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A Causal Power Approach to Learning with Rates 
 

Marc J Buehner (BuehnerM@Cardiff.ac.uk) 
School of Psychology, Cardiff University, 

Tower Building, Park Place, Cardiff, CF10 3 AT, Wales, UK 
 

Abstract 

Current models of causal induction are seriously 
compromised because they cannot represent variations in 
cause-effect timing.  Theoretical considerations and 
empirical evidence converge, suggesting that cause-effect 
timing influences induction beyond mere interference, in 
line with predictions of psychophysical models of rate 
comparison.  Rather than accepting two distinct cognitive 
processes for causal induction from rate vs. probability 
data, this paper shows that a current normative theory of 
probabilistic causality (Cheng, 1997) can be extended to 
encompass rate data. Causal induction in “experienced vs. 
described” situations (Shanks, 1991) may be rooted in a 
unified process after all.  
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Introduction 
Cognitive Science has inherited David Hume’s 
(1739/1888) approach to causal inference: causal 
knowledge (and with it the capacity to predict and control 
our environment) has to be derived from non-causal input 
to our sensory system.  Hume has identified three core 
principles which need to be present in order to license 
causal conjecture: i) temporal priority of the cause c 
before the effect e, ii) temporal and spatial contiguity 
between c and e, and iii) constant conjunction between c 
and e.  Empirical and modeling efforts within cognitive 
science have taken the first two principles largely for 
granted or self-evident, and have mainly focused on the 
last principle, also referred to as contingency.  More 
specifically, how contingency gives rise to causal 
impressions has been the subject of a hot debate in the 
field.  Early suggestions (e.g. Allan & Jenkins, 1980) to 
use contingency (ΔP) - calculated by the difference 
between the two conditional probabilities: P(e|c)-P(e|¬c) 
– as a direct measure of causal strength were followed by 
more sophisticated judgment rules (e.g. Anderson & 
Sheu, 1995; White, 2003).  An alternative suggestion 
(Shanks & Dickinson, 1987) was that causal learning 
recruits the same principles thought to underly associative 
learning and Pavlovian conditioning (e.g. Rescorla & 
Wagner, 1972).  Debates between these various accounts 
were mostly carried out by means of model-fitting, with 
models having the highest number of free parameters 
often ending up as the “better” models, because they 
could account for a wider range of empirical findings.   

More recently, however, the focus has shifted 
towards a normative understanding of the inductive 
problem: what is the goal of causal inference?  Cheng 
(1997) has drawn a parallel between perception (Marr, 

1982) and causal inference.  Just as the goal in perception 
is to appreciate features of the distal world through an 
analysis of the proximal stimulus on the retina, the goal of 
causal inference is to infer distal, unobservable causal 
powers by means of analyzing the proximal stimulus 
(observable covariation patterns).  Cheng has shown that 
all competing approaches (which do not entail the notion 
of unobservable causal power) fail to represent causal 
power as a distal variable, unbound (Holyoak & Hummel, 
2000) from its observable manifestation via contingency 
patterns.   

A complementary approach to Cheng’s power 
PC theory is a Bayesian structural model of causal 
induction (Griffiths & Tenenbaum, 2005).  This latter 
model views causal induction as a problem of structural 
inference: the reasoner’s primary goal is to decide 
whether a causal relation between c and e exists.  
According to this approach, the strength of the relation 
(which is calculated according to the principles outlined 
in Cheng’s theory) is of secondary importance (“Structure 
before Strength”). Cheng and her colleagues have shown, 
however, that structural inferences only yield normative 
solutions if they are grounded in a normative 
understanding of strength.  In other words, even though 
structural understanding has a stronger rational appeal, it 
is preceded computationally by a normative 
understanding of strength (Cheng, Novick, Liljeholm, & 
Ford, in press). 

Time is of the Essence: How covariational 
approaches are severely limited in their 
explanatory scope 
The debate about the computational basis and goals of 
causal inference has clouded another fundamental 
problem of causal inference: how to represent its 
interaction with time.  Early, non-computational 
psychological theories of causal induction (Einhorn & 
Hogarth, 1986; Young, 1995) have recognized the role of 
cause-effect timing: everything else being equal, 
contiguous event sequences have a stronger causal appeal 
than delayed ones, in line with Hume’s second principle 
(but see Buehner & May, 2002 for top-down malleability 
of this principle). 

A simple explanation of the deleterious influence 
of cause-effect delays on causal induction could be that 
delayed regularities are harder to detect than immediate 
ones (e.g. Buehner & May, 2003). Events need to be kept 
in memory for longer, intervening events open the 
possibility for multiple regularities that need to be 
compared against each other, etc.  Given that our 
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computational resources are limited, it is easy to see how 
delayed relations could appear less causal than immediate 
ones.  Note that this explanation offers a rationale of why 
reasoners might deviate from the normative perspective of 
causal power, based on a contingency view of causation.  
In other words, the normative response to a delayed 
relation would be to view it as just as causal as an 
equivalent immediate relation, but computational 
complexities introduced through the delay might interfere 
with this assessment, producing a non-normative, weaker 
judgment. 

An alternative approach to the influence of 
cause-effect timing would be to accept that regularity is 
not the sole determinant of causal strength, but that time, 
even from a normative perspective, carries causal 
information.  That the role of time in causal inference 
might not be limited to interference, but instead could also 
be shaping the normative quality of the inference can best 
be illustrated with an example: Imagine that George 
suffers from recurring bouts of headaches. The headaches 
usually start in the morning, and tend to recede around 
noon.  If George takes Aspirin, however, he already feels 
better by mid-morning.  Can Aspirin be said to relieve 
George’s headaches?  A contingency-based assessment of 
the situation reveals two different solutions, depending on 
the size of the temporal window that is used to carve the 
continuous stream of events into discrete pieces of 
evidence that can be fed into a contingency-based model:  
If the window spans the entire day, then Aspirin would be 
seen as ineffective in relieving George’s headaches:  His 
headaches are just as likely to disappear on days when he 
takes Aspirin than when he does not.  However, if the 
temporal window is narrower, spanning only a few hours, 
then Aspirin clearly offers relief: George’s headaches go 
away after a few hours if he takes Aspirin, but if he does 
not, he continues to suffer for a few more hours.   

Hagmayer and Waldmann (2002) have shown 
that reasoners indeed interpret the very same statistical 
information differently, depending on the size of the 
temporal window they think is appropriate for the causal 
relation in question.  Hagmayer and Waldmann’s (2002) 
results are evidence for an interaction between top-down 
influences of prior knowledge (see also Buehner & May, 
2002; Buehner & McGregor, in press) and event timing.  
More specifically, Hagmayer and Waldmann deliberately 
created their materials to contain ambiguous statistical 
information: the quantitiy and sign of the cause-effect 
contingency was dependant on the timeframe over which 
it was calculated. 

However, time could be a carrier of information 
on its own, independent of specific top-down assumptions 
about the timeframe of the causal relation in question.  
More specifically, consider situations where contingency 
information is unambiguously available to the reasoner, as 
is the case in accumulated longitudinal epidemiological 
data. Such data contains information not only about 
whether the effect occurred in an individual, but also 

when it occurred. Using unambiguous tabular data, 
Greville and Buehner (in press) have recently 
demonstrated that contingency and contiguity interact in 
shaping causal inference. The remainder of this paper 
presents a novel analysis of this data, not contained in the 
forthcoming original report1. 
Greville and Buehner’s (in press) Data 
Participants in Greville and Buehner’s (in press) study 
were presented with tables containing information about 
the occurrence of an effect in an experimental group 
(where the cause had been administered once on day 0) 
and in a control group.  Each row represented an 
individual, and each column represented a day in the five-
day period of a hypothetical study.  Occurrence of the 
effect was marked with an X in the appropriate cell.  The 
difference between the total numbers of Xs in the 
experimental and the control table thus allowed an easy 
calculation of the cause-effect contingency.  In addition, 
the location of the Xs within a row (days 1-5) contained 
temporal information: whether the effect occurred close to 
the administration of the cause on day 0, or further away 
from it.  Variation in the frequency distribution (while 
leaving the frequency itself constant) thus allowed a 
manipulation of cause-effect contiguity, while 
contingency remained at a constant, unambiguous value.  
Figure 1 shows an excerpt of a sample stimulus used in 
these studies.  It is evident that a) contingency is clearly 
conveyed by the number of Xs in each table, and that b) 
peaks in frequency distribution near or far from day 1 in 
the experimental group convey strong or weak cause-
effect contiguity, respectively.   

Results showed that participants took both 
contingency and contiguity into account when making 
causal inferences, such that identical contingencies were 
attached with higher causal effectiveness when frequency 
distributions peaked near the beginning of the study than 
when they peaked near its end (see Table 1). Moreover, 
the mere advancing or postponing of the effect in time 
was attached with causal significance, even when the 
cause did not increase the overall probability of the effect.  
In other words, zero-contingencies were interpreted as 
indicative of a generative or preventive influence, 
depending on the frequency distribution.  They were 
judged as non-causal only when the distribution of effects 
was random in both the experimental and the control 
group. 

The influence of temporal distributions in non-
contingent conditions is particularly interesting when 
compared to normative accounts of causation.  Any 
normative model (e.g. see Cheng, 1997) postulates that 
the absence of contingency signals the absence of 
causation (bar a few exceptions concerning ceiling 
effects).  On a probabilistic level, lack of contingency 
implies that the cause makes no difference to the 
occurrence of the effect: the effect is just as likely when 
                                                             
1 An online version of the empirical report can be found at 
http://www.cardiff.ac.uk/psych/home/buehnerm/pubs/index.html 
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the cause is present as when it is absent. In non-
contingent conditions involving random distributions of 
events over time participants followed this normative 
principle, and correctly inferred that the cause made no 
difference to the occurrence of the effect.  When the 
temporal distribution of effects in the experimental groups 
of non-contingent conditions had a discernible peak either 
near or far from the administration of the cause, however, 
participants did not think that the cause made no 

difference to the occurrence of the effect, even though, 
overall, the effect occurred just as often in the 
experimental as in the control group.  The mere temporal 
regularity, i.e. that effects tended to cluster soon or late 
after administration of the cause, was sufficient to create 
impressions of generative or preventive causality, even 
though there was no statistical regularity, at least not 
when considered over the entire data range of five days. 
 

 
Figure 1. Sample stimulus materials used by Greville and Buehner (in press). 

 
Table 1. Design and Results from Greville and Buehner (in press). Strong and Weak contiguity was implemented by event 
distributions of data pertinent to P(e|c) peaking, respectively, near day 1 or 5 of the experimental period.  Data for P(e|¬c) 
was always randomly distributed over the 5 day period. Participants provided causal ratings on a scale ranging from -100 to 
+100, where -100 meant c strongly promotes e, 0 meant that c has no effect on e, and +100 meant c strongly prevents e 

 
 
 
Rate-based Accounts of Causal Influence 
A qualitatively similar finding regarding temporally 
advanced or postponed effects that would occur anyway 
has been reported by Anderson and Sheu (1995) and 
Wasserman and Neunaber (1986).  Both studies employed 
free operant procedures, and in both pressing a button did 
not actually change the probability of the effect, but 
merely advanced or postponed its delivery.  As in Greville 
and Buehner’s (in press) studies, this was sufficient to 
create impressions of generative or preventive causal 
power.  One important difference between these studies 
and ours, however, is that the nature of the free-operant 
task by definition makes the calculation of contingency 

very difficult, and in fact dependent on the (subjective) 
length of the learning trial.   

Anderson and Sheu’s Experiment 4, for instance, 
employed learning trials of 1s, 2s, and 4s for trials when 
participants did not press the button; trials on which 
participants did press the button could be 250ms, 500ms, 
1s, 2s, 4s, and 8s. Regardless of trial length, and 
regardless of whether or not the participant pressed the 
button, an effect was delivered at the end of every trial. 
The effect thus was just as likely when participants 
pressed the button than when they did not press the 
button, i.e. P(e|c) = P(e|¬c) = 1.0, ΔP = 0.  In other words, 
the effect happened anyway (at a steady rate, e.g. once 
every 2 seconds), but if participants pressed the button 

M S.D. M S.D.

A 0.25 0.25 0.00 Strong -9.18 31.42 -1.26 35.19 40 30 0.06

B 0.50 0.25 0.25 Strong -27.13 33.50 -46.60 30.15 80 28 0.30

C 0.75 0.25 0.50 Strong -47.55 35.02 -79.43 13.22 120 32 0.52

D 1.00 0.25 0.75 Strong -67.50 30.49 -89.63 14.03 160 26 0.77

E 0.25 0.25 0.00 Weak 18.26 33.48 21.77 31.40 20 32 -0.38

F 0.50 0.25 0.25 Weak -8.84 39.72 -10.86 38.26 40 28 0.07

G 0.75 0.25 0.50 Weak -7.20 53.38 -33.26 35.79 60 28 0.19

H 1.00 0.25 0.75 Weak -26.84 55.76 -53.46 40.66 80 31 0.29

I 0.50 0.50 0.00 Strong -8.82 25.36 -25.14 24.06 80 55 0.17

J 0.75 0.75 0.00 Strong -26.82 36.89 -36.49 24.78 120 90 0.27

K 1.00 1.00 0.00 Strong -27.34 34.65 -45.46 32.60 160 120 0.50

L 0.50 0.50 0.00 Weak 15.74 23.93 13.29 16.04 40 60 -0.33

M 0.75 0.75 0.00 Weak 22.18 36.46 23.49 22.38 60 90 -0.33

N 1.00 1.00 0.00 Weak 22.95 41.95 26.26 22.53 80 120 -0.33

O 0.25 0.25 0.00 Random 2.89 27.20 5.91 21.44 30 30 0.00

P 0.50 0.50 0.00 Random 1.42 14.75 1.57 21.69 60 60 0.00

Q 0.75 0.75 0.00 Random -1.97 16.71 -9.14 10.47 90 90 0.00

R 1.00 1.00 0.00 Random -1.18 16.25 -7.86 12.14 120 120 0.00

Contiguity R(e|c) R(e|¬c) power
Exp 1 (N=38) Exp 2 (N= 35)

Scenario P(e|c) P(e|¬c) Delta-P
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they could advance or postpone its delivery (depending on 
the specific combination of trial lengths).  Moreover, 
since the total time spent in each condition was constant, 
pressing the button also increased or decreased the total 
overall number of effects accordingly.  Higher ratings for 
more contiguous conditions (i.e. conditions where trials 
on which the participant responded were shorter than 
trials on which no response was made) in Anderson & 
Sheu’s studies thus were entirely normative, even from a 
purely statistical perspective.   

On a probabilistic (or contingency) level, of 
course, pressing the button made no difference, since 
every trial saw the delivery of an effect irrespective of 
whether participants pressed the button. Contingency 
accounts thus fail to accommodate Anderson and Sheu’s 
or similar results. Such models can only represent the 
relative difference in outcomes, depending on the 
presence and absence of the cause, which – when ignoring 
trial length considerations – was zero in all conditions of 
Anderson & Sheu’s Experiment 4.  
Anderson and Sheu suggested a rate-contrast model 

! 

G =
R(O |R) " R(O |¬R)

R(O |R) + R(O |¬R)

 

where R(O|R) and R(O|¬R) are the rates of the outcome 
occurrence given the presence and absence of a response, 
respectively, to account for their results. Because rates are 
calculated per unit of time, they are of course sensitive to 
variations of trial length, which are outside the scope of 
any contingency model to date. The grating contrast 
model provided an excellent fit to Anderson & Sheu’s 
data, and accounted for over 90% of the variance. 
Extending Cheng’s power PC theory to Rate Data 
According to Cheng’s (1997) power PC theory, the causal 
power q of a cause c to produce an effect e and the power 
p to prevent e are given by 

This means that ΔP is normalized by 1 (the maximum 
probability of the effect) minus the base-rate (the 
probability that the effect would occur anyway) for 
generative causal power, and simply by the base rate for 
preventive power.  Which equation applies is readily 
determined by the sign of the contingency.   

Most studies involving causal learning in 
continuous time have no upper limit of outcome rate.  In 
the absence of an upper limit, an extension of Cheng’s 
(1997) theory towards such data is not straightforward, as 
rates cannot be compared and normalized in the same way 
as probabilities.  More specifically, the causal power 
approach postulates that generative and preventive causes 
respectively increase and decrease the occurrence of the 
effect by some proportion of the distance to the upper and 
lower boundary.  Consider a preventive power of .5.  This 
value means that, everything else being equal, the 
introduction of the preventive cause c reduces the 
occurrence of the effect by one half.  For example, if e 
occurs with probability 1.0 in the control group, adding c 

will reduce this probability to .5; if e occurs with 
probability of .5 in the control group, adding c will reduce 
this probability to .25.  Note that the lower bound used to 
calculate causal effectiveness here is 0: e cannot happen 
less than not at all.  Thus, a preventive power of 1.0 
means that c prevents e everytime (regardless of the value 
of P(e|¬c)), which is captured in the power equations: 
whenever P(e|c) = 0, preventive power p will be 1.0. 

Analogously, a generative cause will increase the 
occurrence of the effect relative to the upper limit.  If 
generative power is .5 and e never occurs in the control 
group, adding c will increase P(e|c) to .5; if e already 
occurs with P(e|¬c) = .5, then the remaining portion of 
entities (1.0 - .5 = .5) in the sample will be affected by c, 
i.e. P(e|c) will increase by another .25 to a total of .75. 
The upper limit of 1.0 means that the effect cannot occur 
more than once in every entity.  Thus, a generative power 
of 1.0 means that c produces e everytime it has a chance 
to do so, which is likewise captured in the power 
equations: whenever P(e|c) = 1, q will be 1 also2. 

While the lower bound of 0 is preserved for 
causal relations expressed as rates (the effect cannot occur 
less than 0 times per unit of time), the upper bound is not.  
An effect could easily occur more than once per unit of 
time.  Thus, a generative causal interpretation of rates, 
which entails reasoning about a proportional rather than 
an additive increase, is only possible when there is an 
upper bound. 

Note that Greville and Buehner’s (in press) 
design employed a clear upper limit:  The highest rate 
Rmax that was possible was that all 40 samples showed 
the effect on day 1.  A cause could thus show its 
effectiveness (to increase the rate of effect occurrence) in 
two ways: a) by increasing the overall frequency of the 
effect in the 5 day period, and b) by advancing in time the 
occurrence of effects that would otherwise have occurred 
later in the period. How could one quantify rates in 
Greville & Buehner’s design?  One way is to consider the 
number of days an individual effect could be present; if an 
effect happens on day 1, it will be present and noticeable 
for all 5 days of the period, while an effect occurring on 
day 5 will only be present for 1 day. Thus, the maximum 
number of “effect-days” in this design is 40 effects x 5 
days = 200 effect-days.  It is straightforward to see how a 
number of effect-days can easily be calculated for each 
condition of Greville & Buehner, simply by considering 
the actual event frequency distributions contained in the 
original report (see Footnote 1).  Multiplying quantity 
with time of course differs from the standard concept of 
rate (quantity / time), but a ratio could easily be obtained 
(effect-days / observation period) without changing the 
outcome of the analysis to come.  Because of the clear 
definition of an upper limit (Rmax=200), causal 
effectiveness in Greville & Buehner’s design can be 
                                                             
2 The exceptions to both cases are ceiling effects and their 
preventive analogs, where causal power is undefined, see Wu & 
Cheng (1999). 

! 

q =
P(e | c) " P(e |¬c)

1" P(e |¬c)
 

! 

p = "
P(e | c) " P(e |¬c)

P(e |¬c)

116



expressed proportionally, thus licensing the application of 
Cheng’s power PC theory: 

Which equation applies can be determined by the sign of 
the rate contrast. Table 1 lists the power values obtained 
via the above calculations.  Note that in conditions E, L, 
M, and N, the rate contrast is negative, although the 
contingency is zero, and consequently pr applies. In line 
with conventions, preventive estimates are expressed as 
negative numbers in Table 1. Causal power calculated this 
way fits the data from both experiments extremely well; 
the extension of the power PC theory to rates can account 
for 95% of the variance in Experiment 1 and 92% of the 
variance in Experiment 2. 

Representing time of effect occurrence via 
multiplication with units of time of course corresponds to 
simple linear weighting by a negative function, with the 
impact of effects decaying, the further away in time they 
are from the cause. Note, however, that this weighting 
was achieved without any free parameters.  Instead, the 
weighting was obtained simply by considering the 
maximum impact an effect could have, or, to express it 
differently, by taking into account the maximum possible 
distance between c and e (in this case 5 days).  If we limit 
ourselves to situations where a given cause can only 
produce one effect (as opposed to multiple instantiations 
of the same effect), we thus can easily calculate Rmax for 
any paradigm, as soon as we know the maximum 
temporal distance between c and e.  In many cases, this 
information will be available via prior knowledge, but it 
can of course also be observed empirically.   

In Anderson & Sheu’s Experiment 4, for 
example, the maximum temporal distance between c and 
e was 8s.  Continuing the logic outlined above, we can 
apply a weight of 1 to an effect occurring at 8s, a weight 
of 8 to an effect occurring at 1s, with the maximum 
possible weight of 9 applied to an effect occurring 
immediately (the shortest interval participants 
experienced in Anderson & Sheu’s design was only 
250ms, corresponding to a weight of 8.75).  Thus, the 
observed maximum possible distance between c and e 
allows an observer to calculate increases of effect 
occurrence proportional to a maximum effectiveness (i.e. 
instantaneous effect delivery), licensing a causal power 
interpretation, again without recourse to any free 
parameters.  Causal power calculated according to these 
principles can account for 94 % of the variance in 
Anderson & Sheu’s Experiment 3, and 91% of the 
variance in Experiment 4, a fit comparable to G (91% and 
94%, respectively).   
Described versus Experienced Events: One or Two 
Cognitive Architectures? 
Studies involving summary data (such as Hagmayer and 
Waldmann, 2002; or Greville and Buehner, in press) are 
sometimes criticized for lacking ecological validity.  

More specifically, Shanks (1991) proposed that causal 
induction from described events is based on 
fundamentally different processes than the ones involved 
in causal learning in real time.  It is certainly true that 
some approaches to causal learning in continuous time 
(for example associative learning theory) cannot be 
applied to summary data.  Other theories, however, have a 
considerably wider explanatory scope.  Contingency and 
probability based theories, or statistical approaches in 
general, are largely agnostic to the stimulus format they 
require as input.  It does not matter in principle whether 
estimates of P(e|c) and P(e|¬c) have to be gleaned from 
discrete learning trials presented one-by-one, in a list, or 
whether these values are directly provided (the more 
difficult the assessment of probabilities, though, the larger 
the scope for error, and thus noise and bias in the data, see 
Buehner et al., 2003).   

It would seem unparsimonious to propose two 
distinct cognitive architectures for doing exactly the same 
task, particularly because we often and routinely switch 
between both modes of learning (experienced vs. 
described) for the same problem.  An epidemiologist, for 
instance, might build up a causal model of a disease, 
based on statistical records from past years (described), 
and update this model in the light of new data on a case-
by-case basis.  Prior research converges to show that a 
normative, probabilistic approach to causality provides a 
better model of causal induction from discrete events and 
summary data than competing approaches such as 
associative learning or decision rules (Buehner et al., 
2003; Cheng, 1997; Wu & Cheng, 1999). Greville and 
Buehner’s (in press) data show, however, that probability-
based approaches to causal induction are seriously 
compromised because of their inability to represent 
variations in contiguity. Rate-based approaches on the 
other hand, by definition take both contingency and 
contiguity into account, and so far have provided a good 
fit to data obtained from continuous paradigms where 
both factors varied.  Rather than proposing two separate 
cognitive architectures for doing essentially the same task 
with slightly different input, the analysis offered here 
suggests that, under certain boundary conditions, rate-
data, just like probabilistic or frequency data can be 
interpreted in terms of computational causal power.  
These boundary conditions include knowledge of the 
maximum outcome rate (i.e. maximum causal efficiency) 
against which a candidate cause should be compared. 
Conclusion 
Temporal spacing influences causal learning and 
inference in principled ways, going beyond mere 
interference.  Thus, a comprehensive, ecologically sound 
approach to causal learning has to take into account 
temporal spacing in addition to regularity.  Current 
normative theories of causal induction cannot represent 
temporal information, however.  Rather than proposing 
separate cognitive architectures for causal induction 
involving discrete, probabilistic versus continuous, rate-

! 

qr =
R(e |c) " R(e |¬c)

Rmax " R(e |¬c)
 

! 

pr = "
R(e | c) " R(e |¬c)

R(e |¬c)
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based data, the dilemma could be overcome by extending 
the normative account (Cheng, 1997) to also include rate-
based data.  This extension is only possible when one 
additional constraint is met: that there is a (known) upper 
limit of the rate with which e can occur.  When this 
constraint is met, Cheng’s equations can be applied to rate 
data.   

Previous research on cause-effect timing has 
shown that the otherwise deleterious impact of temporal 
delays can be overcome by prior knowledge of potential 
delays (Buehner & May, 2002; 2003); given appropriate 
expectations about timing, delays can even facilitate 
causal inference, while immediacy can impair it (Buehner 
& McGregor, in press).  These top-down influences on 
causal event parsing could easily be implemented in a 
causal power framework for rates.  The linear decay 
function would simply be reversed (representing a 
deleterious influence of immediacy), or replaced with a 
uniform function (representing no impact of delay).  How 
such functions can be acquired in a bottom-up manner 
would need to be determined by future research. 

Anderson and Sheu (1995) reported that 
participants in their studies commented on the “perceptual 
quality” of the c-e pairings they experienced, and 
concluded that causal inference from real time data is best 
represented as a perceptual process, governed by the laws 
of psychophysics.  Anderson and Sheu might have, 
unknowingly, prefigured Cheng’s analogy between 
perception and causal inference.  Causal induction, like 
perception, is not infallible. If certain constraints are not 
met in the environment, we cannot go beyond tracking 
features of the proximal stimulus, and thus fail to achieve 
a proper representation of the distal stimulus.  Crucially, 
though, the apparatus is equipped to handle input in 
various formats or textures, as would be expected from an 
adaptive system. 
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