destination with weights that
are “better-than” all other routes in the graph with comparable weights.
(Formally, the “better-than” relation is a partial ordering on the set of
path weights, and the goal of a routing computation is to find the paths
with the maximal set of path weights).

In summary, the goal of policy-based routing is to compute the max-
imal set of routes to each destination in an internet for each traffic class
for which a path to the destination exists. In terms of the DLSR ar-
chitecture, this translates to computing the set of performance classes
for each forwarding class in an internet. Realizing this goal requires the
ability to efficiently compute paths in the context of link predicates and
multi-component link weights, and to efficiently forward traffic over the
multiple paths per destination resulting from such a computation.

4.3 Path Selection

The notation used in the algorithms presented in the following is sum-
marized in Table 1.1. In addition, the maximum number of unique truth
assignments is denoted by A = 2p, the maximum number of unique
weights by W = min(range of weight components), and the maximum
number of adjacent neighbors by amax = max{| A(i) | | i ∈ N}. Ta-
ble 1.2 defines the primitive operations for queues, heaps, and balanced
trees used in the algorithms, and gives their time complexity used in the
complexity analysis of the algorithms (where d is the degree of the tree
implementing the heap structure).

The algorithm presented in Figure 1.9 implements an SPF-style search
through the paths in a graph in order of increasing weight (in terms of
�), adding the paths with maximal weights (in terms of v) for each
traffic class (defined by the traffic algebra). This algorithm is based
on the data structure model shown in Figure 1.8. In this structure, a
balanced tree (Bi) is maintained for each node in the graph to hold newly
discovered, temporary labeled routes for that node. The heap T contains

18

Table 1.2. Operations on Data Structures (Ahuja et al., 1993).

Notation Description

Queue

Push(r,Q) Insert record r at tail of queue Q (O(1))
Head(Q) Return record at head of queue Q (O(1))
Pop(Q) Delete record at head of queue Q (O(1))

PopTail(Q) Delete record at tail of queue Q (O(1))

d-Heap

Insert(r,H) Insert record r in heap H (O(log
d
(n)))

IncreaseKey(r, rh) Replace record rh in heap with record r having greater key
value (O(d log

d
(n)))

DecreaseKey(r, rh) Replace record rh in heap with record r having lesser key
value (O(log

d
(n)))

Min(H) Return record in heap H with smallest key value (O(1))
DeleteMin(H) Delete record in heap H with smallest key value

(O(d log
d
(n)))

Delete(rh) Delete record rh from heap (O(d log
d
(n)))

Balanced Tree

Insert(r,B) Insert record r in tree B (O(log(n)))
Min(B) Return record in tree B with smallest key value (O(log(n)))

DeleteMin(B) Delete record in tree B with smallest key value (O(log(n)))

Queue

B P

T

i i

Balanced Tree

H
e
a
p

Figure 1.8. Model of Data structures for Basic Algorithms

A New Approach to Policy-Based Routing 19

algorithm Policy-Based-Dijkstra
begin

1 Push(<s, s, 0, 1>, Ps);
2 for each {(s, j) ∈ A(s)}
3 Insert(<j, s, ωsj , εsj >, T);
4 while (|T | = 0)

begin

5 <i, pi, ωi, εi > ← Min(T);
6 DeleteMin(Bi);
7 if (|Bi | = 0)
8 then DeleteMin(T)
9 else IncreaseKey(Min(Bi), Ti);
10 εtmp ← εi; ptr ← Tail(Pi);
11 while ((εtmp 6= 0) ∧ (ptr 6= ∅))
12 εtmp ← εtmp ∧ ¬ptr.ε; ptr ← ptr.next;
13 if (εtmp 6= 0)

then begin

14 Push(<i, pi, ωi, εi >, Pi);
15 for each {(i, j) ∈ A(i) | SAT (εi ∧ εij}

begin

16 ωj ← ωi ⊕ ωij ; εj ← εij ;
17 if (Tj = ∅)
18 then Insert(<j, i, ωj , εj >, T)
19 else if (ωj ≺ Tj .ω)
20 then DecreaseKey(<j, i, ωj , εj >, T);
21 Insert(<j, i, ωj , εj >, Bj);

end

end

end

end

Figure 1.9. General-Policy-Based Dijkstra.

the lightest weight entry from each non-empty Bi (for a maximum of n
entries). Lastly, a queue, Pi, is maintained for each node which contains
the set of permanently labeled routes discovered by the algorithm, in the
order in which they are discovered (which will be in increasing weight).
The general flow of this algorithm is to take the minimum entry from
the heap T , compare it with existing routes in the appropriate Pi, if it
is incomparable with existing routes in Pi it is pushed onto Pi, and add
“relaxed” routes for its neighbors to the appropriate Bx’s.

The correctness of this algorithm is based on the maintenance of the
following three invariants: for all routes I ∈ P and J ∈ B∗, I � J ,
all routes to a given destination i in P are incomparable for some set
of satisfying truth assignments, and the maximal subset of routes to a
given destination j in Pj ∪ Bj represents the maximal subset of all
paths to j using nodes with routes in P . Furthermore, these invariants
are maintained by the following two constraints on actions performed in
each iteration of these algorithms: (1) only known-non-maximal routes
are deleted or discarded, and (2) only the smallest known-maximal route
to a destination i is moved to Pi.

In effect, this algorithm computes routes in the virtual graph induced
by the link predicates existing in the internet. This virtual graph is

20

composed of all nodes reachable by some path with a satisfiable path
predicate, and all links composing these paths. The virtual graph is
“discovered” as needed by the algorithm as the computation progresses.
The time complexity of Policy-Based-Dijkstra is dominated by the loops
at lines 4, 11, and 15. The loop at line 4 is executed nWA times, and
the loop at line 15 mWA times. The loop at line 11 scans the entries
in Pi to verify a new route is best for some truth assignment. For a
given destination, this loop is executed at most an incrementally in-
creasing number of times, starting at 0 and growing to WA − 1 (the
maximum number of unique routes to a given destination) for a total

of
∑WA−1

i=1 i = (WA−1)WA
2 times. For completeness, the statements in

lines 6 and 21 take time proportional to log(amaxWA) for a total of
nWA log(amaxWA) and mWA log(amaxWA), respectively; and those
in lines 7–9 and 17–20 take time proportional to logd(n) for a total of
nWA logd(n) and mWA logd(n), respectively. Therefore, the worst-case
time complexity of Policy-Based-Dijkstra, dominated by the loop in line
11, is O(nW 2A2). In practice, the cost of this algorithm is limited by
the actual number of distinct weight paths in the graph. The loop at
line 11, which dominates the cost of Policy-Based-Dijkstra, is required
because there is no way to summarize the permanent routes for a desti-
nation. However, for special-case traffic engineering and QoS variants of
this algorithm, the permanent routes can be summarized by a summary
traffic expression (formed by the disjunction of permanent route path
predicates) and the weight of the last route, respectively. Using these
shortcuts, the complexity of the traffic engineering and QoS algorithms
are O(mA log(A)) and O(mW log(W)), respectively. Lastly, for these
variants, refinements in the data structures result in O(mA log(n))and
O(mW log(n)) complexity. The details of these variants and their anal-
ysis can be found in Smith, 2003.

4.3.1 Routing Protocol Changes. Lastly, the routing pro-
tocol must be enhanced to exchange information needed to compute
the label swap components of its forwarding tables. The output of the
routing algorithm is forwarding information described in terms of a des-
tination, traffic expression, and path weight for each computed route.
To be used for forwarding, this information must be augmented with
local and next hop labels. To determine the next hop label for a given
route the routing process requires the forwarding tables of its neighbors.
Therefore, the final enhancement required of routing protocols is that
they exchange local forwarding tables and use this information to com-
pute the next hop label for their routes. One challenge presented by this
requirement is that the routes computed by the routing algorithm must

A New Approach to Policy-Based Routing 21

Any,1

s

i

l j k m

d

A,1 BC,1 AB,1 C,1

Any,1

Figure 1.10. Next Hop Problem with Policy-Based Routing

be assured of matching an active route in the selected next hop neighbor.
As illustrated in Figure 1.10, this is not guaranteed by the algorithms
presented above. Specifically, in this internet there are a number of
equally “good” routes from nodes s and i to node d. For example, it is
possible that the routing process at node i selects the paths through its
neighbors l and j to provide two hop paths for traffic classes A,B, and
C, while node s selects the paths that go through nodes k and m. In
such a case there is no next hop label that can be chosen at s for routes
to d that will satisfy the traffic policies.

To address this problem, Figure 1.11 presents an enhanced version of
the algorithm for use in the context of hop-by-hop forwarding. In this
algorithm, routes are augmented with two additional fields; nd is the
next hop neighbor for a route to destination d, and ld is the next hop
label for d. As described above, a partial forwarding table is maintained
for each neighbor, specified by Fn[d], containing an array of routes for
each destination in the internet. Each entry in this array, denoted by
<d, ωd, εd, ld >, gives the weight, traffic expression, and next hop label
for each route in the neighbor’s forwarding table. In this algorithm,
new paths are only considered if they are extensions of paths chosen
by the neighbor which is the next hop to the predecessor to the path’s
destination. For example, from Figure 1.10, node s will only consider
paths to destination d that are extensions of node i’s paths to d through
nodes l and j. A fringe benefit of this enhancement is the next hop label
computation can now be integrated with the routing computation (as
shown by the inclusion of the next hop label in the routes computed by
the algorithm).

22

algorithm HbyH-Policy-Based-Dijkstra
begin

1 Push(<s, s, 0, 1, s, ∅>, Ps);
2 for each {(s, j) ∈ A(s)}
3 Insert(<j, s, ωsj , εsj , j, ∅>, T);
4 while (|T | = 0)

begin

5 <i, pi, ωi, εi, ni, li > ← Min(T);
6 DeleteMin(Bi);
7 if (|Bi | = 0)
8 then DeleteMin(T)
9 else IncreaseKey(Min(Bi), Ti);
10 εtmp ← εi; ptr ← Tail(Pi);
11 while ((εtmp 6= 0) ∧ (ptr 6= ∅))
12 εtmp ← εtmp ∧ ¬ptr.ε; ptr ← ptr.next;
13 if (εtmp 6= 0)

then begin

14 Push(<i, pi, ωi, εi, ni, li >, Pi);
15 for each {(i, j) ∈ A(i) |

(∃ <j, ω′

j , ε′

j , l′j > ∈ Fni
[j] |

(εsni
∧ ε′

j = εi ∧ εij) ∧
(ωsni

+ ω′

j = ωi + ωij)) ∧
SAT (εi ∧ εij}

begin

16 ωj ← ωi ⊕ ωij ; εj ← εij ;
17 if (Tj = ∅)
18 then Insert(<j, i, ωj , εj , ni, l′j >, T)
19 else if (ωj ≺ Tj .ω)
20 then DecreaseKey(<j, i, ωj , εj , ni, l′j >, T);

21 Insert(<j, i, ωj , εj , ni, l′j >, Bj);
end

end

end

end

Figure 1.11. General-Policy-Based Dijkstra.

5. Conclusions

In this chapter we have defined policy-based routing as the computa-
tion of paths, and the establishment of forwarding state to implement
paths in the context of diverse performance requirements and network
usage policies. We showed that a fundamental requirement of policy-
based routing is support for multiple paths to a given destination, and
that the address-based, single-forwarding-class Internet routing model
can’t support such a requirement. Furthermore, while proposed QoS re-
source management solutions are defined to work in a single-forwarding-
class environment, their effectiveness is significantly limited by such a
constraint. We then showed that previously proposed policy-based rout-
ing solutions, which are based on an on-demand, virtual-circuit model,
result in significant compromises in robustness, efficiency, and respon-
siveness in comparison to the Internet’s distributed, hop-by-hop routing
model. We then presented the DLSR routing architecture in which the
Internet’s distributed, hop-by-hop routing model is combined with a

A New Approach to Policy-Based Routing 23

label-swap forwarding plane. DLSR is the first distributed, hop-by-hop
policy routing architecture, and the first policy routing solution that
provides integrated support of QoS and traffic engineering. Lastly, we
presented a new family of efficient path-selection algorithms for use in a
DLSR-based routing architecture that compute paths in the context of
diverse performance requirements and network resource usage policies.

References

Ahuja, Ravindra K., Magnanti, Thomas L., and Orlin, James B. (1993).
Network Flows – Theory, Algorithms, and Applications. Prentice Hall.

Allen, Christopher and Dierks, Tim (1999). The TLS Protocol Version
1.0. RFC 2246.

Awduche, Daniel O., Malcolm, Joe, Agogbua, Johnson, O’Dell, Mike,
and McManus, Jim (1999). Requirements for Traffic Engineering Over
MPLS. RFC 2702.

Braden, Bob, Clark, David, and Shenker, Scott (1994). Integrated Ser-
vices in the Internet Architecture: an Overview. RFC 1633.

Cavendish, D. and Gerla, M. (1998). Internet QoS Routing using the
Bellman-Ford Algorithm. In Proceedings IFIP Conference on High
Performance Networking. IFIP.

Cerf, Vinton G. (1978). The Catenet Model for Internetworking. IEN
48.

Cerf, Vinton G. and Cain, Edward (1983). The DoD Internet Architec-
ture Model. Computer Networks, 7:307–318.

Cerf, Vinton G. and Kahn, Robert E. (1974). A Protocol for Packet Net-
work Intercommunication. IEEE Transactions on Communications,
COM-22(5):637–648.

Chandranmenon, Girish P. and Varghese, George (1995). Trading Packet
Headers for Packet Processing. IEEE ACM Transactions on Network-
ing, 4(2):141–152. 1995.

Chen, Shigang and Nahrstedt, Klara (1998). An Overview of Quality of
Service Routing for Next-Generation High-Speed Networks: Problems
and Solutions. IEEE Network, pages 64–79.

Clark, David D. (1988). The Design Philosophy of the DARPA Internet
Protocols. Computer Communications Review, 18(4):106–114.

Davie, Bruce and Rekhter, Yakov (2000). MPLS: Technology and Appli-
cations. Morgan Kaufmann.

Garcia-Luna-Aceves, J.J. and Behrens, Jochen (1995). Distributed, Scal-
able Routing Based on Vectors of Link States. IEEE Journal on Se-
lected Areas in Communications.

24

Garey, Michael R. and Johnson, David S. (1979). Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.H. Free-
man & Co.

Henig, Mordechai I. (1985). The shortest path problem with two objec-
tive functions. European Journal of Operational Research, 25:281–291.

Jaffe, Jeffrey M. (1984). Algorithms for Finding Paths with Multiple
Constraints. Networks, 14(1):95–116.

Ma, Qingming and Steenkiste, Peter (1997). Quality-of-Service Routing
for Traffic with Performance Guarantees. In Proceedings 4th Interna-
tional IFIP Workshop on QoS. IFIP.

Mieghem, Piet Van, Neve, Hans De, and Kuipers, Fernando (2001). Hop-
by-hop quality of service routing. Computer Networks, 37:407–423.

Siachalou, Stavroula and Georgiadis, Leonidas (2003). Efficient QoS
Routing. In Proceedigns of INFOCOM’03. IEEE.

Smith, Bradley R. (2003). Efficient Policy-Based Routing in the Internet.
PhD thesis, University of California at Santa Cruz.

Sobrinho, João Lúıs (2002). Algebra and Algorithms for QoS Path Com-
putation and Hop-by-Hop Routing in the Internet. IEEE/ACM Trans-
actions on Networking, 10(4):541–550.

SSH. SSH Communications Security. http://www.ssh.com/.
Swallow, George (1999). MPLS Advantages for Traffic Engineering. IEEE

Communications Magazine, 37(12):54–57.
Wang, Zheng and Crowcroft, Jon (1996). Quality-of-Service Routing for

Supporting Multimedia Applications. IEEE Journal on Selected Areas
in Communications, pages 1228–1234.

