
UC Irvine
ICS Technical Reports

Title
Depth-mesh objects : fast depth-image meshing and warping

Permalink
https://escholarship.org/uc/item/0177r7ht

Authors
Pajarola, Renato
Sainz, Miguel
Meng, Yu

Publication Date
2003

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0177r7ht
https://escholarship.org
http://www.cdlib.org/

Depth-Mesh Objects:
Fast Depth-Image Meshing and Warping

Renato Pajarola, Miguel Sainz, Yu Meng

UCI-ICS Technical Report No. 03-02
Department of Information & Computer Science

University of California, Irvine

February 2003

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Depth-Mesh Objects:
Fast Depth-Image Meshing and Warping

Renato Pajarola*, Miguel Sainzt, Yu Meng* n

*computer Graphics Lab
Information & Computer Science Department

University of California Irvine
pajarola@acm.org, ymeng@ics.uci.edu

Abstract
In this paper we present a novel and efficient depth­

image representation and warping technique based on a
piece-wise linear approximation of the depth-image as a
textured and simplified triangle mesh. We describe the
application of a hierarchical triangulation method to gener­
ate view-dependent triangulated depth-meshes efficiently
from reference depth-images, and propose a new hardware
accelerated depth-image rendering technique that supports
per-pixel weighted blending of multiple depth-images in
real-time. Applications of our technique include image­
based object representations and the use of depth-images in
large scale walk-through visualization systems.

Keywords: image based rendering, depth-image warping,
multiresolution triangulation, level-of-detail, hardware
accelerated blending

1. Introduction
In recent years a new rendering paradigm called Image
Based Rendering (IBR) [DBC+99], that is based on the
reuse of image data rather than geometry to synthesize arbi­
trary views, has attracted growing interest. Since IBR works
on sampled image data, and not on geometric scene descrip­
tions, the rendering cost is independent of the scene com­
plexity, and depends only on the resolution of the sampled
data. In fact, one of the goals of IBR is to de-couple 3D ren­
dering cost from geometric scene complexity to achieve bet­
t~r display performance in terms of interactivity, frame-rate,
and image quality. Target applications include interactive
rendering of highly complex scenes, display of captured nat­
ural environm(;!nts, and rendering on time-budgets.

In this paper we expand on the technique of depth-image
warping [McM95]. Images with depth(s) per-pixel have
been used to represent individual objects [Max96, SGHS98,
OB99] or to approximate parts of a large scene in interactive
walk-$rough applications [RP94, SLS+96, SS96, AL99,
ACW 99, QWQKOO]. We present an improved depth­
image warping technique based on adaptive triangulation
and simplification of the depth-buffer, and rendering this
depth·-mesh with the color texture of the depth-image (see
also [MMB97]). In addition to reducing the rendering cost
from the geometric scene complexity to the resolution of the
depth-image, adaptively triangulating the depth-map further
reduces the rendering cost down to the complexity of the
depth-variation within this image.

t1mage Based Modeling and Rendering Lab
Electrical and Computer Engineering Department

University of California Irvine
msainz@ece.uci.edu

1.1· Main contributions
Our method offers several improvements and alternatives
compared to previous depth-image warping techniques:The
main contributions include:

• A technique where the simplification of the triangu­
lated depth-buffer is performed view-dependently at
interactive frame-rates for high-resolution depth­
images (i.e. with 250,000 pixels or more).

•Depth-image warping is efficiently performed by
rendering a comparatively small and bounded set of
textured triangle-strips instead of warping a large
number of individual pixels.

• A novel technique for hardware accelerated per-pixel
positional weighted blending of multiple reference
depth-meshes in real-time.
Due to its efficiency, our approach is applicable in vari­

ous r~ndering. systems ~uch as [RP94, SLS+96, SS96,
ACW 99] which update image-based scene representations
frequently at run-time.

1.2 Organization
The remainder of the paper is organized as follows. In
Section 2 we briefly review the most related methods in
depth-ima.ge warping. Section 3 describes our depth-mesh­
ing and segmentation, Section 4 explains the rendering algo­
rithm, and in Section 5 we provide experimental results
supporting our claims. Finally, Section 6 concludes the
paper.

2. Related work
The notion of depth per pixel has been introduced as dispar­
ity between images in [CW93] and used for image synthesis
by interpolation between pairs of input images. The depth
information - distance from the center of projection along
the view direction to the corresponding surface point -
allows to re-project pixels from a depth-image to arbitrary
new views. In [McM95], a unique evaluation order is pre­
sented to guarantee back-to-front drawing order when (for­
ward) warping pixels from the input depth-image to the
frame buffet of a new view.

An extension to depth-images is presented in [SGHS98]
called a layered depth-image (LDI) which can store multiple
depth and color values per pixel. The use of a LOI allows
improved depth-image warping with fewer exposure arti­
facts - exposure of regions not visible in the reference
image. The use of precalculated, multi-layer depth-images
has previously been discussed in [Max96] for rendering of

2

complex trees. LDis are also used in [AL99] together with
an automatic preprocess image placement method to support
interactive rendering at guaranteed frame rates, and in
[OB99] to represent objects using a bounding box of LDis.
The idea of LDis has further been extended in [CBL99] to
LDI-trees for improved control over the sampling rate.

Point based approaches such as [PZvBGOO, RLOO,
ZPvBGOl, CNOl] eliminate exposure artifacts due to under­
sampling and zooming in on a fixed set of discrete samples
by rendering points as disks, surface elements with non-zero
extent. When rendered, the tightly packed surface elements
appear to represent a smooth surface.

Another approach to cope with exposure artifacts is to
represent depth-images as triangle meshes [MMB97]. The
triangulated depth-buffer provides a connected surface
approximating the 3D scene and supports automatic pixel
interpolation for exposed or stretched regions as well as
hardware acceleration warping by rendering the textured tri­
angle mesh. The approach presented in [DSV97, DCV98]
creates simplified irregular triangulations of depth-images
used as cubical environment maps. Both approaches use
multiple reference depth-images to limit exposure artifacts
for new views. In [DSSD99] multiple layers of triangulated
depth-images are proposed to solve exposure problems.

3. Depth-image meshing

3.1 Overview
The depth values of a depth-image can be considered to be a
2.5-dimensional (projective) height-field data set similar to
terrain elevation models. Given the depth values in the z­
buffer for a particular reference image, we can calculate for
each pixel (i,j) its corresponding 3D coordinate P;,j e R3 in
the viewing coordinate system. Using the coordinates of
points PiJ• a quadtree based multiresolution triangulation
hierarchy [Paj02] can be constructed on the grid of pixels of
the reference depth-image. We call this triangulation of a
depth-image a depth-mesh, and the representation of an
object by multiple depth-image triangulations a depth-mesh
object. In the following we explain how a single depth-mesh
is initialized from a given depth-image, and how an adap­
tively triangulated depth-mesh is generated at rendering­
time.

3.2 Multiresolution triangulation
We use the restricted quad tree triangulation method pre­
sented in [Paj98] to generate a simplified triangulation of
the z-buffer, called a depth-mesh. Figure 1 shows the basic
refinement steps for this hierarchical triangulation method.
Based on vertex dependency relations [LKR+96, Paj98] an
adaptively refined and crack-free triangle mesh can effi­
ciently be extracted from this multiresolution hierarchy. For
basic details on the vertex selection and triangulation pro­
cess we refer to [LKR+96, Paj98]. The view-dependent ver­
tex selection and triangulation is outlined in Section 3.3.

level 1-1 level I level I level 1+1

LSJ~~m
aj ~ ~ ~

FIGURE 1. Recursive quadtree subdivision and
triangulation. Refinement points are shown as grey circles in
b) for a diagonal edge bisection and c) for vertical and
horizontal edge bisections.

For multiresolution modeling, each depth-mesh point
needs to determine its approximation error. As error metric
we use a point-to-surface distance as often used for terrains.
The refinement point's error is its distance alopg the eleva­
tion axis to the refined edge, thus a point-to-line distance
function. For performance reasons, vertical and horizontal
refinement points shown in Figure 1 c) use an approxima­
tive 2D distance function instead of the more complicated
3D point-to-line distance. The approximation error d of a
refinement point p, bisecting a vertical (horizontal) edge
between two points a and b of a coarser LOD, is calculated
as the 2D distance of p to the line ab in the projection on the
y,z-plane (x,z-plane). Figure 2 shows an example configura­
tion of projecting points a, b and p from pixels within the
same column onto the y,z-plane. Thus using the line equa­
tion z = m · y + b for ab, with m = (zb-z0)/(yb-Ya) , the
approximation error for vertical refinement points (and anal­
ogously for horizontal refinement points) can be evaluated
by: .

d = m(yp-Ya)-(zp-za)

JI +m2
(EQ 1)

z

image plane

FIGURE 2. Approximation error of vertical refinement point
p is calculated as point-to-line distance in the projection on
the y,z-plane.

For refinement points p bisecting a diagonal edge
between points a and bas in Figure 1 b), the approximation
error is calculated as the actual 3D distance:

d = l(b-a)x(b-p)I
lb-al

(EQ2)

For field-of-view angles of less than 50°, Equation 1
introduces an error of less than 1.0- cos25° = 9.4% .1 Note
that at most one third of the refinement points are center ver­
tices as shown in Figure 1 b), all others are vertical or hori­
zontal refinement points as in Figure 1 c). Therefore,

3

because only 33% of points are diagonal refinement points,
we achieve a significant speed-up using Equation 1 instead
of Equation 2 for vertical and horizontal refinement points.
Note that this error metric is maximized such that center
vertices (Figure 1 b)) store the maximal error of all points
within that subtree of the quadtree hierarchy. To avoid
expensive square root evaluations the distance is actually
used as squared value d2.

Additionally for meshing and rendering purposes we
compute and store the following information in the hierar­
chy. For each depth-mesh vertex p we store the surface nor­
mal nf' and we calculate a per-vertex quality measure
p P = in P • (0, 0, 1) Tj with the vector (0,0, 1) being the view

direction in the local camera coordinate system. A per-ver­
tex quality measure allows smooth interpolation and blend­
ing over depth-mesh triangles in contrast to the per-triangle
quality measure proposed in [DCV98]. Furthermore, for
each center vertex of a quadtree block (Figure 1 b)) we store
a bounding sphere radius rp that includes all depth-mesh
vertices within that block.

3.3 Segmentation
The triangulation of the z-buffer may introduce surface
interpolations between different object surfaces and the
background as shown in Figure 3 that causes artificial
occlusion or rubber sheet [MMB97] artifacts when warped
to new viewpoints. Therefore, it is important to determine
whether triangles represent rubber sheets or not.

a) b)

FIGURE 3. Rubber sheet artifacts showing in a) are
removed in b) by appropriate segmentation.

If performed at run-time, this segmentation of the trian­
gulated depth-mesh has to be done very quickly. We per­
form an efficient per-triangle segmentation on the full
resolution depth-mesh once during the depth-mesh initial­
ization phase and store the results in the multiresolution
hierarchy. In [PMS02] we discussed several fast segmenta­
tion alternatives including connectedness [MMB97], dispar­
ity [OB98] and orthogonality [PMS02]. Any of these three
methods can be used efficiently within our proposed
approach. Here we only want to briefly outline the orthogo­
nality test that we used in our current implementation.

We can observe that the rubber sheet triangles intro­
duced during the triangulation of the depth-image have the

1. Thus this could conservatively be taken into account and added to the
result of Equation 1 if desired.

following property: the triangle normal is almost perpendic­
ular to the vector from the viewpoint to the center of the tri­
angle as shown in Figure 4. Let v be the vector from
viewpoint to the center of triangle t and n1 be the normal oft.
The following inequality using an angular threshold co can
be used to determine if a triangle is a rubber sheet triangle:

I~ • n11 < cos(90° - w) (EQ 3)

,,,,,..
triangle normal n, /

__ ~er sheet triangle
v _ - - I ---- . \

es - - I\ -
\depth-mesh •

FIGURE 4. Rubber sheet triangles in the depth-mesh.

Additional care should be taken not to remove very
small triangles which represent· rough surface features but
do not constitute a discontinuity. Therefore, in addition to
Equation 3 we also consider the depth-range t:..z of triangles
at distance z in the camera coordinate system and we only
remove triangles which span a depth-range larger than some
threshold A.:

t:..z "I ->/\,
z

(EQ4)

The result of the segmentation process, if a triangle is
considered a rubber sheet, is stored as an 8-bit boolean flag
for the triangles a 1, a2, b1, b2, c1, c2, d1, d2 of each quadtree
node as shown in Figure 5 a). For coarser triangles t = a
(and b, or c) within that node as shown in Figure 5 b), the
segmentation is determined by the expression t1 v t2 • Simi­
larly, for a node on a level /-1 the flag of triangle a 1 is recur­
sively set to av b from the child node on level l (and
analogously for the other triangles) as shown in Figure 5 c).
Thus the segmentation of one triangle causes all parent tri­
angles in the quadtree hierarchy to be segmented as well.
After initialization, segmentation can be determined for
each node at rendering-time by a simple boolean expression.

level I level I level 1-1

~ ~--
aj ~ tj '

FIGURE 5. a) Segmentation flags for the full-resolution
triangles of a quadtree node are stored as an 8-bit boolean
field, and b) for the simplified triangles are expressed as
boolean 'or' combinations. c) Flags on level /-1 are
recursively calculated from level /.

3.4 Real-time meshing
At rendering time, for each frame an adaptively triangulated
depth-mesh can be extracted according to the current view­
point and frustum. Given the viewpoint e in the depth-

4

mesh's local camera coordinate system and an image-space
error tolerance 't, a depth-mesh vertex p with geometric
error d inside the view frustum is selected if

(EQ5)

This vertex selection is performed recursively top-down
in the quadtree hierarchy with the boµnding sphere informa­
tion of each node used for view-frustum culling. The vertex
dependency rules explained in [LKR +96, Paj98] are used to
guarantee a crack-free triangulation. The triangle-strip con­
struction method proposed in [Paj98] is used and modified
to incorporate segmentation of rubber sheet triangles as
shown in Figure 6. While creating the triangle strip
sequence for a selected set of vertices, the segmentation
flags of each visited quadtree node are checked, and if nec­
essary the strip is broken up into multiple smaller triangle
strips.

triangle strip(s)

-.::m:~.~ :i~:l~s --,__..,._...,.~~
..... - - - -

aj ~
FIGURE 6. a) Triangle strip sequence of an adaptively
triangulated quadtree, and b) split into multiple shorter strips
due to segmentation of triangles.

Figure 7 illustrates the preprocess stages to generate the
multiresolution depth-mesh data structures and Figure 11
shows some examples of adaptively triangulated and seg­
mented depth-meshes.

compute:
error metric d

capture convert to camera quality p
z-buffer coordinate system segmentation

capture color multiresolution
into texture T; hierarchy M;

FIGURE 7. Depth-mesh generation preprocess.

4. Depth-mesh rendering
4.1 Overview
Depth-image warping can efficiently be performed by hard­
ware supported rendering of textured polygons instead of
projecting every single pixel from a reference depth-image
to new views. The approximate depth-image consisting of a
segmented triangulation of the depth-buffer, as outlined in
the previous section, is rendered using the color values of
the reference frame-buffer as texture. Rendering a depth­
image with a resolution of 2k x 2k pixels involves warping

of 22k pixels with traditional depth-image warping tech­
niques (or rendering about 2 · 2 2k triangles with [MMB97]).
With the proposed technique, instead of warping the
218 = 262144 pixels of a 512 x 512 reference image, a tex­
tured depth-mesh with only a few thousand triangles can be
rendered using hardware accelerated 3D graphics at a frac­
tion of the cost of per-pixel image warping.

The depth-mesh generation and segmentation is per­
formed in the reference view coordinate system. Whenever
a depth-mesh has to be rendered, the coordinate system
transformation of that reference view is used as model-view
transformation to place the depth-mesh correctly in the
world coordinate system.

To reduce exposure .artifacts, most image warping tech­
niques render multiple reference images that have to be
merged to synthesize a new view. We present a novel and
highly efficient blending algorithm that exploits graphics
hardware acceleration and that supports per-pixel weighted
blending of reference depth-images. Blending of n reference
depth-meshes to synthesize a new view consists of the fol­
lowing basic steps:

1. Select n reference depth-meshes M; (i = l...n) and
textures T; to be used for the current view, and calcu­
late their positional blending weights w; with respect
to the current viewpoint e.

2. Adaptively triangulate the depth-meshes M; for the
current viewpoint e, and generate the segmented tri­
angle strip representations S;.

3. Render the triangle strips S; without illumination and
texturing to synthesize the final z-buffer Ze of the
current viewpoint e.

4. Render the triangle strips S; again with their textures
T; and per-vertex quality p as alpha values enabled. 1

The result is rendered into separate color-with-alpha
frame-buffers C;. Depth-buffer evaluation using Ze is
set to read-only at this stage.

5. Synthesize the new image I from buffers C; using
positional weights and alpha-blending:

I= L W;· C ..
i = l ... n I

6. The image I contains the per-pixel weighted result.
Note that the final alpha blending factor per pixel
may be less than 1.0 at this stage and a normalization
of the corresponding color yields the final image.

Figure 8 illustrates the data flow and rendering stages of
our algorithm. The following sections explain the different
stages in more detail and show how our algorithm exploits
hardware acceleration.

1. The per-vertex quality measure p will be Gouraud interpolated across
triangles and yield a per-pixel quality measure in the alpha-channel.

5

select n depth-meshes M;=1 ... 11

view-dependent selection of vertices

generate triangle strips S;

render with textures T; and per-vertex alpha p

C1

per-pixel color normalization

display

FIGURE 8. Depth-mesh rendering and blending stages.

The proposed rendering algorithm is tested and
explained in more detail below for an image-based object
(IBO) representation but is applicable to other rendering
systems that make use of depth-image warping as well. In
[OB99] an IBO is constructed by generating six layered
depth images taken from the six sides of a cubic bounding
box surrounding a single object. Similarly, we extract six
textured depth-meshes around the axis-oriented bounding
box of the object and store them as the reference views.

4.2 Depth-mesh selection and triangulation
During rendering, for each frame we first select the three
depth-meshes Mi=l ,2,3 out of the six reference views that
face the novel rendering position e. The blending weights
wi=l,2,3 are calculated based on the euclidean distances from
the depth-mesh viewpoints to the novel viewpoint, and are
normalized such that L; = l, 2, 3 w; = 1.0.

Each selected depth-mesh M; is simplified view-depen­
dently for the new viewpoint e according to an image-space
geometric error tolerance of 't pixels. This is performed by a
recursive top-down traversal of the quadtree triangulation
hierarchy of M; as outlined in Section 3. The resulting trian­
gulation is segmented and represented by a set of triangle
strips S; which contain vertices with texture coordinates into
the reference view texture T; and per vertex quality values p
used as RGBA components.

4.3 Rendering using an £-z-buffer

To achieve a smooth blending between overlapping depth­
meshes Mi=l,2,3 the rendering must allow some tolerance in
the z-buffer visibility test. Depth-meshes that for a pixel
cover the same surface region within some tolerance E
should be blended together, and only if the z-buffer values
are sufficiently different the front-most depth-mesh deter­
mines the final color of that pixel.

This E-z-buffer rendering is achieved by first drawing
the triangle strips Si without any shading, illumination or
texturing enabled to initialize the z-buffer to Ze for the
desired viewpoint e. Since the buffers require to be cleared

during the following steps, the stencil buffer is set to store
which areas of the frame buffer will be overwritten by the
IBO. From here on we will assume that the stencil test is
activated to block rendering in areas of the original color
and depth buffer where the IBO is not present.

In a second pass and using the previously computed z­
buffer Ze in read-only mode, the meshes S; are rendered
again individually into color buffers C; at a slight negative
offset in the view-direction. Initially a background quad is
rendered with its alpha channel set to the corresponding
positional weight w; for the reference view. Now shading,
alpha-blending, texturing and per vertex color components
are enabled. Since each vertex' RGBA color is set to its
quality measure (p,p,p,p), Gouraud shading and texture
modulation with T; is enabled, the resulting image C; con­
tains the per-pixel weighted colors of the warped depth­
mesh multiplied with positional weight w; of the view. Then
the color buffer is copied into the reference texture T;.

At this point a pixel p in the· frame buffer C; with inter­
polated quality Pp from Gouraud shading and texture coor­
dinates s, t will finally store the desired weighted color
S,_wi'Pp·Red(T;(s,t!J., W(Pp·<}_reen(T;(~t)), W(p.f!..·Blue(T;(s,t)),
Pp), or short (wrPp'Rp, Wf Pp'Gp, W(Pp'Bp, W(Pp).

Note that rendering the selected depth-meshes S; twice is
not very costly as can be seen in Section 5 because render­
ing of triangle strips with only a few thousand triangles is
extremely efficient. On the other hand, the more costly oper­
ation of view-dependent vertex selection and segmentation
is only done once.

4.4 Per-pixel blending and normalization
As outlined above, the images C; now contain the quality
and positional weighted contributions of the selected depth­
meshes M;. The final rendering stages must now perform the
image composition and normalization of the color values.
The two steps involved are the summation of the weighted
colors by I = L, C; followed by normalizing each color
component. The image composition operation can be per­
formed efficiently by alpha-blending n quadrilaterals using
C; as textures on these quads.

The sum yields an image I with pixel colors (a:R, a:G,
a:B, a.). These color values constitute the proportionally
correctly blended values, however, the a. values need not be
1.0 as required. To get the final desired color (R, G, B, 1.0) it
is obvious that each color component has to be multiplied
with a.·1. Without any hardware extensions to perform com­
plex per-pixel manipulations this normalization step has to
be performed in software on the main CPU and the resulting
image has to be uploaded to the graphics hardware frame
buffer for display. However, widely available graphics
accelerators now offer per-pixel shading operators that can
be used more efficiently. In our current implementation, we
perform this normalization in hardware using nVIDIA's
OpenGL Texture Shader extension [DSOl].

To compensate the illumination deficiency we perform a
remapping of the R, G and B values based on the value of a..

6

I

J

During initialization time we construct a texture encoding in
(s,t) of a look-up table off transparency and luminance val­
ues respectively, from 0 to 256 possible values. The pixels
of the textures encode the new luminance (t) compensated
with the transparency (s).

FIGURE 9. Alpha-Luminance map.

Based on this alpha-luminance map, we will proceed to
correct each of the R,G and B channels of every pixel of the
final image. Using the texture shader extension operation
GL_DEPENDENT_AR_TEXTURE_2D _NV the video
card can easily remap the output using the R and A values as
texture coordinates for our alpha-luminance map. At this
point, rendering a quadrilateral with the image I as texture­
one and the alpha-luminance map as texture-two and setting
the color mask to block the G, B and A channel would com­
pensate the red channel with the a: 1 amount. This process is
shown in Algorithm 2.

However, the actual capabilities of the video card do not
allow to use the rest of the color components with the tex­
ture shader extension. A preprocess must be performed
before using the shaders to generate two additional textures
that have the green and blue channels copied into the red
channel, so the texture shader can be used to compensate the
intensity in the complete image I.

The preprocess step starts with the final image I in the
frame-buffer and reuses the textures T; to store the modified
color buffers. The first texture T1 is a plain copy of the
image /. For the second and third textures, we use the
n VIDIA register combiners to copy the G and B channels
into the R component. This is done using a single combiner
and two passes that involve rendering two textured quadri­
laterals. The result of each pass is stored in T2 and T3. This
preprocess to remap the color channels is given in
Algorithm 1.

The final rendering using the texture shader is done by
incrementally rendering three quadrilaterals with the modi­
fied textures, remapped using the alpha-luminance map and
blocking the appropriate color channels.

4.5 Background rendering
The last step in the rendering process consist of covering
small holes from the front meshes that are caused during the
segmentation process. Although the total area of these holes
is very small, it generates disturbing artifacts if they are not
properly colored.

This rendering is performed using a low quality non­
view dependant textured depth-mesh, created during initial­
ization and stored as a compiled display list. The overhead
introduced by this final step is negligible but the visual
appearance of the final image improves considerably.

//---
//Copy original image into TO (R,G,B,A)
glBindTexture(GL_ TEXTURE_20, TO);
glCopyTexSublmage2D(GL_TEXTURE_20,0,0,0,0,0,w,h);

II setup the register combiners to use 1 general combiner
glCombinerParameter NV(GL._NUM_GENERAL_COMBINERS_NV, 1);

// Insert colors into the Constant Color 0 register
glCombinerParameterfvNV(GL._CONSTANT_COLORO_NV, color1); II (0, 1,0,0)
glCombinerParameterfvNV(GL.....CONSTANT_COLOR1_NV, color2); II (0,0, 1,0)

II Set the final combiner
glFinalCombinerlnputNV(GL_ VARIABLE_A_NV, GL_ZERO,

GL_UNSIGNED_IDENTITY _NV, GL_RGB);
glFinalCombinerlnputNV(GL_ VARIABLE_B_NV, GL_ZERO,

GL_UNSIGNED_IDENTITY _NV, GL_RGB);
glFinalCombinerlnputNV(GL_ VARIABLE_C_NV, GL_ZERO,

GL_UNSIGNED_IDENTITY _NV, GL_RGB);
glFinalCombinerlnputNV(GL_VARIABLE_D_NV, GL_SPAREO_NV,

GL_UNSIGNED_IDENTITY _NV, GL_RGB);
glFinalCombinerlnputNV(GL_ VARIABLE_G_NV, GL_ TEXTUREO_ARB,

GL_UNSIGNED_IDENTITY _NV, GL_ALPHA);

glEnable(GL_REGISTER_COMBINERS_NV); ·

11---11 Get the green texture T1 (G,G,G,A)
II setup combiner 1
glCombinerlnputNV(GL_COMBINERO_NV, GL_RGB, GL_ VARIABLE_A_NV,

GL_ TEXTUREO_ARB, GL_UNSIGNED_IDENTITY _NV, GL_RGB);
glCombinerlnputNV(GL_COMBINERO_NV, GL.....RGB, GL_ VARIABLE_B_NV,

GL_CONSTANT _COLORO_NV, GL_UNSIGNED_IDENTITY _NV, GL_RGB);
glCombinerlnputNV(GL_COMBINERO_NV, GL_RGB, GL_VARIABLE_C_NV, GL_ZERO,

GL_UNSIGNED_IDENTITY _NV, GL_RGB);
glCombinerlnputNV(GL.....COMBINERO_NV, GL_RGB, GL_VARIABLE_D_NV, GL._ZERO,

GL_UNSIGNED_IDENTITY _NV, GL_RGB); ·
glCombinerOutputNV(GL_COMBINERO_NV, GL_RGB, GL_SPAREO_NV,

GL_DISCARD_NV, GL.....DISCARD_NV, GL_NONE, GL_NONE, GL_ TRUE, GL_FALSE,
GL_FALSE);

II Render the original texture (is in TO)
glBindTexture(GL._ TEXTURE_20, TO);
glTexEnvf(GL_ TEXTURE_ENV, GL_ TEXTURE_ENV _MODE, GL_REPLACE);
glBegin(GL_QUADS);

glEnd();

glTexCoord2d(O,O); g1Vertex2d(O,O);
glTexCoord2d(1,0); g1Vertex2d(w,O);
glTexCoord2d(1, 1); g1Vertex2d(w,h);
glTexCoord2d(O, 1); g1Vertex2d(O,h);

II Copy original image into T1
glBindTexture(GL..... TEXTURE_20, T1);
glCopyTexSublmage2D(GL_TEXTURE_20,0,0,0,0,0,w,h);

11---
11 Get the blue texture T2 = (B,B,B,A)
II Modify the settings of the combiner
glCombinerlnputNV(GL._COMBINERO_NV, GL_RGB, GL_ VARIABLE_A_NV,

GL_ TEXTUREO_ARB, GL_UNSIGNED_IDENTITY _NV, GL.....RGB);
glCombinerlnputNV(GL.....COMBINERO_NV, GL._RGB, GL_ VARIABLE_B_NV,

GL_CONSTANT _COLOR 1_NV, GL_UNSIGNED_IDENTITY _NV, GL_RGB);
glCombinerlnputNV(GL_COMBINERO_NV, GL.....RGB, GL._VARIABLE_C_NV, GL_ZERO,

GL_UNSIGNED_IDENTITY _NV, GL.....RGB);
glCombinerlnputNV(GL_COMBINERO_NV, GL._RGB, GL.....VARIABLE_D_NV, GL._ZERO,

GL.....UNSIGNED_IDENTITY _NV, GL.....RGB);
glCombinerOutputNV(GL_COMBINERO_NV, GL_RGB, GL_SPAREO_NV,

GL_DISCARD_NV, GL._DISCARD_NV, GL._NONE, GL_NONE, GL..... TRUE, GL.....FALSE,
GL.....FALSE);

glBindTexture(GL..... TEXTURE_2D, colorlD[OJ);
glTexEnvf(GL_ TEXTURE_ENV, GL..... TEX1URE_ENV _MODE, GL_REPLACE);
glBegin(GL_QUADS);

glEnd();

glTexCoord2d(O,O); g1Vertex2d(0,0);
glTexCoord2d(1,0); g1Vertex2d(w,O);
glTexCoord2d(1, 1); glVertex2d(w,scrY);
glTexCoord2d(O, 1); glVertex2d(O,scrY);

II Copy original image into T2
glBindTexture(GL.....TEXTURE_20, T1);
glCopyTexSublmage2D(GL_TEXTURE_20,0,0,0,0,0,w,h);

glDisable(GL..... TEXTURE_20);
glDisable(GL._REGISTER_COMBINERS_NV);

ALGORITHM 1. Preprocess for color remapping.

7

II Normalize illumination
II Here rendering the quad would generate the A channel normalized.
II Texture 0 is the original image
//Texture 1 is the alpha_lum map

glEnable(GL_ TEXTURE_SHADER_NV);

glActiveTextureARB(GL_TEXTURE1_ARB);
g1BindTexture(GL_ TEXTURE_2D, alpha_luminance_map); II alpha_lum map
glTexEnvi(GL_ TEXTURE_ENV, GL_ TEXTURE_ENV _MODE, GL_REPLACE);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV,

GL_DEPENDENT _AR_ TEXTURE_2D_NV);
glTexEnvi(GL_ TEXTURE_SHADER_NV, GL_PREVIOUS_ TEXTURE_INPUT_NV,

GL_ TEXTUREO_ARB);

II Normalize red channel using TO
glActive TextureARB(GL_ TEXTUREO_ARB);
glBindTexture(GL_ TEXTURE_20, TO);
glTexEnvi(GL_ TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV,

GL_ TEXTURE_20);
glTexEnvi(GL_ TEXTURE_ENV, GL_ TEXTURE_ENV _MODE, GL_REPLACE);

glColorMask(GL_ TRUE,GL_FALSE,GL_FALSE,GL_FALSE);
glBegin(GL_QUADS);

g1MultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0,0); g1Vertex2d(0,0);
glMultiTexCoord2fARB(GL_ TEXTUREO_ARB, 1,0); g1Vertex2d(w,O);
g1MultiTexCoord2fARB(GL_ TEXTUREO_ARB, 1, 1);glVertex2d(w,scrY);
glMultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0, 1); glVertex2d(O,scrY);

glEnd();

II Normalize green channel using T1
glActive TextureARB(GL_ TEXTUREO_ARB);
glBindTexture(GL_ TEXTURE_20, T1);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV,

GL_TEXTURE_20); ·
glTexEnvi(GL_ TEXTURE_ENV, GL_ TEXTURE_ENV _MODE, GL_REPLACE);

glColorMask(GL_FALSE,GL_TRUE,GL_FALSE,GL_FALSE);
glBegin(GL_QUADS);
g1MultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0,0); g1Vertex2d(O,O);
glMultiTexCoord2fARB(GL_ TEXTUREO_ARB, 1,0); g1Vertex2d(w,O);
g1MulliTexCoord2fARB(GL_ TEXTUREO_ARB, 1, 1); g1Vertex2d(w,h);
glMultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0, 1); glVertex2d(O,scrY);
glEnd();

II Normalize blue channel using T2
glActiveTextureARB(GL_TEXTUREO_ARB);
glBindTexture(GL_ TEXTURE_2D, T2);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV,

GL_ TEXTURE_20);
glTexEnvi(GL_ TEXTURE_ENV, GL_ TEXTURE_ENV _MODE, GL_REPLACE);

glColorMask(GL_FALSE,GL_FALSE,GL_TRUE,GL_FALSE);
glBegin(GL_QUADS);

g1MultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0,0); g1Vertex2d(O,O);
glMultiTexCoord2fARB(GL_TEXTUREO_ARB, 1,0); g1Vertex2d(w,0);
g1MultiTexCoord2fARB(GL_ TEXTUREO_ARB, 1, 1); glVertex2d(w,scrY);
glMultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0, 1); glVertex2d(O,scrY);

glEnd();

ALGORITHM 2. Color normalization.

5. Experiments
In this section we report experimental results of our depth­
meshing and warping algorithm for different polygonal
models. For each model we create an image-based object
(IBO) similar to [OB99] using a bounding box of six depth­
meshes around the object.

Table 1 shows timing results for the generation of depth­
meshes with our approach given a depth-image size of 5132

= 263169 pixels. The timing was performed on a Dell
2.2GHz Pentium4 using a n VIDIA GeForce4 4600Ti with
the Detonator 4.0 drivers. The table shows the size of the
test models, the time it takes to render the geometry, the cost
to capture and convert the z-buffer into 3D points, and the
cost to initialize the depth-mesh M. This initialization
includes the calculation of the error metric, per-vertex qual­
ity measure, triangle segmentation flags, and other multires-

olution parameters as described in Section 3. Not shown due
to negligible cost is the capturing of the color texture T cor­
responding to a particular depth-mesh M. The segmentation
angle tolerance ffi was set to 5° and the depth-range thresh­
old ')... to 5/100 of the object's max extent. As expected, one
can observe that the depth-mesh initialization is constant for
a given reference image resolution. The quadtree hierarchy
construction grows with O(n-log n) for a reference depth­
image of n pixels.

Model Triangles Render z-buffer Quadtree

David 8254150 4040 ms 39 ms 495ms

Dragon 871414 430ms 36 ms 405 ms

·Happy 100000 49ms 36ms 409ms

Female 605086 811 ms 36ms 407 ms

Male 641560 849ms 36ms 408 IJlS

TAB LE 1. Depth-mesh construction cost for different polygonal
models. Given is the model size, rendering cost, z-buffer

capture and conversion, and multiresolution model
construction.

Table 2 shows the rendering performance of our depth­
mesh image based objects, and the corresponding screen
shots are given in Figure 10. We used an image-space error
tolerance 't of 1 pixel for the David model, 4 pixels for the
Female and Male models, 16 pixels for the Dragon, and 64
pixels for the Happy model. The selection of three reference
views has negligible costs and is omitted here. The synthesis
cost of generating the z-buffer Ze includes the view-depen­
dent selection of vertices from the depth-meshes M;, as well
as rendering the segmented triangle strips S; once (Steps 2
and 3 from Section 4.1). The rendering of images C; corre­
sponds to Step 4, and blending includes Steps 5 and 6 from
Section 4.1.

It can be observed from Table 2 that our depth-meshing
and warping algorithm provides stable and interactive frame
rates for arbitrary complex objects, and that the rendering
performance is completely independent from the size of the
input polygonal model. The total depth-mesh rendering and
blending cost is in the order of 40 to 60 ms. The per-pixel
weighted blending of the individual warped depth-images C;
is extremely efficient and scales to arbitrary number of input
images C; as long as the pixel fill rate of the graphics hard­
ware is not exceeded. One can also see that depth-meshing
is advantageous in terms of complexity of per-pixel depth­
image warping. As can be seen from Table 2, the view­
dependently triangulated depth-meshes S; only consist of up
to 30K textured triangles which represent three
5122=262144 pixel depth-images.

8

Geometry 180

Model Triangles Synthesize z-buffer Ze Rendering Blend and
time FPS FPS

of S1=12.3 selection rendering of C1::1,2,3 nonnalize

David 4029 ms 0.25 18447 13.6 ms 15.2 ms 15.5 ms 0.08 ms 22

Dragon 430ms 2.4 30635 16.6 ms 23.3 ms 23.5 ms 0.08 ms 15

Happy 50ms 20 22316 13.2 ms 16.9 ms 17.1 ms 0.08 ms 21

Female 813 ms 1.2 29735 13.3 ms 19.9 ms 20.2 ms 0.1 ms 18

Male 863 ms 1.2 22423 11.4 ms 15.9 ms 16.2 ms 0.08 i:ns 21

TABLE 2. Depth-mesh rendering performance of image based objects. It shows the number of tnangles rendered from the selected depth
meshes S~1 .2.3 and the timing of the different rendering stages.

t;('; '11·.··.

M
'!VJ~·.:

'

'

FIGURE 1 O. Renderings of complex polygonal objects from
six reference depth-meshes using our per-pixel weighted
blending algorithm.

Figure 13 illustrates results from our per-pixel weighted
blending algorithm. We compare the rendering results to a
simple binary merge of depth-meshes, where the depth­
mesh closest to the viewpoint determines the pixel color,
and to our previous positional weighted blending algorithm
presented in [PMS02]. The images show the polygonal
object, the binary merged depth-meshes, the positional
weighted blending [PMS02], and the new per-pixel
weighted blending. Furthermore, Figure 12 shows the occu­
pancy image in pseudo coloring that shows the per-pixel
blending. Each color in this occupancy image specifies how
many and which depth-meshes are used to render a particu­
lar pixel. The colors red, green and blue specify the individ­
ual depth-meshes, and any combination thereof determines
which depth-meshes are blended together.

6. Discussion
We presented an efficient view-dependent depth-image
meshing and segmentation method as well as a novel real­
time depth-image blending algorithm that exploits hardware
graphics acceleration. The proposed depth-buffer triangula­
tion approach significantly reduces the complexity of depth-

image warping by view-dependent simplification of the tri­
angulated depth-mesh and rendering textured triangle strips.
Our novel blending technique provides extremely efficient
per-pixel weighted blending of depth-images.

Our approach improves over previous depth-image
warping methods [McM95, MMB97, DSV97, DCV98] in
particular in the following aspects: efficient generation of
depth-image based object representations, and weighted
blending of multiple reference views at interactive frame
rates. The presented approach can be used as a rendering
component in visualization systems such as large scale
walk-through applications [RP94, SLS+96, SS96,
ACW+99].

The main limitation of the presented approach is the lim­
ited ability to cover exposure artifacts in comparison to lay­
ered approaches [SGHS98, DSSD99].

Future work in this context will include extension of the
proposed approach to a multi-layer depth-mesh representa­
tion, · application of our blending algorithm to other IBR
methods, and taking advantage of per-pixel and per-vertex
programming features of modern graphics hardware accel-
erators.

Acknowledgements
This work was partially supported by NSF grant CCR-
0119053.

References
[ACW+99] Daniel Aliaga, Jon Cohen, Andrew Wilson, Eric Baker, Hansong

Zhang, Carl Erikson, Kenneth Hoff, Tom Hudson, Wolfgang Stuer­
zlinger, Rui Bastos, Mary Whitton, Fred Brooks, and Dinesh
Manocha. MMR: An interactive massive model rendering system
using geometric and image-based acceleration. In Proceedings Sym­
posium on Interactive 3D Graphics, pages 199-206. ACM SIG­
GRAPH, 1999.

[AL99] Daniel Aliaga and Anselmo Lastra. Automatic image placement to
provide a guaranteed frame rate. In Proceedings SIGGRAPH 99,
pages 307-316. ACM SIGGRAPH, 1999.

[CBL99] Chun-Fa Chang, Gary Bishop, and Anselmo Lastra. Ldi tree: A hier­
archical representation for image-based rendering. In Proceedings
SIGGRAPH 99, pages 291-298. ACM SIGGRAPH, 1999.

[CNOl] Baoquan Chen and MinhXuan Nguyen. POP: A hybrid point and
polygon rendering system for large data. In Proceedings IEEE Visual­
iwlion 200 l, pages 45-52, 2001.

[CW93] Shenchang Eric Chen and Lance Williams. View interpolation for
image synthesis. In Proceedings SIGGRAPH 93, pages 279-288.
ACM SIGGRAPH, 1993.

9

[DBC+99] Paul Debevec, Christoph Bregler, Michael Cohen, Leonard
McMillan, Francois Sillion, and Richard Szeliski. Image-based mod­

eling and rendering. SIGGRAPH 99 Course Notes 39, 1999.
[DCV98] Lucia Darsa, Bruno Costa, and Amitabh Varshney. Walkthroughs of

complex environments using image-based simplification. Computers
& Graphics, 22(1):25-34, 1998.

[DSOl] Sebastien Domine and John Spitzer. Texture shaders. Developer Doc­
umentation, 2001.

[DSSD99] Xavier Decoret, Gemot Schaufler, Francois Sillion, and Julie
Dorsey. Multi-layer impostors for accelerated rendering. In Proceed­
ings EUROGRAPHICS 99, pages 61-72, 1999.

[DSV97] Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Navigating
static environments using image-space simplification and morphing.
In Proceedings Symposium on Interactive 3D Graphics, pages 25-34.
ACM SIGGRAPH, 1997.

[LKR+96] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges,
Nick Faust, and Gregory A. Turner. Real-time, continuous level of
detail rendering of height fields. In Proceedings SIGGRAPH 96,
pages 109-118. ACM SIGGRAPH, 1996.

[Max96] Nelson Max. Hierarchical rendering of trees from precomputed multi­
layer z-buffers. In Proceedings Eurographics Rendering Workslwp
96, pages 165-174. Eurographics, 1996.

[McM95] Leonard McMillan. A list-priority rendering algorithm for redisplay­
ing projected surfaces. Technical Report UNC-95-005, University of
North Carolina, 1995.

[MMB97] William R. Mark, Leonard McMillan, and Gary Bishop. Post-ren­
dering 3d warping. In Proceedings Symposium on Interactive 3D
Graphics, pages 7-16. ACM SIGGRAPH, 1997.

[OB98] Manuel M. Oliveira and Gary Bishop. Dynamic shading in image­
based rendering. Technical Report UNC-98-023, University of North
Carolina, 1998.

[OB99] Manuel M. Oliveira and Gary Bishop. Image-based objects. In Pro­
ceedings Symposium on Interactive 3D Graphics, pages 191-198.
ACM SIGGRAPH, 1999.

[Paj98] Renato Pajarola. Large scale terrain visualization using the restricted
quadtree triangulation. In Proceedings IEEE Visualiwtion 98, pages
19-26,515, 1998.

[Paj02] Renato Pajarola. Overview of quadtree-based terrain triangulation and
visualization. Technical Report UCI-ICS-02-01, Information & Com­
puter Science, University of California Irvine, 2002. submitted for
publication.

[PMS02] Renato Pajarola, Yu Meng, and Miguel Sainz. Fast depth-image
meshing and warping. Technical Report UCI-ECE-02-02, The Henry
Samuell School of Engineering, University of California Irvine, 2002.
submitted for publication.

[PZvBGOO] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus
Gross. Surfels: Surface elements as rendering primitives. In Proceed­
ings SIGGRAPH 2000, pages 335-342. ACM SIGGRAPH, 2000.

[QWQKOO] Huamin Qu, Ming Wan, Jiafa Qin, and Arie Kaufman. Image
based rendering with stable frame rates. In Proceedings IEEE Visual­
ization 2000, pages 251-258. Computer Society Press, 2000.

[RLOO] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution
point rendering system for large meshes. In Proceedings SIGGRAPH
2000, pages 343-352. ACM SIGGRAPH, 2000.

[RP94] Matthew Regan and Ronald Pose. Priority rendering with a virtual
reality address recalculation pipeline. In Proceedings SIGGRAPH 94,
pages 155-162. ACM SIGGRAPH, 1994.

[SGHS98] Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski.
Layered depth images. In Proceedings SIGGRAPH 98, pages 231-
242. ACM SIGGRAPH, 1998.

[SLS+%] Jonathan Shade, Dani Lischinski, David H. Salesin, Tony DeRose,
and John Snyder. Hierarchical image caching for accelerated walk­
throughs of complex environments. In Proceedings SIGGRAPH 96,
pages 75-82. ACM SIGGRAPH, 1996.

[SS96] Gemot Schaufler and Wolfgang Sttirzlinger. A 3d image cache for
virtual reality. In Proceedings EUROGRAPHICS 96, pages 227-236,
1996.

[ZPvBGOl] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus
· Gross. Surface splatting. In Proceedings SIGGRAPH 2001, pages

371-378. ACM SIGGRAPH, 2001.

FIGURE 11. Examples of adaptively triangulated and segmented depth-meshes. From left to right: rendering from polygonal model,
depth-mesh in wire frame and segmented textured depth-mesh.

FIGURE 12. Occupancy pseudo colored images. The RGB primary colors correspond to the three different blended depth-meshes.
Any other mixed color illustrates the combination of multiple depth-meshes.

10

FIGURE 13. Renderings of complex polygonal objects from six reference depth-meshes, aligned with the bounding box, using our
proposed positional weighted blending algorithm. The leftmost in any row shows the actual polygonal object, followed by a simple
binary blending of depth-meshes, a positional weighted blending and our proposed per-pixel weighted blending algorithm.

11

