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Abstract

Wide field of view microscopy that can resolve 3D information at high speed and spatial 

resolution is highly desirable for studying the behaviour of freely moving model organisms. 

However, it is challenging to design an optical instrument that optimises all these properties 

simultaneously. Existing techniques typically require the acquisition of sequential image snapshots 

to observe large areas or measure 3D information, thus compromising on speed and throughput. 

Here, we present 3D-RAPID, a computational microscope based on a synchronized array of 54 

cameras that can capture high-speed 3D topographic videos over an area of 135 cm2, achieving 

up to 230 frames per second at spatiotemporal throughputs exceeding 5 gigapixels per second. 

3D-RAPID employs a 3D reconstruction algorithm that, for each synchronized snapshot, fuses all 

54 images into a composite that includes a co-registered 3D height map. The self-supervised 3D 
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reconstruction algorithm trains a neural network to map raw photometric images to 3D topography 

using stereo overlap redundancy and ray-propagation physics as the only supervision mechanism. 

The resulting reconstruction process is thus robust to generalization errors and scales to arbitrarily 

long videos from arbitrarily sized camera arrays. We demonstrate the broad applicability of 

3D-RAPID with collections of several freely behaving organisms, including ants, fruit flies, and 

zebrafish larvae.

Keywords

parallelized microscopy; camera array; computational microscopy; behavioral imaging; self-
supervised learning; 3D imaging

1 Introduction

Quantifying behavior and locomotion of freely-moving organisms, such as the fruit fly and 

zebrafish, is essential in many applications, including neuroscience [1–3], developmental 

biology [4], disease modeling [5, 6], drug discovery [7, 8], and toxicology [9–13]. 

Particularly for high-throughput screening, it is desirable to monitor tens or hundreds 

of organisms simultaneously, thus requiring high-speed imaging over large fields of 

view (FOVs) at high spatial resolution, ideally in 3D. Such an imaging system would 

allow researchers to bridge the gap between microscopic phenotypic expression and multi-

organism behavior across more macroscopic scales, such as shoaling [14, 15], courtship and 

aggression behaviors [16, 17], exploration [18, 19], and hunting [19–23].

Common approaches for behavioral recording utilize 2D wide-field microscopes at low-

magnification to cover as large a FOV as possible. However, due to space-bandwidth product 

(SBP) limitations of conventional optics [24, 25], standard imaging systems have to accept 

a tradeoff between image resolution and FOV. Techniques that enhance SBP to facilitate 

high-resolution imaging over large areas, such as Fourier ptychography (FP) [26] and 

mechanical sample translation [27, 28], often require multiple sequential measurements, 

which compromises imaging speed and throughput. Approaches that perform closed-loop 

mechanical tracking to record single organisms freely moving in 2D with scanning mirrors 

[29] or moving cameras [19] do not scale to multiple organisms.

Conventional wide-field techniques also lack 3D information, which potentially precludes 

observation of important behaviors, such as vertical displacement and out-of-plane tilt 

changes in zebrafish larvae [23, 30, 31] and 3D limb coordination and kinematics in 

various insects [32–35]. Commonly used 3D microscopy techniques such as diffraction 

tomography [36, 37], light sheet microscopy [38, 39], and optical coherence tomography 

[40–42], are not well-suited for behavioral imaging, since they often require multiple 

sequential measurements for 3D estimation and inertia-limited scanners that sacrifice speed. 

Furthermore, while such techniques can achieve micrometer-scale resolutions, they typically 

have millimeter-scale FOVs rather than the multi-centimeter-scale FOVs necessary for 

imaging freely-moving organisms. Thus, these techniques are typically limited to imaging 

one immobilized organism at a time (e.g., embedded in agarose, tethered [34, 35], or 

paralyzed).
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Camera array-based imaging systems have also been proposed to increase SBP and 

overall throughput [43–47]; however, none of these prior approaches have demonstrated 

scalable, high-speed, high-resolution, wide-FOV, 3D imaging. In particular, several of 

these approaches were designed for 2D macroscopic photographic applications, which face 

challenges for miniaturization for microscopy applications, or feature a primary objective 

lens that limits the maximum achievable SBP. Macroscale 3D imaging techniques such as 

time-of-flight LiDAR [48], coherent LiDAR [49–51], structured light [52], stereo vision 

[53], and active stereo vision techniques [54] have throughputs typically limited to 10s of 

megapixels (MPs) per second and have millimeter-scale spatial resolution.

Here, we present 3D Reconstruction with an Array-based Parallelized Imaging Device (3D-

RAPID), a new computational 3D microscope based on an array of 9×6 = 54 synchronized 

cameras, capable of acquiring continuous high-speed video of dynamic 3D topographies 

over a 135-cm2 lateral FOV at 10s of micrometer 3D spatial resolution and at spatiotemporal 

data rates exceeding 5 gigapixels (GPs) per second (Fig. 1). We demonstrate three operating 

modes, which can be flexibly chosen depending on whether to prioritize speed (up to 230 

frames per second (fps)) or spatial SBP (up to 146 MP/frame). We also present a new 

scalable 3D reconstruction algorithm that, for each synchronized snapshot, simultaneously 

forms a globally-consistent photometric composite and a coregistered 3D height map 

based on a ray-based physical model. The 3D reconstruction itself trains aspatiotemporally-

compressed convolutional neural network (CNN) that maps multi-ocular inputs to the 3D 

topographies, using ray propagation physics and consistency in the overlapped regions as 

the only supervision. Thus, after computational reconstruction of just a few video frames 

(<20), 3D-RAPID can rapidly generate photometric composites and 3D height maps for the 

remaining video frames non-iteratively.

3D-RAPID thus solves a longstanding problem in the field of behavioral imaging of 

freely moving organisms that previously only admitted low-throughput solutions. To our 

knowledge, prior to our work, there was no imaging system that could sustainably image 

at such high spatiotemporal throughputs (>5 GP/sec) in 3D. We demonstrated the broad 

applicability of 3D-RAPID in three model organisms: zebrafish, fruit flies, and ants. In 

particular, the large FOV of 3D-RAPID enabled imaging of multiple freely behaving 

organisms in parallel, while the dynamic 3D reconstructions and high spatial resolution 

and imaging speeds enabled 3D tracking of fine features, such as ant leg joints during 

exploration, zebrafish larva eye orientation during feeding, and fruit fly pose while 

grooming.

2 High-throughput 3D video with 3D-RAPID

2.1 3D-RAPID hardware design

The 3D-RAPID hardware is based on a multi-camera array microscope (MCAM) 

architecture [47, 55], consisting of 54 synchronized micro-camera units spaced by 13.5 

mm and tiled in a 9×6 configuration. Each micro-camera captures up to 3120 × 4208 pixels 

(1.1-μm pitch), for a total of ~700 megapixels per snapshot. The data is transmitted to 

computer memory via PCIe at ~5 GB/sec. We axially positioned the lenses (Supply Chain 

Optics, f = 26.23 mm) to obtain a magnification of M ≈ 0.11, leading to ~66% overlap in 
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the sample plane field of view (FOV) between cameras adjacent along the longer camera 

dimension (Fig. 1c), so that almost every point in the synthesized ~12.5×10.8-cm2 is viewed 

at least twice.. This overlap redundancy enables 3D estimation using stereoscopic parallax 

cues. The sample is illuminated in transmission or reflection using planar arrays of white 

LEDs covered by diffusers (Fig. 1a).

2.2 Tradeoff space of lateral resolution, FOV, and frame rate

3D-RAPID has flexibility to downsample or crop sensors or use fewer cameras to increase 

the frame rate. The overall data throughput is limited by the slower of two factors: the data 

transfer rate from the sensors to the computer RAM (~5 GB/sec) or the sensor readout rate, 

both functions of the sensor crop shape and downsample factor. Streaming all 54 cameras 

without downsampling or cropping runs into the data transfer rate-limited frame rate of ~7 

fps. To achieve higher frame rates, we present results with a 1536×4096 sensor crop using 

either 4×, 2×, or no downsampling, allowing 230, 60, or 15 fps frame rates, respectively, 

while maintaining roughly the same throughput of ~5 GP/sec (Table 1). While excluding 

half of the sensor rows nearly eliminates FOV overlap in the vertical dimension, the benefits 

are two-fold: increased frame rate and reduced rolling shutter artifacts (see Methods 5.1).

2.3 Seamless image registration, stitching, and 3D estimation

For each video frame, the 3D-RAPID algorithm fuses the 54 synchronously acquired 

images, via gradient descent using a pixel-intensity-based loss, into a continuous, seamless, 

expanded-FOV composite image, and simultaneously estimates a coregistered 3D height 

map (Fig. 2a). In fact, these two tasks are intimately related – to form a high-quality 

registration, it is necessary to account for parallax distortions induced by height deviations 

from a planar sample scene that would otherwise thwart simple registration using 

homographic transformations (Fig. 2b) [1, 56]. To achieve this, the algorithm starts with 

calibration of the 6-degree-of-freedom poses (x, y, z, roll, pitch, yaw), camera distortions, 

and intensity variations by registering and stitching 54 images of a flat, patterned target 

(Methods 5.3). Estimating the 3D height map of the sample of interest relative to this 

calibration plane is tantamount to rendering the images registerable using homographies 

(Fig. 2b). In particular, the per-pixel deformation vectors that undo the parallax shifts (i.e., 

orthorectify the images) have magnitudes that are directly proportional to the per-pixel 

heights, ℎ r  (i.e., the height map), given by [1]

ℎ robj + rrectify = f ∥ rrectify ∥
∥ robj − rvanisℎ ∥ 1 + 1

M (1)

where f = 26.23 mm is the effective focal length of the lens, M ≈ 0.11 is the linear 

magnification, robj is the apparent 2D position of the object in the pixel (before 

orthorectification), rvanisℎ is the vanishing point to which all lines perpendicular to the sample 

plane appear to converge, and rrectify is the 2D orthorectification vector pointing towards the 

vanishing point (Fig. 2b). rvanisℎ can be determined from the camera pose, as the point in 

the sample plane that intersects with the perpendicular line that passes through the principal 

point in the thin lens model. The orthorectification vectors rrectify, and therefore the height 

map, for each object position robj can be determined by registering images (via photometric 
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pixel values) from different perspectives. The accuracy of the height map thus depends on 

the object having photometrically textured (i.e., not uniform) surfaces that enable unique 

image registration, a condition satisfied by all model organisms we imaged.

Thus, the optimization problem is to jointly register all 54 images using the pixel-wise 

photometric loss, using the orthorectification maps (which are directly proportional to 

the height maps via Eq. 1) as the deformation model on top of the fixed, pre-calibrated 

camera parameters, including distortions (Fig. 2a,b). In practice, since viewpoint-dependent 

photometric appearance can affect image registration, we also employed normalized high-

pass filtering to standardize photometric appearance (Methods 5.2 and Supplementary Sec. 

S3.5).

2.4 Spatiotemporally-compressed 3D video via physics-supervised learning

Instead of optimizing the height maps directly, we reparameterized them as the output 

of an encoder-decoder CNN that takes the multi-view stereo images as inputs. This 

reparameterization has two interpretations, depending on whether we emphasize the CNN 

or the ray-based physical model. First, the CNN can be thought to act entirely as a 

training-data-free regularizer (i.e., deep image prior (DIP) [3]) that safeguards against 3D 

reconstruction artifacts that may otherwise arise from practical deviations from modeling 

assumptions that thwart image registration [1]. For example, using the CNN as a regularizer 

can be useful when the sample has a different appearance when viewed from different 

angles, which can be caused by uneven illumination, angle-dependent scattering responses, 

or varying pixel responses. Since we wish to reconstruct hundreds to thousands of 3D video 

frames, it would be prohibitively slow to independently reconstruct every video frame, with 

or without CNNs. Thus, we use one shared DIP, with each frame encoded by the raw 

multi-ocular stereo photometric inputs.

Thus, the second interpretation is one of physics-supervised learning, in which the image 

registration of the overlapped MCAM image frames, governed by a ray-based thin lens 

physical model (Eq. 1), provides the physics-based supervision that guides the CNN training 

(Fig. 2a,c). The CNN can then be used to generalize to other MCAM data, both spatially 

(other micro-cameras) and temporally (other video frames).

This dual interpretation of our CNN-regularized, physics-supervised learning approach 

reveals several advantages. First, since we employ a fully-convolutional CNN, we can 

optimize on arbitrarily-sized image patches (Fig. 2c) that can fit in GPU memory, and 

then perform non-iterative forward inference on arbitrarily-large full-size images (Fig. S4). 

Thus, our proposed approach is scalable and generalizable to arbitrarily many cameras, 

each with arbitrarily many pixels, for arbitrarily many video frames. For implementation 

details on patch-based training, see Sec. 2.5, Fig. 2c, and Supplementary Sec. S3. Second, 

the CNN enforces a spatiotemporally-compressed representation of the 3D height map 

videos, thus avoiding the need to iteratively optimize each frame individually. Third, this 

spatiotemporal compression reduces the chances of overfitting, as there are far fewer CNN 

parameters than height map pixels across all video frames. Furthermore, the CNN implicitly 

enforces consistency across space and time, thus, for example, avoiding variance induced 

by independent optimization runs on different frames. Fourth, our approach has an inherent 

Zhou et al. Page 5

Nat Photonics. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fail-safe against generalization errors, unlike other deep learning-based approaches, since the 

ground truth is always available via the overlap redundancy and the physical model.

2.5 Patch-based learning from multi-ocular stereo inputs

While Fig. 2a summarizes the ideal joint 3D reconstruction, stitching, and training method, 

in practice we are constrained by GPU memory. Thus, we train the CNN using a random 

patch sampling approach (Fig. 2c). Briefly, at each optimization iteration, we sample nbatcℎ

(batch size) random points within the composite FOV (one shown in Fig. 2c). All cameras 

viewing each point are selected, from which patches surrounding that point are extracted 

from each camera view. Thereafter, these nbatcℎ groups of selected patches independently 

undergo the procedure outlined in Fig. 2a. Once CNN training is done, the backprojection 

step in Fig. 2a is carried out for each full temporal frame to create the stitched RGBH 3D 

reconstructions (Fig. S4). For more implementation details, see Supplementary Sec. S3.

3 Results

3.1 3D-RAPID system characterization

Our 3D-RAPID system has a full-pitch lateral resolution of ~25 μm and DOF of ~9.4 mm, 

based on imaging a USAF resolution target and translating a patterned target axially (see 

Supplementary Sec. S1). We validated the height precision and accuracy of our 3D-RAPID 

system by imaging precisely machined (to within 0.3 μm) gauge blocks (Mitutoyo). As 

expected, accuracy and precision of the reconstructed height improve at higher spatial 

resolution, which facilitates more accurate measurement of parallax shifts (Supplementary 

Sec. S5). Specifically, we achieved sub-20 μm accuracy and precision in the 15-fps 

configuration, and ~37 μm accuracy and ~74 μm precision in the 230-fps configuration. 

See Supplementary Sec. S1 for detailed characterization.

3.2 Zebrafish larvae (Danio rerio)

We applied 3D-RAPID to several 10-sec videos of zebrafish larvae (Danio rerio) freely 

swimming in a large 97 mm × 130 mm open arena using the 60-fps and 230-fps 

configurations (Table 1) across three separate experiments, the first of which was on 10-dpf 

fish feeding on microcapsule food particles (AP100) (Supplementary Videos 1 (60 fps), 2 

(230 fps), and 3 (60 fps with tracking)). Fig. 3 and Extended Data Fig. 1 summarize the 

results for the 60-fps video of the 10-dpf fish feeding on AP100, most of which are floating 

at or near the water surface (Extended Data Fig. 1b). We tracked all 40 fish using a simple 

particle-tracking algorithm (Methods 5.4; Supplementary Video 3). The high throughput of 

3D-RAPID allowed us to observe fine detail over a very wide FOV, capturing multiple rapid 

feeding events (~10s of ms), as shown in Fig. 3b,c. From the photometric images, we can 

see that the larvae turn their bodies laterally so that their ventrally positioned mouths can 

access the overhead floating food. We also observe eye convergence once the larvae identify 

and approach the target [20–22]. The eye angles rapidly deconverge after food capture (Fig. 

3e,f). The older fish (20 dpf) exhibit similar eye behavior when feeding on brine shrimp 

(Supplementary Videos 4, 5).
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The 3D information enabled by our technique reveals how the larvae axially approach their 

targets from below, including their head heights and elevation (pitch) angles during these 

feeding events (Fig. 3b,c,e,f) [23]. The larvae’s head height matches that of the targeted food 

particle during ingestion (see also Supplementary Videos 1, 2, 4, 5), offering validation of 

our technique.

In addition to making organism-level observations, the high throughput of 3D-RAPID 

enabled us to make population-level inferences by aggregating height and elevation angle 

information for all 40 individually-tracked larvae for all in-frame time points. The results 

show a roughly linear trend between height and elevation angle (Extended Data Fig. 1a), 

which can be explained based on the mobility constraints defined by the length of the 

larvae and the water depth. For example, if the head is at the bottom of the arena, then the 

elevation angle must be negative. Assuming a larval length of L = 4 mm and a water depth of 

H = 2.3 mm, these geometric constraints on the elevation angle, ϕ, for a fish at height, ℎ, are

ϕmin ℎ = sin−1 ℎ/L , ϕmax ℎ = sin−1 H − ℎ /L , (2)

which are plotted in Extended Data Fig. 1a. This offers additional validation of the accuracy 

of our 3D height maps. We also estimated the probability distributions of the heights of 

the larvae and the food particles (Extended Data Fig. 1b), both of which are bimodal. 

Predominantly, the larvae dwell at the bottom of the arena, only occasionally venturing 

upwards for food.

We also analyzed population-level correlations between eye vergence angle (Methods 5.4), 

a property observable in the photometric images, and the fish height and elevation angle, 

which are derived from our 3D height maps (Extended Data Fig. 1c,d), across n = 39 fish 

(one stationary fish excluded). Specifically, we used a linear mixed-effects model, where 

height or elevation angle is the fixed effect and dependence among images from the same 

fish are accounted for as random effects. Analyses of variance suggest that while fish 

height is not a statistically significant linear predictor of eye vergence angle p = 0.33 , fish 

elevation angle is (p < 10−5). This is consistent with the fact that when the fish is swimming 

upwards, it is likely focusing on a food particle close to the surface. On the other hand, the 

fish can still be close to the surface following a feeding event, immediately after which the 

eyes deconverge (Fig. 3b,c,e,f).

With the 230-fps configuration, we can trade off spatial resolution to temporally 

resolve higher-speed zebrafish larval locomotion. For example, compare the beginning of 

Supplementary Videos 6 and 7, which feature rapidly swimming zebrafish larvae, captured 

at 60 fps and 230 fps. Similarly, we can resolve the 4D fish dynamics as it attempts to 

swallow a live brine shrimp (Supplementary Videos 4 (60 fps) and 5 (230 fps)).

3.3 Fruit flies (Drosophila hydei)

Next, we applied 3D-RAPID to image 50 freely exploring adult fruit flies (Drosophila 
hydei) under the 60-fps (Supplementary Videos 8 and 10) and 230-fps (Supplementary 

Video 9) configurations. Fig. 4 and Extended Data Fig. 2 summarize the results for 

the 60-fps configuration for six individual flies exhibiting various grooming behaviors. 
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Supplementary Video 10 shows tracking of all 50 flies. The 3D height map reveals changes 

in fly height and body tilt as the flies transition between different grooming behaviors. 

In Fig. 4b, as the fly transitions between grooming with its hindlegs and forelegs, the 

abdomen moves up and down, respectively. When a middle leg joins the grooming (Fig. 

4b, arrowheads), there is a subtle change in abdomen height relative to head height. In Fig. 

4c, our method correctly predicts an elevated height as one fly climbs atop another. At 

2.5 sec, the fly’s height drops, consistent with the straightened leg joints. A similar body 

tilt trend is observed for foreleg vs. hindleg grooming in this fly, as well as in Fig. 4d, e, 

and f. In Fig. 4f, we see another instance of the fly’s leg joints fully extended at 1.767 

sec, resulting in a reduced overall height. Further, we observe that the abdomen takes on a 

different relative height during abdominal grooming compared to hindleg grooming. Finally, 

in Fig. 4g, although the fly is grooming its forelegs throughout the video, it reduces its 

overall height after 1 sec, consistent with its extended leg posture.

To analyze population trends, we annotated video frames across n = 43 flies flies with one 

of five behaviors: hindleg grooming, foreleg/head grooming, abdomen grooming, standing 

still, and walking (Extended Data Fig. 2). Flies that exited the FOV were excluded. We 

tested for cross-behavioral differences in heights of the head, thorax, and abdomen using 

three separate linear categorical mixed-effects models, accounting for random effects due 

to correlations among video frames from the same fly. Analyses of variance suggest that 

behavior groups are a statistically significant predictor of the heights of the head (p < 10−7), 

thorax (p < 10−16), and abdomen (p < 10−62).

3.4 Harvester ants (Pogonomyrmex barbatus)

We also imaged freely exploring red harvester ants (Pogonomyrmex barbatus) under the 

60-fps (Supplementary Video 11) and 230-fps (Supplementary Video 12) configurations. 

The 60-fps results are summarized in Fig. 5. We used the dynamic 3D reconstructions to 

track the femur-tibia joints of all six legs of an individual ant (Fig. 5b,c; Methods 5.4), 

providing information about the kinematics of ant locomotion. The joint trajectories are 

plotted in Fig. 5c, showing that the high-frequency (~3–4 Hz) oscillations from walking 

kinematics are anti-correlated between left and right legs. This frequency remains relatively 

constant throughout the ant’s journey. Further, the forelegs and hindlegs on the same side of 

the body are correlated, but anti-correlated with the mid legs on the same side of the body. 

These behaviors are consistent with the well-known alternating tripod gait pattern in ants 

[33, 59, 60], which persists even as the curvature of ant trajectory changes.

We also observe changes in lower-frequency gait patterns as the ant makes multiple turns 

throughout its exploration. In the first ~1.5 sec, as the ant is turning right, we see a reduced 

oscillation amplitude in the mid and hindlegs on the right side in both the y and z directions; 

however, for the x direction, we see the opposite trend (see Fig. 5b for the ant-centric 

coordinate system). Between 1.5 and 3 sec, as the ant is turning left, we see the opposite 

motions as in the first 1.5 sec – the oscillation amplitudes in the mid and hindlegs on the left 
are reduced in both the y and z directions, while amplitude of the right mid leg motion in 

the x direction is reduced. From 3 to 4.5 sec, the ant once again is turning right and we see 

similar trends as in the first 1.5 sec. Overall, this reduction in motion in y and z on the side 
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of the ant corresponding to the direction the ant is turning is consistent with prior knowledge 

[59]. Interestingly, the amplitudes of the foreleg oscillations on both the left and right sides 

in both y and z remain relatively constant throughout the entire 5.5 sec, suggesting a lesser 

role in the biomechanics of changing directions.

Finally, we observe a low-frequency oscillation (with a period of ~4 sec) in the x direction 

for all 6 legs that is correlated with the curvature of the ant’s trajectory. Unlike the 

high-frequency (3–4 Hz) walking kinematics, which are anti-correlated between left and 

right, these low-frequencies are correlated between left and right legs, suggesting left-right 

coordination when the ant is turning. These low-frequencies in the x direction further are 

correlated between the forelegs and mid legs, but anti-correlated with the hindlegs.

4 Discussion

We have presented 3D-RAPID, a new computational microscope with a unique capability 

of dynamic topographic 3D imaging at 10s-of-μm resolution, over >130-cm2 FOV at 

throughputs exceeding 5 GP/sec. To handle this high data throughput, we devised an 

efficient, end-to-end, physics-supervised, CNN-based, joint 3D reconstruction and stitching 

algorithm that scales to arbitrarily long videos and arbitrarily sized camera arrays. Thus, 

3D-RAPID fills a unique niche, enabling scientists to study several unconstrained, freely-

behaving model organisms in parallel at high speed and high resolution over a very large 

FOV.

3D-RAPID differs from other camera array-based techniques [43–47] in several ways, 

due to the dense camera packing requirements necessitated by the high magnifications 

associated with microscopy. Some approaches alleviate this challenge by first magnifying 

to an intermediate image plane. However, the primary objective’s intrinsic SBP would limit 

the total throughput. Instead, our approach tiles CMOS sensors on a common PCB, which is 

connected to a single FPGA for unified data routing. This allows for extremely tight packing 

and scalability by simply adding more sensors. To our knowledge, 3D-RAPID is the 3D 

imaging system with the highest sustained throughput to date.

While we have presented several convincing 3D behavioral imaging demonstrations, there 

are several avenues for improvement. The hardware parameters could be adjusted to improve 

the 3D height reconstruction accuracy, which depends on how accurately parallax shifts 

can be detected to match features from different cameras (see Supplementary Sec. S5). 

Furthermore, since the reconstruction algorithm is agnostic to the contrast mechanism, it 

would also be possible to incorporate, for example, fluorescence to correlate behaviors with 

molecular signatures. Finally, throughput could be improved beyond 5 GP/sec by alleviating 

data transfer bottlenecks.

In summary, we have presented 3D-RAPID as a new platform for studying the behavior of 

multiple freely-moving organisms at high speed and resolution over a very wide area. We 

expect our technique to be broadly applicable to elucidate new behavioral phenomena, not 

only in zebrafish, fruit flies, and ants, but also other model organisms such as tadpoles and 

nematodes.
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5 Methods

5.1 Temporal synchronization of the camera array

Ideally, all sensor pixels should be fully synchronized with a global shutter, not only within 

each sensor, but also across sensors. This would ensure that between different views of the 

same object, after accounting for camera poses, the only discrepancies are due to parallax 

shifts and not sample motion. For example, if two camera views of a moving object with 

zero height were desynchronized, lateral motion could be interpreted as a parallax shift, 

leading to an erroneous height estimate. In practice, each of our sensors exhibits a rolling 

shutter, whereby only a single pixel value can be read out at a given time for a given sensor, 

row by row from the top-left to bottom-right corner in a raster scan pattern. This means that 

the bottom of a given sensor is captured later than the top of the sensor immediately below. 

However, across independent sensors, this rolling shutter readout pattern is synchronized to 

within 10 μs, limited by the serial communication interface (I2C with a 100-kHz clock).

To mitigate the rolling shutter effects, we employed two strategies. First, we cropped the 

sensors so that there is only significant overlap in the horizontal dimension for stitching, 

in which the desynchronization is much less severe. Second, we calculated that with 

exposures of 2.5 ms for 4× downsampling, 5 ms for 2× downsampling, and 20 ms for 

no downsampling, artifacts would be minimal. For a detailed discussion and calculations, 

see Supplementary Sec. S4.

5.2 Achieving robustness to illumination variation

Since the optimization metric of our approach is the mean square per-pixel photometric 

error, we would achieve optimal performance when the sample has a camera-independent 

photometric appearance. This condition would require not only uniform response across 

all pixels of all cameras, but also that the sample is isotropically emanating light in all 

directions. The latter property is in practice difficult to achieve, requiring either perfectly 

diffuse illumination or a diffusely scattering sample, regardless of the illumination direction. 

In addition to the regularizing effects of the CNN/DIP, we employed two additional 

strategies to reduce the effects of camera-dependent appearance. First, as part of the 

camera pose pre-calibration procedure, we also jointly optimized per-camera second-order 

2D polynomials (with cross terms) to correct the slowly-varying image intensity variation 

(whether caused by uneven illumination or camera response), using the same photometric 

stitching loss. Thus, the pre-calibration step not only ensures geometric consistency of the 

54 images, but also photometric continuity. For more details, see Methods 5.3, below.

Second, for terrestrial organisms illuminated in reflection, we employed a two-step 

optimization process, where we first optimize the CNN to register the images using 

the RGB intensities. In the second step, we continue optimizing the CNN, except this 

time registering normalized high-pass-filtered versions of the photometric images, which 

reduces illumination-induced differences in photometric appearance and emphasizes edges 

(Supplementary Sec. S3.5). This two-step procedure effectively removes artifacts in the 3D 

height maps that would otherwise result from camera-dependent photometric appearances.
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5.3 Camera calibration: pose, distortion, & intensity variation

The first step in the 3D estimation pipeline was to calibrate the cameras’ geometric 

and photometric properties. Specifically, the geometric properties include their 6D pose 

(3D position + 3D orientation) and second-order radial distortions (e.g., pincushion or 

barrel distortions). The photometric properties include the pixel intensity variations both 

within individual cameras and across different cameras. These may arise due to vignetting, 

uneven illumination, pixel response variation, or angle-dependent scattering of the sample. 

To estimate the calibration parameters, we imaged a flat, epi-illuminated, homogeneously-

patterned calibration target with the MCAM and registered the resulting 54 images, 

enforcing both geometric and photometric consistency in the overlapped regions.

The calibration procedure follows the optimization procedure outlined in Fig. 2a, excluding 

the height map-related orthorectification portion. In particular, let x0 and y0 be two vectors 

representing the ideal 2D spatial coordinates of the camera pixels – that is, a 2D rectangular 

grid of equally-spaced points (e.g., 1536×4096). Next, let Dθ ⋅ , ⋅  be an image deformation 

operation that maps from the ideal camera coordinates to a common global coordinate space 

(the object plane), parameterized by the camera parameters, θ. See Supplementary Sec. 1 of 

Ref. [1] for specific implementation details of Dθ. Let θi be the camera parameters for the ith 

camera, so that

xi, yi = Dθi x0, y0 (3)

represents the (de)warped coordinates of the ith camera in a common object plane.

Let Ii, 0 be a vector of the same length as x0 and y0, indicating the measured photometric 

intensity at every pixel coordinate for the ith camera. Although the debayered images 

have 3 color channels, here, for simplicity, we assume a single-channel image. Further, 

let Cϕ, x0, y0 ⋅  be a photometric correction operation, parameterized by ϕ, so that

Ii = Cϕi, x0, y0 Ii, 0 (4)

represents the photometrically-adjusted intensity values for the itℎ camera. The dependence 

on x0 and y0 indicates that the photometric correction is spatially-varying. Specifically, we 

used a second-order polynomial correction,

Ii = Cϕi, x0, y0 Ii, 0 = ai, 0 + ai, 1x0 + ai, 2y0 + ai, 3x0 ⊙ x0 +
ai, 4y0 ⊙ y0 + ai, 5x0 ⊙ y0 ⊙ Ii, 0,

(5)

where ⊙ represents element-wise multiplication and ϕi = ai, 0, ai, 1, ai, 2, ai, 3, ai, 4, ai, 5 . In sum, 

assuming θi and ϕi are optimized, then xi, yi, Ii, 0  represents the corrected ith camera data, 

accounting for distortion and photometric variation.

Next, let x, y, I  be three vectors representing the flattened concatenation of xi, yi, Ii, 0  for 

all i. We then initialize a blank matrix, R ⋅ , ⋅ , representing the stitched reconstruction, into 

which we backproject the collection of points,
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R x, y I, (6)

with interpolation, as x and y are continuously valued. When specific coordinates are visited 

more than once, the values are averaged. The result of Eq. 6 is an estimate of the stitched 

composite for a given set of θi, ϕi i = 1
54 . To update these parameters, we form a forward 

prediction from R ⋅ , ⋅  by reprojecting back into the camera spaces, as follows:

Ipred = R x, y . (7)

Ipred should match I when the camera images are well-registered and the corrected 

photometric intensities match in overlapped regions. Thus, we minimize the error metric,

MSE = ∥ Ipred − I ∥2, (8)

with respect to θi, ϕi i = 1
54  via gradient descent. Since the image target is homogeneous, we 

also include a regularization term,

∑
i

stdev Ii , (9)

which enforces a homogeneous reconstruction. Here, the standard deviation (stdev) is taken 

across all the pixels in one image.

Finally, we apply the calibrated parameters, θi, ϕi i = 1
54 , to each frame of the videos of the 

freely-moving organisms. To homogenize the background in the case of zebrafish, which 

uses transmission illumination instead of the epiilluminated calibration target, we apply a 

second calibration step that only optimizes the photometric correction parameters, ϕi i = 1
54 , 

using the maximum projection of the video across time, which eliminates all moving 

objects.

5.4 Organism tracking and pose determination

To track the fruit flies, zebrafish larvae, and harvester ants, we first thresholded the 

photometric composites to segment each organism and compute each of their centroids 

across all video frames. We then employed a simple particletracking algorithm, matching 

the organisms by finding the closest centroid in the subsequent video frame. In the case 

of clashing match proposals, we assigned matches that minimized the sum of the total 

absolute lateral displacements. To track the ants’ 6 femur-tibia joints, we incorporated the 

observation that the joint heights are local maxima in the 3D height maps for segmentation, 

and employed a similar particle-tracking algorithm.

To determine the orientation of the organisms, we performed principal component analysis 

(PCA) on the thresholded pixel coordinates and took the first principal component (PC) as 

the organism’s orientation. In the case of zebrafish, we used the height map coordinates 

to perform PCA in 3D, thereby allowing us to compute the elevation angles in Fig. 3. 

We resolved the sign ambiguity of the PC either by enforcing the dot products of PCs of 
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the tracked organism in consecutive frames to be positive, or by computing the relative 

displacement between the unweighted centroid and the intensity-weighted centroid and 

forcing the PC to point in the same direction.

The fish eye vergence angles were estimated by thresholding the green channel of the 

photometric intensity images to identify the eyes. The orientations of the eyes were 

estimated using the <monospace>regionprops</monosapce> command in MATLAB, which 

finds the angle of the major axis of the ellipse with the equivalent second moments. The 

vergence angle is then computed as the angle between the two eyes.

5.5 Biological samples and data acquisition

Zebrafish stocks were bred and maintained following Duke University Institutional Animal 

Care Use Committee guidelines and as previously described [1]. Zebrafish were stored at 

28°C with daily feeding and water changes, and cycled through 14 hours of light and 10 

hours of darkness per day. Free swimming fish were imaged at larval stages between 5 dpf 

and 20 dpf. Specifically, zebrafish larvae were transferred from culture chambers using a 

transfer pipette to a clear plastic imaging arena (with lateral inner dimensions 97 mm × 130 

mm), which was filled with system water a few mm deep. The arena was then placed on 

the sample stage of the MCAM system. The z position of the stage was adjusted such that 

the zebrafish larvae were all within the DOF of the lenses. The system was left undisturbed 

with the LED illumination panels turned on for at least 5 minutes to allow the zebrafish to 

acclimate, after which multiple MCAM videos were acquired using a custom Python script. 

After video acquisition, the arena was removed and replaced with a flat patterned calibration 

target. We focused the target with the z stage using a Laplacian-based sharpness metric and 

captured a single frame (all 54 cameras), which would serve to calibrate the camera poses 

and distortions for all videos captured during that imaging session.

The wild-type red harvester ants and fruit flies (available from various vendors on Amazon) 

were maintained at room temperature. When ready for imaging, we positioned and focused 

a flat patterned calibration target, which serves two purposes: 1) for camera calibration, 

just as for the zebrafish videos described in the previous paragraph, and 2) to serve as a 

flat substrate for the ants and fruit flies to walk upon. The patterned target, although not 

required, serves as a global reference in the 3D height maps. Alternatively, the substrate 

could be monochrome/featureless or transparent (e.g., a glass sheet), as was the case for 

the zebrafish imaging configuration, in which case the 3D height map would assign an 

arbitrary height value to the background without affecting the 3D accuracy of the organisms 

themselves.

The ants or fruit flies were inserted into a Falcon tube and released onto the center of the flat 

substrate, after which we immediately ran the same custom Python script to acquire MCAM 

videos. If necessary, the insects were re-collected in the tubes and re-released into the arena 

for repeated imaging. After video acquisition, we acquired a single frame of the calibration 

target alone, just as we did after zebrafish video acquisition.
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Extended Data

Extended Data Fig. 1. 
Population-level analysis of the zebrafish larvae featured in Fig. 3 and Supplementary 

Videos 1,3. a Fish head height vs. elevation angle for all 40 fish over time. Lines define 

the approximate physical limits due to geometric fish mobility constraints. b Kernel density 

estimates of the height distributions of the zebrafish and AP100 food particles. Eye vergence 

vs. head height (c) and vs. elevation angle (d) plots are color-coded by the maximum height 

the fish attained in the 10-sec video. Fixed effect components of the linear mixed-effects 

regression lines are plotted (p = 0.33 and p < 10−5) for c and d, respectively.
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Extended Data Fig. 2. 
Population-level analysis of the adult fruit flies featured in Fig. 4 and Supplementary Videos 

8,10. The six plots show kernel densities of the heights of the head, thorax, and abdomen 

for various behaviors. Differences of head (p < 10−7), thorax (p < 10−16), and abdomen (p < 

10−62) heights across behaviors are statistically significant (n = 43 flies).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of 3D-RAPID. a, Computational microscope setup, consisting of a 9×6 = 54 array 

of finite-conjugate imaging systems, jointly recording across a 135-cm2 area. LED arrays 

serve as the illumination source, both in transmission and reflection. b, 9×6 array of cameras 

and lenses. c, Overlap map of the object plane, demonstrating roughly 66% horizontal 

overlap redundancy between neighboring cameras (and minimal overlap in the vertical 

dimension). Four example camera FOVs are denoted with green dotted boxes, identified by 

(row,column) coordinates. d, The MCAM captures 54 synchronized videos at >5-GP/sec 

throughputs, which are stitched to form a high-speed video sequence of globally-consistent 

composites and the corresponding 3D height maps.
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Fig. 2. 
Computational 3D reconstruction and stitching algorithm for 3D-RAPID. a, The algorithm 

starts with raw RGB images (only one shown for clarity), along with coregistered images 

from the cameras to left and right, as CNN inputs. CNN generates camera-centric height 

maps, which in turn dictate orthorectification fields (see b and Eq. 1). Orthorectificaton 

fields and camera poses + distortions constitute registration parameters, dictating where 

and how each image should be backprojected in the stitched photometric composite and 

3D height map. The backprojection step is then reversed (reprojection) to form forward 

predictions of the RGB images and camera-centric height maps. Errors (photometric MSE 

and height MSE) guide the optimization of the CNN. b, The physical ray model, intuitively 

showing how orthorectification facilitates stitching of non-telecentric images and height 

maps. c, The patch-based joint training/stitching/3D reconstruction algorithm. At each 

gradient descent iteration, random coordinates are chosen (red star); all cameras that view 

a given point are isolated. A patch is cropped out from each camera image surrounding 

the randomly sampled point, along with the corresponding left/right camera images to 

serve as the multi-ocular stereo inputs to the CNN to predict the patch height map. 

These patches undergo the procedure outlined in a to form a mini photometric and 3D 

height reconstructions to update the CNN. Zeros are assigned to stereo input pixels when 

unavailable (e.g., at the edge of the object plane FOV), to preserve convolutionality when 

applying the CNN to the entire camera images to generate the full-size reconstructions. d, 
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Analyphs, whereby the three stereo inputs are color-coded as RGB channels, showing the 

parallax that is used to estimate 3D.
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Fig. 3. 
Zebrafish larvae (10 dpf) swimming in an open arena with interspersed microcapsulated 

food particles (AP100), acquired at 60 fps for 10 sec (Supplementary Videos 1,3). a, 3D 

height map and photometric composites of the zoomed-out FOV, projected across every 

50th temporal frame (0.83 sec) to highlight dynamics. The height map assigns an arbitrary 

value to the otherwise empty background. b, Photometric and height map frames of a single 

tracked fish feeding on AP100. The first 5 frames are spaced by 500 ms while the remaining 

frames are spaced by 16.7 ms (the full frame rate). e, The same fish’s head height, elevation 

angle (pitch), and eye vergence angle (illustrated in inset) throughout the 10-sec video. c,f, 
Another example of a zebrafish feeding event. Note the change in eye vergence before and 

after the feeding event in both b and c. d, A zoomed-in region of a, showing 3 individual 

larvae in varying states of activity. The small red tracks are the drifting and floating AP100 

food particles. Population-level analysis is summarized in Extended Data Fig. 1.
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Fig. 4. 
Adult fruit flies freely moving across a flat, noise-patterned surface, acquired at 60 fps for 

8 sec (Supplementary Videos 8,10). a, 3D height map and photometric composites of the 

zoomed-out FOV. The white-outlined red lines are the trajectories the 50 flies take. The 

green-circled flies are analyzed in the other figure panels. b, Select photometric and height 

map frames of a single tracked fly, exhibiting several grooming behaviors (hi = hindleg 

grooming, fo = foreleg or head grooming, mi = mid leg participation, ab = abdominal 

grooming). The time points of the frames are indicated by dotted lines in the plot below, 

which in turn highlights the changing heights of the head, thorax, and abdomen for the 

different grooming actions. c-g, The same information for 5 additional flies. Population-

level analysis is summarized in Extended Data Fig. 2.
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Fig. 5. 
Harvester ants freely moving across a flat, noise-patterned surface, acquired at 60 fps for 

10 sec (Supplementary Videos 11–12). a, Photometric composite and 3D height map of the 

zoomed-out FOV. One of the ants’ trajectories is color-coded by time, progressing from blue 

to red over a 5.5-sec duration, and is analyzed in b and c. b, Temporal snapshots of a single 

tracked ant along the trajectory in a. The blue and red dots are the femur-tibia joints for 

the ant’s 6 legs (L = left, R = right, F = foreleg, M = middle leg, H = hindleg). c, The 3D 

positions of the femur-tibia joints over the 5.5-sec trajectory. The lateral dimensions (xy) are 

defined relative to the ant’s orientation, as illustrated in b.
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Table 1

The three imaging configurations.

Downsample factor 1× (none) 2× 4×

Per-camera dims 1536×4096 768×2048 384×1024

Composite dims 13000×11250 6500×5625 3250×2810

Composite SBP 146.3 MP 36.6 MP 9.1 MP

Frame rate 15 fps 60 fps 230 fps

Exposure 20 ms 5 ms 2.5 ms

Raw pixel rate 5.1 GP/sec 5.1 GP/sec 4.9 GP/sec

Composite pixel rate 2.2 GP/sec 2.2 GP/sec 2.1 GP/sec

Image pixel pitch 9.6 μm 19.2 μm 38.4 μm
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