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ABSTRACT	OF	THE	THESIS	

Imputation	of	Missing	Traffic	Flow	Data	by	Using	Denoising	Autoencoders	

by	

Boyuan	Jiang	

Master	of	Science	in	Civil	and	Environmental	Engineering	

University	of	California,	Irvine,	2020	

Professor	R.	(Jay)	Jayakrishnan,	Co-Chair	

Professor	Amelia	Regan,	Co-Chair	

	

	

In	transportation	engineering,	Spatio-temporal	data	including	traffic	flow,	speed,	and	

occupancy	 are	 collected	 from	 different	 kinds	 of	 sensors	 and	 used	 by	 transportation	

engineers	 for	 analysis.	 However,	 the	 missing	 data	 influence	 the	 analysis	 and	 prediction	

results	significantly.	In	this	thesis,	Denoising	Autoencoders	are	used	to	impute	the	missing	

traffic	flow	data.	First,	we	focused	on	the	general	situation	and	used	three	kinds	of	Denoising	

Autoencoders:	“Vanilla”,	CNN,	and	Bi-LSTM	to	 implement	the	data	with	a	general	missing	

rate	of	30%.	Each	model	was	optimized	by	focusing	on	the	main	hyper-parameters	since	the	

tuning	 can	 influence	 the	 accuracy	 of	 the	 final	 prediction	 result.	 Then,	 the	 Autoencoder	

models	are	used	to	train	and	test	data	with	an	exceptionally	high	missing	rate	of	about	80%.	

We	 do	 this	 to	 test	 and	 then	 demonstrate	 that	 even	 under	 extreme	 loss	 conditions,	

Autoencoder	models	are	very	robust.	By	observing	the	hyper-parameter	tuning	process,	the	

changing	prediction	accuracy	is	shown	and	in	most	cases,	all	three	models	maintain	good	

accuracy	 even	 under	 the	 worst	 situations.	 Moreover,	 the	 error	 patterns	 and	 trends	

concerning	different	sensor	stations	and	different	hours	on	weekdays	and	weekends	are	also	
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visualized	and	analyzed.	Finally,	based	on	these	results,	we	separate	the	data	into	weekdays	

and	 weekends,	 train	 and	 test	 the	 models	 respectively,	 and	 improve	 the	 accuracy	 of	 the	

imputation	result	significantly.	
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CHAPTER	1:	Introduction	

Spatio	(Spatial)	refers	to	space.	Temporal	refers	to	time.	Spatio-temporal	or	spatial-

temporal	 is	 used	while	 data	 are	 collected	 over	 both	 space	 and	 time	 [1].	 Spatio-temporal	

problems	where	the	data	are	collected	by	a	great	number	of	sensors	over	a	long	period	have	

been	 studied	 in	 transportation	 engineering	 decades.	 However,	 due	 to	 the	 sensor	

malfunctions,	 communication	 failure,	or	measurement	errors	 [2],	part	of	 the	data	will	be	

inevitably	be	missed.	Not	only	will	the	presence	of	missing	data	influence	the	final	result	of	

traditional	transportation	data	analysis,	but	also	the	performance	of	the	machine	learning	

models	will	drop	significantly	on	the	tasks	of	clustering	and	prediction.	To	overcome	this	

challenge,	 data	 must	 be	 processed	 and	 the	 imputation	 of	 missing	 data	 is	 one	 way	 that	

improving	the	accuracy	of	final	results.		

For	 missing	 data	 imputation,	 statistical	 and	 machine	 learning	 techniques	 and	

methods	 are	 broadly	 used.	 A	widely	 used	 and	 popular	 statistical	method	 for	 time	 series	

forecasting	 is	 the	ARIMA	model	which	 is	 short	 for	Auto	Regressive	 Integrated	Moving	

Average	[3].	The	parameters	that	must	be	determined	for	an	ARIMA	model	include	the	level	

of	autoregression	(AR),	the	level	of	integration	(I),	and	the	moving	average	(MA).	ARIMA	is	a	

class	of	models	that	'explains'	a	given	time	series	based	on	its	past	values	which	are	its	lags	

and	the	lagged	forecast	errors,	so	that	equation	can	be	used	to	forecast	future	values.	Since	

Spatio-temporal	data	contains	too	many	features	 for	any	model	to	be	able	to	train	with	a	

reasonable	 amount	 of	 computation,	 dimensionality	 reduction	 techniques	 are	 introduced.	

One	such	dimensionality	reduction	technique	is	probabilistic	principal	component	analysis,	

where	Principal	Component	Analysis	(PCA)	can	be	used	to	extract	features	of	traffic	flow	
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[4].	PCA	is	a	technique	for	feature	extraction	so	it	combines	the	various	input	variables	in	a	

specific	way,	then	the	“least	important”	variables	can	be	dropped	while	the	most	valuable	

parts	of	all	of	the	variables	are	still	retained.	As	Spatio-temporal	datasets	become	larger,	it’s	

hard	 to	 extract	 features	 only	 by	 using	 handcrafted	 feature	 engineering.	 Instead,	 deep	

learning	can	be	used	where	the	model	can	search	and	find	the	dataset	feature	by	themselves	

without	requiring	any	assumptions.	

The	utilization	of	deep	learning	modeling	techniques	such	as	denoising	autoencoders	

has	 been	 shown	 to	 dominate	 traditional	 statistical	 and	 machine	 learning	 models	 [5].	

Autoencoder	 is	 an	 unsupervised	 artificial	 neural	 network	 that	 learns	 how	 to	 efficiently	

compress	and	encode	data	then	learns	how	to	reconstruct	the	data	back	from	the	reduced	

encoded	representation	to	a	representation	that	is	as	close	to	the	original	input	as	possible.	

Autoencoders	consist	of	three	main	components:	encoder,	bottleneck,	and	decoder.	Encoder	

helps	the	model	to	learn	how	to	reduce	the	input	dimensions	and	compress	the	input	data	

into	an	encoded	representation.	The	bottleneck	is	the	layer	that	contains	the	compressed	

representation	of	the	input	data.	This	is	the	lowest	possible	dimension	of	the	input	data.	And	

the	decoder	 is	 the	 part	 of	 the	model	 that	 learns	 how	 to	 reconstruct	 the	 data	 from	 the	

encoded	representation	to	be	as	close	to	the	original	input	as	possible.	
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Figure	1	Process	of	encoder	and	decoder	

An	 autoencoder's	 purpose	 is	 to	 map	 high-dimensional	 data	 (e.g	 images)	 to	 a	

compressed	 form	 (i.e.	 hidden	 representation)	 and	 build	 up	 the	 original	 image	 from	 the	

hidden	 representation.	 However,	 when	 there	 are	more	 nodes	 in	 the	 hidden	 layer	 of	 the	

Autoencoder	than	there	are	inputs,	the	Network	is	at	risk	of	learning	the	so-called	“Identity	

Function”,	 also	 called	 the	 “Null	 Function”,	 meaning	 that	 the	 output	 equals	 the	 input,	

rendering	 the	 Autoencoder	 useless.	 Denoising	 Autoencoders	 solve	 this	 problem	 by	

corrupting	the	data	on	purpose	by	randomly	turning	some	of	 the	 input	values	to	zero.	 In	

general,	the	percentage	of	input	nodes	that	are	being	set	to	zero	is	about	50%.	Other	sources	

suggest	a	lower	count,	such	as	30%.	It	depends	on	the	amount	of	data	and	the	input	nodes.	

When	calculating	the	Loss	function,	it	is	important	to	compare	the	output	values	with	the	

original	 input,	 not	 with	 the	 corrupted	 input.	 That	 way,	 the	 risk	 of	 learning	 the	 identity	

function	instead	of	extracting	features	is	eliminated.	A	denoising	autoencoder,	in	addition	to	

learning	to	compress	data	(like	an	autoencoder),	 learns	to	remove	noise	in	images,	which	



	

4	
	

allows	 it	 to	perform	well	even	when	 the	 inputs	are	noisy.	So	denoising	autoencoders	are	

more	robust	than	autoencoders	and	they	learn	more	features	from	the	data	than	a	standard	

autoencoder.	

	

Figure	2	Example	of	Autoencoder	

Recent	advances	in	deep	learning	models	provide	more	capability	in	exploring	Spatio-

temporal	problems	[6].	Denoising	autoencoders	are	the	most	common	deep	learning	models	

used	for	missing	data	imputation.	We	consider	missing	data	imputation	in	traffic	flow	data,	

which	is	complex	Spatio-temporal	data,	using	denoising	autoencoders.	In	[7],	they	examine	

the	 performance	 of	 denoising	 autoencoders	 for	missing	 data	 imputation,	 however,	 their	

analysis	is	not	for	Spatio-temporal	data.	In	[8],	a	layer-wise	pre-training	of	fully	connected	

layers	 is	proposed	 to	 impute	missing	 traffic	 flow	data.	 In	 [2],	 they	use	denoising	 stacked	

autoencoders	 for	missing	 traffic	 flow	data	 imputation.	However,	 they	 only	 consider	 fully	

connected	layers,	and	they	did	not	consider	convolutional	and	recurrent	neural	networks.	

Moreover,	multiple	imputations	of	denoising	autoencoders	are	examined	in	[9].	In	[10],	they	

consider	 a	 deep	 convolutional	 neural	 network	 for	missing	 data	 imputation.	 In	 [11],	 they	

show	the	outperformance	of	recurrent	neural	networks	for	missing	data	imputation	in	time-
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series	data,	and	in	[12],	a	convolutional-recurrent	neural	network	is	proposed	for	missing	

data	 imputation	 of	 Spatio-temporal	 data.	Many	 of	 these	works	 focus	 on	 proposing	 fully-

connected,	convolutional,	and	recurrent	denoising	autoencoders	with	better	performance	

for	missing	data	imputation.	In	this	paper,	we	examine	the	performance	of	fully	connected,	

convolutional,	 and	 bi-directional	 LSTM	 denoising	 autoencoders	 for	 missing	 traffic	 flow	

imputation.	We	explore	various	missing	data	ratios.	We	also	explore	the	variation	of	missing	

data	imputation	error	for	spatial	and	temporal	contexts,	as	missing	data	imputation	error	

varies	over	the	spatial	and	temporal	domain.	Such	an	analysis	 illustrates	the	capability	of	

implemented	autoencoders	in	imputing	missing	data	under	various	missing	data	ratios	and	

spatial	and	temporal	domains.	

We	focused	on	the	general	situation	and	used	three	kinds	of	Denoising	Autoencoders	

to	implement	the	data	with	a	general	missing	rate	of	30%	and	a	high	missing	rate	of	80%,	

verified	the	robustness	of	Autoencoder	models,	concluded	the	error	patterns	and	trends,	and	

also	improved	the	accuracy	of	the	imputation	result.	 	
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CHAPTER	2:	Preliminaries	

2.1	Dataset	

The	traffic	flow	data	extracted	from	the	PeMS	(Caltrans	Performance	Measurement	

System)	dataset	are	used	in	this	study.	In	the	original	dataset,	traffic	flow	data	are	gathered	

every	30	seconds	and	aggregated	every	5	minutes	using	the	loop	detectors,	magnetometers,	

and	 radars.	 We	 chose	 the	 region	 1	 stations	 in	 the	 Bay	 Area,	 as	 shown	 in	 Figure	 3,	 to	

implement	our	models.	This	region	has	26	mainline	stations	on	22	miles	of	highway	US	101-

South	and	the	middle	8	stations	data	are	used	in	this	research.	The	selected	sensors	have	

more	than	99%	of	the	available	data	for	this	period.	Part	of	traffic	flow	data	are	shown	in	

Figure	4.	

	

Figure	3	Distribution	of	Stations	in	the	Bay	Area	
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Figure	4	Sample	of	Data	

2.2	Problem	definition	

Spatio-temporal	data	is	represented	by	a	matrix	X ∈ ℝ!×#×$,	where	s	is	the	number	of	

sensors,	t	is	the	number	of	time	steps	and	f	is	the	number	of	features.	In	this	research,	only	

traffic	 flow	data	and	8	stations	are	considered,	so	 the	s	is	8	and	f	is	1,	and	the	matrix	 is	∈

ℝ%×#×&.	In	the	machine	learning	prediction	problem,	the	error	between	the	true	value	and	

prediction	 value	 is	 used	 to	 judge	 the	 accuracy	 of	 one	model	 so	 that	we	 need	 to	 do	 pre-

processing	work	to	our	raw	dataset.	First,	the	missing	part	of	the	original	dataset	is	filled	

using	adjacent	values,	and	a	“perfect”	dataset	is	formed.	Then,	due	to	the	fact	that	missing	

data	may	exist	at	individual	points	or	for	some	time	periods,	the	random	parts	of	the	dataset	

are	processed	to	be	missed	artificially	at	random	length,	and	the	missing	dataset	is	formed.	

Finally,	 the	 training	and	 testing	process	 is	 implemented,	and	RMSE	and	MAE	are	used	 to	

calculate	the	accuracy	of	each	model.	
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2.3	Sliding	window	

To	apply	the	neural	network	model	for	time	series	imputation,	a	sliding	window	is	

needed	to	generate	the	data	point	for	each	time	stamp	and	the	parameter	“look	back”	is	used	

to	adjust	 the	shape	of	each	data	point.	The	dimension	of	each	data	point	 is	1 × (s × f × l)	

where	l	is	the	value	of	look	back.	In	our	case,	this	can	be	simplified	to	1 × (8 × 1 × l)	due	to	

the	 number	 of	 sensors	 and	 features	 that	 have	 been	 fixed	 to	 8	 and	 1.	 For	 example,	 if	we	

consider	the	previous	4-time	stamps	for	each	data	point	that	means	the	l	is	4,	each	data	point	

will	be	the	matrix	ℝ&×'(.		

2.4	Models	

An	 autoencoder	 is	 a	 type	 of	 artificial	 neural	 network	 used	 to	 learn	 efficient	 data	

codings	 in	 an	 unsupervised	 manner.	 An	 autoencoder	 aims	 to	 learn	 a	 representation	

(encoding)	for	a	set	of	data,	typically	for	dimensionality	reduction,	by	training	the	network	

to	 ignore	 signal	 “noise”.	 The	 autoencoder	 can	 be	 used	 in	 the	 missing	 data	 imputation	

problem.	In	the	training	process,	the	model	will	take	a	matrix	with	missing	data	X)* 	as	input	

and	a	“perfect”	matrix	X*	as	a	target.	Autoencoders	learn	some	latent	representation	which	

is	a	term	for	hidden	features	of	the	data	and	use	that	to	reconstruct	the	data.	
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Figure	5	Autoencoder	

We	will	consider	4	different	autoencoder	methods	for	imputation	of	missing	data.	The	

first	 is	 used	 as	 an	 industry-wide	 accepted	method	 to	 predict	 traffic	 flow.	 The	 next	 3	 are	

various	deep	learning	model	implementations	of	Denoising	Autoencoders.	

a)	Weekly-Hourly	Average	

Our	first	missing	data	imputation	method	uses	a	temporal	average	to	fill	missing	data.	

Traffic	 flow	 patterns	 are	 repeated	 every	 week.	 Hence,	 a	 weekly-hourly	 average	 table	 is	

obtained	 from	 training	 data.	 The	 main	 drawback	 of	 using	 the	 temporal	 average	 is	 that	

specific	days	such	as	holidays	or	event	days	(games,	festivals,	concerts)	have	their	patterns	

and	they	are	not	repeated	in	the	training	data.	This	is	the	industry-wide	accepted	method	to	

predict	traffic	flow.		

b)	Vanilla	(FCN)	

This	is	our	baseline	deep	learning	model.	It	 is	a	relatively	simple	machine	learning	

model	with	only	one	hidden	layer	to	create	a	Fully	Connected	Network	(FCN).	

	

Figure	6	Fully	Connected	Network	

c)	CNN	



	

10	
	

A	 Convolutional	 Neural	 Network	 (CNN)	 uses	 convolutional	 layers	 with	 interim	

pooling	 layers	 (max)	between	each	convolutional.	We	will	pass	our	data	 from	the	sliding	

window	as	is	so	the	model	can	process	the	2D	representation	of	the	input	data.	

	

Figure	7	CNN	Autoencoder	

d)	Bi-LSTM	

We	will	use	bidirectional	Long	Term	Short	Term	Memory	(LSTM)	layers	to	take	into	

account	the	previous	and	future	values	of	the	model	to	increase	the	model’s	accuracy.	

	

Figure	8	Bi-LSTM	Autoencoder	

2.5	Hyperparameters	

The	hyper-parameters	of	tuning	are	shown	as	follows:	

Table	1	Hyper-parameters	of	tuning	



	

11	
	

Look	Back	 This	represents	the	time	interval	of	the	sliding	window.	
Batch	Size	 This	represents	the	number	of	samples	that	are	processed	before	the	model	is	updated.	
Epochs	 This	represents	the	number	of	times	that	the	dataset	is	used	for	training	the	model.	
Units	 This	represents	the	number	of	units	in	the	hidden	or	LSTM	layer	used	for	feature	extraction.	
Structure	 This	represents	the	CNN	structure:	layers	and	units	used	for	CNN.	

2.6	Comparison	metrics	

We	 will	 look	 at	 5	 measurements	 to	 compare	 the	 results	 of	 tuning	 the	

hyperparameters.	For	each	of	the	measurements,	a	lower	value	is	better.		

Table	2	5	measurements	for	comparison	

Training	Loss	 This	represents	the	loss	measured	on	the	training	set.	
Validation	Loss	 This	represents	the	loss	measured	on	the	validation	set.	
RMSE	 This	represents	the	Root	Mean	S8quare	Error	of	the	predicted	missing	values	only.	
MAE	 This	represents	the	Mean	Absolute	Error	of	the	predicted	missing	values	only.	
Epoch	Time	 This	represents	the	time	taken	for	one	Epoch.	

	

To	compare	the	results,	we	will	rank	the	measurements	in	the	following	order.	

Table 3 Rank of measurements 

RMSE	 Gives	high	weight	to	large	errors,	so	it	is	much	more	sensitive	to	wrong	predictions.	
MAE	 Gives	a	general	overview	of	the	error	rate.	
Validation	Loss	 Indicates	overfitting	or	underfitting	when	compared	with	Training	Loss.	
Epoch	Time	 Indicates	the	cost	of	computation.	
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CHAPTER	3:	Experimental	results	for	low	missing	rate	

The	 missing	 blocks	 to	 our	 training	 and	 testing	 dataset	 are	 added	 manually	 (the	

original	data	are	complete)	and	the	model’s	output	is	compared	to	the	original	data	without	

the	missing	blocks.	The	missing	blocks	are	represented	by	the	value	-1.	In	the	section	with	a	

low	missing	rate,	about	28.9%	of	the	training	dataset	is	missed	for	training	and	about	14.5%	

of	 the	 dataset	 is	 missed	 for	 testing.	 A	 sample	 of	 the	 training	 set	 with	 the	 missing	 part,	

complete	training	set,	testing	set	with	missing	part,	and	complete	testing	set	are	shown	in	

Figures	9	to	12.	

	

Figure	9	Training	dataset	with	about	28.9%	missing	rate	(low)	

	

Figure	10	Complete	training	dataset	
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Figure	11	Testing	dataset	with	about	14.5%	missing	rate	

	

Figure	12	Complete	testing	dataset	

In	this	section,	three	models:	“Vanilla”,	CNN,	and	Bi-LSTM	are	considered	and	their	

hyper-parameter	tuning	results	are	shown	as	follows.	

3.1	Effects	of	hyperparameter	tuning	on	“Vanilla”	(FCN)	

For	 “Vanilla”,	 four	hyper-parameters	which	are	 “look	back”,	 “batch	size”,	 “epochs”,	

and	“units”	are	considered	and	tuned.	

Look	Back	(time	interval	of	the	sliding	window)	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
4 48.4 18.43 0.3 0.0009 0.0053
8 47 17.59 0.3 0.0007 0.0051

12 47.5 19.39 0.4 0.0009 0.005
36 54.9 26.75 0.9 0.0014 0.0066

Parameter

Look Back
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Figure	13	Tuning	of	look	back	for	“Vanilla”	

As	the	increase	of	look	back,	both	training	and	validation	loss	fall	at	first	and	then	rise,	

and	 the	 same	 for	 RMSE	 and	 MAE.	 The	 epoch	 time	 increases	 continuously.	 The	 optimal	

lookback	value	seems	 to	be	8	 since	 it	provides	 the	 smallest	RMSE	(47)	and	MAE	(17.59)	

values.	Validation	Loss	for	a	look	back	of	8	(0.005)	is	the	same	as	that	of	12	(0.0051)	but	the	

computational	cost	is	lower	(0.3).		

Batch	Size	(number	of	samples	that	are	processed	before	the	model	is	updated)	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
256 47.5 18.24 0.3 0.0009 0.0055
512 32.9 16.31 0.3 0.0022 0.0028

1024 33.3 17.33 0.3 0.0025 0.0028

Parameter

Batch Size
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Figure	14	Tuning	of	batch	size	for	“Vanilla”	

With	the	increase	of	batch	size,	the	training	loss	increases	while	the	validation	loss	

decrease,	both	RMSE	and	MAE	first	fall	then	rise,	and	the	epoch	time	remain	unchanged.	The	

optimal	batch	size	value	seems	to	be	512	since	it	provides	the	smallest	RMSE	(32.9)	and	MAE	

(16.31)	values.	The	batch	 size	value	of	256	has	a	 lower	Training	Loss	 (0.0009)	 than	512	

(0.0022),	but	the	Validation	Loss	(0.0055)	is	much	higher.	This	seems	to	indicate	overfitting.	

Epochs	(number	of	the	times	that	the	dataset	is	used	for	training	the	model)	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
50 35.3 19.06 0.3 0.003 0.0032

100 33.1 17.41 0.3 0.0026 0.0028
200 31.7 15.54 0.3 0.0022 0.0026
500 37.5 12.39 0.3 0.0013 0.0038

Parameter

Epoch
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Figure	15	Tuning	of	epochs	for	“Vanilla”	

As	the	increase	of	epoch,	the	training	loss	drops	continuously	while	the	validation	loss	

first	drops	then	rises,	the	MAE	drop	continuously	while	the	RMSE	first	drop	then	rises,	and	

the	epoch	time	is	all	the	same.	The	optimal	epoch	value	seems	to	be	200	since	it	provides	the	

smallest	RMSE	(31.7).	While	the	MAE	value	is	better	for	500	(12.39),	the	RMSE	value	of	500	

(37.5)	is	worse	which	implies	that	the	margin	of	error	is	higher.	Higher	validation	loss	for	

500	(0.0038)	seems	to	indicate	overfitting	hence	the	higher	margin	of	error.	

Units	(number	of	units	in	the	hidden	layer	used	for	feature	extraction)	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
64 33.6 15.88 0.3 0.0021 0.0029
96 32.5 14.27 0.3 0.0019 0.0027

144 30.6 12.47 0.3 0.0015 0.0025
256 31.8 10.27 0.5 0.0011 0.0027
512 29.2 9.06 0.7 0.0009 0.0022

1024 33.3 9.11 1.4 0.0007 0.0029

Parameter

Units
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Figure	16	Tuning	of	units	for	“Vanilla”	

As	the	increase	of	epoch,	the	training	loss	drops	continuously	while	the	validation	loss	

fluctuates	near	0.0025,	the	RMSE	also	fluctuates	while	the	MAE	almost	drops	continuously,	

and	 the	 epoch	 time	 rises	 continuously.	 The	 optimal	 unit	 value	 seems	 to	 be	 512	 since	 it	

provides	the	smallest	RMSE	(29.2).	While	the	MAE	value	is	similar	to	1024	(9.11),	the	RMSE	

value	 of	 1024	 (33.3)	 is	 worse	 which	 implies	 that	 the	 margin	 of	 error	 is	 higher.	 Higher	

validation	loss	for	1024	(0.0029)	seems	to	indicate	overfitting	hence	the	higher	margin	of	

error.	1024	has	a	much	higher	computation	cost	(1.4)	as	well.	

3.2	Effects	of	hyperparameter	tuning	on	CNN	

For	CNN,	three	hyper-parameters	which	are	“look	back”,	“batch	size”,	and	“epochs”	

are	considered	and	tuned.	

Look	Back	(time	interval	of	the	sliding	window)	
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Figure	17	Tuning	of	look	back	for	CNN	

As	the	increase	of	look	back,	the	training	loss	and	validation	loss	are	almost	the	same,	

the	RMSE	first	drop	then	rise	slowly	while	the	MAE	is	also	almost	the	same,	and	the	epoch	

time	rises	continuously.	The	optimal	lock	back	value	seems	to	be	8	since	it	provides	a	similar	

RMSE	 (36.1)	 and	 MAE	 (19.75)	 values	 to	 12	 (36.4,	 20.2)	 and	 36	 (36.7,	 20.03)	 but	 the	

computational	cost	is	lower	(5).	

Batch	Size	(number	of	samples	that	are	processed	before	the	model	is	updated)	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
4 42.2 21.03 3 0.5377 0.549
8 36.1 19.75 5 0.5385 0.5467

12 36.4 20.2 6 0.538 0.5464
36 36.7 20.03 17 0.5378 0.5467

Parameter

Look Back
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Figure	18	Tuning	of	batch	size	for	CNN	

As	the	increase	of	batch	size,	the	training	loss	and	validation	loss	are	almost	the	same,	

the	RMSE	 first	 drop	 then	 rise	while	 the	MAE	 rise	 continuously,	 and	 the	 epoch	 time	 falls	

continuously.	The	optimal	batch	size	value	seems	to	be	256	since	it	provides	the	smallest	

RMSE	 (36.1),	 and	 MAE	 (19.75)	 value	 which	 is	 similar	 to	 128	 (19.13),	 but	 the	 cost	 of	

computation	for	a	batch	size	of	256	(5)	is	lower	than	that	of	128	(6).		

Epochs	(number	of	the	times	that	the	dataset	is	used	for	training	the	model)	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
128 38.9 19.13 6 0.5384 0.5472
256 36.1 19.75 5 0.5385 0.5467
512 39.12 21.71 4 0.5392 0.5475

Parameter

Batch Size
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Figure	19	Tuning	of	epochs	for	CNN	

As	 the	 increase	of	epochs,	 the	 training	 loss	and	validation	 loss	are	 still	 almost	 the	

same,	the	RMSE	first	falls	then	rises	and	this	trend	is	the	same	for	MAE,	and	the	epoch	time	

is	almost	the	same.	The	optimal	epoch	value	seems	to	be	200	since	it	provides	the	smallest	

RMSE	(32.8)	and	MAE	(17.11)	values.		

3.3	Effects	of	hyperparameter	tuning	on	Bi-LSTM	

For	Bi-LSTM,	four	hyper-parameters	which	are	“look	back”,	“batch	size”,	“epochs”	and	

“units”	are	considered	and	tuned.	

Look	Back	(time	interval	of	the	sliding	window)	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
50 36.7 22.71 5 0.5394 0.5474

100 36.1 19.75 5 0.5385 0.5467
200 32.8 17.11 5 0.5376 0.5453
500 34.9 18.11 5 0.5364 0.5465

Parameter

Epoch
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Figure	20	Tuning	of	look	back	for	Bi-LSTM	

As	 the	 increase	 of	 look	 back,	 both	 of	 the	 training	 loss	 and	 validation	 loss	 rise	

continuously,	and	the	same	 for	RMSE,	MAE,	and	epoch	time.	The	optimal	 lock	back	value	

seems	to	be	4	since	it	provides	the	smallest	for	all	5	metrics	(Training	loss:	0.0042,	validation	

loss:	0.0033,	RMSE:	36.5,	MAE:	20.23,	Epoch	time:	45).	

Batch	Size	(number	of	samples	that	are	processed	before	the	model	is	updated)	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
4 36.5 20.23 45 0.0042 0.0033
8 43.7 26.86 80 0.0066 0.0055

12 52.1 35.53 95 0.0073 0.0064

Parameter

Look Back

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
32 33.2 16.37 67 0.0026 0.0027
64 35.3 19.97 30 0.0038 0.0032

256 42.4 25.94 18 0.0051 0.0043
512 43 26.78 16 0.0058 0.0051

Parameter

Batch Size
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Figure	21	Tuning	of	batch	size	for	Bi-LSTM	

As	the	increase	of	batch	size,	both	training	and	validation	loss	rise	continuously,	and	

the	same	for	RMSE	and	MAE	while	epoch	time	drops	continuously.	The	optimal	batch	size	

value	seems	to	be	32	since	it	provides	the	smallest	RMSE	(33.2),	MAE	(16.37),	and	Validation	

Loss	(0.0027).	While	the	cost	of	computation	is	the	largest	(67)	for	a	batch	size	of	32,	it	is	

worth	the	cost	as	the	error	and	loss	values	are	significantly	better	as	well.		

Epochs	(number	of	the	times	that	the	dataset	is	used	for	training	the	model)	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
5 31 16.41 74 0.0033 0.0023

10 26.4 8.15 71 0.0024 0.0017
20 28.3 8.36 72 0.0017 0.0019

Parameter

Epoch
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Figure	22	Tuning	of	epochs	for	Bi-LSTM	

As	the	increase	of	epochs,	the	training	loss	drop	continuously	and	validation	loss	first	

drop	then	rise,	both	RMSE	and	MAE	first	 fall	 then	rise,	and	the	same	for	epoch	time.	The	

optimal	epoch	value	seems	to	be	10	since	it	provides	the	smallest	RMSE	(26.4),	MAE	(8.15),	

and	validation	loss	(0.0017).		

Units	(number	of	units	in	the	LSTM	layer	used	for	feature	extraction)	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
10 41.8 25.27 21 0.0049 0.0043
32 35.3 19.97 30 0.0038 0.0032
64 33.2 17.34 55 0.0034 0.0029

128 31.2 15.42 165 0.0029 0.0025

Parameter

LSTM Units
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Figure	23	Tuning	of	units	for	Bi-LSTM	

As	the	units	 increase,	 the	training	 loss	and	validation	 loss	drops,	and	the	same	for	

RMSE	and	MAE	while	the	epoch	time	rises.	The	optimal	unit	value	seems	to	be	128	since	it	

provides	the	smallest	RMSE	(31.2),	MAE	(15.42),	and	validation	loss	(0.0025).	While	the	cost	

of	computation	is	the	largest	for	a	unit	size	of	128	(165),	it	is	worth	the	cost	as	the	error	and	

loss	values	are	significantly	better	as	well.	

3.4	Summary	

	

Model RMSE MAE Epoch Time look back batch size epoch
W-H Avg 32.02 23.1
Vanilla+ 29.21 9.06 0.7 8 512 200

CNN 32.8 17.11 5 8 256 200
BiLSTM 29 7.53 75 4 32 20

Best
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Figure	24	Summary	for	low	missing	rate	dataset	

The	best	hyper-parameter	combination	and	result	for	“Vanilla”,	CNN	and	Bi-LSTM	are	

shown	above.	The	first	model	implemented	was	an	FCN	(referred	to	as	Vanilla	in	this	paper).	

They	are	quite	old	but	also	very	simple	to	implement.	The	second	model	was	CNN	as	it	is	

good	for	extracting	2D	features	from	a	dataset.	Finally,	LSTM	was	used	as	it	could	look	at	past	

and	future	values	to	make	an	even	better	prediction.	These	three	models	were	compared	to	

the	 industry-wide	 accepted	method	of	 using	Weekly-Hourly	Average	 of	 predicting	 traffic	

flow.	

Contrary	 to	 initial	 belief,	 FCN	 (Vanilla)	model	 does	 very	well	 in	 the	 imputation	of	

missing	data.	It	ties	with	the	Bi-LSTM	in	RMSE	and	falls	slightly	behind	in	MAE.	While	Bi-

LSMT	provides	the	least	error	rate,	it	also	takes	100x	longer	than	FCN	to	compute	the	missing	

values.	Even	though	CNN	improves	on	the	MAE	of	the	W-H	Avg,	the	RMSE	is	the	worst	of	all	



	

26	
	

the	methods	compared.	Providing	a	2D	sliding	window	seems	to	have	done	nothing	for	the	

CNN	model	here.	The	optimal	model	seems	to	be	the	tried	and	tested	FCN.		

Using	a	simpler	model	and	optimizing	it	yielded	much	better	results	than	anticipated.	

While	Bi-LSTM	has	room	for	 improvement,	 its	complexity	makes	 it	a	 lot	more	difficult	 to	

optimize.	Bi-LSTM	is	much	more	expensive	computationally	and	yields	only	slightly	better	

results	than	Vanilla.	Optimization,	then,	is	the	key,	not	complexity.		

	 	



	

27	
	

CHAPTER	4:	Experimental	results	for	high	missing	rate	

The	figure	below	shows	the	trend	of	RMSE	and	MAE	of	different	training	set	missing	

rates	(from	10%	to	90%)	and	the	testing	set	keeps	the	missing	rate	at	15%	all	the	time.	These	

two	values	increase	which	means	we	will	obtain	a	larger	error	as	the	missing	rate	increases.		

	

	

Figure	25	RMSE	and	MAE	of	different	missing	rates	

In	this	section,	the	missing	rate	of	80%	is	used	for	generating	training	data	and	15%	

for	testing	(validation	data)	which	are	shown	in	the	figure	as	follows.	And	this	high	missing	

rate	data	is	used	to	verify	the	robustness	of	the	Autoencoder	model	under	the	most	extreme	

situations.	

Missing rate RMSE MAE
10% 38.9 15.3
20% 32.4 14.5
30% 33.5 15.6
40% 32.7 16.1
50% 33 17.4
60% 33.3 19
70% 37.3 22.7
80% 35.5 21.1
90% 38.1 24.3
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Figure	26	Training	dataset	with	about	80%	missing	rate	(high)	

	

Figure	27	Complete	training	dataset	

	

Figure	28	Testing	dataset	with	15%	missing	rate	
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Figure	29	Complete	testing	dataset	

In	this	section,	three	models:	“Vanilla”,	CNN,	and	Bi-LSTM	are	considered	and	their	

hyper-parameter	tuning	results	are	shown	as	follows.	

4.1	Effects	of	hyperparameter	tuning	on	“Vanilla”	(FCN)	

For	 “Vanilla”,	 four	hyper-parameters	which	are	 “look	back”,	 “batch	size”,	 “epochs”,	

and	“units”	are	considered	and	tuned.	

Look	Back	(time	interval	of	the	sliding	window)	

	

	

	

Figure	30	Tuning	of	look	back	for	“Vanilla”	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
4 30.24 14.28 0.2 0.0031 0.0024
8 31.2 15.05 0.2 0.0029 0.0033

16 33.06 17.23 0.3 0.0028 0.0028

Parameter

Look Back
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As	the	increase	of	look	back,	training	loss	falls	continuously	while	validation	loss	first	

rises	then	falls,	both	RMSE	and	MAE	increase	continuously,	and	the	epoch	time	is	almost	the	

same.	The	optimal	lookback	value	seems	to	be	4	since	it	provides	the	smallest	RMSE	(30.24)	

and	MAE	(14.28)	values.	Validation	Loss	for	a	look	back	of	4	(0.0024)	is	also	the	smallest.	

Batch	Size	(number	of	samples	that	are	processed	before	the	model	is	updated)	

	

	

	

Figure	31	Tuning	of	batch	size	for	“Vanilla”	

As	the	batch	size	increases,	both	training	loss	and	validation	loss	increase,	and	almost	

the	same	for	RMSE	and	MAE.	All	the	epoch	times	are	almost	the	same.	The	optimal	batch	size	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
64 26.97 10.27 0.4 0.0021 0.0019

128 28.27 11.32 0.4 0.0022 0.002
256 27.65 11.14 0.3 0.0025 0.002
512 29.7 13.25 0.3 0.0028 0.0022

1024 31.55 15.15 0.3 0.0031 0.0025

Parameter

Batch Size
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value	seems	to	be	64	since	it	provides	the	smallest	RMSE	(26.97)	and	MAE	(10.27)	values.	

And	the	result	of	training	and	validation	loss	(0.0021,	0.0019)	also	verifies	that	batch	size	64	

is	the	best.	

Epochs	(number	of	the	times	that	the	dataset	is	used	for	training	the	model)	

	

	

	

Figure	32	Tuning	of	epochs	for	“Vanilla”	

As	the	epochs	increase,	both	training	loss	and	validation	loss	fall,	and	almost	the	same	

is	observed	for	RMSE	and	MAE.	The	epoch	time	is	almost	the	same.	The	optimal	epoch	value	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
25 31.42 15.85 0.5 0.0025 0.0025
50 26.97 10.27 0.4 0.0021 0.0019

100 26.87 9.76 0.5 0.0019 0.0019
200 26.77 9.55 0.5 0.0017 0.0018
300 26.97 9.62 0.5 0.0015 0.0018

Parameter

Epoch
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seems	to	be	200	rounds	since	it	provides	the	smallest	RMSE	(26.77)	and	MAE	(9.55).	Even	

though	the	epoch	of	300	rounds	has	similar	RMSE	and	MAE,	the	200	will	save	much	time.	

Units	(number	of	units	in	the	hidden	layer	used	for	feature	extraction)	

	

	

	

Figure	33	Tuning	of	units	for	“Vanilla”	

As	the	increase	of	units,	both	training	loss	and	validation	loss	fall	continuously,	and	

nearly	the	same	for	RMSE	and	MAE.	But	the	epoch	time	of	unit	2048	is	almost	three	times	of	

unit	64	to	512.	The	optimal	unit	value	seems	to	be	1024	since	it	provides	the	smallest	RMSE	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
64 31.72 16.96 0.3 0.0037 0.0026

128 30.14 15.16 0.3 0.0031 0.0024
256 29.14 13.53 0.3 0.0027 0.0022
512 29.11 13.26 0.3 0.0023 0.0021

1024 26.97 10.27 0.4 0.0021 0.0019
2048 27.92 10.8 0.9 0.002 0.002

Parameter

Units
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(26.97)	 and	 MAE	 (10.27)	 with	 the	 smallest	 training	 loss	 (0.0021)	 and	 validation	 loss	

(0.0019).	And	the	epoch	time	(0.4)	is	also	acceptable.	

4.2	Effects	of	hyperparameter	tuning	on	CNN	

For	CNN,	 four	hyper-parameters	which	are	“look	back”,	“batch	size”,	 “epochs”,	and	

“structure”	are	considered	and	tuned.	

Look	Back	(time	interval	of	the	sliding	window)	

	

	

	

Figure	34	Tuning	of	look	back	for	CNN	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
4 36.7 21.15 0.8 0.5418 0.5467
8 39.95 24.65 1.2 0.5441 0.5483

16 39.95 24.3 2.2 0.5437 0.548

Parameter

Look Back
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As	 the	 look	 back	 increases,	 both	 training	 loss	 and	 validation	 loss	 are	 nearly	

unchanged,	RMSE	and	MAE	and	epoch	time	all	increase.	The	optimal	look	back	value	seems	

to	be	4	due	to	the	smallest	RMSE	(36.7),	MAE	(21.15),	and	epoch	time	(0.8).	

Batch	Size	(number	of	samples	that	are	processed	before	the	model	is	updated)	

	

	

	

Figure	35	Tuning	of	batch	size	for	CNN	

As	 the	 batch	 size	 increases,	 both	 training	 loss	 and	 validation	 loss	 are	 nearly	

unchanged,	and	both	RMSE	and	MAE	fluctuate	while	the	epoch	time	falls.	The	optimal	batch	

size	value	seems	to	be	256	due	to	the	smallest	RMSE	(36.7)	and	MAE	(21.15),	and	the	epoch	

time	of	256	(0.8)	is	also	acceptable.	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
64 36.41 21.12 1.2 0.5437 0.5468

128 36.97 22.28 1 0.5426 0.5474
256 36.7 21.15 0.8 0.5418 0.5467
512 40.08 25.36 0.7 0.5432 0.5482

Parameter

Batch Size
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Epochs	(number	of	the	times	that	the	dataset	is	used	for	training	the	model)	

	

	

	

Figure	36	Tuning	of	epochs	for	CNN	

As	 the	 epochs	 increase,	 the	 training	 loss,	 validation	 loss,	 RMSE,	 and	MAE	 remain	

unchanged.	 The	 optimal	 epoch	 value	 seems	 to	 be	 50	 since	 it	 provides	 the	 smallest	MAE	

(21.15)	value,	and	the	epoch	time	for	50	(0.8)	is	also	acceptable.	

Structure	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
25 37.36 21.8 0.9 0.5426 0.5471
50 36.7 21.15 0.8 0.5418 0.5467

100 36.46 21.39 0.8 0.5419 0.5468
200 37.22 21.36 0.8 0.5424 0.5469

Parameter

Epoch

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
2 1 1 2 51.17 34.44 0.7 0.5499 0.5544
4 2 2 4 36.7 21.15 0.8 0.5418 0.5467
8 4 4 8 33.9 19.07 0.9 0.5409 0.5457

16 8 8 16 37 20.25 1.1 0.5392 0.5465

Structure

Parameter
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Figure	37	Tuning	of	structure	for	CNN	

With	 an	 increase	 of	 structure	 complexity,	 both	 training	 loss,	 and	 validation	 loss	

remain	unchanged,	RMSE	and	MAE	first	 fall	 then	rise,	and	the	epoch	time	rises.	From	the	

figure	shown	above,	the	8-4-4-8	structure	is	the	best	since	it	has	the	lowest	RMSE	(33.9)	and	

MAE	(19.07),	and	the	epoch	time	(0.9)	is	also	acceptable.	

4.3	Effects	of	hyperparameter	tuning	on	Bi-LSTM	

For	Bi-LSTM,	four	hyper-parameters	which	are	“look	back”,	“batch	size”,	“epochs”	and	

“units”	are	considered	and	tuned.	

Look	Back	(time	interval	of	the	sliding	window)	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
4 27.58 10.82 39 0.0044 0.0019
8 26.9 9.44 80 0.0042 0.0018

16 31.52 16.49 145 0.0061 0.0025

Parameter

Look Back
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Figure	38	Tuning	of	look	back	for	Bi-LSTM	

As	the	look	back	increases,	training	loss	and	validation	loss	first	fall	then	rise,	and	the	

same	trend	is	seen	for	RMSE	and	MAE	while		the	epoch	time	increases.	The	optimal	lock	back	

value	seems	to	be	8	since	the	training	loss	(0.0042)	and	validation	loss	(0.0018)	are	both	the	

lowest,	and	the	same	for	RMSE	(26.9)	and	MAE	(9.44).	The	epoch	time	of	8	is	also	acceptable,	

and	it	is	worth	the	cost	as	the	error	and	loss	values	are	significantly	better.	

Batch	Size	(number	of	samples	that	are	processed	before	the	model	is	updated)	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
32 26.9 9.44 80 0.0042 0.0018
64 27.89 11.01 50 0.0047 0.0019

128 30.18 14.21 39 0.0052 0.0023

Parameter

Batch Size
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Figure	39	Tuning	of	batch	size	for	Bi-LSTM	

As	the	batch	size	increases,	training	loss,	validation	loss,	RMSE,	and	MAE	all	rise,	while	

the	epoch	time	drops	rapidly.	The	optimal	batch	size	value	seems	to	be	32	due	to	the	best	

RMSE	(26.9)	and	MAE	(9.44).	Even	though	the	epoch	time	for	32	 is	 the	 longest	(80),	 it	 is	

worth	the	cost	as	the	error	and	loss	values	are	significantly	better	as	well.	

Epochs	(number	of	the	times	that	the	dataset	is	used	for	training	the	model)	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
25 26.9 9.44 80 0.0042 0.0018
50 25.85 8.41 76 0.0035 0.0016

100 27.57 11.56 74 0.0047 0.0022

Parameter

Epoch



	

39	
	

	 	

	

Figure	40	Tuning	of	epochs	for	Bi-LSTM	

As	the	epochs	increase	the	training	loss	and	validation	loss	first	drop	then	rise,	and	

the	same	trend	is	true	for	RMSE	and	MAE	while	the	epoch	time	drops.	The	optimal	epoch	

value	seems	to	be	50	because	of	the	lowest	RMSE	(25.85)	and	MAE	(8.41).	And	the	epoch	

time	 of	 50	 is	 also	 acceptable	 and	 it	 is	 worth	 the	 cost	 as	 the	 error	 and	 loss	 values	 are	

significantly	better	as	well.	

Units	(number	of	units	in	the	LSTM	layer	used	for	feature	extraction)	

	

RMSE (missing) MAE (missing) Epoch Time Train Loss Val Loss
8 35.3 22.34 55 0.0063 0.003

16 40.76 26.53 60 0.0078 0.0043
32 26.9 9.44 80 0.0042 0.0018
64 25.94 8.26 122 0.0036 0.0017

128 26.05 8.59 350 0.0036 0.0017

Parameter

LSTM Units
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Figure	41	Tuning	of	units	for	Bi-LSTM	

As	the	epochs	increase	the	training	loss	and	validation	loss	first	rises	then	drops,	and	

the	same	trend	is	seen	for	RMSE	and	MAE.	The	epoch	time	rises	continuously.	The	optimal	

unit	value	seems	to	be	64	because	of	the	lowest	RMSE	(25.94)	and	MAE	(8.26).	And	the	epoch	

time	 of	 64	 is	 also	 acceptable	 and	 it	 is	 worth	 the	 cost	 as	 the	 error	 and	 loss	 values	 are	

significantly	better	as	well.	
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4.4	Summary	

	

	

Figure	42	Summary	for	high	missing	rate	dataset	

The	best	hyper-parameter	combination	and	result	for	“Vanilla”,	CNN,	and	Bi-LSTM	to	

process	the	high	missing	rate	data	are	shown	above.	These	three	models	were	compared	to	

the	industry-widely	accepted	method	of	using	Weekly-Hourly	Average	of	predicting	traffic	

flow.	

Even	for	the	high	missing	rate	dataset,	the	simplest	model,	FCN	(Vanilla),	also	does	

very	well	in	the	imputation	of	missing	data.	It	ties	with	the	Bi-LSTM	in	RMSE	and	falls	slightly	

behind	in	MAE.	While	Bi-LSMT	provides	the	least	error	rate,	it	also	takes	much	longer	than	

FCN	to	compute	the	missing	values.	And	in	the	high	missing	rate	case,	the	time	is	much	longer	

than	the	low	missing	rate	case.	Even	though	CNN	improves	on	the	MAE	of	the	W-H	Avg,	the	

RMSE	 is	 the	 worst	 of	 all	 the	methods	 compared.	 As	 same	 as	 the	 low	missing	 rate	 case,	
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providing	a	2D	sliding	window	seems	to	have	done	nothing	 for	 the	CNN	model	here.	The	

optimal	model	seems	to	be	the	tried	and	tested	FCN.		

Using	a	simpler	model	and	optimizing	it	yielded	much	better	results	than	anticipated.	

While	Bi-LSTM	has	room	for	 improvement,	 its	complexity	makes	 it	a	 lot	more	difficult	 to	

optimize.	Bi-LSTM	is	much	more	expensive	computationally	and	yields	only	slightly	better	

results	than	“Vanilla”.	
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CHAPTER	5:	Error	patterns	for	different	stations	and	hours	

In	Chapters	3	and	4,	the	whole	dataset	is	considered	while	calculating	the	RMSE	and	

MAE.	In	this	chapter	the	data	from	different	stations	or	different	hours	are	separated	and	

calculated	independently	for	RMSE	and	MAE.	

5.1	Error	pattern	for	different	stations	

First,	 the	 data	 are	 separated	 according	 to	 the	 sensor	 stations	 and	 calculated	

respectively.	The	results	are	shown	as	follows.	

	 	

	

Figure	43	RMSE	and	MAE	for	different	stations	

From	the	figure	above,	all	three	models	show	similar	trends.	The	Bi-LSTM	model	has	

the	best	performance	compared	with	the	“Vanilla”	and	CNN,	and	it	can	verify	the	conclusion	

that	Bi-LSTM	has	the	lowest	RMSE	and	MAE	in	the	last	section.	Two	stations:	106	and	107	

have	the	largest	error	value	especially	for	104	with	the	highest	RMSE	of	about	63	no	matter	

which	model	is	used.	Several	reasons	may	cause	this	problem.	

Stations Vanilla+ CNN BiLSTM
94 23.77 36.24 27.18
95 21.78 30.49 16.22
97 13.51 21.26 11.62
100 13.25 21.37 10.35
101 17.92 24.56 10.74
104 62.44 66.07 64.23
106 18.19 30.28 14.19
107 29.14 48.22 22.76

RMSE
Stations Vanilla+ CNN BiLSTM
94 12.21 21.34 13.87
95 12.10 19.13 9.82
97 8.91 15.20 7.03
100 9.52 15.70 7.09
101 12.63 18.08 7.06
104 18.43 27.85 17.64
106 11.60 22.14 8.56
107 16.52 37.45 14.12

MAE
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a)	Facility	error	

The	measurement	 results	may	be	 inaccurate	due	 to	 loop	detector	malfunctions	of	

various	kinds.	So	the	value	station	104	may	be	erratic	and	chaotic,	and	it’s	hard	for	a	machine	

learning	model	to	identify	the	traffic	flow	patterns.	

b)	Chaotic	operation		

Due	 to	 less	 than	 ideal	 geometric	 design	 or	 extremely	 large	 traffic	 volume,	 traffic	

congestion	because	of	accidents	or	large	volumes	may	frequently	occur	near	station	104,	and	

it	 may	 be	 hard	 to	 find	 a	 regular	 pattern	 especially	 in	 the	 case	 of	 accidents	 caused	 by	

problematic	road	design.	

Because	of	the	lack	of	a	sensor	location	distribution	map,	it	is	hard	to	track	the	exact	

problems.	A	future	study	could	focus	on	the	details	of	it.	

5.2	Error	patterns	for	different	hours	

In	 this	part,	 the	data	of	each	hour	 is	separated,	and	RMSE	and	MAE	are	calculated	

respectively	as	shown	below.	

	

Figure	44	MAE	for	24	hours	(weekdays)	
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Figure	45	RMSE	for	24	hours	(weekdays)	

As	 shown	 in	 Figures	 44	 and	 45,	 we	 can	 see	 the	 error	 patterns	 for	 24	 hours	 on	

weekdays.	All	three	models	show	a	similar	error	trend.	And	it	can	verify	the	conclusion	in	

the	previous	section	that	the	“Vanilla”	and	Bi-LSTM	are	better	than	CNN.	Besides,	two	error	

peaks	are	concentrated	on	the	morning	peak	hour	(around	8:00)	and	afternoon	peak	hour	

(17:00)	which	are	consistent	with	the	daily	flow	peak	hours.	

	

Figure	46	MAE	for	24	hours	(weekends)	
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Figure	47	RMSE	for	24	hours	(weekends)	

As	 shown	 in	 Figures	 46	 and	 47,	 we	 can	 see	 the	 error	 patterns	 for	 24	 hours	 at	

weekends.	Compared	with	weekday	data,	 the	weekend	errors	are	much	 larger	and	more	

chaotic.	The	highest	error	peak	is	around	weekend	afternoon	peak	hours	(14:40).	However,	

the	high	error	lasts	until	midnight.	

In	short,	it’s	easier	to	impute	an	accurate	traffic	flow	value	on	weekdays	compared	

with	the	weekend.	And	the	higher	traffic	flow	may	cause	a	higher	error.	
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CHAPTER	6:	Experimental	results	after	data	separation	

Section	 5	 shows	 the	 different	 error	 patterns	 for	 weekdays	 and	 weekends,	 and	 it	

shows	that	the	error	for	data	of	weekends	is	much	higher	than	on	weekdays.	In	this	section,	

the	whole	dataset	is	separated	into	weekdays	and	weekends,	and	they	are	trained,	tested,	

and	errors	calculated	respectively.	To	compare	the	effect	of	separation,	all	these	three	groups	

use	the	same	hyper-parameter	without	much	tuning.	The	data	volume	of	training	is	7200	

and	2592	for	testing.	The	details	about	the	period	are	shown	as	follows.	

	

	

	

Figure	48	RMSE	and	MAE	after	data	separation	

The	testing	results	are	shown	in	Figure	48.	First,	the	previous	conclusion	is	verified	

again	that	the	Bi-LSTM	is	better	than	“Vanilla”	and	“Vanilla”	is	better	than	CNN.	It	can	seem	

clear	that	the	training	error	after	splitting	the	data	is	much	lower	than	the	whole	dataset,	

Training period Training set volume Testing period Testing set volume
Total Feb 1 – Feb 26 7200 Mar 1 – Mar 10 2592

Split-weekdays Feb 1 – Mar 5 7200 Apr 1 – Apr 14 2592
Split-weekends Feb 1 - May 1 7200 May 1 – Jun 1 2592

Model Vanilla Bi-LSTM CNN Vanilla Bi-LSTM CNN
Total 63.6 64.16 80.21 24.62 27.58 43.12

Split-weekdays 49.12 37.91 50.06 23.02 25.71 37.13
Split-weekends 25.64 22.42 36.73 15.62 13.7 26.57

RMSE MAE
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especially	 for	 the	weekend,	 no	matter	which	model	 is	 applied.	 Therefore,	 the	 separation	

could	be	a	good	idea	to	train	the	model,	and	it	will	offer	a	more	accurate	imputation	results.	
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CHAPTER	7:	Conclusion	

In	this	section,	the	results	from	Chapters	3	and	4	which	are	the	low	missing	rate	part	

and	 high	missing	 rate	 parts	 are	 compared,	 and	 conclusions	 from	 other	 sections	 are	 also	

summarized.	

	 	

	

Figure	49	Result	comparison	of	high	missing	rate	and	low	missing	rate	

In	Figure	49,	RMSE,	MAE,	and	epoch	times	for	both	high	missing	rate	data	and	low	

missing	rate	data	are	shown	and	compared,	and	three	models:	“Vanilla”,	CNN,	and	Bi-LSTM	

are	also	compared	to	the	industry-widely	accepted	method	of	using	Weekly-Hourly	Average	

of	predicting	traffic	flow.	

The	training	and	testing	result	that	Bi-LSTM	is	better	than	“Vanilla”	and	“Vanilla”	is	

better	than	CNN	is	shown	again.	The	simplest	model	“Vanilla”	really	does	very	well	in	the	
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imputation	of	missing	data	even	if	the	missing	rate	is	high.	And	CNN	is	not	suitable	for	data	

imputation	 though	 it	 is	 very	 good	 at	 image	 processing.	 And	 Bi-LSTM	 has	 room	 for	

improvement	although	 it’s	 too	complex	 to	 finish	optimization	 in	a	short	 time.	Bi-LSTM	 is	

much	more	expensive	computationally	and	yields	only	slightly	better	results	than	Vanilla.	

Secondly,	 the	 robustness	 of	 these	 three	Autoencoders	 can	be	 verified	because	 the	

difference	of	RMSE	or	MAE	between	low	missing	rate	data	and	high	missing	rate	data	is	small.	

And	 the	 increase	 of	 the	missing	 rate	 doesn’t	 influence	 the	 final	 imputation	 result	much.	

However,	 for	 Bi-LSTM,	 the	 high	 missing	 rate	 data	 has	 higher	 computational	 time	 and	

expense.	So	we	can	say	that	these	machine	learning	models	can	be	used	for	traffic	flow	data	

imputation	even	though	the	gap	within	the	data	is	large,	for	example,	the	extreme	situation	

case:	80%	missing	rate.	

Besides,	two	possible	reasons	for	high	error	problems	for	one	station	are	proposed	

and	analyzed	in	Section	4	and	it	can	be	studied	further	after	the	providing	of	more	detailed	

corresponding	information.	

The	error	patterns	for	different	hours	on	weekdays	and	weekends	are	also	shown.	

For	weekdays,	the	error	concentrates	at	the	two	daily	peak	hours	in	the	morning	and	the	

afternoon.	And	the	error	of	weekends	is	much	higher	and	concentrated	from	afternoon	to	

midnight.	

In	the	end,	the	data	are	separated	into	weekdays	and	weekends,	trained	and	tested	

respectively.	And	we	can	see	that	separation	can	lower	the	error	significantly,	especially	for	

the	weekends,	and	improve	the	accuracy	of	imputation.		
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