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Abstract 
In this paper we present a novel and efficient depth­

image representation and warping technique based on a 
piece-wise linear approximation of the depth-image as a 
textured and simplified triangle mesh. We describe the 
application of a hierarchical triangulation method to gener­
ate view-dependent triangulated depth-meshes efficiently 
from reference depth-images, and propose a new hardware 
accelerated depth-image rendering technique that supports 
per-pixel weighted blending of multiple depth-images in 
real-time. Applications of our technique include image­
based object representations and the use of depth-images in 
large scale walk-through visualization systems. 

Keywords: image based rendering, depth-image warping, 
multiresolution triangulation, level-of-detail, hardware 
accelerated blending 

1. Introduction 
In recent years a new rendering paradigm called Image 
Based Rendering (IBR) [DBC+99], that is based on the 
reuse of image data rather than geometry to synthesize arbi­
trary views, has attracted growing interest. Since IBR works 
on sampled image data, and not on geometric scene descrip­
tions, the rendering cost is independent of the scene com­
plexity, and depends only on the resolution of the sampled 
data. In fact, one of the goals of IBR is to de-couple 3D ren­
dering cost from geometric scene complexity to achieve bet­
t~r display performance in terms of interactivity, frame-rate, 
and image quality. Target applications include interactive 
rendering of highly complex scenes, display of captured nat­
ural environm(;!nts, and rendering on time-budgets. 

In this paper we expand on the technique of depth-image 
warping [McM95]. Images with depth(s) per-pixel have 
been used to represent individual objects [Max96, SGHS98, 
OB99] or to approximate parts of a large scene in interactive 
walk-$rough applications [RP94, SLS+96, SS96, AL99, 
ACW 99, QWQKOO]. We present an improved depth­
image warping technique based on adaptive triangulation 
and simplification of the depth-buffer, and rendering this 
depth·-mesh with the color texture of the depth-image (see 
also [MMB97]). In addition to reducing the rendering cost 
from the geometric scene complexity to the resolution of the 
depth-image, adaptively triangulating the depth-map further 
reduces the rendering cost down to the complexity of the 
depth-variation within this image. 

t1mage Based Modeling and Rendering Lab 
Electrical and Computer Engineering Department 

University of California Irvine 
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1.1· Main contributions 
Our method offers several improvements and alternatives 
compared to previous depth-image warping techniques:The 
main contributions include: 

• A technique where the simplification of the triangu­
lated depth-buffer is performed view-dependently at 
interactive frame-rates for high-resolution depth­
images (i.e. with 250,000 pixels or more). 

•Depth-image warping is efficiently performed by 
rendering a comparatively small and bounded set of 
textured triangle-strips instead of warping a large 
number of individual pixels. 

• A novel technique for hardware accelerated per-pixel 
positional weighted blending of multiple reference 
depth-meshes in real-time. 
Due to its efficiency, our approach is applicable in vari­

ous r~ndering. systems ~uch as [RP94, SLS+96, SS96, 
ACW 99] which update image-based scene representations 
frequently at run-time. 

1.2 Organization 
The remainder of the paper is organized as follows. In 
Section 2 we briefly review the most related methods in 
depth-ima.ge warping. Section 3 describes our depth-mesh­
ing and segmentation, Section 4 explains the rendering algo­
rithm, and in Section 5 we provide experimental results 
supporting our claims. Finally, Section 6 concludes the 
paper. 

2. Related work 
The notion of depth per pixel has been introduced as dispar­
ity between images in [CW93] and used for image synthesis 
by interpolation between pairs of input images. The depth 
information - distance from the center of projection along 
the view direction to the corresponding surface point -
allows to re-project pixels from a depth-image to arbitrary 
new views. In [McM95], a unique evaluation order is pre­
sented to guarantee back-to-front drawing order when (for­
ward) warping pixels from the input depth-image to the 
frame buffet of a new view. 

An extension to depth-images is presented in [SGHS98] 
called a layered depth-image (LDI) which can store multiple 
depth and color values per pixel. The use of a LOI allows 
improved depth-image warping with fewer exposure arti­
facts - exposure of regions not visible in the reference 
image. The use of precalculated, multi-layer depth-images 
has previously been discussed in [Max96] for rendering of 
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complex trees. LDis are also used in [AL99] together with 
an automatic preprocess image placement method to support 
interactive rendering at guaranteed frame rates, and in 
[OB99] to represent objects using a bounding box of LDis. 
The idea of LDis has further been extended in [CBL99] to 
LDI-trees for improved control over the sampling rate. 

Point based approaches such as [PZvBGOO, RLOO, 
ZPvBGOl, CNOl] eliminate exposure artifacts due to under­
sampling and zooming in on a fixed set of discrete samples 
by rendering points as disks, surface elements with non-zero 
extent. When rendered, the tightly packed surface elements 
appear to represent a smooth surface. 

Another approach to cope with exposure artifacts is to 
represent depth-images as triangle meshes [MMB97]. The 
triangulated depth-buffer provides a connected surface 
approximating the 3D scene and supports automatic pixel 
interpolation for exposed or stretched regions as well as 
hardware acceleration warping by rendering the textured tri­
angle mesh. The approach presented in [DSV97, DCV98] 
creates simplified irregular triangulations of depth-images 
used as cubical environment maps. Both approaches use 
multiple reference depth-images to limit exposure artifacts 
for new views. In [DSSD99] multiple layers of triangulated 
depth-images are proposed to solve exposure problems. 

3. Depth-image meshing 

3.1 Overview 
The depth values of a depth-image can be considered to be a 
2.5-dimensional (projective) height-field data set similar to 
terrain elevation models. Given the depth values in the z­
buffer for a particular reference image, we can calculate for 
each pixel (i,j) its corresponding 3D coordinate P;,j e R3 in 
the viewing coordinate system. Using the coordinates of 
points PiJ• a quadtree based multiresolution triangulation 
hierarchy [Paj02] can be constructed on the grid of pixels of 
the reference depth-image. We call this triangulation of a 
depth-image a depth-mesh, and the representation of an 
object by multiple depth-image triangulations a depth-mesh 
object. In the following we explain how a single depth-mesh 
is initialized from a given depth-image, and how an adap­
tively triangulated depth-mesh is generated at rendering­
time. 

3.2 Multiresolution triangulation 
We use the restricted quad tree triangulation method pre­
sented in [Paj98] to generate a simplified triangulation of 
the z-buffer, called a depth-mesh. Figure 1 shows the basic 
refinement steps for this hierarchical triangulation method. 
Based on vertex dependency relations [LKR+96, Paj98] an 
adaptively refined and crack-free triangle mesh can effi­
ciently be extracted from this multiresolution hierarchy. For 
basic details on the vertex selection and triangulation pro­
cess we refer to [LKR+96, Paj98]. The view-dependent ver­
tex selection and triangulation is outlined in Section 3.3. 

level 1-1 level I level I level 1+1 

LSJ~~m 
aj ~ ~ ~ 

FIGURE 1. Recursive quadtree subdivision and 
triangulation. Refinement points are shown as grey circles in 
b) for a diagonal edge bisection and c) for vertical and 
horizontal edge bisections. 

For multiresolution modeling, each depth-mesh point 
needs to determine its approximation error. As error metric 
we use a point-to-surface distance as often used for terrains. 
The refinement point's error is its distance alopg the eleva­
tion axis to the refined edge, thus a point-to-line distance 
function. For performance reasons, vertical and horizontal 
refinement points shown in Figure 1 c) use an approxima­
tive 2D distance function instead of the more complicated 
3D point-to-line distance. The approximation error d of a 
refinement point p, bisecting a vertical (horizontal) edge 
between two points a and b of a coarser LOD, is calculated 
as the 2D distance of p to the line ab in the projection on the 
y,z-plane (x,z-plane). Figure 2 shows an example configura­
tion of projecting points a, b and p from pixels within the 
same column onto the y,z-plane. Thus using the line equa­
tion z = m · y + b for ab, with m = (zb-z0 )/(yb-Ya) , the 
approximation error for vertical refinement points (and anal­
ogously for horizontal refinement points) can be evaluated 
by: . 

d = m(yp-Ya)-(zp-za) 

JI +m2 
(EQ 1) 

z 

image plane 

FIGURE 2. Approximation error of vertical refinement point 
p is calculated as point-to-line distance in the projection on 
the y,z-plane. 

For refinement points p bisecting a diagonal edge 
between points a and bas in Figure 1 b), the approximation 
error is calculated as the actual 3D distance: 

d = l(b-a)x(b-p)I 
lb-al 

(EQ2) 

For field-of-view angles of less than 50°, Equation 1 
introduces an error of less than 1.0- cos25° = 9.4% .1 Note 
that at most one third of the refinement points are center ver­
tices as shown in Figure 1 b), all others are vertical or hori­
zontal refinement points as in Figure 1 c). Therefore, 
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because only 33% of points are diagonal refinement points, 
we achieve a significant speed-up using Equation 1 instead 
of Equation 2 for vertical and horizontal refinement points. 
Note that this error metric is maximized such that center 
vertices (Figure 1 b)) store the maximal error of all points 
within that subtree of the quadtree hierarchy. To avoid 
expensive square root evaluations the distance is actually 
used as squared value d2. 

Additionally for meshing and rendering purposes we 
compute and store the following information in the hierar­
chy. For each depth-mesh vertex p we store the surface nor­
mal nf' and we calculate a per-vertex quality measure 
p P = in P • ( 0, 0, 1) Tj with the vector (0,0, 1) being the view 

direction in the local camera coordinate system. A per-ver­
tex quality measure allows smooth interpolation and blend­
ing over depth-mesh triangles in contrast to the per-triangle 
quality measure proposed in [DCV98]. Furthermore, for 
each center vertex of a quadtree block (Figure 1 b)) we store 
a bounding sphere radius rp that includes all depth-mesh 
vertices within that block. 

3.3 Segmentation 
The triangulation of the z-buffer may introduce surface 
interpolations between different object surfaces and the 
background as shown in Figure 3 that causes artificial 
occlusion or rubber sheet [MMB97] artifacts when warped 
to new viewpoints. Therefore, it is important to determine 
whether triangles represent rubber sheets or not. 

a) b) 

FIGURE 3. Rubber sheet artifacts showing in a) are 
removed in b) by appropriate segmentation. 

If performed at run-time, this segmentation of the trian­
gulated depth-mesh has to be done very quickly. We per­
form an efficient per-triangle segmentation on the full 
resolution depth-mesh once during the depth-mesh initial­
ization phase and store the results in the multiresolution 
hierarchy. In [PMS02] we discussed several fast segmenta­
tion alternatives including connectedness [MMB97], dispar­
ity [OB98] and orthogonality [PMS02]. Any of these three 
methods can be used efficiently within our proposed 
approach. Here we only want to briefly outline the orthogo­
nality test that we used in our current implementation. 

We can observe that the rubber sheet triangles intro­
duced during the triangulation of the depth-image have the 

1. Thus this could conservatively be taken into account and added to the 
result of Equation 1 if desired. 

following property: the triangle normal is almost perpendic­
ular to the vector from the viewpoint to the center of the tri­
angle as shown in Figure 4. Let v be the vector from 
viewpoint to the center of triangle t and n1 be the normal oft. 
The following inequality using an angular threshold co can 
be used to determine if a triangle is a rubber sheet triangle: 

I~ • n11 < cos(90° - w) (EQ 3) 

,,,,,.. 
triangle normal n, / 

__ ~er sheet triangle 
v _ - - I ---- . \ 

es - - I\ -
\depth-mesh • 

FIGURE 4. Rubber sheet triangles in the depth-mesh. 

Additional care should be taken not to remove very 
small triangles which represent· rough surface features but 
do not constitute a discontinuity. Therefore, in addition to 
Equation 3 we also consider the depth-range t:..z of triangles 
at distance z in the camera coordinate system and we only 
remove triangles which span a depth-range larger than some 
threshold A.: 

t:..z "I ->/\, 
z 

(EQ4) 

The result of the segmentation process, if a triangle is 
considered a rubber sheet, is stored as an 8-bit boolean flag 
for the triangles a 1, a2, b1, b2, c1, c2, d1, d2 of each quadtree 
node as shown in Figure 5 a). For coarser triangles t = a 
(and b, or c) within that node as shown in Figure 5 b), the 
segmentation is determined by the expression t1 v t2 • Simi­
larly, for a node on a level /-1 the flag of triangle a 1 is recur­
sively set to av b from the child node on level l (and 
analogously for the other triangles) as shown in Figure 5 c). 
Thus the segmentation of one triangle causes all parent tri­
angles in the quadtree hierarchy to be segmented as well. 
After initialization, segmentation can be determined for 
each node at rendering-time by a simple boolean expression. 

level I level I level 1-1 

~ ~--
aj ~ tj ' 

FIGURE 5. a) Segmentation flags for the full-resolution 
triangles of a quadtree node are stored as an 8-bit boolean 
field, and b) for the simplified triangles are expressed as 
boolean 'or' combinations. c) Flags on level /-1 are 
recursively calculated from level /. 

3.4 Real-time meshing 
At rendering time, for each frame an adaptively triangulated 
depth-mesh can be extracted according to the current view­
point and frustum. Given the viewpoint e in the depth-
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mesh's local camera coordinate system and an image-space 
error tolerance 't, a depth-mesh vertex p with geometric 
error d inside the view frustum is selected if 

(EQ5) 

This vertex selection is performed recursively top-down 
in the quadtree hierarchy with the boµnding sphere informa­
tion of each node used for view-frustum culling. The vertex 
dependency rules explained in [LKR +96, Paj98] are used to 
guarantee a crack-free triangulation. The triangle-strip con­
struction method proposed in [Paj98] is used and modified 
to incorporate segmentation of rubber sheet triangles as 
shown in Figure 6. While creating the triangle strip 
sequence for a selected set of vertices, the segmentation 
flags of each visited quadtree node are checked, and if nec­
essary the strip is broken up into multiple smaller triangle 
strips. 

triangle strip(s) 

-.::m:~.~ :i~:l~s --,__..,._...,.~~ 
..... - - - -

aj ~ 
FIGURE 6. a) Triangle strip sequence of an adaptively 
triangulated quadtree, and b) split into multiple shorter strips 
due to segmentation of triangles. 

Figure 7 illustrates the preprocess stages to generate the 
multiresolution depth-mesh data structures and Figure 11 
shows some examples of adaptively triangulated and seg­
mented depth-meshes. 

compute: 
error metric d 

capture convert to camera quality p 
z-buffer coordinate system segmentation 

capture color multiresolution 
into texture T; hierarchy M; 

FIGURE 7. Depth-mesh generation preprocess. 

4. Depth-mesh rendering 
4.1 Overview 
Depth-image warping can efficiently be performed by hard­
ware supported rendering of textured polygons instead of 
projecting every single pixel from a reference depth-image 
to new views. The approximate depth-image consisting of a 
segmented triangulation of the depth-buffer, as outlined in 
the previous section, is rendered using the color values of 
the reference frame-buffer as texture. Rendering a depth­
image with a resolution of 2k x 2k pixels involves warping 

of 22k pixels with traditional depth-image warping tech­
niques (or rendering about 2 · 2 2k triangles with [MMB97]). 
With the proposed technique, instead of warping the 
218 = 262144 pixels of a 512 x 512 reference image, a tex­
tured depth-mesh with only a few thousand triangles can be 
rendered using hardware accelerated 3D graphics at a frac­
tion of the cost of per-pixel image warping. 

The depth-mesh generation and segmentation is per­
formed in the reference view coordinate system. Whenever 
a depth-mesh has to be rendered, the coordinate system 
transformation of that reference view is used as model-view 
transformation to place the depth-mesh correctly in the 
world coordinate system. 

To reduce exposure .artifacts, most image warping tech­
niques render multiple reference images that have to be 
merged to synthesize a new view. We present a novel and 
highly efficient blending algorithm that exploits graphics 
hardware acceleration and that supports per-pixel weighted 
blending of reference depth-images. Blending of n reference 
depth-meshes to synthesize a new view consists of the fol­
lowing basic steps: 

1. Select n reference depth-meshes M; (i = l...n) and 
textures T; to be used for the current view, and calcu­
late their positional blending weights w; with respect 
to the current viewpoint e. 

2. Adaptively triangulate the depth-meshes M; for the 
current viewpoint e, and generate the segmented tri­
angle strip representations S;. 

3. Render the triangle strips S; without illumination and 
texturing to synthesize the final z-buffer Ze of the 
current viewpoint e. 

4. Render the triangle strips S; again with their textures 
T; and per-vertex quality p as alpha values enabled. 1 

The result is rendered into separate color-with-alpha 
frame-buffers C;. Depth-buffer evaluation using Ze is 
set to read-only at this stage. 

5. Synthesize the new image I from buffers C; using 
positional weights and alpha-blending: 

I= L W;· C .. 
i = l ... n I 

6. The image I contains the per-pixel weighted result. 
Note that the final alpha blending factor per pixel 
may be less than 1.0 at this stage and a normalization 
of the corresponding color yields the final image. 

Figure 8 illustrates the data flow and rendering stages of 
our algorithm. The following sections explain the different 
stages in more detail and show how our algorithm exploits 
hardware acceleration. 

1. The per-vertex quality measure p will be Gouraud interpolated across 
triangles and yield a per-pixel quality measure in the alpha-channel. 
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select n depth-meshes M;=1 ... 11 

view-dependent selection of vertices 

generate triangle strips S; 

render with textures T; and per-vertex alpha p 

C1 

per-pixel color normalization 

display 

FIGURE 8. Depth-mesh rendering and blending stages. 

The proposed rendering algorithm is tested and 
explained in more detail below for an image-based object 
(IBO) representation but is applicable to other rendering 
systems that make use of depth-image warping as well. In 
[OB99] an IBO is constructed by generating six layered 
depth images taken from the six sides of a cubic bounding 
box surrounding a single object. Similarly, we extract six 
textured depth-meshes around the axis-oriented bounding 
box of the object and store them as the reference views. 

4.2 Depth-mesh selection and triangulation 
During rendering, for each frame we first select the three 
depth-meshes Mi=l ,2,3 out of the six reference views that 
face the novel rendering position e. The blending weights 
wi=l,2,3 are calculated based on the euclidean distances from 
the depth-mesh viewpoints to the novel viewpoint, and are 
normalized such that L; = l, 2, 3 w; = 1.0. 

Each selected depth-mesh M; is simplified view-depen­
dently for the new viewpoint e according to an image-space 
geometric error tolerance of 't pixels. This is performed by a 
recursive top-down traversal of the quadtree triangulation 
hierarchy of M; as outlined in Section 3. The resulting trian­
gulation is segmented and represented by a set of triangle 
strips S; which contain vertices with texture coordinates into 
the reference view texture T; and per vertex quality values p 
used as RGBA components. 

4.3 Rendering using an £-z-buffer 

To achieve a smooth blending between overlapping depth­
meshes Mi=l,2,3 the rendering must allow some tolerance in 
the z-buffer visibility test. Depth-meshes that for a pixel 
cover the same surface region within some tolerance E 
should be blended together, and only if the z-buffer values 
are sufficiently different the front-most depth-mesh deter­
mines the final color of that pixel. 

This E-z-buffer rendering is achieved by first drawing 
the triangle strips Si without any shading, illumination or 
texturing enabled to initialize the z-buffer to Ze for the 
desired viewpoint e. Since the buffers require to be cleared 

during the following steps, the stencil buffer is set to store 
which areas of the frame buffer will be overwritten by the 
IBO. From here on we will assume that the stencil test is 
activated to block rendering in areas of the original color 
and depth buffer where the IBO is not present. 

In a second pass and using the previously computed z­
buffer Ze in read-only mode, the meshes S; are rendered 
again individually into color buffers C; at a slight negative 
offset in the view-direction. Initially a background quad is 
rendered with its alpha channel set to the corresponding 
positional weight w; for the reference view. Now shading, 
alpha-blending, texturing and per vertex color components 
are enabled. Since each vertex' RGBA color is set to its 
quality measure (p,p,p,p ), Gouraud shading and texture 
modulation with T; is enabled, the resulting image C; con­
tains the per-pixel weighted colors of the warped depth­
mesh multiplied with positional weight w; of the view. Then 
the color buffer is copied into the reference texture T;. 

At this point a pixel p in the· frame buffer C; with inter­
polated quality Pp from Gouraud shading and texture coor­
dinates s, t will finally store the desired weighted color 
S,_wi'Pp·Red(T;(s,t!J., W(Pp·<}_reen(T;(~t)), W(p.f!..·Blue(T;(s,t)), 
Pp), or short (wrPp'Rp, Wf Pp'Gp, W(Pp'Bp, W(Pp). 

Note that rendering the selected depth-meshes S; twice is 
not very costly as can be seen in Section 5 because render­
ing of triangle strips with only a few thousand triangles is 
extremely efficient. On the other hand, the more costly oper­
ation of view-dependent vertex selection and segmentation 
is only done once. 

4.4 Per-pixel blending and normalization 
As outlined above, the images C; now contain the quality 
and positional weighted contributions of the selected depth­
meshes M;. The final rendering stages must now perform the 
image composition and normalization of the color values. 
The two steps involved are the summation of the weighted 
colors by I = L, C; followed by normalizing each color 
component. The image composition operation can be per­
formed efficiently by alpha-blending n quadrilaterals using 
C; as textures on these quads. 

The sum yields an image I with pixel colors (a:R, a:G, 
a:B, a.). These color values constitute the proportionally 
correctly blended values, however, the a. values need not be 
1.0 as required. To get the final desired color (R, G, B, 1.0) it 
is obvious that each color component has to be multiplied 
with a.·1. Without any hardware extensions to perform com­
plex per-pixel manipulations this normalization step has to 
be performed in software on the main CPU and the resulting 
image has to be uploaded to the graphics hardware frame 
buffer for display. However, widely available graphics 
accelerators now offer per-pixel shading operators that can 
be used more efficiently. In our current implementation, we 
perform this normalization in hardware using nVIDIA's 
OpenGL Texture Shader extension [DSOl]. 

To compensate the illumination deficiency we perform a 
remapping of the R, G and B values based on the value of a.. 
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During initialization time we construct a texture encoding in 
(s,t) of a look-up table off transparency and luminance val­
ues respectively, from 0 to 256 possible values. The pixels 
of the textures encode the new luminance (t) compensated 
with the transparency (s). 

FIGURE 9. Alpha-Luminance map. 

Based on this alpha-luminance map, we will proceed to 
correct each of the R,G and B channels of every pixel of the 
final image. Using the texture shader extension operation 
GL_DEPENDENT_AR_TEXTURE_2D _NV the video 
card can easily remap the output using the R and A values as 
texture coordinates for our alpha-luminance map. At this 
point, rendering a quadrilateral with the image I as texture­
one and the alpha-luminance map as texture-two and setting 
the color mask to block the G, B and A channel would com­
pensate the red channel with the a: 1 amount. This process is 
shown in Algorithm 2. 

However, the actual capabilities of the video card do not 
allow to use the rest of the color components with the tex­
ture shader extension. A preprocess must be performed 
before using the shaders to generate two additional textures 
that have the green and blue channels copied into the red 
channel, so the texture shader can be used to compensate the 
intensity in the complete image I. 

The preprocess step starts with the final image I in the 
frame-buffer and reuses the textures T; to store the modified 
color buffers. The first texture T1 is a plain copy of the 
image /. For the second and third textures, we use the 
n VIDIA register combiners to copy the G and B channels 
into the R component. This is done using a single combiner 
and two passes that involve rendering two textured quadri­
laterals. The result of each pass is stored in T2 and T3. This 
preprocess to remap the color channels is given in 
Algorithm 1. 

The final rendering using the texture shader is done by 
incrementally rendering three quadrilaterals with the modi­
fied textures, remapped using the alpha-luminance map and 
blocking the appropriate color channels. 

4.5 Background rendering 
The last step in the rendering process consist of covering 
small holes from the front meshes that are caused during the 
segmentation process. Although the total area of these holes 
is very small, it generates disturbing artifacts if they are not 
properly colored. 

This rendering is performed using a low quality non­
view dependant textured depth-mesh, created during initial­
ization and stored as a compiled display list. The overhead 
introduced by this final step is negligible but the visual 
appearance of the final image improves considerably. 

//-----------------------------------------------------
//Copy original image into TO (R,G,B,A) 
glBindTexture(GL_ TEXTURE_20, TO); 
glCopyTexSublmage2D(GL_TEXTURE_20,0,0,0,0,0,w,h); 

II setup the register combiners to use 1 general combiner 
glCombinerParameter NV(GL._NUM_GENERAL_COMBINERS_NV, 1 ); 

// Insert colors into the Constant Color 0 register 
glCombinerParameterfvNV(GL._CONSTANT_COLORO_NV, color1 ); II (0, 1,0,0) 
glCombinerParameterfvNV(GL.....CONSTANT_COLOR1_NV, color2); II (0,0, 1,0) 

II Set the final combiner 
glFinalCombinerlnputNV(GL_ VARIABLE_A_NV, GL_ZERO, 

GL_UNSIGNED_IDENTITY _NV, GL_RGB); 
glFinalCombinerlnputNV(GL_ VARIABLE_B_NV, GL_ZERO, 

GL_UNSIGNED_IDENTITY _NV, GL_RGB); 
glFinalCombinerlnputNV(GL_ VARIABLE_C_NV, GL_ZERO, 

GL_UNSIGNED_IDENTITY _NV, GL_RGB); 
glFinalCombinerlnputNV(GL_VARIABLE_D_NV, GL_SPAREO_NV, 

GL_UNSIGNED_IDENTITY _NV, GL_RGB); 
glFinalCombinerlnputNV(GL_ VARIABLE_G_NV, GL_ TEXTUREO_ARB, 

GL_UNSIGNED_IDENTITY _NV, GL_ALPHA); 

glEnable(GL_REGISTER_COMBINERS_NV); · 

11---------------------------------------------11 Get the green texture T1 (G,G,G,A) 
II setup combiner 1 
glCombinerlnputNV(GL_COMBINERO_NV, GL_RGB, GL_ VARIABLE_A_NV, 

GL_ TEXTUREO_ARB, GL_UNSIGNED_IDENTITY _NV, GL_RGB); 
glCombinerlnputNV(GL_COMBINERO_NV, GL.....RGB, GL_ VARIABLE_B_NV, 

GL_CONSTANT _COLORO_NV, GL_UNSIGNED_IDENTITY _NV, GL_RGB); 
glCombinerlnputNV(GL_COMBINERO_NV, GL_RGB, GL_VARIABLE_C_NV, GL_ZERO, 

GL_UNSIGNED_IDENTITY _NV, GL_RGB); 
glCombinerlnputNV(GL.....COMBINERO_NV, GL_RGB, GL_VARIABLE_D_NV, GL._ZERO, 

GL_UNSIGNED_IDENTITY _NV, GL_RGB); · 
glCombinerOutputNV(GL_COMBINERO_NV, GL_RGB, GL_SPAREO_NV, 

GL_DISCARD_NV, GL.....DISCARD_NV, GL_NONE, GL_NONE, GL_ TRUE, GL_FALSE, 
GL_FALSE); 

II Render the original texture (is in TO) 
glBindTexture(GL._ TEXTURE_20, TO); 
glTexEnvf(GL_ TEXTURE_ENV, GL_ TEXTURE_ENV _MODE, GL_REPLACE); 
glBegin(GL_QUADS); 

glEnd(); 

glTexCoord2d(O,O); g1Vertex2d(O,O); 
glTexCoord2d(1,0); g1Vertex2d(w,O); 
glTexCoord2d(1, 1 ); g1Vertex2d(w,h); 
glTexCoord2d(O, 1 ); g1Vertex2d(O,h); 

II Copy original image into T1 
glBindTexture(GL..... TEXTURE_20, T1 ); 
glCopyTexSublmage2D(GL_TEXTURE_20,0,0,0,0,0,w,h); 

11-----------------------------------------------
11 Get the blue texture T2 = (B,B,B,A) 
II Modify the settings of the combiner 
glCombinerlnputNV(GL._COMBINERO_NV, GL_RGB, GL_ VARIABLE_A_NV, 

GL_ TEXTUREO_ARB, GL_UNSIGNED_IDENTITY _NV, GL.....RGB); 
glCombinerlnputNV(GL.....COMBINERO_NV, GL._RGB, GL_ VARIABLE_B_NV, 

GL_CONSTANT _COLOR 1_NV, GL_UNSIGNED_IDENTITY _NV, GL_RGB); 
glCombinerlnputNV(GL_COMBINERO_NV, GL.....RGB, GL._VARIABLE_C_NV, GL_ZERO, 

GL_UNSIGNED_IDENTITY _NV, GL.....RGB); 
glCombinerlnputNV(GL_COMBINERO_NV, GL._RGB, GL.....VARIABLE_D_NV, GL._ZERO, 

GL.....UNSIGNED_IDENTITY _NV, GL.....RGB); 
glCombinerOutputNV(GL_COMBINERO_NV, GL_RGB, GL_SPAREO_NV, 

GL_DISCARD_NV, GL._DISCARD_NV, GL._NONE, GL_NONE, GL..... TRUE, GL.....FALSE, 
GL.....FALSE); 

glBindTexture(GL..... TEXTURE_2D, colorlD[OJ); 
glTexEnvf(GL_ TEXTURE_ENV, GL..... TEX1URE_ENV _MODE, GL_REPLACE); 
glBegin(GL_QUADS); 

glEnd(); 

glTexCoord2d(O,O); g1Vertex2d(0,0); 
glTexCoord2d(1,0); g1Vertex2d(w,O); 
glTexCoord2d(1, 1 ); glVertex2d(w,scrY); 
glTexCoord2d(O, 1 ); glVertex2d(O,scrY); 

II Copy original image into T2 
glBindTexture(GL.....TEXTURE_20, T1); 
glCopyTexSublmage2D(GL_TEXTURE_20,0,0,0,0,0,w,h); 

glDisable(GL..... TEXTURE_20); 
glDisable(GL._REGISTER_COMBINERS_NV); 

ALGORITHM 1. Preprocess for color remapping. 
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II Normalize illumination 
II Here rendering the quad would generate the A channel normalized. 
II Texture 0 is the original image 
//Texture 1 is the alpha_lum map 

glEnable(GL_ TEXTURE_SHADER_NV); 

glActiveTextureARB( GL_TEXTURE1_ARB ); 
g1BindTexture(GL_ TEXTURE_2D, alpha_luminance_map); II alpha_lum map 
glTexEnvi(GL_ TEXTURE_ENV, GL_ TEXTURE_ENV _MODE, GL_REPLACE); 
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, 

GL_DEPENDENT _AR_ TEXTURE_2D_NV ); 
glTexEnvi(GL_ TEXTURE_SHADER_NV, GL_PREVIOUS_ TEXTURE_INPUT_NV, 

GL_ TEXTUREO_ARB); 

II Normalize red channel using TO 
glActive TextureARB( GL_ TEXTUREO_ARB ); 
glBindTexture(GL_ TEXTURE_20, TO); 
glTexEnvi(GL_ TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, 

GL_ TEXTURE_20); 
glTexEnvi(GL_ TEXTURE_ENV, GL_ TEXTURE_ENV _MODE, GL_REPLACE); 

glColorMask(GL_ TRUE,GL_FALSE,GL_FALSE,GL_FALSE); 
glBegin(GL_QUADS); 

g1MultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0,0); g1Vertex2d(0,0); 
glMultiTexCoord2fARB(GL_ TEXTUREO_ARB, 1,0); g1Vertex2d(w,O); 
g1MultiTexCoord2fARB(GL_ TEXTUREO_ARB, 1, 1 );glVertex2d(w,scrY); 
glMultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0, 1 ); glVertex2d(O,scrY); 

glEnd(); 

II Normalize green channel using T1 
glActive TextureARB( GL_ TEXTUREO_ARB ); 
glBindTexture(GL_ TEXTURE_20, T1 ); 
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, 

GL_TEXTURE_20); · 
glTexEnvi(GL_ TEXTURE_ENV, GL_ TEXTURE_ENV _MODE, GL_REPLACE); 

glColorMask(GL_FALSE,GL_TRUE,GL_FALSE,GL_FALSE); 
glBegin(GL_QUADS); 
g1MultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0,0); g1Vertex2d(O,O); 
glMultiTexCoord2fARB(GL_ TEXTUREO_ARB, 1,0); g1Vertex2d(w,O); 
g1MulliTexCoord2fARB(GL_ TEXTUREO_ARB, 1, 1 ); g1Vertex2d(w,h); 
glMultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0, 1 ); glVertex2d(O,scrY); 
glEnd(); 

II Normalize blue channel using T2 
glActiveTextureARB( GL_TEXTUREO_ARB ); 
glBindTexture(GL_ TEXTURE_2D, T2); 
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, 

GL_ TEXTURE_20); 
glTexEnvi(GL_ TEXTURE_ENV, GL_ TEXTURE_ENV _MODE, GL_REPLACE); 

glColorMask(GL_FALSE,GL_FALSE,GL_TRUE,GL_FALSE); 
glBegin(GL_QUADS); 

g1MultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0,0); g1Vertex2d(O,O); 
glMultiTexCoord2fARB(GL_TEXTUREO_ARB, 1,0); g1Vertex2d(w,0); 
g1MultiTexCoord2fARB(GL_ TEXTUREO_ARB, 1, 1 ); glVertex2d(w,scrY); 
glMultiTexCoord2fARB(GL_ TEXTUREO_ARB, 0, 1 ); glVertex2d(O,scrY); 

glEnd(); 

ALGORITHM 2. Color normalization. 

5. Experiments 
In this section we report experimental results of our depth­
meshing and warping algorithm for different polygonal 
models. For each model we create an image-based object 
(IBO) similar to [OB99] using a bounding box of six depth­
meshes around the object. 

Table 1 shows timing results for the generation of depth­
meshes with our approach given a depth-image size of 5132 

= 263169 pixels. The timing was performed on a Dell 
2.2GHz Pentium4 using a n VIDIA GeForce4 4600Ti with 
the Detonator 4.0 drivers. The table shows the size of the 
test models, the time it takes to render the geometry, the cost 
to capture and convert the z-buffer into 3D points, and the 
cost to initialize the depth-mesh M. This initialization 
includes the calculation of the error metric, per-vertex qual­
ity measure, triangle segmentation flags, and other multires-

olution parameters as described in Section 3. Not shown due 
to negligible cost is the capturing of the color texture T cor­
responding to a particular depth-mesh M. The segmentation 
angle tolerance ffi was set to 5° and the depth-range thresh­
old ')... to 5/100 of the object's max extent. As expected, one 
can observe that the depth-mesh initialization is constant for 
a given reference image resolution. The quadtree hierarchy 
construction grows with O(n-log n) for a reference depth­
image of n pixels. 

Model Triangles Render z-buffer Quadtree 

David 8254150 4040 ms 39 ms 495ms 

Dragon 871414 430ms 36 ms 405 ms 

·Happy 100000 49ms 36ms 409ms 

Female 605086 811 ms 36ms 407 ms 

Male 641560 849ms 36ms 408 IJlS 

TAB LE 1. Depth-mesh construction cost for different polygonal 
models. Given is the model size, rendering cost, z-buffer 

capture and conversion, and multiresolution model 
construction. 

Table 2 shows the rendering performance of our depth­
mesh image based objects, and the corresponding screen 
shots are given in Figure 10. We used an image-space error 
tolerance 't of 1 pixel for the David model, 4 pixels for the 
Female and Male models, 16 pixels for the Dragon, and 64 
pixels for the Happy model. The selection of three reference 
views has negligible costs and is omitted here. The synthesis 
cost of generating the z-buffer Ze includes the view-depen­
dent selection of vertices from the depth-meshes M;, as well 
as rendering the segmented triangle strips S; once (Steps 2 
and 3 from Section 4.1). The rendering of images C; corre­
sponds to Step 4, and blending includes Steps 5 and 6 from 
Section 4.1. 

It can be observed from Table 2 that our depth-meshing 
and warping algorithm provides stable and interactive frame 
rates for arbitrary complex objects, and that the rendering 
performance is completely independent from the size of the 
input polygonal model. The total depth-mesh rendering and 
blending cost is in the order of 40 to 60 ms. The per-pixel 
weighted blending of the individual warped depth-images C; 
is extremely efficient and scales to arbitrary number of input 
images C; as long as the pixel fill rate of the graphics hard­
ware is not exceeded. One can also see that depth-meshing 
is advantageous in terms of complexity of per-pixel depth­
image warping. As can be seen from Table 2, the view­
dependently triangulated depth-meshes S; only consist of up 
to 30K textured triangles which represent three 
5122=262144 pixel depth-images. 
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Geometry 180 

Model Triangles Synthesize z-buffer Ze Rendering Blend and 
time FPS FPS 

of S1=12.3 selection rendering of C1::1,2,3 nonnalize 

David 4029 ms 0.25 18447 13.6 ms 15.2 ms 15.5 ms 0.08 ms 22 

Dragon 430ms 2.4 30635 16.6 ms 23.3 ms 23.5 ms 0.08 ms 15 

Happy 50ms 20 22316 13.2 ms 16.9 ms 17.1 ms 0.08 ms 21 

Female 813 ms 1.2 29735 13.3 ms 19.9 ms 20.2 ms 0.1 ms 18 

Male 863 ms 1.2 22423 11.4 ms 15.9 ms 16.2 ms 0.08 i:ns 21 

TABLE 2. Depth-mesh rendering performance of image based objects. It shows the number of tnangles rendered from the selected depth 
meshes S~1 .2.3 and the timing of the different rendering stages. 

t;('; '11·.··. 

M
'!VJ~·.: 

' 

' 

FIGURE 1 O. Renderings of complex polygonal objects from 
six reference depth-meshes using our per-pixel weighted 
blending algorithm. 

Figure 13 illustrates results from our per-pixel weighted 
blending algorithm. We compare the rendering results to a 
simple binary merge of depth-meshes, where the depth­
mesh closest to the viewpoint determines the pixel color, 
and to our previous positional weighted blending algorithm 
presented in [PMS02]. The images show the polygonal 
object, the binary merged depth-meshes, the positional 
weighted blending [PMS02], and the new per-pixel 
weighted blending. Furthermore, Figure 12 shows the occu­
pancy image in pseudo coloring that shows the per-pixel 
blending. Each color in this occupancy image specifies how 
many and which depth-meshes are used to render a particu­
lar pixel. The colors red, green and blue specify the individ­
ual depth-meshes, and any combination thereof determines 
which depth-meshes are blended together. 

6. Discussion 
We presented an efficient view-dependent depth-image 
meshing and segmentation method as well as a novel real­
time depth-image blending algorithm that exploits hardware 
graphics acceleration. The proposed depth-buffer triangula­
tion approach significantly reduces the complexity of depth-

image warping by view-dependent simplification of the tri­
angulated depth-mesh and rendering textured triangle strips. 
Our novel blending technique provides extremely efficient 
per-pixel weighted blending of depth-images. 

Our approach improves over previous depth-image 
warping methods [McM95, MMB97, DSV97, DCV98] in 
particular in the following aspects: efficient generation of 
depth-image based object representations, and weighted 
blending of multiple reference views at interactive frame 
rates. The presented approach can be used as a rendering 
component in visualization systems such as large scale 
walk-through applications [RP94, SLS+96, SS96, 
ACW+99]. 

The main limitation of the presented approach is the lim­
ited ability to cover exposure artifacts in comparison to lay­
ered approaches [SGHS98, DSSD99]. 

Future work in this context will include extension of the 
proposed approach to a multi-layer depth-mesh representa­
tion, · application of our blending algorithm to other IBR 
methods, and taking advantage of per-pixel and per-vertex 
programming features of modern graphics hardware accel-
erators. 
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FIGURE 11. Examples of adaptively triangulated and segmented depth-meshes. From left to right: rendering from polygonal model, 
depth-mesh in wire frame and segmented textured depth-mesh. 

FIGURE 12. Occupancy pseudo colored images. The RGB primary colors correspond to the three different blended depth-meshes. 
Any other mixed color illustrates the combination of multiple depth-meshes. 
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FIGURE 13. Renderings of complex polygonal objects from six reference depth-meshes, aligned with the bounding box, using our 
proposed positional weighted blending algorithm. The leftmost in any row shows the actual polygonal object, followed by a simple 
binary blending of depth-meshes, a positional weighted blending and our proposed per-pixel weighted blending algorithm. 

11 




