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Original Research Article 

Feasibility of a deep-learning based anatomical region labeling tool for 
Cone-Beam Computed Tomography scans in radiotherapy 

Dishane C Luximon *, John Neylon, James M Lamb 
Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA   

A R T I C L E  I N F O   

Keywords: 
Deep learning 
Cone-beam computed tomography 
Anatomy labeling 
Radiotherapy 

A B S T R A C T   

Background and purpose: Currently, there is no robust indicator within the Cone-Beam Computed Tomography 
(CBCT) DICOM headers as to which anatomical region is present on the scan. This can be a predicament to CBCT- 
based algorithms trained on specific body regions, such as auto-segmentation and radiomics tools used in the 
radiotherapy workflow. We propose an anatomical region labeling (ARL) algorithm to classify CBCT scans into 
four distinct regions: head & neck, thoracic-abdominal, pelvis, and extremity. 
Materials and methods: Algorithm training and testing was performed on 3,802 CBCT scans from 596 patients 
treated at our radiotherapy center. The ARL model, which consists of a convolutional neural network, makes use 
of a single CBCT coronal slice to output a probability of occurrence for each of the four classes. ARL was 
evaluated on the test dataset composed of 1,090 scans and compared to a support vector machine (SVM) model. 
ARL was also used to label CBCT treatment scans for 22 consecutive days as part of a proof-of-concept imple
mentation. A validation study was performed on the first 100 unique patient scans to evaluate the functionality 
of the tool in the clinical setting. 
Results: ARL achieved an overall accuracy of 99.2% on the test dataset, outperforming the SVM (91.5% accuracy). 
Our validation study has shown strong agreement between the human annotations and ARL predictions, with 
accuracies of 99.0% for all four regions. 
Conclusion: The high classification accuracy demonstrated by ARL suggests that it may be employed as a pre- 
processing step for site-specific, CBCT-based radiotherapy tools.   

1. Introduction 

Cone-beam computed tomography (CBCT) is commonly used for 
radiotherapy image guidance because it facilitates accurate and precise 
positioning and alignment of the patient. In real-time adaptive radio
therapy, the CBCT may also be used to adapt the treatment plan based on 
the new target location and size, and the position of organs at risk 
(OARs). In this case, the delineation of the target(s) and OARs may be 
required on the CBCT scan prior to the plan adjustment [1]. With the rise 
of machine learning and deep learning techniques in the field of medical 
image analysis, many algorithms are being developed to automate and 
expedite this delineation process [2–5]. Similarly, algorithms have been 
proposed for the detection of setup errors [6–7] and for early treatment 
response assessment using CBCT scans [8]. However, these algorithms 
are typically anatomical region-specific and assume the presence of the 
organs-of-interest irrespective of the body region inputted to the 
algorithm. 

The recognition of the global body region may be useful as a pre- 
processing step for these tools, such that they are applied to body re
gions within their domain. However, this step is often neglected due to 
the assumption that the anatomy information is present on the Digital 
Imaging and Communications in Medicine (DICOM) headers. While a 
‘Body Part Examined’ tag is indeed present in the DICOM headers of the 
planning Computed Tomography (CT), it has been shown that this in
formation is not very reliable, with a mis-labeling rate of 15.3% [9]. 
Furthermore, these pre-defined labels are driven by the acquisition 
protocol. Due to the variability and differences among the patients’ 
anatomies, an imaging protocol for a different body region may be used 
by the clinical personnel in order to obtain better image quality. While 
the header can be adjusted following the CT acquisition, this is not 
commonly done in the clinic, which may lead to a wrong body region 
label [10]. Additionally, this ‘Body Part Examined’ tag may be 
completely absent in the CBCT DICOM headers, as is the case at our 
institution, highlighting the need for an automatic region-labeling 
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algorithm to recognize the global patient anatomy and treatment region. 
Several algorithms have recently been proposed for the classification 

of anatomical regions in CT and MRI scans [11–14]. Among those, 
Ouyang et al. [14] achieved the highest classification accuracy of 97.3% 
on their test dataset composed of 663 CT scans. These previous studies 
showcase the potential of deep learning techniques on such region la
beling problem. Nevertheless, if these techniques are used as a pre- 
processing step for other clinical tools, which have their intrinsic error 
rate, it is imperative to minimize the pre-processing error rate as much 
as possible to improve the reliability of the labeling tool and reduce the 
overall algorithm’s failure rate. Hence, it is vital to continuously identify 
and address limitations of such region labeling tools. 

One common characteristic and limitation of the previous studies is 
that they have all been developed and tested on CT and MR images, 
which typically have improved image quality as compared to pre- 
treatment CBCT images [18–19]. Hence, classifying CBCT images may 
become a challenge as fewer useful features and more artifacts may be 
present on the CBCT scan for accurate region labeling. CBCT scans also 
have a small field-of-view (FOV), which is usually restricted to the 
treatment region only, making a consecutive body part recognition al
gorithm as in [14] more complicated. 

To address this current limitation, we propose a CNN-based 
anatomical region labeling (ARL) tool which can classify a CBCT scan 
into four global regions, namely head & neck (HN), thoracic-abdominal 
(TA), pelvis (PL) and extremity (EX) using a single coronal slice from the 
CBCT volume. To the best of our knowledge, this will be the first region 
labeling algorithm built specifically for pre-treatment CBCT scans. 

2. Materials and methods 

2.1. Dataset for model training and testing 

Under an IRB approved protocol (UID 18–001430), CBCTs were 
collected from 631 patients undergoing radiotherapy treatment at the 
University of California, Los Angeles Medical Center (UCLA) between 
January 2017 and April 2022. The dataset collection was performed 
using an in-house DICOM query and retrieval (DQR) application pro
gramming interface using the pynetdicom1 Python package. The treat
ments at UCLA had been performed on three TrueBeams and one 
NovalisTx linear accelerator treatment machines (Varian Medical Sys
tems, California, United States). CBCT scans were acquired using the on- 
board imager of each machine. For each CBCT, the corresponding 
planning CT, REG file and RTStruct file were also collected and used 
during the image pre-processing step in our implementation. 

A visual inspection of the treatment isocenter was performed to sort 
the CBCT scans into four different global regions: head & neck (HN), 
thoracic-abdominal (TA), pelvis (PL), and extremity (EX). The C7 
vertebral body was used as a limit to the HN region such that the CBCT 
scan only contained these two body parts, as shown in Supplementary 
Figure S1. However, in the clinical setting, it is possible to have neck 
scans containing part of the thorax. For the first part of our experiment, 
which included model training and testing, these scans with substantial 
overlapping regions were withdrawn from our dataset to maintain the 
distinction between each category. Following the triage, 3802 CBCT 
scans from 596 patients remained, as described in Supplementary 
Table S1. The limits of the TA region were the T1 vertebra and the L2 
vertebra, avoiding the neck and pelvis regions. For the PL scans, the L3 
and S2 vertebra were used as markers, avoiding the abdominal region 
and area below the pubic symphysis. Scans of the arms, legs and ex
tremity of the shoulder were placed in the EX dataset. 

Each of the four datasets was then separately and randomly split into 
a training, validation and test set using a 60:10:30 ratio. As scans from 
multiple treatment fractions were used in our study, the dataset split was 

performed based on the patients’ unique anonymized identifiers to 
avoid having scans from the same patient overlapping across the 
training, validation, and test sets. 

2.2. Image Pre-processing 

The pixel spacing of the CBCT scans ranged from 0.51 to 1.17 mm 
and the slice thickness from 1 to 2.5 mm. The CBCT scans were resam
pled based on their corresponding planning CT to produce uniform 
images with a voxel spacing of 1x1x1.5 mm3. In our pipeline, this 
resampling, and volume matching was performed using the REG file 
present with the CT-CBCT pair. However, the CBCT resampling can be 
made independently from the planning CT and REG file for another 
application of the ARL. Furthermore, the treatment couch and immo
bilization devices were removed from the CBCT image using the body 
contour present in the RTStruct file. In the event that a body contour is 
not present in the RTStruct file, a thresholding method, including a 
morphological dilation followed by erosion, was used to extract the 
body contour from the CBCT. The dilation and erosion operations used 
20 × 20 and 5 × 5-pixel2 rectangular structuring element, respectively. 

A coronal slice was then extracted from each CBCT present in our 
dataset and each image was labeled using their corresponding global 
region. The primary coronal slice was extracted by locating the CBCT 
slice with the highest mean Hounsfield Unit (HU). This slice-selection 
method was chosen such that the coronal slice would cover the whole 
extent of the patient scan while containing considerable bony structures 
(higher HU) which can be useful features in the recognition of the 
anatomical region. 

For training purposes, two additional slices were extracted from the 
CBCT scans in the training and validation datasets, with each slice being 
10 pixels away from the primary coronal slice location; one being 10 
pixels in the anterior direction and the other being 10 pixels in the 
posterior direction. The extraction of these two extra slices were per
formed as an augmentation method during the model training due to the 
inter-patient variability in anatomy which can be present on the primary 
coronal slice. The slices were then cropped about the center of the pa
tient body to reduce empty spaces around the body and obtain 150x400 
pixel2 images, as shown in Fig. 1, and used as input to our ARL model. 

2.3. Anatomical region labeling (ARL) model 

The ARL model used the Dense-Net architecture as shown in Sup
plementary Figure S2. The ARL model makes use of densely contracting 
paths to capture contextual information from the CBCT coronal image 
before outputting a probability of occurrence for each of the four classes. 
The Dense Block in our architecture constitutes of two densely con
nected layers, each comprising of seven layers. The two densely con
nected layers in the Dense Block were connected to each other in a feed- 
forward mode to maximize feature reuse, which been shown to be 
computationally efficient, hence allowing a deeper network [20]. 

2.4. Training configuration 

The ARL model was implemented using Tensorflow 2.2 with Keras 
backend. Model training was performed using the Adam Optimizer [15], 
with a starting learning rate of 2x10-5. During training, the model was 
evaluated on the validation dataset after each epoch, and a learning rate 
reducer (0.75) was applied if the validation loss did not decrease for 15 
consecutive epochs. To avoid overfitting the model on the training 
dataset, an early stopping method was applied such that training would 
stop if the validation accuracy did not improve for 50 consecutive 
epochs, or for a maximum of 400 training epochs. For comparison 
purposes, we also trained a Support Vector Machine (SVM) [22], and 
saved the parameters which produced the highest accuracy on the 
validation set. 1 https://pydicom.github.io/pynetdicom/stable/#. 
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2.5. Evaluation metrics and quality control 

After the trained ARL model and SVM was applied to the test dataset, 
the true positive (tp), false positive (fp), false negative (fn), and true 
negative (tn) counts were obtained for each anatomical region. Subse
quently, the four metrics shown in Equations 1–4 were used to evaluate 
and compare the performance of our models. 

Accuracy =
tp + tn

tp + tn + fp + fn
(1)  

F-1 Score =
2tp

2tp + fp + fn
(2)  

Precision =
tp

tp + fp
(3)  

Recall =
tp

tp + fn
(4)  

To obtain visual explanations of the model’s prediction, the Gradient- 
weighted Class Activation Mapping (Grad-CAM) [16] was imple
mented. This Grad-CAM method uses the gradients from the final con
volutional layer from the ARL model to produce a heat map describing 
the regions which contributed the most to the activation of the predicted 
anatomical region. 

2.6. Clinical implementation and validation 

Using our in-house DQR system to interface with the ARIA system 
(Varian Medical Systems, Palo Alto, CA), the ARL was implemented at 
our clinic to automatically classify incoming CBCT data on a daily basis 
for 22 consecutive days between August and September 2022 as part of a 
pilot process for an automated weekly chart check image analysis [17]. 
For validation purposes, the predictions for the first 100 unique patients 
were compared to a human perspective. Without any information about 
the predictions of the ARL, each of the 100 unique scans was visually 
analyzed and labeled by a human observer to obtain the ground truth 
label. 

However, in contrast to the dataset used during model training and 
testing this validation dataset did not exclude scans containing over
lapping regions, such as neck and thorax, or abdomen and pelvis. Hence, 
the ground truth labels were obtained by identifying the dominant 

region (i.e. the region encompassing the majority of the CBCT scan). 
Furthermore, the other less pronounced region(s), if present, was noted 
as a ‘less-pronounced region’. For example, for a neck treatment scan 
containing mostly the neck and part of the thorax, the region would be 
labeled as HN, with the ‘less-pronounced region(s)’ being TA. Following 
the human annotations, the predictions from the ARL were compared 
with their respective ground truth labels and the model performance 
was evaluated. 

3. Results 

3.1. Model training and evaluation 

During the algorithm training, the ARL model achieved convergence 
after 49 epochs with training and validation accuracies of 99.8% and 
99.3%, respectively. Following the testing phase, the ARL model resul
ted in 9 misclassifications out of the 1,090 test cases, for an overall ac
curacy of 99.2%. Selected true-positives and misclassifications are 
shown in Fig. 2 and Fig. 3, respectively. 

For the SVM, a polynomial kernel was found to produce the best fit, 
with training and validation accuracies of 96.0%. Following testing, the 
SVM obtained an overall accuracy of 91.5%. Using Student paired t- 
tests, results from the ARL model and SVM were found to be statistically 
significant (p-value < 0.0001). The detailed results obtained from the 
ARL model and SVM are reported in Table 1. 

3.2. Validation of the proof-of-concept implementation 

During 22 consecutive treatment days between August and 
September 2022, 798 patient scans were processed and classified by the 
ARL algorithm. The validation dataset was composed of the first 100 
unique patient scans, which were labeled by a human observer, and 
described in Supplementary Table S2. 

The ARL prediction for each of the 100 cases was compared to its 
respective ground truth label (dominant region), and the results of this 
validation study are reported in Table 2. Out of the 100 individual cases, 
two cases had an ARL prediction-ground truth mismatch. However, it 
was found that each of these two cases had overlapping regions present 
on the CBCT scan, and the ARL prediction matched with the referenced 
less-pronounced regions, as shown in Fig. 4. 

Fig. 1. Twelve coronal slices which were used as input to the ARL model during algorithm training. Each column (a-d) shows the three slices extracted from four 
different CBCT scans, one from each anatomical region. The first row represents the slices extracted 10 pixels away from the primary coronal slice location in the 
anterior direction. The second row show the slices which are extracted at the primary coronal slice location, and the third row represents the slices extracted 10 pixels 
away from the primary coronal slice location in the posterior direction. HN: Head & Neck, TA: Thoracic-abdominal, PL: Pelvis, EX: Extremity. 
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4. Discussion 

The ARL model presented in this study has shown high classification 
ability for each of the four global regions (HN, TA, PL and EX), with 

accuracies of 99.9%, 99.4%, 99.6%, and 99.4% respectively, out
performing the SVM model in all four regions. As compared to other 
CNN-based anatomy recognition algorithms developed by Roth et al. 
and Ouyang et al., which achieved the highest reported accuracies in the 

Fig. 2. 12 selected CBCT slices (from unique patients) which were inputted to the ARL model and resulted in true-positives. The Grad-CAM activation heat map is 
overlaid on the CBCT image to display the regions which had the greatest weight in the prediction. The red areas mean the region contributed more to the prediction. 
HN: Head & Neck, TA: Thoracic-abdominal, PL: Pelvis, EX: Extremity. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 3. Coronal slices of three selected misclassified cases, with their corresponding activation map overlaid on top. The red area signify higher weight in the model 
decision for the predicted area. The output probability of the model class prediction is also shown for each case. GT: Ground Truth; HN: Head & Neck, TA: Thoracic- 
abdominal, PL: Pelvis, EX: Extremity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Performance of the Anatomical Region Labeling (ARL) model and the Support Vector Machine (SVM) on the 1,090 test cases. The results are shown for each three 
global regions separately. Bold texts represent the better result between the two models.   

HN TA PL EX  

ARL SVM ARL SVM ARL SVM ARL SVM 

Accuracy  99.9%  97.9%  99.4%  92.8%  99.6%  95.3%  99.4%  97.0% 
F-1 Score  99.8%  96.4%  98.9%  86.2%  99.4%  93.1%  97.1%  85.3% 
Precision  100.0%  96.3%  99.0%  94.3%  100.0%  90.3%  94.3%  76.8% 
Recall  99.7%  96.6%  98.7%  79.4%  98.9%  96.1%  100.0%  96.0% 

HN: Head & Neck, TA: Thoracic-abdominal, PL: Pelvis, EX: Extremity, ARL: anatomical region labeling model, SVM: support vector machine. 
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literature (94.1% and 97.3%, respectively) [12,14], our ARL resulted in 
a better performance with an overall accuracy of 99.2%. However, a 
direct comparison between those methods is not the primary aim of this 
study as different imaging modalities, number of classes, and imaging 
planes have been used in each method. Nevertheless, the high classifi
cation accuracy produced by the ARL model demonstrates the feasibility 
of applying such deep learning tool to pre-treatment CBCT scans to 
identify the global anatomical region. 

Fig. 2 shows the input coronal slices of 12 true-positive cases with the 
Grad-CAM activation heat map of the ARL model overlaid on the CBCT 
slice. It can be observed that the regions which activated the model are 
in the vicinity of the craniovertebral junction for HN cases, the spine, 
abdominal organs and the ribs for the TA cases, and the pelvic bones for 
PL cases. As for the extremity cases, the model was activated by the 
empty regions around the patient anatomy. While this may not be the 
most logical and robust way of identifying extremity cases to a human 
observer, this feature is a characteristic of most extremity scans. How
ever, it must be noted that the amount of extremity cases in the training 
dataset was limited, which may be the source of the decrease in per
formance for EX classification. 

Out of the 1,090 scans, 9 scans were wrongly classified by the ARL 
model. Fig. 3 illustrates some misclassified cases, with their corre
sponding activation maps overlaid on top. It can be observed from Fig. 3 
(a) and 3(b) that the limited FOV resulted in a wrong classification of the 
thorax as an extremity due to the empty spaces around the patient. On 
Fig. 3(c), the presence of metal artifacts may have been the cause of the 
misclassification as shown by the heatmap. A potential solution would 
be to use activation gates [21] within the ARL model such that it focuses 
on targeted regions instead of irrelevant regions on the image. 

Nevertheless our proof-of-concept implementation and validation 
study have shown that the ARL predictions correlate with the human 
observer annotations, with accuracies of 99.0% for all four global re
gions. Out of the 100 cases, two cases had an ARL prediction-dominant 

region mismatch, as shown in Fig. 4. However, it can be observed that 
the ARL prediction was still consistent with the overlapping region 
present on the scan in both cases. The results of this validation study 
hence reinforces the relevance and ability of the ARL tool to label CBCT 
images from daily treatments. 

To be more robust to the entire patient population, the current al
gorithm could be further refined to accommodate for outlier cases, such 
as extremity treatment scans. However, these types of CBCT scans are 
seen more sporadically in the clinical setting due to the rare occurrence 
of soft tissue sarcomas [23], leading to too few cases for optimal model 
training or refinement. Furthermore, the ARL was trained and tested on 
only a single institution’s data. To validate and improve the generaliz
ability of the ARL on other facilities’ datasets, a multi-institutional study 
needs to be performed, which will be part of our future studies. 

Another limitation of the current ARL is that it uses a single 2D 
coronal slice which contains limited anatomical information as 
compared to the whole 3D image. A 3D Dense-Net [24] may potentially 
improve the performance of the ARL by obtaining more useful features 
as compared to the current 2D model [25]. However, training a 3D CNN 
is computationally expensive and the inference time of the tool will be 
higher with our current system. With the increased availability of high 
performance Graphics Processing Units, this 3D method may be feasible 
in the future. 

In this work, a CNN-based Anatomical Region Labeling (ARL) tool 
was developed to classify pre-treatment CBCT scans into four regions, 
namely head & neck, thoracic-abdominal, pelvis, and extremity. Our 
results have shown strong agreement between the model predictions and 
human annotations for all four regions, confirming the strong perfor
mance of the model. The ARL algorithm may be employed in the clinical 
setting as a pre-processing step for radiotherapy tools which have been 
developed for pre-treatment CBCTs containing specific anatomical re
gions, such as auto-segmentation algorithms, patient setup error detec
tion algorithms, and radiomics tools for early treatment response 
assessment. Furthermore, the tool may be used as a quality assurance 
check by comparing the model’s prediction to the treatment site to avoid 
wrong-site radiotherapy treatment. 

Open-Source Code Access. 
The python scripts for the DQR and ARL algorithm are available on 

the following website: https://github.com/dcluximon/ARL_repo. 
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Table 2 
Performance of the Anatomical Region Labeling (ARL) model on the 100 cases 
used for clinical validation. The results are shown for each three global regions 
separately.   

HN TA PL EX 

Accuracy  99.0%  99.0%  99.0%  99.0% 
F-1 Score  98.8%  98.2%  98.3%  66.7% 
Precision  97.6%  100.0%  96.7%  100.0% 
Recall  100.0%  96.4%  100.0%  50.0% 

HN: Head & Neck, TA: Thoracic-abdominal, PL: Pelvis, EX: Extremity. 

Fig. 4. Coronal slices of the two misclassified cases in the clinical validation, with the ARL prediction and human annotations (dominant region and overlapping 
region) reported. HN: Head & Neck, TA: Thoracic-abdominal, PL: Pelvis, EX: Extremity. 
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