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RESEARCH ARTICLE
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Abstract

Studying the biology of sleep requires the accurate assessment of the state of experimental

subjects, and manual analysis of relevant data is a major bottleneck. Recently, deep learn-

ing applied to electroencephalogram and electromyogram data has shown great promise as

a sleep scoring method, approaching the limits of inter-rater reliability. As with any machine

learning algorithm, the inputs to a sleep scoring classifier are typically standardized in order

to remove distributional shift caused by variability in the signal collection process. However,

in scientific data, experimental manipulations introduce variability that should not be

removed. For example, in sleep scoring, the fraction of time spent in each arousal state can

vary between control and experimental subjects. We introduce a standardization method,

mixture z-scoring, that preserves this crucial form of distributional shift. Using both a simu-

lated experiment and mouse in vivo data, we demonstrate that a common standardization

method used by state-of-the-art sleep scoring algorithms introduces systematic bias, but

that mixture z-scoring does not. We present a free, open-source user interface that uses a

compact neural network and mixture z-scoring to allow for rapid sleep scoring with accuracy

that compares well to contemporary methods. This work provides a set of computational

tools for the robust automation of sleep scoring.

Introduction

Sleep is a fundamental animal behavior and has long been the subject of intensive basic and

clinical research. Mice are commonly chosen as a model organism for sleep research thanks to

the wide range of genetic tools that enable manipulation of sleep-relevant neuronal ensembles

and characterization of sleep phenotypes. In order to measure the effect of an experimental

manipulation on the quantity or timing of sleep stages, it is necessary to score a subject’s sleep

stage at each point in time. In mice, each epoch is typically assigned to one of three stages

based on patterns of electroencephalogram (EEG) and electromyogram (EMG) activity
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(Fig 1): rapid eye movement (REM) sleep, with a high ratio of theta (6-8 Hz) to delta (1-4 Hz)

EEG activity and low muscle tone; non-REM (NREM) sleep, with a low theta/delta ratio and

low muscle tone; and wakefulness, with high muscle tone and high-frequency, low-amplitude

EEG activity.

Manual inspection of the EEG and EMG signals remains the most widely used method for

mouse sleep scoring. However, this process is time-intensive and therefore scales poorly with

the number of subjects and recordings, motivating efforts to develop scoring methods that are

partially or completely automated. Shallow decision trees [1–5], which require a user to define

thresholds in a low-dimensional feature space (e.g., theta/delta ratio and EMG activity), are

one such approach. However, since the three classes are not entirely separable in these low-

dimensional spaces, efforts have been made to build classifiers that use machine learning to

exploit a larger number of hand-tuned features [6–8]. Most recently, there have been successes

in using models trained directly on EEG/EMG data without feature engineering, either in the

form of spectrograms [9, 10] or unprocessed signals [11, 12]. The accuracy of these methods

on held-out test sets can be close to the inter-rater reliability of expert scorers [10], suggesting

that further feature or architecture engineering of EEG/EMG-based sleep scoring algorithms

will yield diminishing returns.

Generalization to test datasets that differ from training datasets, however, remains a con-

cern, both for machine learning in general [13] and for automated sleep scoring in particular.

Changes in the distribution of test data, called distributional shift, can cause misclassification

errors when items of one class in the test set artifactually resemble, due to the shift, items of

another class in the training set. Simple forms of distributional shift can be solved by a stan-

dardization procedure, such as z-scoring. In a review of automated sleep scoring methods, Kat-

sageorgiou et al. found that the choice of standardization procedure can be more important

for classification accuracy than the choice of the classifier itself [14].

Fig 1. Overview of the signal collection process for sleep scoring in mice. A: schematic of EEG and EMG recordings. An EEG

electrode is inserted over the hippocampus, a reference electrode is placed in the cerebellum, and an EMG electrode is inserted into

the neck musculature. B: sample EEG and EMG recordings. Scale bar: 1 s, 0.25 mV. C: example EEG spectrograms and root-mean-

square EMG activity for each sleep stage.

https://doi.org/10.1371/journal.pone.0224642.g001
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Despite the demonstrated importance of distributional shift, methods to mitigate its impact

are limited [13]. We address the problem directly, focusing on two sources of distributional

shift in the context of sleep scoring: nuisance variability, caused by changes in the way signals

are recorded, and class balance variability, caused by changes in the time spent in each sleep

stage. Both forms of distributional shift might be present in a single dataset simultaneously.

However, unlike nuisance variability, class balance variability should not be removed because

the primary motivation for sleep scoring is often to detect altered sleep behavior.

We use both a simple model and mouse in vivo data to demonstrate that standard z-scoring,

which aims to remove nuisance variability, inappropriately reduces class balance variability.

Therefore, classification algorithms using standard z-scoring as a preprocessing step will be

biased towards underestimating changes in class balance relative to their training data, which

limits their applicability in research settings where the fraction of time spent in each sleep

stage is of interest. We developed a method, mixture z-scoring, for standardizing features of the

EEG and EMG signals that disentangles nuisance and class balance variability using a small

amount of labeled data for each subject. Because this requires brief but non-trivial user interac-

tion with the recordings, we also present a free, open-source user interface that allows for

rapid manual sleep scoring for standardization purposes followed by machine learning-based,

automated sleep scoring. The software is available at https://github.com/zekebarger/

AccuSleep.

Results

Mixture z-scoring corrects for distributional shift in simulated data

In this section, we use a simulated experiment (Fig 2) to model distributional shift in its sim-

plest form in order to illustrate the problems caused by standard z-scoring and resolved by

mixture z-scoring. Empirical findings in the next section indicate that these results generalize

to a more realistic setting.

The simulation is designed as follows: two experimental subjects, Subject I and Subject II,

spend different amounts of time in each of two states, state 1 and state 2. In order to detect and

quantify this difference, a data feature, δ, is measured from each subject and paired observa-

tions of δ and ground truth class labels from Subject I are used to train a logistic regression

model. This model is then used to classify observations from Subject II. δ is drawn from a mix-

ture of Gaussians, with one Gaussian for each class. This scenario is analogous to an experi-

ment where Subject I is a control mouse, Subject II is a mouse undergoing sleep deprivation,

state 1 is wakefulness, state 2 is sleep, and δ is the delta power in the EEG signal recorded from

each mouse. The process of training the classifier on Subject I and then applying it on Subject

II is analogous to the common practice of developing algorithms on wild-type populations but

then applying them on wild-type and experimental subjects.

From Fig 2A, which shows kernel density estimates for the marginal and class-conditional

distributions for both subjects, it can be seen that the distribution of δ for Subject I differs

from that for Subject II. When the distribution of the data on which a classifier is applied dif-

fers from the training distribution, we say that there has been distributional shift. Class balance

variability and nuisance variability are two major sources of distributional shift in scientific

applications of classification algorithms.

Class balance variability is often the substance of the scientific inquiry that a classifier is

meant to support. An experimental intervention, such as a drug, is expected to alter the

amount of time spent in one or more sleep states and classification algorithms for sleep scoring

are to be used to detect this change. The datasets in this simulated experiment have different

class balances: Subject II spends 30% of the time in state 2 (blue), while Subject I spends 70%
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Fig 2. Correcting for distributional shift prevents a false negative in a simple model. A: marginal and class-conditional

distributions for a feature, δ, recorded from synthetic Subject I (dashed lines), which is in state 2 70% of the time, and from

synthetic Subject II (solid lines), which is in state 2 30% of the time. Marginal distributions are in black, the distribution for state

2 in yellow, state 1 in blue. The distributions differ in class balance and by an affine shift. Left column, B-E: the results of applying

standard z-scoring to this synthetic data. The x-axis, representing the value of δ, is shared across B-D. In B and C, the marginal

and class-conditional distributions are plotted after standard z-scoring. D: the output of a logistic classifier trained on the z-
scored data from Subject I (in color; decision threshold represented by gray bar) compared to the ground-truth state (on the y-

axis) for a selection of data points from Subject II. The y-values are jittered to improve legibility. E: the estimated fraction of time

in state 2 using labels given by the classifier from D. Error bars show approximate 95% confidence intervals (CIs) for this

fraction, obtained by boot-strapping. The symbol “n.s.” indicates that the estimated fraction for Subject II fell within the 95% CI
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of the time in that state. This difference can be seen in the marginal distributions of δ (black

curves) for each subject.

In contrast, changes in the distribution of δ due to nuisance variability should be removed

so that observations from different subjects can be compared. Common sources of nuisance

variability in the context of sleep scoring include the use of different types of recording equip-

ment and different implantation sites for recording electrodes. The simplest form of nuisance

variability is an affine transformation. In this example, the data from Subject II have the same

class-conditional distributions as in Subject I, except for an affine transformation.

For an otherwise fixed distribution, an affine transformation can be undone by means of z-
scoring. That is, the mean, μ, and standard deviation, σ, of measurements F are calculated for

each subject and then values, Z, known as z-scores are computed:

Z ¼
F � m

s
: ð1Þ

If the distributions of measurements from two subjects differ only by an affine transforma-

tion, then after the application of z-scoring, they will be identical. Furthermore, they will have

mean 0 and standard deviation 1, and so this procedure is also called standardization. It is typi-

cally beneficial for machine learning algorithms to operate on standardized features [15].

However, as panels B-F of Fig 2 demonstrate, when other sources of distributional shift are

present, standard z-scoring is inappropriate. Standard z-scoring uses the marginal statistics of

δ, which are dependent on both nuisance and class balance variability. If we view the marginal

distribution of δ as a mixture of the class-conditional distributions for each class, its mean and

variance are functions of the mixture weights (equivalently, the marginal probabilities of each

class label) and the mean and variance of each class-conditional distribution. Its mean is given

by the weighted average of the conditional means, while the variance is given by the law of

total variance (Eq 13, Methods).

After standard z-scoring, the class-conditional distributions of δ from the two subjects do

not align as desired (compare the yellow curves in Fig 2B and 2C). The result is that a classifier

trained to high performance on the z-scored data from Subject I will perform poorly on the z-
scored data from Subject II (Fig 2D): a large fraction of observations are mislabeled as state 2

as the decision boundary aligns with the center of the distribution for state 1. In this case, the

introduced bias is opposite and almost equal to the effect of the change in class balance, leading

to the misclassification of a significant fraction of the observations in Subject II as state 2 when

they should be state 1. The resulting bias in the estimate of the effect size of the difference leads

to a reduction in power and a false negative result for a bootstrapping test (Fig 2E). Because z-
scoring is agnostic to class label, it is unable to disentangle the effect of the class balance from

the effect of nuisance variability on the marginal statistics of δ.

In order to remove nuisance variability but retain class balance variability, we introduce

mixture z-scoring, an alternative form of z-scoring inspired by viewing the marginal distribu-

tion of the measurements as a mixture of class-conditional distributions. The mixture z-scored

values ZM corresponding to measured feature values F are computed as:

ZM ¼
F � w>m̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w>ðŝ2 þ ðm̂ � w>m̂Þ2Þ
q ð2Þ

for Subject I. Right column, F-I: as B-E, but using mixture z-scoring to correct for distributional shift. Each panel on the right-

hand-side shares its y-axis with the matching panel on the left-hand side. The � symbol indicates that the estimated fraction for

Subject II fell outside the 95% CI for Subject I.

https://doi.org/10.1371/journal.pone.0224642.g002
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where m̂ and ŝ are vectors of label-conditioned means and standard deviations and w is a fixed

vector that sums to 1. The value of the denominator and the value subtracted from F in the

numerator are the mixture z-scoring parameters, by analogy with the z-scoring parameters.

Note that conditioning on labels means that mixture z-scoring requires some labeled data. If w
is equal to the actual proportions of class labels for the values F, then the mixture z-score

parameters are the same as in standard z-scoring. When w is not equal to the class balance,

then the mixture z-score parameters are equal to what the z-score parameters would have

been, had the class balance of F been w. Mixture z-scoring thus removes any effect of affine

nuisance variability on the marginal distribution of δ while preserving any effect of class bal-

ance variability. We refer to this process as mixture standardization, by analogy with z-score

standardization. See the Methods section for further details.

The results of using mixture z-scoring are shown in Fig 2, panels F-I. Panels F and G show

the marginal and class-conditional distributions of mixture-standardized δ for Subjects I and

II, respectively. Note that the class-conditional distributions are aligned, unlike in panels B

and C. The result is that a classifier trained to high accuracy on the mixture-standardized data

from Subject I also performs well on the data from Subject II when it is mixture-standardized

with the same weights (panel H). A bootstrapping test comparing the time spent in state 2 for

the two subjects now returns a true positive (panel I).

This example demonstrates that standard z-scoring of features used as inputs to a classifier

can, in a simple case, lead to systematic classification errors when the class balance of the data

on which the classifier is applied differs from the balance during training. This systematic

error can lead to incorrect scientific conclusions. However, mixture z-scoring, which standard-

izes data without removing class balance variability, substantially reduces the error rate.

Mixture z-scoring reduces bias when classifying mouse in vivo data

While the above section indicates that mixture z-scoring can correct for distributional shift in

a simulated experiment with a simple classifier, it remains to be seen whether distributional

shift still poses a problem in a more realistic setting with state-of-the-art methods. To address

this question, we applied two automated sleep scoring algorithms to mouse EEG and EMG

recordings:

1. SPINDLE

This algorithm, from [10], comprises a convolutional neural network (CNN) and a hidden

Markov model (HMM). The CNN operates on multi-channel EEG and EMG spectrograms

and comprises max-pooling, convolution, and max-pooling followed by two fully-con-

nected layers. It has 6.8M parameters, distributed primarily in the first fully-connected

layer. The HMM is used to constrain the transitions between sleep stages predicted by the

CNN. See [10] for details. EMG activity and individual frequency bands of the spectrogram

are log-transformed and, importantly, z-scored on a per-recording basis.

2. Sleep Scoring Artificial Neural Network (SS-ANN)

We implemented a simple CNN with fewer than 20K learnable parameters that, similar to

SPINDLE, operates on log-transformed EEG spectrograms and EMG activity. We refer to

this network as SS-ANN. It uses three convolution-ReLU-maxpool modules with batch

normalization, followed by a linear classifier. See the Methods section for details of the net-

work architecture and a list of the datasets used for training and testing SS-ANN in each

experiment.

Each algorithm was applied to recordings from three wild-type mice. We applied SPINDLE

to recordings from Cohort A in [10]. We applied SS-ANN to a separate set of recordings

Automated sleep scoring with distributional shift correction
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which we collected and scored (see Methods). This ensured that any observed bias in either

method would not be a result of differences between the experts who scored the training

datasets.

To introduce class balance variability and produce a controlled simulation of the effect of

experimental manipulations, we programmatically varied the amounts of NREM sleep, REM

sleep, and wakefulness in each recording (Fig 3A). Rebalancing was achieved by randomly

removing bouts of each sleep stage until a specified balance was reached. To preserve the natu-

ral temporal structure of the bouts as much as possible, we included at least eight seconds of

NREM before, and four seconds of wakefulness after, each REM bout. We considered class bal-

ances in the range of 5-95% wakefulness, 5-95% NREM, and 0-25% REM because class bal-

ances outside this range are unlikely to be observed in practice.

In order to demonstrate that any observed biases are general to z-scoring, rather than spe-

cific to SPINDLE, and that mixture z-scoring can eliminate them, we trained two different ver-

sions of SS-ANN. For one, the inputs during both training and testing were preprocessed with

standard z-scoring. For the other, both inputs were preprocessed using mixture z-scoring with

weight vector w given by the class balance in the training set. Mixture z-scoring requires a

small amount of labeled data from each class for each subject, which we took from separate

recordings from the three mice in this dataset.

Fig 3. Comparison of sleep scoring algorithms on recordings with programmatically varied class balances. EEG and EMG

recordings were programmatically altered to have different proportions of each sleep stage. A-D: Each marker indicates the amount

of wakefulness and NREM in recordings with a given class balance, averaged across three mice (one recording per mouse). A: class

balances of the recordings according to ground truth manual labels. B: predictions by SS-ANN with standard z-scoring for each

recording. Star indicates the class balance in the training dataset for SS-ANN. C: as B, for SPINDLE. Star indicates class balance of

training data for SPINDLE. D: as B, for SS-ANN with mixture z-scoring. E: predicted amounts of wakefulness in recordings

containing 5% REM, according to each algorithm. F: mean total variation distance between class balances of algorithmic predictions

and manual labels. Error bars show SEM. Asterisk indicates p-value< 0.001 (Student’s t-test).

https://doi.org/10.1371/journal.pone.0224642.g003
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The results of these numerical experiments are shown in Fig 3. When using standard z-
scoring, both algorithms showed a classification bias that typically made the aggregate label

distribution look more like the class balance of their training datasets (Fig 3B and 3C). The

magnitude of the classification error increased as the class balance was shifted further from the

balance of the training data (Fig 3E). These results indicate that this bias occurs across classifi-

ers. However, when mixture z-scoring was used as a preprocessing step, there was a dramatic

reduction in bias: estimated label fractions were close to the true fractions in all cases (Fig 3E),

eliminating the contraction towards the class balance of the training data (Fig 3D).

We quantified the bias in estimation by measuring the total variation distance between the

ground truth label fractions and the label fractions estimated by each classifier (Fig 3F). The

total variation distance, δ, between two distributions q and q0 is δ(q, q0) = kq−q0k1. We found

that there was no significant difference between the two algorithms when standard z-scoring

was used (mean for SPINDLE: 0.24, mean for SS-ANN: 0.25, Student’s t = -0.22, p = 0.83). We

further found that both SPINDLE and SS-ANN had substantially greater bias when using stan-

dard z-scoring than did SS-ANN using mixture z-scoring (mean for SS-ANN with mixture:

0.04, SPINDLE vs SS-ANN mixture t = 8.19, p� 0.01; SS-ANN standard vs SS-ANN mixture

t = 10.33, p� 0.01). These results demonstrate that while standard z-scoring introduces sub-

stantial bias in state-of-the-art machine learning classifiers in cases when class balance variabil-

ity is present, methods such as mixture z-scoring can significantly reduce this bias.

Validation of SS-ANN

To demonstrate the utility of SS-ANN paired with mixture z-scoring for automated sleep scor-

ing, we evaluated their performance using several different metrics (Fig 4). On held-out test

data, we found that SS-ANN achieved 96.8% accuracy against expert annotations, comparable

to the range of values reported for inter-scorer agreement (typically in the range of 90-96%)

[10, 16, 17] and to the performance of SPINDLE (95-96%, see Methods), despite SS-ANN hav-

ing over 300 times fewer parameters. Agreement was also high for each class individually, as

evidenced by the high values on the diagonal of the confusion matrix and low values off of it

(Fig 4A). The receiver operating characteristic (ROC) curves for each class were far away from

the unity line (bootstrap p-value�0.001) (Fig 4B).

The experiment in Fig 3 demonstrated that SS-ANN can generalize across simulated

experimental conditions that create different class balances. To determine whether it can also

generalize across subjects, we trained and tested the network on data from each individual sub-

ject in our cohort (Fig 4C). Classification accuracy was comparable to rates of inter-scorer

agreement for all train-test pairs despite the reduced size of the training sets, indicating good

generalization.

Finally, we investigated the relationship between classification accuracy and the amount of

labeled data used for mixture z-scoring. As described in the Methods section, mixture z-scor-

ing requires labeled data from each subject in order to estimate a mean and variance for each

data feature within each class. Though the class balance of the labeled sample has no direct

effect on the estimation of these parameters, it is important to determine how many labeled

epochs are required to required to attain accurate enough parameter estimates to support

classification.

We held out a number of labeled epochs chosen at random from EEG/EMG recordings and

used these to perform mixture z-scoring followed by automatic classification of the remaining

epochs. Classification accuracy increased with larger held-out portions until reaching a plateau

at approximately 10 minutes of labeled data (Fig 4D). Note that performance is already high

for even small sample sizes, under one minute. This should not be taken to indicate that
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mixture z-scoring is unnecessary to obtain high performance, since the animals in our cohort

did not undergo any experimental manipulations and the intent of mixture z-scoring is to

account for the possibility of observing altered class balances. Additionally, note that small

sample sizes result in uncorrelated errors in the estimation of the z-score parameters for each

feature, which have less impact on classification error than do the correlated errors caused by

class balance variability.

AccuSleep: Free, open-source software for automated sleep scoring

The benefit of mixture z-scoring for generalization across class balances comes with the

requirement that for each subject, there must be enough labeled epochs of each class to esti-

mate the class-conditional means and variances of each feature. In practice, labeling these

Fig 4. Validation of SS-ANN. A: confusion matrix for SS-ANN on held-out data. The overall accuracy was 96.8%. The number of

epochs is shown in parentheses. B: receiver operating characteristic (ROC) for SS-ANN. The inset panel shows a zoomed-in view of

the upper-left corner. C: generalization across subjects. SS-ANN was trained on each mouse individually and tested on all mice. D:

classification accuracy as a function of the amount of labeled data used for mixture z-scoring. Gray shading shows SEM, n = 20

recordings.

https://doi.org/10.1371/journal.pone.0224642.g004
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epochs requires a user to interact with the data in a non-trivial way. We addressed this issue by

creating AccuSleep, a set of MATLAB graphical user interfaces that allow for manual scoring

of EEG/EMG data (Fig 5) followed by automated scoring using SS-ANN (Fig 6). The mixture

z-scoring parameters, once calculated for a given subject, can be used to score other recordings

from the same subject. The workflow for scoring recordings is simple:

1. Select EEG and EMG data. In the interface shown in Fig 6, the user selects the data files,

enters the sampling rate and epoch length, and sets the output location for all recordings

from a given subject. Arbitrary epoch lengths can be used, provided that the neural network

used for automatic scoring was trained on data scored at the same temporal resolution.

2. Set mixture z-scoring parameters. If mixture z-scoring parameters have already been cal-

culated for this subject, they can be loaded. If not, the user scores a small number of epochs

of each state manually using the interface shown in Fig 5. AccuSleep then calculates and

saves the parameters.

3. Load a trained copy of SS-ANN. The user loads a network for automated classification.

The trained network validated in Fig 4 is included with the software, along with MATLAB

functions to retrain the network on new data.

4. Score sleep automatically. After validating the inputs, AccuSleep uses SS-ANN to perform

automatic sleep scoring.

Fig 5. AccuSleep interface for manual sleep scoring. The lower three panels display the EEG and EMG signals as well as the sleep

stage labels for epochs surrounding the currently selected epoch. The upper three panels provide context by displaying the sleep

stages, EEG spectrogram, and EMG power on a longer time scale. The red line below the first panel indicates the time span of the

lower three panels, and the diamond indicates the location of the currently selected epoch. For a complete description of the feature

set of this software, please see the included user manual.

https://doi.org/10.1371/journal.pone.0224642.g005
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For an experienced user, manually scoring the number of epochs required for maximum

classification accuracy (Fig 4D) requires roughly 2 minutes, far shorter than it would take to

score all of the data from that subject. Thereafter, scoring of additional data from the same sub-

ject does not require any manual labeling, preserving the scaling and efficiency benefits of

automated scoring.

Discussion

Supervised machine learning is well suited to the task of sleep scoring: labeled data are plenti-

ful, and contemporary algorithms can learn from minimally processed EEG and EMG data to

achieve classification accuracy comparable to inter-rater reliability. Nevertheless, machine

learning algorithms are still not widely used for sleep scoring in research. We suspect there are

two reasons for this: low usability, since applying machine learning methods can require spe-

cialized knowledge or skills; and poor generalization, since variability in the EEG and EMG

signals due to inter-subject and inter-laboratory differences, or distributional shift, poses a

challenge to the generalization of any algorithm. Both of these issues must be addressed if

machine learning is to be widely adopted for sleep scoring.

We propose mixture z-scoring (Eq 2) as a solution to the problem of generalization posed

by distributional shift due to simultaneous nuisance and class balance variability. Standard z-
scoring serves this purpose well when class balance variability is low, but not when class

Fig 6. AccuSleep interface for automated sleep scoring. After a small number of epochs are manually scored (Fig 5), the software

uses SS-ANN and mixture z-scoring to perform automated sleep scoring on all recordings from a given subject simultaneously.

Green check marks indicate valid user inputs.

https://doi.org/10.1371/journal.pone.0224642.g006
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balance variability is high, as it often is in scientific settings. In our experiments, which simu-

lated changes in class balance such as might occur in a sleep study, we found that a classifier

using standard z-scoring as a preprocessing step performed poorly on data from a subject with

a different class balance than its training set (Fig 3B–3E). This can produce undesirable results

in a research setting because the effect of a manipulation that changes the quantity of sleep or

wakefulness would be poorly estimated (Fig 2F). Mixture z-scoring captures the two sources of

variability independently, removing only the former. On both simulated (Fig 2E and 2I) and

real (Fig 3B–3F) data with artificially-varied class balance, our method improves generalization

and estimation of class balance. We expect that the same is true for real data with natural class

balance variability—for example, recordings collected during and after a sleep deprivation pro-

tocol where the fractions of wakefulness and sleep are both different from baseline conditions.

We also introduce a new classification algorithm for rodent sleep scoring, SS-ANN (Sleep

Scoring Artificial Neural Network). This convolutional neural network achieves comparable

accuracy to inter-scorer agreement and to another neural network method, SPINDLE [10]

(SS-ANN: 96.8%; SPINDLE: 94.8-96.2%, see Methods). This is achieved with 300x fewer

parameters, at a higher temporal resolution, and without using a Hidden Markov Model to

constrain transitions between sleep states. The vast majority of parameters in both networks

are in the fully-connected layer that follows the convolutional component of the architecture.

Thus, the difference in parameter count comes from SS-ANN’s greater use of convolution and

pooling. The possibility that even simpler models with fewer parameters might achieve compa-

rable performance remains to be explored.

While mixture z-scoring dramatically reduces bias due to class balance variability and

improves generalization, this comes at a cost: a sample of labeled data from each subject must

be provided in order to capture subject-specific variability. Unsupervised, or label-free, meth-

ods for handling class balance variability would avoid this requirement, but have other costs.

In [17], certain feature values are explicitly assumed to be an ordered mixture-of-Gaussians,

allowing for the threshold of a linear classifier to be placed without requiring labels. Mixture z-
scoring does not make any assumption about the shape of the class-conditional feature distri-

butions, nor does it rely on the specific form of the downstream classifier. The two methods

are equivalent in the case of mixture-of-Gaussians data and a linear classifier. Alternative

unsupervised methods that do not involve distributional assumptions might include data aug-

mentation with inputs whose nuisance and class balance variability are altered programmati-

cally or randomly, so long as these augmentation methods are applied upstream of the

preprocessing step. One advantage of our supervised method over this alternative is that it

applies to any class balance and any affine nuisance variability, rather than only for ranges

included in the augmentation step. Further, our method preserves any affine variability that is

useful to classification, while data augmentation removes it. For example, applying data aug-

mentation to the linear classification problem in Fig 2 would result in a classifier with poor

performance. The success of threshold-based methods [3, 17] indicates that affine features,

such as EMG power, are very useful for classification, suggesting that data augmentation

would be harmful to performance. Finally, our results indicate that the amount of labeled data

required to achieve high accuracy is on the order of minutes (Fig 4D), indicating that the time

cost of the labeling step is quite small.

To preserve the speed and scalability benefits of automated scoring that includes mixture z-
scoring, and therefore some manual labeling, as a preprocessing step, we aimed to make the

labeling step as streamlined as possible. To this end, we developed AccuSleep: a free, open-

source MATLAB package that provides graphical interfaces for manual and deep learning-

based, automated sleep scoring (Fig 6). Within AccuSleep, polysomnographic recordings can

be manually scored to provide the labeled data for mixture z-scoring (Fig 5). These mixture

Automated sleep scoring with distributional shift correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0224642 December 13, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0224642


parameters can then be used to score all recordings from the same subject automatically. Auto-

matic classification is performed using a copy of SS-ANN trained on the data collected for

these experiments (see Methods).

While SS-ANN showed good generalization across the 10 mice in our cohort (Fig 4C), it is

possible that recordings collected from mice with different genotypes or differently placed

electrodes would have substantially different EEG spectra from those in our dataset. To

account for this possibility, we leverage one of the advantages of end-to-end learning—the fact

that training new models is simple given labeled data—by including a module in AccuSleep

that can train a new version of SS-ANN based on a sample of labeled data. Such a model could

be provided alongside a research study to increase the replicability of its sleep scoring method-

ology. The time and computational resources required for this training process are minimal,

owing to the small number of parameters in SS-ANN.

In summary, we developed a standardization procedure, mixture z-scoring, that simulta-

neously corrects for distributional shift due to both nuisance variability and changes in class

balance. We demonstrated that our method improves the generalization of sleep scoring algo-

rithms and provide software to enable its application in sleep research. We expect that this

software, available at https://github.com/zekebarger/AccuSleep, will be useful to the research

community. More broadly, we note that data standardization that goes beyond textbook z-
scoring and accounts for class balance changes across experimental units is ubiquitous in

experimental sciences (e.g., z-scoring of electrocorticography recordings from humans [18]).

Such methods are less commonly used in a machine learning setting, where algorithms are

typically formulated assuming no distributional shift and validated using test sets that have

similar class balance to the training set, such as held-out data. As demonstrated here, the prac-

tice of training algorithms in this manner on one type of particularly convenient experimental

subject and then applying them on another, ignoring class balance variation, can lead to incor-

rect scientific conclusions. This suggests that mixture z-scoring could improve the accuracy of

machine learning algorithms across scientific domains.

Methods

Polysomnographic recordings

All experimental procedures were approved by the Animal Care and Use Committee at the

University of California, Berkeley. Animals were housed on a 12-hour dark/12-hour light cycle

(light on between 7:00 and 19:00). Adult C57BL/6 mice (10-20 weeks old) were anesthetized

with 1.5%–2% isoflurane and placed in a stereotaxic frame. Body temperature was kept stable

throughout the procedure using a heating pad. After asepsis, the skin was incised to expose the

skull, and the overlying connective tissue was removed. For EEG and EMG recordings, a refer-

ence screw was inserted into the skull on top of the right cerebellum. EEG recordings were

made from two screws on top of the left and right cortex, at anteroposterior –3.5 mm and

medio-lateral +/-3 mm. Two EMG electrodes were inserted into the neck musculature. Insu-

lated leads from the EEG and EMG electrodes were soldered to a pin header, which was

secured to the skull using dental cement. All efforts were made to minimize suffering during

and after surgery.

Recordings were made with the mice in their home cages placed in sound-attenuating

boxes. Five 4-hour recordings were collected from each of 10 mice, and two 24-hour record-

ings were collected from five of those mice. For 24-hour recordings, recording started at 19:00

following 24 hours of habituation and lasted 48 hours. For four-hour recordings, recording

started at 13:00 following two hours of habituation. The pin header was connected to a flexible

recording cable via a mini-connector. Signals were recorded with a TDT RZ5 amplifier for the
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24-hour recordings (bandpass filter, 1-750 Hz; sampling rate, 1,500 Hz) or an Intan Technolo-

gies RHD-2132 amplifier for the 4-hour recordings (bandpass filter, 1-500 Hz; sampling rate,

1,000 Hz). Sleep stages were scored manually in 2.5-second epochs by an expert scorer accord-

ing to standard criteria. The complete dataset is available at https://osf.io/py5eb/.

The data used for training and testing SS-ANN in each experiment are described below.

Unless otherwise specified, SS-ANN was trained using three 4-hour recordings from each of

the 10 mice.

• Fig 3: tested on three programmatically rebalanced 12-hour light cycle recordings (extracted

from the 24-hour recordings) from three mice

• Fig 4A and 4B: tested on two held-out 4-hour recordings from each of 10 mice

• Fig 4C, off-diagonal: trained on all five 4-hour recordings from each mouse, tested on all five

4-hour recordings from each of the other nine mice

• Fig 4C, on-diagonal: five-fold cross-validation using all five 4-hour recordings from each

mouse

• Fig 4D: as for Fig 4A and 4B, but with a held-out portion of each test recording used for mix-

ture z-scoring

Three mice were not used for recordings due to low signal-to-noise ratio (SNR) in the EEG

and EMG signals. One mouse was excluded from our analyses because the SNR of its signals

decreased before data collection was completed.

Sleep scoring algorithm

Data preprocessing. EEG and EMG signals were downsampled to 128 Hz. We used the

Chronux toolbox [19] to calculate a multi-taper spectrogram of the EEG signal between 0-50

Hz with a 5 second window and 2.5 second step. We downsampled by a factor of 2 between

20-50 Hz to reduce the number of parameters in the classifier. To calculate EMG activity, we

bandpass filtered the EMG signal between 20-50 Hz and took the root-mean-square of the sig-

nal in each epoch. To build the complete feature set for each recording, we concatenated the

EEG spectrogram with 9 copies of the EMG activity. Since the spectrogram has 176 frequency

components, each recording becomes a 185 × n matrix with 185 features for each of n epochs.

SS-ANN architecture. The inputs to SS-ANN were 185 × 13 pixel grayscale images, repre-

senting 32.5-second periods of the standardized joint EEG/EMG spectrogram centered on

each epoch. We created a basic CNN architecture using the MATLAB Statistics and Machine

Learning Toolbox (MATLAB, The MathWorks, Natick, MA): 3 convolution—batch normali-

zation—ReLU—max pooling modules, followed by a fully connected layer, softmax layer, and

classification layer. The convolution layers had filter size 3 with 8, 16, and 32 filters per layer.

The max pooling layer had size 2 and stride 2. The network was trained using stochastic gradi-

ent descent with momentum and a mini-batch size of 256 for 10 epochs. The learning rate was

0.015, reduced by 15% each epoch. Classes were balanced prior to training by randomly over-

sampling the classes with the fewest examples to reach the number of examples in the largest

class. Following the classification step, sleep stages were refined by assigning bouts shorter

than 5 seconds to the surrounding stage.

Comparison between SS-ANN and SPINDLE. Up to 20% of epochs in the recordings

used for training or testing SPINDLE were scored as artifacts [10], but inter-rater agreement

for artifact detection was low (in the range of 20-30%). The accuracy of SPINDLE reported in

[10] was calculated only using epochs not labeled as artifacts and on which two expert raters
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agreed. These criteria may remove some of the most difficult-to-classify epochs. We used the

SPINDLE online service with artifact detection disabled to re-score the datasets used in that

publication, obtaining accuracies of 96.2%, 95.1%, 94.8% on Cohorts A, B, and C versus the

labels of Expert 1.

Mixture z-scoring. For a given set of n + N observations of feature values X, n of which

have paired observations of labels L, and fixed choice of baseline mixture weights w, we per-

form mixture z-scoring to obtain standardized observations ZM as follows:

ZM ¼
X � w>m̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w>ðŝ2 þ sÞ

p

defining subtraction and division between vectors and scalars and squaring of vectors as the

element-wise versions of their scalar equivalents, where the vectors m̂, ŝ, and s are as below,

denoting by Xl the set of observations with paired label equal to l:

m̂ l ¼
1

n

X

x2Xl

x ð3Þ

ŝ2
l ¼

1

n

X

x2Xl

ðx � m̂ lÞ
2

ð4Þ

sl ¼ ðm̂ � w>m̂Þ ð5Þ

We found that choosing the baseline mixture weights w to be close to the class prevalences

in a reference dataset worked well.

This algorithm can be motivated as follows: let ϕ be a random variable corresponding to the

feature value and Y be the random variable corresponding to the class label. We can break

down the distribution of the feature value, P(ϕ), into a mixture of the distributions conditioned

on the class label, P(ϕ|Y = i), each with a corresponding mean μi and variance s2
i

wi≔PðY ¼ iÞ ð6Þ

E½�jY ¼ i�≔mi ð7Þ

s2
i ≔V½�jY ¼ i� ð8Þ

The overall mean μG and variance s2
G of this mixture distribution can be written in terms of

the means and variances of its components as follows, writing μ and σ2 for the vectors of class-

conditional means and variances, and w for the vector of class probabilities:

mG≔E½�� ¼ w>m ð9Þ

s2
G≔V½�� ¼ w>ðs2 þ sÞ ð10Þ

V½�� ¼ w>s2 þ w>ðm � w>mÞ2 ð11Þ

s≔ ðm � w>mÞ2 ð12Þ

where the expression for μG comes from the linearity of the expectation and the expression for
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s2
G comes from the law of total variance:

V½�� ¼ E½V½�jY�� þ V½E½�jY�� ð13Þ

The vector s is analogous to a “between sum-of-squares” in an ANOVA.

In this representation, we can write the probabilistically z-scored version of ϕ, which we

write ϕZ, as:

�Z ¼
� � mG
sG

¼
� � w>m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w>ðs2 þ sÞ

p ð14Þ

The key utility of this representation is that it separates out contributions to the overall

mean and variance by the means and variances of each group from contributions to the overall

mean and variance from the prevalence of each group. Note that w, μ, σ2, and s all typically

need to be estimated from data, which results in the typical, exact form of z-scoring.

Now instead suppose we observe a nuisance affected version, ~�, with the same class balance

w. We presume the nuisance variability acts to, in expectation, scale and shift the distribution

of ϕ by scaling parameter a and shift parameter b:

~m≔E½~�jY ¼ i� ¼ aE½�jY ¼ i� þ b ð15Þ

~s2�V½~�jY ¼ i� ¼ a2V½�jY ¼ i� ð16Þ

~s≔ ð~m � w>~mÞ
2

ð17Þ

The method for probabilistic z-scoring remains the same, with the new group means and

variances substituted in:

~�Z ¼
~� � ~mG

~sG
¼

~� � w>~m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w>ð~s2 þ ~sÞ

p ð18Þ

That is, in the absence of changes in class balance, we can remove affine nuisance variability

by subtracting off a weighted sum of the class-conditional means and dividing by a weighted

sum of the class-conditional variances and the weighted variability of the means.

This suggests a method of z-scoring to remove affine nuisance variability for observations,

�̂, with different class balances ŵ. We compute the equivalent m̂ and ŝ2, which are class-spe-

cific statistics, then plug them into Eq 14 with the weights given by w instead of ŵ:

�̂Zm
¼

�̂ � w>m̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w>ðŝ2 þ ðm̂ � w>m̂Þ2Þ
q ð19Þ

The result, applied to a finite dataset, is the operation defined by Eq 2. In essence: we try to

perform the same nuisance variability-removing z-scoring operation we would have done, had

there not been a class balance change.

Note that in general the resulting data Zm no longer has mean 0 or standard deviation 1,

since that is only true when ŵ ¼ w.
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