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ARTICLE

Pathologic gene network rewiring implicates
PPP1R3A as a central regulator in pressure overload
heart failure
Pablo Cordero1,2,20, Victoria N. Parikh1,20, Elizabeth T. Chin 1,2, Ayca Erbilgin1, Michael J. Gloudemans 2,3,

Ching Shang1, Yong Huang1, Alex C. Chang 1, Kevin S. Smith3, Frederick Dewey1, Kathia Zaleta1,

Michael Morley4, Jeff Brandimarto5, Nicole Glazer6, Daryl Waggott1, Aleksandra Pavlovic1, Mingming Zhao7,

Christine S. Moravec8, W.H.Wilson Tang8,9, Jamie Skreen10, Christine Malloy11, Sridhar Hannenhalli11,

Hongzhe Li12, Scott Ritter4, Mingyao Li12, Daniel Bernstein 7, Andrew Connolly13, Hakon Hakonarson14,

Aldons J. Lusis 15, Kenneth B. Margulies4,5,16, Anna A. Depaoli-Roach17, Stephen B. Montgomery 3,18,

Matthew T. Wheeler1,19, Thomas Cappola4,5,16 & Euan A. Ashley 1,18,19

Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions

underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human

hearts directly from transplant center operating rooms, and obtain genome-wide genotyping

and gene expression measurements for a subset of 313. We build failing and non-failing

cardiac regulatory gene networks, revealing important regulators and cardiac expression

quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity

changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown

validates network-based predictions, and highlights metabolic pathway regulation associated

with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking

PPP1R3A are protected against pressure-overload heart failure. We present a global gene

interaction map of the human heart failure transition, identify previously unreported cardiac

eQTLs, and demonstrate the discovery potential of disease-specific networks through the

description of PPP1R3A as a central regulator in heart failure.
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Heart failure (HF) is a life-threatening syndrome char-
acterized by an inability of the heart to meet the metabolic
demands of the body. HF costs the US more than $34

billion a year to treat 6 million patients1,2. Despite this, the
underlying molecular mechanisms remain poorly understood and
the few approved therapeutics target maladaptive compensatory
pathology rather than proximate molecular mechanisms3,4.

With rapidly increasing access to high-throughput sequencing
technology, molecular characterization of human heart tissue has
become possible, and in recent years a number of efforts to define
the regulatory transcriptional architecture of HF in humans and
small animals have been undertaken5–12. These efforts have
revealed changes in gene expression of key sarcomeric, calcium
cycling, developmental and metabolic genes. Because of the sig-
nificant logistical challenge of harvesting healthy hearts, few stu-
dies have included a nonfailing control group, making conclusions
regarding the transition to HF tentative. Further, as gene expres-
sion programs are rapidly altered in an environment of high
oxidative and nitrosative stress13, the high metabolic rate of the
heart limits the utility of post-mortem tissue for gene expression
analysis (e.g., from public resources such as GTEx14–16).

Thus, the expansion of this resource with high-fidelity tissue
collection and molecular characterization is required, and a cru-
cial next step in synthesizing this information is the identification,
and in vitro and in vivo validation, of novel molecular actors in
this disease. In this study, we identify previously undetected
cardiac expression quantitative trait loci (eQTLs) from genome-
wide genotyping and gene expression measurements from rapidly
preserved failing and nonfailing human heart tissue. Condition-
specific cardiac regulatory gene networks identify disease-driven
changes in local and global topology and pathway organization,
illuminating PPP1R3A as a novel predicted HF regulator. Lastly,
our in vitro and in vivo approaches further demonstrate its role in
HF pathology.

Results
Immediate tissue processing yields quality transcriptomic data.
The MAGnet consortium was founded to establish best practices
for the harvesting of human cardiac tissue (see Methods) and to
explore the genetic landscape of cardiac gene expression7,13,17.
Using this consensus protocol, we obtained 1352 human cardiac
samples and chose a subset of 313 hearts, including 177 failing
hearts collected immediately post transplantation and 136 healthy
donor controls that were suitable for transplantation but did not
reach a recipient due to logistical reasons (clinical characteristics
listed in Supplementary Table 1). We genotyped and measured
left-ventricular genome-wide gene expression of these samples,
controlling for known covariates, specifically age, gender and
collection site. Principal component analysis showed that addi-
tional covariates do not explain a significant proportion of var-
iance in gene expression (Fig. 1a and Supplementary Fig. 1).

We assessed the quality of these measurements in several ways.
First, we found that disease status was the dominant source of
variation suggesting no major confounding sources of variation
(Supplementary Fig. 1). Second, we confirmed enhanced expres-
sion of NPPA and NPPB, depletion of SERCA2A, and a shift from
MYH7 towards MYH6 expression—established signatures of HF
(Supplementary Fig. 1A and B). In total, 793 genes were
significantly upregulated in failing hearts compared to nonfailing
and 848 were downregulated (fold change greater or lesser than 2
or 0.5 respectively, with FDR < 0.01; full differential expression
analysis is available in Supplementary Data 3 and 4). Finally, as
our sample collection was performed immediately before or after
cardiac transplantation (unlike post-mortem samples such as
those used in GTex), we investigated whether gene expression

programs related to oxidative stress were less perturbed than in
samples collected post mortem. To do this, we compared
oxidative stress gene expression as defined by genes in the GO
term “Response to oxidative stress”(GO:0006979) in our samples
to left-ventricular sample data in GTEx, as well as other KEGG
and Reactome pathways (data obtained from the recount2
database18). Our results suggested that our samples displayed
comparable contractility-related gene expression but had sig-
nificantly less oxidative-stress-related gene expression and less
perturbation in other metabolic pathways (Supplementary
Fig. 2C). Having established the quality of our data, we limited
our network-based downstream analyses to the 40% genes most
variably expressed between failing and nonfailing hearts (n=
7960) in order to limit inflation of correlation between low
covariance gene pairs.

Cardiac coexpression maps reveal dynamic network topology.
We inferred undirected, disease-state-specific gene coexpression
networks. Gene regulatory network inference from coexpression
is a challenging problem that no single method solves adequately
in all contexts. Here, we constructed control- and HF-specific
networks using methods that rely on gene coexpression
(Weighted Gene Co-expression Network Analysis (WGCNA)19,20

and Pearson correlation), inverse covariance estimation (Joint
Graphical LASSO (JGL)21), and mutual information (ARACNe22

and ZScore) (see Methods for details. All network constructions
are available at https://doi.org/10.5281/zenodo.2600420). Each of
these methods has specific advantages for different questions, e.g.
JGL creates a sparser network with the specific intent of reducing
representation of noncausal associations, whereas WGCNA relies
on denser network topology to capture modules of genes with
high likelihood of interaction. Since our downstream analysis
required a top-down systems view of coexpression networks, and
because we planned to prioritize genes based on the change in
connectivity of networks between disease states, we chose to base
our subsequent analyses on WGCNA-derived networks, which
represent a robust tool for this purpose.23,24

To achieve an initial understanding of topological changes
between the nonfailing and failing heart networks, we compared
the structure of modules in each WGCNA-derived network
(dendrograms used for module finding shown in Supplementary
Fig. 3). These networks displayed different structure in HF than
in control: First, the number of genes unassigned to any module
was much fewer in HF (13 genes were unassigned, compared to
2614 in controls). Second, while each group of genes was
specifically enriched with functional annotations as revealed by
enrichR25, the HF modules had more diversity of signaling and
metabolic annotations (full gene module descriptions and
Benjamini−Hochberg-adjusted enrichment p values are shown
in Supplementary Data 5 and 6).

We then manually curated modules of genes related to four key
processes involved in HF (Fig. 1b: sarcomeric and contraction
genes (orange), excitation−contraction (EC) coupling (red),
cardiac remodeling (green), and metabolism (blue), see Supple-
mentary Data 11). Network connectivity changed within these
process-based modules between nonfailing and failing networks.
Compared to the nonfailing network (gray typeface), the failing
heart network (red typeface) saw a general rewiring in
connectivity within and between these modules; metabolic genes
gained a few specific genes such as the protein phosphatase 1
catalytic and regulatory subunits (PPP1CC, PPP1R1A, and
PPP1R3A/B/C) and the muscle 6-phosphofructokinase PFKM in
the HF network (Fig. 1b, blue). Cardiac remodeling genes that
gained connectivity were MYBPC3, MYH7, RYR2, and SGCG/D;
sarcomeric and contraction genes that gained connectivity were
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MYBPC3, MYH7, again listed due to pathway overlaps and VIM,
UQCRH/C1; while for EC coupling these were ATP1A1/2/3 and
again RYR2.

Finally, plotting a Sankey diagram to observe where module
membership changes from controls to HF (Fig. 1c) revealed large
rewiring of coexpression structure. Shared core structure modules

such as electron transport chain (ETC) and metabolism genes
mostly remained in the same module (dark red in controls and
turquoise in HF), while the unassigned genes in the controls
(gray) went mostly to the metabolism/ETC (turquoise), cell
surface/immune/metabolism (brown), and fibrosis (red)
modules in HF.
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High-quality tissue expression data reveal cardiac eQTLs. We
then leveraged genome-wide genotypes to find gene-expression-
controlling loci (eQTLs) in each cohort. First, we performed
hidden covariate correction using the PEER package (see Meth-
ods). We used QTLtools to perform association testing for each
cohort separately (see Methods) and performed a scan on the
number of hidden factors to correct with PEER.26 We found that
the HF cohort had more associated eQTLs than the control group
(1566 vs. 936, respectively, with an overlap of 254 loci between
the two groups, see https://doi.org/10.5281/zenodo.2617028 for
full eQTL results); as expected these eQTLs showed proximity to
known transcription factor binding sites and transcription start
sites (Fig. 2a, b). We then tested these eQTLs for enrichment of
regulatory associations using RegulomeDB, a database of known
and predicted regulatory regions of the genome27. Here, both
cohorts had several eQTLs with adjacent (within 50 base pair
window) regulatory annotation (716/1566 (46%) and 425/936
(45%) of variants, for failing vs. control, respectively) and/or
predicted for transcription factor binding (Supplementary
Fig. 4A). We then compared our eQTLs with those found by the
GTEx project. Our set of eQTLs contained hundreds of novel
associations when compared to the GTEx database for left-
ventricular tissue: 831/1566 (53% novel associations) for the HF
group and 423/936 (45% novel associations) for the control group
(Fig. 2c). We also identified significant overlap with specific tissue
types (e.g. artery vs. muscle) and cell types (e.g. cultured fibro-
blasts) (Supplementary Fig. 4B). Comparison to a recently
updated version of GTEx yielded even greater overlap (Supple-
mentary Table 2).

This percentage of newly identified eQTLs is larger than on
previous, related eQTL studies10,28, and also displays greater
overlap with GTEx than those found in an independent cohort of
patients with dilated cardiomyopathy10. This large overlap was
encouraging, and since we control for known and hidden
covariates, our difference in eQTLs compared to related studies
may reflect the immediate tissue collection techniques we used,
and the difference in disease status (at least one third of cases in
this study had ischemic disease, which was not true for
comparison studies, which focused on nonischemic dilated
cardiomyopathy10).

To assess the physiological impact of our eQTLs, we checked
for overlap of our eQTL associations with existing variants in the
GWAS catalog29. First, we did a simple, direct SNP overlap check
with the GWAS variants (GWAS catalog variants with an LD
cutoff of 0.6, using SNiPA30 to check for LD overlaps). For HF
eQTLs, this revealed 41 variants, among which we found 25
associations with sudden cardiac arrest, heart rate variability, and
coronary heart disease among other diseases/traits, whereas 33 of
the nonfailing control eQTLs had associations in the catalog,
including QT interval and heart rate variability traits (Supple-
mentary Data 7 and 8). To assess whether the magnitude of this
overlap was higher than expected, we used SNPSNAP31 to
generate two sets of 10,000 random variants each with the same

LD and gene density characteristics as our failing and nonfailing
eQTLs. The average overlap of these random sets to GWAS
variants was 0.1 for both sets, yielding empirical p values of less
than 0.001 in each set and confirming that our overlap is higher
than expected.

To expand our analysis of overlap of our eQTL findings with
GWAS, we used eCAVIAR32, a high-resolution method that
leverages SNP density to perform colocalization enrichment tests
between hits in a high-powered, publicly available coronary artery
disease GWAS and nearby eQTLs from our analysis (see
Methods). We chose this coronary artery disease GWAS for
comparison not only because it is one of few related to causes of
HF that are appropriately powered for this high-resolution
method, but believed it to be a reasonable disease surrogate for
comparison based on the 36% of explanted failing hearts in our
study that had undergone coronary artery bypass grafting
(Supplementary Table 1). This method found seven regions
nearby seven genes that have coronary artery disease-associated
SNPs and that are significantly colocalized with our eQTLs (see
Methods).

We then interrogated which gene modules uncovered by
WGCNA were controlled by eQTL loci in concert by examining
the fraction of genes that were e-genes of in the eQTL analysis
(Fig. 2c). The modules with the top fraction of e-genes was
turquoise in HF and dark red in the controls (40% and 32%,
respectively), both of which correspond to ETC and metabolism
genes. In HF, the next modules with the most fraction of e-genes
were the brown module, a combination of cell surface, immune,
and metabolism genes, as well as the dark red module, comprised
of muscle contraction and cardiac remodeling genes. For the
control cohort, the next module most enriched with e-genes was
the gray/unassigned module, indicating a less cohesive regulatory
structure; then followed by the blue module dominated by
unfolded protein response genes.

We went on to identify modules of coordinating genetic loci
and associated networks of genes within these associations by
finding nontrivial connected components (i.e. with more than
three nodes) within the bipartite association graph of variants and
genes, including WGCNA edges with weights larger than the
median (Fig. 2d). Notably, we found two eQTLs within a region
enriched with predicted histone modifications that controlled a
network of several TAS2R members in-cis, a family of G-protein-
coupled receptors, in both failing and control groups (Fig. 2e, f,
r10492099 and rs4763223). As TAS2R receptors can have high
homology in some regions, we checked for potential probe cross-
hybridization. We compared sequences for all TAS2R gene probes
for the GeneChip ST1.1 array by BLASTing them against human
transcript sequences (evalue cutoff of 0.01, with at least 12/25
exact matches). The genes TAS2R43−TAS2R46 had overlapping,
high similarity matching probes, suggesting possible cross-
hybridization, while the rest of the receptors’ probes were
deemed independent by this analysis. These associations,
prevalent in both cohorts, highlight a common module of

Fig. 1 Regulatory rewiring of coexpression networks in HF. a Principal component analysis of gene expression profiles for 177 failing hearts and 136
nonfailing, control, hearts showing clear segregation of HF (red) vs. control (gray) population. b Differential connectivity of known biological processes in
HF. Normalized connectivity (sum of WGCNA weights divided by maximum network weight) between representative genes from four known processes
that play critical roles in HF (sarcomeric and contraction genes (orange), EC coupling (red), cardiac remodeling (green), and metabolism (blue)) to all
genes from those same processes in HF and controls. Genes of each process are rows and columns are process and cohort. For example, MYBPC3 in the
cardiac remodeling process (third row in green heat map) is highly connected to sarcomeric and contraction genes and cardiac remodeling genes in the HF
network (fifth and eighth columns respectively) compared to all the control processes. c River plot demonstrating changing modular assignments for genes
in the HF vs. control networks. Pink lines represent individual genes, with left-sided grouping representing membership in control (left) and HF (right)
network modules (indicated by color of text box) and right-sided grouping in HF network modules, with text indicating module names derived from KEGG
and Reactome associations of genes within each module
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G-protein-coupled receptors that have been previously observed
to be expressed in the healthy and failing heart33,34, and that may
play a role in the regulation of arrhythmia and contractility35.

In summary, our heart transplant cardiac samples and inferred
gene coexpression networks enabled us to find several previously
unidentified cardiac eQTLs in the failing and nonfailing heart.
Many of the eQTL variants were also associated with cardiac
phenotypes in GWAS and some are associated with genes in
highly connected parts of the coexpression network, suggesting
coordinated regulation.

Dynamic network topology illuminates central HF regulators.
Next, we used our network topology to identify and prioritize
genes that were dynamically connected between the failing and
control heart networks. Our goal was to identify genes whose
network connectivity was increased in the disease state (i.e. HF),
but specifically to pathways known to be relevant to the global
control of HF mechanisms. We achieved this by ranking genes on
two connectivity metrics: (i) differential local network con-
nectivity for each gene between control and failing networks, and
(ii) change in each gene’s connectivity globally to HF-relevant
molecular pathways manually curated from KEGG and Reactome
(curated list of pathways included in Supplementary Data 9). We
defined local connectivity (LC) as the change in number of edges
for each gene between the control and HF networks. Global
connectivity (GC) was defined as the number of curated HF-
relevant pathways to which each gene was significantly differen-
tially connected in the control vs. HF networks, taking into
account network distance (see Methods, Supplementary Fig. 5).

Using GC and LC, we assigned each gene to one of four
categories (Fig. 3a): Noncoordinators were genes with decreased
LC and GC between the control and HF networks, making them
less likely to be highly impactful in the disease state. Local
coordinators had significant increases in LC but decreased GC,
indicating high coexpression, but mostly with genes unrelated to
global HF processes. Pathway coordinators were genes with
increased GC but overall low LC, indicating an increased
association with global HF processes, but overall low impact
with respect to gains in coexpression. Finally, central coordinators
increased both in GC and LC, and therefore represent genes with
increased local coexpression involving an increased number of
global HF-relevant processes (a list of genes and assigned status
are included in Supplementary Data 10).

After classifying each gene in this way, we focused on central
coordinators (Fig. 3b, top right) in order to capture those genes
with the most dynamic connectivity in disease. In addition to
increased connectivity with HF-relevant pathways in the HF vs.
control networks, these central coordinators were enriched in
OMIM/KEGG cardiomyopathy terms and pathways (hyper-
trophic and dilated cardiomyopathy KEGG pathway and OMIM
terms, Fisher exact test p values < 0.001). This includes the
myosin binding protein C3 (MYBPC3) which has previously been
implicated in the Mendelian cardiac muscle diseases, hyper-
trophic cardiomyopathy and dilated cardiomyopathy36,37

(Fig. 3b). Particularly, we noted that genes with highest increases
in global connectivity regulated HF-related pathways across
several cardiomyocyte-relevant processes including metabolism,
muscle contraction, and cardiomyopathy-related genes (Fig. 3c).
These data are in concordance with transcriptomic data from
murine myocardium with and without exposure to transaortic
constriction, which revealed prevalent gene modules associated
with mitochondrial and cytoskeletal gene ontologies.28 In
contrast, prioritization by differential gene expression between
failing and control myocardium did not reveal many genes
genetically associated with known cardiovascular disease

pathways. We found no relationship between differential
expression and either global or local differential connectivity.
Only 1 of the top 20 highly differentially expressed genes was
associated with cardiovascular disease pathways in KEGG or
Reactome compared to 5 out of the top 20 for the connectivity-
derived list—a significant enrichment difference ((Fisher exact
test p value < 0.001), Supplementary Fig. 2).

Among those central coordinators whose network connectivity
was maximally changed in the failing heart was protein
phosphatase 1 regulatory subunit 3A (PPP1R3A), with one of
the highest changes in GC between control and failing hearts
(green typeface, Fig. 3b). PPP1R3A, which encodes a muscle-
specific regulatory subunit of protein phosphatase 1 (PP1)38, has
not been previously associated with HF. To examine the
importance of PPP1R3A to cardiomyocyte hypertrophy across
cardiomyopathic etiologies, we also examined its importance in a
cardiomyopathy pathway (hypertrophic cardiomyopathy,
KEGG), and found that its differential connectivity to this
pathway (Fig. 3d) exceeded even that of MYH7 (Fig. 3e), an
exemplar cardiomyopathy gene. Additionally, we noted that
connectivity of PPP1R3A to our lists of sarcomeric and
contraction genes was increased significantly in HF (Fig. 2b).
Previous work indicates PPP1R3A contains a glycogen-binding
domain39 and is thought to promote skeletal muscle glycogen
synthesis, and variants in PPP1R3A have been associated with
decreased insulin sensitivity40,41. Our own networks showed
increased connectivity of PPP1R3A to metabolic pathways in
control and failing myocardium as well (Figs. 1b, 3c). As cardiac
metabolism in HF is known to switch toward a glucose-based
metabolism, and as metabolic pathways were significantly
connected to PPP1R3A in our HF network (Fig. 3c), we
hypothesized that this gene would play an important role in the
transition from healthy to failing myocardium.

PPP1R3A knockdown ablates HF phenotypes in vitro. To
investigate the role of PPP1R3A in HF, we first determined the
effect of perturbing PPP1R3A expression via RNA silencing on
global gene expression in vitro. We used RNA sequencing to
measure global gene expression at various time points with and
without PPP1R3A knockdown in phenylephrine-treated NRVMs
(an in vitro model of cardiomyocyte hypertrophy and HF sig-
naling, Fig. 4a, Supplementary Fig. 6). Global expression of cen-
tral coordinators significantly changed after knockdown and/or
phenylephrine treatment at both time points (* indicates FDR <
0.05, Fig. 4b). The expression of central coordinators (Fig. 3a, b)
was highly altered by knockdown of PPP1R3A in NRVM both
with and without a hypertrophic stimulus (phenylephrine,
Fig. 4b). Genes whose change in expression met statistical sig-
nificance in the global RNA-sequencing dataset were over-
represented among these highly dynamic central coordinators
(* indicates FDR 0.05, Fig. 4b), providing evidence that PPP1R3A
is a central regulator of this network, as manipulation of its
expression directly causes significant network perturbation.
Consistent with these findings, knockdown of PPP1R3A also
protected NRVMs against cellular hypertrophy caused by phe-
nylephrine both by measures of cell size and the ratio of Myh7/
Myh6 gene expression over time (Fig. 4c). Taken together, these
results indicate that reduction of PPP1R3A expression slows
cellular HF pathology and its associated signaling in vitro by
acting as a central regulator in the network of hypertrophy- and
HF-relevant pathways.

Noting that many of the central coordinators significantly
regulated by PPP1R3A knockdown were metabolic genes (e.g.
GLUT4, PFK, multiple subunits of NADH ubiquinone oxidor-
eductase and COQ10, Fig. 4b) and that prior work has implicated
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PPP1R3A in striated muscle glycogen metabolism, we hypothe-
sized that PPP1R3A’s role in the development of HF was related
to the metabolic switch from respiratory to glycolytic glucose
metabolism observed in failing myocardium. We found that
under phenylephrine-treated conditions, PPP1R3A knockdown
resulted in the alteration of genes critical to glucose metabolism
such as glucose transporters GLUT1 and GLUT4 (upregulation

and downregulation, respectively, Supplementary Fig. 6). Further,
under normal NRVM culture conditions, knockdown of
PPP1R3A induced a significant downregulation of critical
regulators of oxidative metabolism, such as the pyruvate
dehydrogenases PDK2, the carnitine palmitoyltransferase CPT1B
(Supplementary Fig. 7). Pyruvate dehydrogenase kinases (e.g.
PDK2) are major molecular drivers of decreased respiratory
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glucose metabolism in HF via inactivation of pyruvate dehy-
drogenase42. This results in shunting of pyruvate away from the
oxidative TCA cycle into lactate, thus decreasing energetic
efficiency of glucose metabolism in cardiomyocytes. We therefore
hypothesized that decreasing PPP1R3A expression would lead to
liberation of respiratory metabolism, and found that siRNA-
mediated knockdown of PPP1R3A leads to increased basal and
maximal respiratory metabolism of pyruvate by NRVM as
measured by oxygen consumption (p= 0.02 (basal respiration)
and p < 0.01 (maximal respiration) Fig. 4d, blue boxes, see
Methods).

Ppp1r3a−/− mice are protected against LV dysfunction. We
then investigated the effect of PPP1R3A on HF in vivo using a
model of pressure overload, transaortic constriction (TAC).
Compared to Ppp1r3a+/+, Ppp1r3a−/− mice were protected from
TAC-induced left-ventricular (LV) dysfunction as measured by
fractional shortening (p= 0.002 (ANOVA), Fig. 5a). This effect
was associated with unchanged levels of the HF markers Nppa and
Nppb in the LV of Ppp1r3a−/− TAC vs. sham mice compared to
the expected TAC-induced increase observed in Ppp1r3a+/+mice
(Fig. 5b, Nppa: p= 0.006 (ANOVA), Nppb: p= 0.008 (ANOVA)).
No significant difference was found across groups in the ratio of
Myh7/Myh6 expression (Fig. 5b, p= 0.11, ANOVA).

In accordance with these findings, there was no difference
between Ppp1r3a−/− TAC and sham in cardiomyocyte size, while
Ppp1r3a+/+ animals showed expected cellular hypertrophy after
TAC (Fig. 5c (p= 0.004 (ANOVA)). After TAC, heart weight/body
weight ratio varied significantly between groups, though TAC
comparisons within genotype did not reach statistical significance
by Bonferroni post test (p= 0.02, ANOVA, Ppp1r3a+/+ TAC vs.
Sham p= 0.07 Bonferroni post test, Supplementary Fig. 8). LV
fibrosis was also unchanged in Ppp1r3a−/− animals after TAC, as
opposed to the expected increase in fibrosis seen in Ppp1r3a+/+

animals in response to TAC (Fig. 5d, p < 0.0001 (ANOVA)).

Discussion
We have constructed a comprehensive gene regulatory map of
human heart failure (HF). This effort has been facilitated by a
systematic approach to the collection of control and failing heart
tissue from the operating rooms of cardiac transplant centers and
the resulting measurements have allowed us to describe several
previously unrecognized molecular features of HF. Notably, the
network structure of HF differs markedly from that of nonfailing
heart tissue. Specifically, we find that the control network has a
large number of genes (2614) not associated with modules,

whereas in the HF network, only 13 genes remained unassociated,
providing evidence for increased connectivity in the HF network.
Further, in the HF network, there is significant rewiring of genes
to new processes (Fig. 1c), and an array of changes in coexpres-
sion relationships of central genes to key processes such as sar-
comeric structure, excitation−contraction coupling, metabolism,
and cardiac remodeling.

The inferred networks also aided in the discovery of new
eQTLs in the nonfailing and failing contexts. Notably, we found a
greater number of eQTLs in the failing heart, half of which were
not previously reported, but that were still implicated in higher
phenotype associations in GWAS. In some cases, the expression
of local subnetworks of genes were found to be associated with
one locus, such as several members of the TAS2R G-protein-
coupled receptor family, receptors typically associated with the
sensation of taste but recently found to be variously expressed in
cardiac tissue33. Further, these eQTLs were enriched for reg-
ulatory annotations, which were more prevalent in the failing
heart cohort. Thus, these newly identified eQTLs are not only
important for identifying potential regulatory DNA, but also
novel molecular actors in HF that would not have been dis-
covered in healthy tissue alone.

In addition to identified eQTLs, comparison of coexpression
structure between disease and control networks highlighted genes
whose connectivity changed meaningfully between the two
cohorts, regardless of change in mean expression. This reveals
central coordinating genes in HF that would otherwise be missed
by examination of individual gene expression alone. This phe-
nomenon has been observed across human diseases,43,44 and
highlights a critical feature of coexpression networks: they capture
the global complexity of regulation beyond individual changes in
expression to identify genes pivotal in disease. Here, our strategy
classified genes both by their local connectivity and their network
distance to HF-relevant pathways (global connectivity) to identify
PPP1R3A as a gene with a putative role in HF. PPP1R3A would
not have been identified without this network approach, given
that its own expression is not altered drastically in disease. Sub-
sequent molecular investigations demonstrated its effect on other
central coordinators between the control and HF networks as well
as a deleterious effect on contractile function in the setting of
pressure overload in vivo. Although this gene has not previously
been associated with human cardiac disease, studies in both
mouse and human have found that loss-of-function mutations in
PPP1R3A manipulate metabolic pathways in skeletal muscle, and
our own analysis implicated it in pyruvate, and other metabolic
pathways (Fig. 3c and Fig. S7)41,45. Elimination of PPP1R3A in a
murine model of cardiomyopathy revealed a maladaptive role for

Fig. 4 PPP1R3A knockdown in vitro reveals metabolic regulation in cardiomyocytes. a Experimental design. NRVMs were isolated, transfected with siRNA
36 h later. Phenylephrine or vehicle treatment started at 48 h. RNA was collected at 36, 48, 72 and 96 h after isolation. b Clustered heat map of NRVM
transcriptional expression of central coordinators in response to PPP1R3A knockdown (measured by RNAseq). Expression is shown from NRVMs at 72 and
96 h after isolation normalized to pretreatment expression, and displayed as per-gene z-scores. Data from cells with and without phenylephrine (PE) are
shown on the left and right sides of the heat map with and without siRNA knockdown as indicated. Stars indicate central coordinators significantly
differentially regulated by PPP1R3A knockdown (FDR < 0.05, red stars indicate significance in the PE-treated group (red at 72 h, dark red at 96 h) and blue
stars indicate significance in the untreated group after PPP1R3A knockdown at 72 (light blue) and 96 (dark blue) hours). c PPP1R3A knockdown protects
against hypertrophic stimulus of phenylephrine treatment. Upper panel: Cell size measurements of a sample of cells under phenylephrine and normal
conditions, with and without PPP1R3A KD reveal reduced hypertrophy in NRVMs treated with PE and PPP1R3A KD compared to PE-treated cells with and
without scramble siRNA transfection (p < 1e10−4 (ANOVA), *= p < 1e10−3 by Bonferroni post test. n= 100 cells for each group, red bars indicate mean,
black bars indicate one standard deviation). Lower panel: Myh7/Myh6 ratio, a marker for HF, is decreased in PPP1R3A KD NRVMs treated with PE compared
to those transfected with scrambled siRNA control at 72 and 96 h after isolation (p < 1e10−2 for both comparisons, error bars represent 95% confidence
intervals). d Respiratory pyruvate metabolism increases after PPP1R3A knockdown. Knockdown of PPP1R3A leads to increased basal and maximal
respiratory metabolism of pyruvate as measured by oxygen consumption in NRVM (basal respiration: p= 0.02, maximal respiration: p= 0.005, center line
indicates median, box indicates IQR, and whiskers indicate next adjacent value. n= 3 biologically independent samples for the siRNA/pyruvate group and
n= 4 for all other groups). Source data for this figure are provided in a source data file
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this gene in HF, and our in vitro studies highlight the metabolic
switch of failing myocardium: toward inefficient glycolytic glu-
cose metabolism and away from the use of pyruvate in respiratory
metabolism (Fig. 4d).

While a great strength of this study is its immediate isolation of
RNA from freshly explanted human tissue, the resultant networks

are not based on gene expression from a single cell type, but
rather whole cardiac tissue. While the expression-based networks
we use lend themselves to the construction of networks that
bridge cell types, we cannot state with certainty that the identified
central coordinators are resultant of gene−gene interactions
within cardiomyocytes alone, though many of them changed
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groups), Ppp1r3a−/− TAC 37.6 ± 4.3%, Ppp1r3a−/− Sham 36.5 ± 4.7%, Ppp1r3a+/+ TAC 26.7 ± 9.5%, Ppp1r3a+/+ Sham 41.2 ± 8.4%, p= 0.03 ANOVA and
p= 0.03 for Ppp1r3a−/− TAC vs. Sham by Bonferroni post test. At 8 weeks (n= 5 for all groups), Ppp1r3a−/− TAC 37.9 ± 2.8%, Ppp1r3a−/− Sham 41.6 ±
6.8%, Ppp1r3a+/+ TAC 24.4 ± 9.0%, Ppp1r3a+/+ Sham 38.5 ± 2.8%, p= 0.002 (ANOVA) and p= 0.01 for Ppp1r3a−/− TAC vs. Sham (Bonferroni post
test). b Gene expression of HF markers is not increased in Ppp1r3a−/− animals after TAC: PPP1R3a: p < 0.0001 (ANOVA), p < 0.0001 Ppp1r3a+/+ vs
Ppp1r3a−/− TAC and Ppp1r3a+/+ vs. Ppp1r3a−/− Sham, but p= 0.41 Ppp1r3a+/+ TAC vs. Sham (Bonferroni post test). MYH7/MYH6: p= 0.11 (ANOVA),
p= 0.45 Ppp1r3a+/+ TAC vs. Sham and p= 1.0 Ppp1r3a−/− TAC vs. Sham (Bonferroni post test). Nppa: Ppp1r3a+/+ Sham 1 ± 0.18 (mean fold change ± SD),
Ppp1r3a+/+ TAC: 4.8 ± 2.6, Ppp1r3a−/− Sham: 1.5 ± 1.1, Ppp1r3a−/− TAC: 2.5 ± 1.1. p= 0.006 (ANOVA), p= 0.006 Ppp1r3a+/+ TAC vs. Sham and p= 1.0
Ppp1r3a−/− TAC vs. Sham (Bonferroni post test). Nppb: Ppp1r3a+/+ Sham 1 ± 0.11, Ppp1r3a+/+ TAC: 4.1 ± 1.9, Ppp1r3a−/− Sham: 1.4 ± 1.1, Ppp1r3a−/− TAC:
2.6 ± 1.5. p= 0.008 (ANOVA), p= 0.01 Ppp1r3a+/+ TAC vs. Sham and p= 1.0 Ppp1r3a−/− TAC vs. Sham (Bonferroni post test). c Preservation of
cardiomyocyte size in Ppp1r3a−/− animals after TAC: p= 0.004 (ANOVA), p= 0.004 Ppp1r3a+/+ TAC vs. Sham and p= 0.64 Ppp1r3a−/− TAC vs. Sham
(Bonferroni post test). Scale bar indicates 20 μm length. d Fibrosis is not increased in Ppp1r3a−/− animals after TAC (p < 0.0001 (ANOVA), p= 0.001
Ppp1r3a+/+ TAC vs. Sham and p= 0.22 Ppp1r3a−/− TAC vs. Sham (Bonferroni post test). Scale bar indicates 200 μm length. *p≤ 0.05 (Bonferroni post
test), TAC transaortic constriction. Error bars indicate standard error of the mean. Source data for this figure are provided in a source data file
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significantly with Ppp1r3a knockdown in NRVMs (Fig. 4a). In the
same vein, as the causes of HF leading to transplant are diverse,
the network-based hypotheses generated by this work are likely to
highlight final common pathways of HF resulting from diverse
etiologies. This can be viewed as a strength of this work as it is
applicable across these multiple etiologies; however, additional
studies investigating the early stages of specific HF etiologies will
add equally to the literature in future. It must also be noted that,
due to the nature of the cohort of control hearts available for
transplant, control hearts here are not free of disease (e.g. dia-
betes, Supplementary Table 1). Though there are more male
hearts included in the HF group than control hearts, principal
component analysis of gene expression does not reveal segrega-
tion by sex (Supplementary Fig. 1). Nevertheless, we controlled
for this variable in both the network and eQTL analyses.

Since genome-wide expression studies were introduced, there
has been interest in quantifying genes that are significantly dif-
ferentially expressed, e.g. between failing and nonfailing states.
What this linear, unitary approach fails to capture are mechan-
isms influencing higher order phenotypes reflected in rewiring
of transcriptional partners that do not affect expression levels of
specific genes. Earlier work has already led to the discovery of
central genes using coexpression changes46,47. Here, we expan-
ded this use of gene coexpression by exploiting not only gene
interaction degree, but also integrated topological network dif-
ferences and known pathway information. In our HF networks,
we have shown how differences between these network topology
properties in failing and nonfailing hearts can be used to uncover
novel mechanisms and highlight new putative therapeutic
targets.

Methods
Tissue collection and processing. We established a collaborative multi-institution
network with a 24/7 notification system and a team of travel-ready surgeons at
major transplant centers to systematize the collection of cardiac tissue from failing
hearts and unused heart transplant donors at operating rooms and remote loca-
tions. We put in place a series of best practices for procurement of explanted
cardiac transplant tissue including harvesting explanted cardiac tissue at the time of
cardiac surgery from subjects with HF undergoing transplantation and from
unused donor hearts. Hearts were perfused with cold cardioplegia solution prior to
cardiectomy to arrest contraction and prevent ischemic damage, and explanted
cardiac tissue specimens were flash frozen in liquid nitrogen.

All samples were taken from the left-ventricular free wall at the mid ventricular
level (Segments 11 or 12) on the 17-segment model. On some of the occasions,
when it was necessary to avoid infarct or peri-infarct tissue in these segments, we
obtained tissues that may be closer to the base or apex or more anterior or inferior
(segments 1, 4, 5, 6, 7, 10, 16). The septum was never collected. Histopathology
using H&E and trichrome staining was used to avoid the use of donor hearts with
excess fibrosis or hypertrophy. Immunostaining was not performed.

The institutional review boards at all collection sites (including Stanford, the
University of Pennsylvania and the Cleveland Clinic) reviewed and approved the
protocols used in this study for procurement and use of human tissue and
information. All participants gave informed consent before enrollment.

Expression and genotype datasets and clinical variables. We performed RNA
expression measurements and obtained genotype information in genome-wide
markers for 313 patients (177 failing hearts, 136 donor, nonfailing (control) hearts)
using Affymetrix expression and Affymetrix Human 6.0 respectively. Clinical
variables for each individual were recorded during the course of the research and
were compiled using REDCap48.

Data pre-processing, covariate correction, and differential expression. Several
technical and sample covariates can bias gene expression values inferred from our
microarray data, such as array batch effects and individual ethnicity, gender. These
covariates can greatly confound downstream analyses, resulting in false positive
and negative associations and reducing the power of statistical analyses. We cor-
rected for these biases in three ways: by normalizing to “reference” probes (control
probes with a fixed fluorescence value that control for the geometry and pre-
paration of the array), by applying batch normalization using ComBat49, and by
correcting for observed covariates (gender, age, and collection site) using robust
linear regression. The residuals after these corrections were then used as the gene
expression values for downstream analyses. Previously to these corrections, the

data was log-transformed to better resemble a normal distribution. Differential
expression analysis was performed using the Significance Analysis of Microarrays
(SAM)50. Genes shown in Supplementary Figure 1B had the highest gene
expression difference and were deemed significantly up- or downregulated with a
false discovery rate of 5%. QQ plots for differential expression are shown in
Supplementary Fig. 4.

Coexpression networks. We ran the following methods on the covariate-corrected
data described in the section above using the top 40% most variable genes (n=
7960) and on each cohort separately, except in the case of the joint graphical
LASSO (see below).

● WGCNA: We ran the WGCNA pipeline including correlation matrix, TOM
transformation, and Dynamic Tree Cut module finding as prescribed19 on
each network separately.

● Pearson correlation: We obtained the empirical Pearson correlation matrix
and performed an absolute correlation coefficient cutoff of abs(R) > 0.6.

● ARACNe: We ran the method with default parameters and 500 bootstrap
iterations for calculating significant gene coexpression relationships.

● Z-score: Otherwise known as the CLR method, we ran the method using the
Pearson correlation matrix as input. The output is then a statistical scoring of
each interaction for genes A and B considering all interactions of A and B
against each other gene.

● Joint graphical LASSO (JGL): The JGL has two main parameters—a sparsity
penalty to tune how many interactions are found and a group penalty that
tries to match the network structure of the two cohorts. We performed a grid
search on these parameters and chose the one that maximized the Akaike
Information Criterion. This resulted in a very low group penalty of 0.01 and a
modicum sparsity penalty of 0.1, which was applied to a standardized matrix
of expression values for both cohorts.

While in the end we used WGCNA for downstream analyses as discussed in the
main text, we have made all of these networks available at https://doi.org/10.5281/
zenodo.2600420.

eQTL discovery. Prior to eQTL discovery, we used PEER to find hidden covariates
that could confound signals in our data as well as filtering any genotypes with
major allele frequencies less than 5%. To test associations between gene expression
in each cohort separately, we used QTLTools51 with an additive model accounting
for gender, age, sample site, and the PEER factors as covariates. We corrected for
eQTL multiple association testing using a 10,000 permutations per locus in a 2
megabase window and a false discovery rate cutoff of 5%. To select the number of
PEER factors, we performed the full analysis multiple times from 1 to 15 PEER
factors and observed a saturation of new QTLs being discovered when using 10
factors. To intersect our variants with GTEX and the GWAS catalog, we simply
matched based on rsid and position. High-resolution colocalization analysis on
coronary artery disease GWAS hits was performed using the eCAVIAR pipeline
(see details in Methods)52. To find independent eQTLs, we performed LD-pruning
(LD, pairwise r2 < 0.5 within a window of 50 kb) and provide a set of pruned
variants in Supplementary Data 1 and 2. QQ plots for eQTL p values before and
after correction for age, gender and site are provided in Supplementary Fig. 9, and
were not significantly inflated by batch correction.

Cardiac GWAS colocalization analysis. We tested whether any of our eQTLs
colocalized with the signals from a publicly available GWAS on coronary artery
disease29. We ran the eCAVIAR32 pipeline using the FINEMAP implementation
on all loci with at least one SNP with p < 1e-5 in the GWAS and at least one SNP
with p < 1e-5 in either condition of our eQTL study. We found evidence of colo-
calization at six genes: MRAS, TCF21, GPR22, LIPA, ZNF664, and EIF2B2. EIF2B2,
TCF21, and ZNF664 colocalized in both failing and healthy hearts. However, LIPA
colocalized only in healthy hearts, while GPR22 and MRAS colocalized only in
failing hearts. These context-specific colocalizations highlight genes that may
contribute to heart disease progression specifically in healthy (LIPA) or in already-
failing hearts (GPR22, MRAS). LIPA codes for the lysosomal enzyme lipase A.
GPR22 has previously been shown to play a protective role against myocardial53.
The protein MRAS is a muscle-expressed homolog of the Ras oncogene family,
currently without any well-characterized mechanism in coronary artery disease.

Quantifying global and local centrality using network and community mem-
bership parameters. The local connectivity metric (LC) of any gene G was cal-
culated as the difference between max-normalized weighted network degree of G.
The global connectivity metric (GC) of any gene G was calculated as the number of
gene sets that were significantly differentially enriched between gene rankings of
failing and control networks obtained by ordering the genes by their absolute
correlation coefficient to G.

After inferring the gene coexpression networks for both cohorts, we calculated
topological properties for each gene in each network in order to get a sense of a
gene’s role in the networks and in the context of known pathways and gene sets. To
this end, we defined a gene g’s differential global connectivity (GC) as the number
of curated HF-relevant pathways within its neighborhood (defined by genes lying
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within a set rank of absolute edge weight to gene g) that were significantly enriched
in g’s neighborhood by the following procedure (see Supplementary Fig. 5):

1. For each pathway, we first ranked the neighbors of g by their absolute edge
weight (i.e. correlation) to g in both the HF and control networks. This
resulted into two ranked lists of g’s neighbors: HF- and control network
specific.

2. For each gene g, we plotted the number of network neighbors belonging to a
curated list of known HF-relevant pathways from KEGG and Reactome (“HF-
relevant neighbors”, see Supplementary Data 9). In this analysis, the number
of HF-relevant neighbors of gene g in each pathway was plotted on the y-axis
against progressively larger inclusive neighborhoods. This allowed us to create
a distribution of global-HF pathway relatedness taking both known HF-
relevant neighbors as well as their distance from gene g into account. For
example, as shown for MYH7, MYBPC3, and PPP1R3A for the KEGG HCM
pathway in Fig. 3d, e, there is a steeper rise in the number of HF-relevant
neighbors connected to each gene in the HF network than in the control
network.

3. For each gene g in each pathway, the difference between the HF network and
control network curves was evaluated using the Kolmogorov−Smirnov (KS)
statistic (analogous to gene set enrichment analysis54) with a Benjamini
−Hochberg correction (false discovery rate FDR= 0.01).

4. A gene’s GC was then defined as the number of HF-relevant pathways found
to be significantly enriched in such manner.

To compare per-gene perturbations in local connectivity between HF and
control networks, we defined the change in local connectivity metric LC for a gene
g used for this purpose was calculated as follows:

LC gð Þ ¼ deg norm g; HF netð Þ � deg norm g; Control netð Þ;

where deg_norm(g, net) is the max-normalized weighted degree of gene g in
network net (sum of weights of edges that include g divided by the maximum
network weight across all edges).

Both LC and GC are then Z-score normalized in order to call coordinator status:

● Central Coordinators have Z-score normalized LC and GC greater than zero
● Local Coordinators have Z-score normalized LC greater than zero but GC less

than zero
● Pathway Coordinators have Z-score normalized GC greater than zero but LC

less than zero
● Non-coordinators have neither Z-score normalized GC or LC greater

than zero

Isolation, culture, perturbation, and visualization of cardiac myocytes. All use
of animals in this study (including the below in vivo experiments) was reviewed
and approved by the Stanford University School of Medicine Institutional Animal
Care and Use Committee. NRVMs were isolated from pregnant Sprague−Dawley
rats (Charles River) using standard collagenase protocols as described previously
and cultured in serum-free DMEM media. In order to attenuate the effects of
fibroblast contamination and accentuate metabolic changes, no glucose was added
to the media and a final concentration of 20 μM of the fibroblast inhibitor Ara-C
(Sigma-Aldrich) was incorporated. Furthermore, for robust expression measure-
ments, at least 1 million cells were plated in a 12-well plate, corresponding to at
least 70% confluency. For phenylephrine-treated cells, 50μM of phenylephrine was
added 48 h after isolation. For the knockdown experiments, cells were transfected
either with an siRNA targeted to PPP1R3A (Stealth siRNA, Invitrogen) or a
scrambled siRNA using the RNAiMAX system (Invitrogen) according to the
manufacturer instructions; transfections were performed 24 h after isolation. RNA
extraction was performed using the Qiagen RNeasy kit according to the manu-
facturer’s instructions and were DNAse-treated using the DNA-free RNA kit from
Zymo research. CDNA was synthesized with the high-capacity cDNA reverse
transcription kit from ABI and qRT-PCR assays were performed using KAPA
SYBR FAST on a ViiA 7 ABI system.

For visualization, cells were fixed directly in the culture plate wells using 4%
PFA in room temperature for 10 min, permeabilized with 0.2% Triton-X in room
temperature for 10 min, and blocked with DAKO protein block in room
temperature for 30 min. Afterwards, fixed cells were incubated in mouse anti-
sarcomeric α-actinin antibody (Sigma) in DAKO antibody buffer overnight at 4 °C.
Alexa secondary antibodies were added the next day after PBS washes and the cells
were incubated for 1 h at room temperature. Cells were then washed with PBS and
the nuclei were stained with DAPI (AntiFade DAPI, Invitrogen). Fluorescent cells
were then imaged at 40× or 20× magnification using an Olympus BX-51 inverted
fluorescent microscope. Cell area was quantified with ImageJ.

RNA sequencing and analysis pipeline. After RNA extraction, RNA integrity was
checked using a 2100 BioAnalyzer (Agilent); all RNA samples had an RIN of 7.0 or
higher. Samples were screened for PPP1R3A knockdown efficiency and pheny-
lephrine treatment using qRT-PCR prior to library construction. RNAseq libraries
were prepared using the TrueSeq Stranded mRNA kit (Illumina), according to the
manufacturers’ instruction. Libraries were barcoded, quality-checked using a 2100

BioAnalyzer and run in rapid run flow cells in a HiSeq 2500 (Illumina), producing
at least 30 million paired-end reads.

Sequencing reads were aligned to the Rattus Norvegicus rn5 UCSC reference
genome using the STAR aligner55. Quantification and differential expression
analysis of RNAseq data was performed using the Cufflinks package49: full
transcriptome assembly was performed with Cufflinks, quantified with Cuffquant,
and analyzed for differential expression using Cuffdiff. All genes deemed to be
significantly up- or downregulated in the main text were called as differentially
expressed by Cuffdiff.

Animals, surgery and phenotyping. Ppp1r3a−/− mice (C57Bl6 background) were
a generous gift from Anna de Paoli Roach41. Ppp1r3a+/+ animals were C57Bl6
background (Jackson). All procedures involving animal use, housing, and surgeries
were approved by the Stanford Institutional Animal Care and Use Committee
(IACUC). Animal care and interventions were provided in accordance with the
Laboratory Animal Welfare Act.

Twenty male mice (10 Ppp1r3a−/− and 10 Ppp1r3a+/+) were randomized to
transaortic constriction (TAC) or sham surgery (five in each group). Animals
underwent TAC as previously described50 at 10 weeks of age. Briefly, mice were
anesthetized using an isoflurane inhalation chamber, intubated and ventilated.
After surgical exposure of the thoracic aorta, a 6.0 silk suture was placed between
the innominate and left carotid arteries to induce a constriction of ∼0.4 mm in
diameter. In sham group mice, an identical procedure was conducted, without the
constriction of the aorta. One week following TAC, gradients across constriction
were measured and were not different between genotypes (Ppp1r3a−/−: 32.1 ±
3.9 mmHg, Ppp1r3a+/+: 35.6 ± 3.6 mmHg, p= 0.16).

In vivo left-ventricular systolic function was evaluated by echocardiography in
the short axis view as previously described50. Measurements occurred at 1 day prior
to surgery (baseline), 7 days and 14 days after surgery and then every 14 days prior
to euthanasia and tissue collection at 8 weeks after TAC.

Upon euthanasia, heart weight, body weight and tibia length were measured by
standard method (Supplementary Fig. 8). Hearts were paraffin fixed, sectioned and
mounted on slides. Trichrome staining as well as immunofluorescence stain for cell
membrane (Rhodamine Wheat Germ Agglutinin antibody, 1:200 in PBS, Vector
laboratories, Burlingame, CA) were performed for fibrosis and cell size measurements,
both of which were performed using ImageJ after image capture at 20×.

Measurement of oxygen consumption rate. Freshly isolated NRVMs were plated
in a 96-well plate at 75,000 cells/well and were maintained in kit medium with 0.5%
fetal bovine syndrome. Transfection of siRNA to PPP1R3A or scrambled oligo-
nucleotide was performed as described above 5 days after isolation. Media was
changed to contain 10% fetal bovine syndrome after transfection.

Seahorse technology (XF96, Flux pack, Agilent technologies # 10-2416100) was
used to measure oxygen consumption rate (OCR) 48 h after transfection. Cells were
either exposed to base media or media including pyruvate immediately before
experiment. Basal metabolism was measured first. Maximal respiration was
measured 1 min after delivery of p-triflouromethoxyphenylhydrazone (FCCP)
(uncoupler of oxidative phosphorylation). After OCR measurements were
complete, viable cell number was assayed using PrestoBlue Cell Viability Assay
(Thermofisher #A13261), and data were analyzed as OCR per cell.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data that support the findings of this study have been made available. Expression
measurements for the human heart samples and clinical variables are available in GEO
(accession number GSE57338). eQTLs are available at https://zenodo.org/record/
1438557#.W67MS5NKh24. Rat expression measurements are available via Amazon Web
Services at http://s3.amazonaws.com/ashleylab-rnaseq/timecourse_analysis.tgz. All other
data are contained within the article and its supplementary information or are available
upon reasonable request to the corresponding author. All other source data underlying
Figs. 4 and 5, and Supplementary Figs. 6 and 8 are provided in a Source Data file.
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