
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Third Order Exceptional Point of Degeneracy in Coupled Optical Waveguide

Permalink
https://escholarship.org/uc/item/0187s6q7

Author
Furman, Nathaniel

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0187s6q7
https://escholarship.org
http://www.cdlib.org/


  
 

 

  

UNIVERSITY OF CALIFORNIA, 
IRVINE 

 
 

Third Order Exceptional Point of Degeneracy in Coupled Optical Waveguide 
 

THESIS 
 
 

Submitted in partial satisfaction of the requirements 
for the degree of 

 
 

MASTER OF SCIENCE 
 

in Electrical Engineering and Computer Science 
 
 

by 
 
 

Nathaniel Furman 
 
 
 
 
 
 
 
 

Thesis Committee: 
Professor Filippo Capolino, Chair 
Associate Professor Ozdal Boyraz 

Associate Professor Maxim Shcherbakov 
 
 
 
 

2022 



i 
 

  

© 2022 Nathaniel Furman 



ii 
 

TABLE OF CONTENTS 

Page 

LIST OF FIGURES ................................................................................................................. iv 

ACKNOWLEDGEMENTS .................................................................................................... vii 

ABSTRACT OF THE THESIS ............................................................................................. viii 

INTRODUCTION .................................................................................................................... 1 

1.1 Exceptional Points of Degeneracy .................................................................................. 1 

1.2 Motivation ....................................................................................................................... 2 

1.3 Analyzing Methods ......................................................................................................... 4 

1.4 Organization of this Thesis ............................................................................................. 7 

THIRD ORDER EXCEPTIONAL POINT WAVEGUIDE ..................................................... 9 

2.1 Outline and Subsections of Geometry ............................................................................ 9 

2.2 Modeling a Distributed Bragg Reflector....................................................................... 14 

2.3 Modeling the Coupled Waveguide ............................................................................... 17 

2.4 Modeling the Middle Waveguide Curve....................................................................... 23 

2.5 Dispersion of the Eigenmodes ...................................................................................... 25 

2.6 Validation of Third Order Exceptional Point................................................................ 36 

2.7 Summary ....................................................................................................................... 40 

FINITE LENGTH ANALYSIS .............................................................................................. 41 

3.1 Boundary Conditions .................................................................................................... 41 



iii 
 

3.2 Transfer and Reflection Functions ................................................................................ 42 

3.3 Quality Factor and Group Delay ................................................................................... 45 

3.4 Summary ....................................................................................................................... 48 

CONCLUSION AND FUTURE WORK ............................................................................... 50 

REFERENCES ....................................................................................................................... 52 

 

  



iv 
 

LIST OF FIGURES 

Page 

Figure 1. (a) Geometry of a single unit cell with period 2( ')d L L= +  for the point coupling 

model. (b) Geometry of a single unit cell with period 2 cDBR cL Ld L= + +  for the distributed coupling 

model. The figure shows the directional coupler and the distributed Bragg reflector along with the 

orientation of the electric field amplitudes corresponding to the three waveguides. .................... 10 

Figure 2. General description of the silicon core-cladding waveguide. ................................. 12 

Figure 3. Half of the chirped distributed Bragg reflector with key sections highlighted. ...... 14 

Figure 4. dB loss calculations from CST Studio Suite for the DBR and cDBR designs. ....... 15 

Figure 5. Even (a) and odd (b) electric field mode profiles from CST shown with the contour 

overlayed with the polarization arrows of the field. ..................................................................... 22 

Figure 6. Effective dielectric constant of the even (1) and odd (2) modes for a coupled 

waveguide CST simulation with a 150 nm gap size. .................................................................... 22 

Figure 7. Magnitude of the field coupling coefficient and phase of the transmission coefficient 

for a distributed coupler of a given length and with a 150 nm gap size at 193 THz. Unitary coupling 

is achieved in 15 μm. .................................................................................................................... 23 

Figure 8. Geometric description of the bottom left middle curved waveguide arc. ............... 24 

Figure 9. Point coupling model complex dispersion diagram of the infinite length unit cell 

structure using the analytic (lossless) and CST cDBR (lossy) models. ........................................ 27 

Figure 10. Point coupling model zoomed in complex dispersion diagram illustrating the 

differences between the two models at frequencies very close to the SIP frequency. .................. 28 

Figure 11. Dispersion diagram of the point coupling analytic model with the evanescent modes 

shown in red and propagating modes shown in black. ................................................................. 29 



v 
 

Figure 12. Imaginary versus real wavenumber of the dispersion diagram for the point coupling 

analytic model. .............................................................................................................................. 29 

Figure 13. Contour of the propagating branches of the dispersion diagram for the point 

coupling analytic model. ............................................................................................................... 30 

Figure 14. Distributed coupling model complex dispersion diagram of the infinite length unit 

cell structure using the analytic (lossless) and CST cDBR (lossy) models. ................................. 33 

Figure 15. Distributed coupling model zoomed in complex dispersion diagram illustrating the 

differences between the two models at frequencies very close to the SIP frequency. .................. 33 

Figure 16. Dispersion diagram of the distributed coupling analytic model with the evanescent 

modes shown in red and propagating modes shown in black. ...................................................... 34 

Figure 17. Imaginary versus real wavenumber of the dispersion diagram for the distributed 

coupling analytic model. ............................................................................................................... 34 

Figure 18. Contour of the propagating branches of the dispersion diagram for the distributed 

coupling analytic model. ............................................................................................................... 35 

Figure 19. Comparison of the distributed coupling model to a full wave CST simulation of the 

same structure. .............................................................................................................................. 36 

Figure 20. Coalescence parameter calculated for (a) the point coupling and (b) the distributed 

coupling models representing the amount of degeneracy in the eigenmodes. A zero value 

corresponds to perfect coalescence. .............................................................................................. 39 

Figure 21. Auxiliary finite length segments for (a) the start of the unit cell and (b) the end of 

the unit cell. ................................................................................................................................... 42 

Figure 22. Magnitude in dB and phase normalized to π of the transfer function for a given 

number of unit cells N................................................................................................................... 43 



vi 
 

Figure 23. Magnitude in dB and phase normalized to π of the reflection function for a given 

number of unit cells N................................................................................................................... 45 

Figure 24. Group delay of the finite length structure for a given number of unit cells. ......... 46 

Figure 25. Quality factor of the finite length structure for a given number of unit cells. ....... 47 

Figure 26. Group delay at the SIP resonance frequency for a given number of unit cells N. The 

fitting curve is described by 3aN b+  where a = 6.54 fs and b = 24.36 ps. .................................. 48 

  



vii 
 

ACKNOWLEDGEMENTS 

I extend my thanks and gratitude to my advisor and thesis committee chair Dr. Filippo 

Capolino. Through his patience and support, I have been able to make the most of my opportunity 

to work with him and his research group. This thesis is possible because of his attention to detail 

and the care taken to develop fundamental understandings of our work. 

 

I also would like to thank my colleagues Tarek Mealy, Robert Marosi, and Albert Herrero 

Parareda for their valuable thoughts and inputs. Through multiple fruitful discussions I was able 

to further understand and consider important points about optical waveguides and exceptional 

points of degeneracy. 

  



viii 
 

ABSTRACT OF THE THESIS 

 

Third Order Exceptional Point of Degeneracy in Coupled Optical Waveguide 
 

By 
 

Nathaniel Furman 
 

Master of Science in Electrical Engineering and Computer Science 
 

University of California, Irvine, 2022 
 

Professor Filippo Capolino, Chair 
 

The field of exceptional points of degeneracy (EPDs) has seen a resurgence in research over 

the past few decades as theory and practice have coalesced into a better understanding of system 

behavior along with experimental verifications. Researchers have considered applications in high-

sensitivity sensors, optical delay lines, lasers, and more. Each structure, from a combination of 

model parameters and boundary conditions, supports an EPD. An EPD is a special point in the 

transfer matrix describing the relationship between the input and output electromagnetic fields 

where multiple eigenmodes coalesce in both their eigenvalues and eigenvectors. This thesis 

proposes an optical waveguide (OWG) structure and design containing both coupling between 

waveguides and reflection in the OWG using a distributed Bragg reflector. We validate the 

existence of the EPD by examining the behavior of the system through numerical methods and 

examine properties of the transfer function in a finite length structure. 
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INTRODUCTION 

 

1.1 Exceptional Points of Degeneracy 

Before discussing optical wave guide (OWG) modeling and geometries, exceptional points of 

degeneracy (EPDs) must first be understood and discussed. We begin with a formalism discussed 

in [1], [2] where the transfer matrix describing the evolution of a given state vector across a given 

period experiences eigenmodes where the corresponding eigenvectors and eigenvalues have a 

modal degeneracy of order two or greater [3]–[7]. This multiplicity in the eigenvalues is an 

emergent behavior based on system configurations and parameters. In general, this multiplicity 

can be adjusted based on design requirements. 

We also clarify here the differences in nomenclature from diabolical points, exceptional points, 

and exceptional points of degeneracy. Other fields, particularly physics, may generalize an 

exceptional point for a variety of important phenomena based on the current model or analysis. 

We add the “D” in EPD as “degeneracy” to specify the kind of exceptional points we describe and 

engineer. Diabolical points are the points occuring in Hermitian systems and differ from EPDs in 

that only the eigenfrequencies coalescence at a diabolical point where the eigenfrequencies and 

the eigenstates must coalesce in an EPD topology. As discussed thoroughly in [3], [6], [8], EPDs 

occur in non-Hermitian systems. As such, our analysis and discussion will not include diabolical 

points. 

The second order degeneracy is commonly referred to as the regular band edge (RBE). A 

classic example of the RBE is the frequency cutoff point in a waveguide [9], [10]. Below the cutoff, 

only evanescent or purely imaginary modes propagate, where at the cutoff the eigenmodes split 

into purely real modes for a lossless waveguide. Traditionally, the RBE has not been included in 
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EDP discussions because of its common nature and closer association with transmission line 

theory. Although the RBE has important applications in single-mode operation conditions and 

frequency splitting [11], [12], we will not discuss this degeneracy further. 

The fourth order degeneracy, or the degenerate band edge (DBE), is another exceptional point 

important to a variety of lasers, sensors, and more [1], [10], [13]–[19]. The DBE will not be 

discussed in this thesis. 

 The remainder of this thesis investigates the third order degeneracy, or stationary inflection 

point (SIP). As will be detailed further later, the SIP occurs when three forward propagating and 

three backward propagating eigenmodes have equal eigenvectors and propagate through the 

waveguide with the same eigenvalues. This formalism will be further discussed in Sec. 2.5. We 

briefly note the impact of parity-time (ƤƬ) symmetric systems in EPD behavior and existence. 

Generally, EPDs are contingent upon ƤƬ symmetric systems, yet this is not required for all EPDs 

[8], [20]–[29]. 

 

1.2 Motivation 

The SIP has important properties when analyzed in an isolated environment and when analyzed 

with respect to other EPDs. This section first details important general aspects of the SIP before 

addressing differences between the SIP and other EPDs. 

Under the umbrella of integrated photonic devices, EPDs in the optical regime can give rise to 

improvements in novel and niche computing systems, in data transmission and communication 

systems, in extremely sensitive sensors, and more [2], [30], [31]. Using unconventional quality 

factor scaling and group velocity properties, devices operating at an EPD can obtain significant 

improvements to energy consumption, mode discrimination, and overall efficiency. The ability to 
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engineer the modal behavior inside a photonic structure, particularly around an EPD, allows for 

higher performance photonic devices and cavities. EPDs are also generally very sensitive to 

variations in system parameters. With less than a percent change in any given geometric value 

describing the system configuration, the EPD devolves into multiple eigenvalues with similar 

values rather than multiple perfectly coalescing eigenvalues. We can use this behavior to design 

sensors with sensitivity orders of magnitude finer than non-EPD based designs. 

More specific to the SIP, this point does not necessarily have a photonic bandgap in the 

dispersion diagram. Directional propagation is also maintained with frequencies above and below 

the SIP frequency. These properties, along with a near-zero group velocity dispersion (GVD) at 

the SIP, make for excellent photonic delay lines [4], [18], [32]. Increasing the delay while 

maintaining a small footprint and minimal signal dispersion are the key elements for all-optical 

routers in fiber communication systems. 

Along with delay lines, a monotonic slope in the real dispersion wavenumber around the SIP 

may provide significant improvements in lasing. A combination of near-zero GVD and monotonic 

dispersion slope help facilitate strong light-matter interactions. High output gain may be achieved 

in a smaller waveguide system operating at the SIP [2], [16], [30], [33]–[44]. 

While EPDs, and specifically the SIP, are still actively being investigated and researched, the 

possible applications and improvements to current photonic systems are clear and important. By 

studying and describing more geometries which support the SIP, we hope to further develop this 

field and motivate more investigation into SIP devices. 
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1.3 Analyzing Methods 

When analyzing and modeling various waveguide geometries, and more generally system 

behavior, two methods are critically important: the transfer matrix method and the scattering 

matrix method. Each of these two methods have distinct advantages over the other, and 

relationships between the methods can readily be developed. In this section, we will start with a 

simple definition of a two-port network with incident and reflected wave amplitudes described by 

a  and b , and subscripts used for denoting the input (1) side and output (2) side. Later sections of 

this thesis will explore the meaning and arrangement of various system matrix definitions based 

on physical properties. 

We start by describing the scattering matrix method with a form given by (1.3.1). This matrix 

describes how the reflected fields respond to given incident fields when terminated by an 

impedance. If another impedance terminates the network, a conversion must be calculated as 

performed in [45], [46]. For simplicity, the scattering parameters will be given with respect to the 

characteristic impedance of an unloaded, unperturbed waveguide. This characteristic impedance 

will in general be frequency dependent and dependent on the geometry of the waveguide. 

 1 11 12 1

2 221 22

,
    = =    

    

S Sb a b S ab S S a   (1.3.1) 

In this sample two-port network, we can describe three key conditions of the scattering matrix: 

reciprocal, symmetric, and lossless. For a reciprocal network, an outside observer must not be able 

to tell the difference in transmitted signals between two networks where one of the networks has 

had its ports reversed with respect to the other. In mathematical formulation, the condition for 

reciprocity is written as 
ij ji

=S S . As an incident signal is applied from either side of the network, 

the transmitted signal behaves the same regardless of the chosen input port. In symmetric 
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networks, a similar condition applies to the diagonal entries of the scattering matrix. For a 

symmetric network, an outside observer must not be able to tell the difference in reflected signals 

between two networks where one of the networks’ ports were reversed with respect to the other. 

Thus, the condition is written as 
ii jj

=S S . 

For a lossless network, the energy input into the network must equal the energy output from 

the network. With a  and b  describing incident and reflected complex electric field amplitudes, 

the power out is given by (1.3.2) where ‘†’ represents the complex conjugate transpose (or 

Hermitian conjugate) operation. Substituting the relationship between a  and b  as the scattering 

matrix itself and distributing the Hermitian conjugate operation, we arrive at (1.3.3). As a parallel 

to (1.3.2), we also write the input power based on the incident signal in a similar manner. To 

achieve a lossless network, therefore, the scattering matrix must be unitary, or † =SS I  where I  

is the identity matrix. 

 [ ]†
1 2, ,outP =      =bb b b b  (1.3.2) 

 † †( )outP = a SS a  (1.3.3) 

The scattering matrix is useful when describing a singular network or a singular block of a 

network. This matrix has uses in signal flow graphs and simplifying related calculations. The 

scattering matrix is also generally defined with respect to a reference plane. The conversion 

between reference planes is commonly documented as in [45], [46]. While this matrix has its 

applications and uses, it has drawbacks in cascaded systems with multiple network blocks. 

The transfer matrix is primarily useful when combining multiple system blocks with clearly 

defined input and output ports. Instead of describing the relationship between reflected and 

incident signals, the transfer matrix describes the relationship between input and output signals. 
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We make a point here regarding the forward and backward transfer matrix. Various books and 

articles describe different types of transfer matrices, including the T matrix and ABCD matrix. 

While the particular definition may be more useful for one application or another, this thesis uses 

a modified definition presented in (1.3.4) where the input signal is acted upon to calculate the 

output signal. This is commonly referred to as the forward transfer matrix as opposed to the ABCD 

matrix where the output signal is acted upon to calculate the input. In this equation, 'Ψ  represents 

the state vector and will be defined in later sections. 

 2 11 12 1
2 1

2 121 22

, ' '
    = =    

    

T Tb a Ψ TΨa T T b   (1.3.4) 

Similar to the scattering matrix, we can define the same three conditions for the transfer matrix. 

For brevity, the conditions will be summarized and based on definitions given in [47]. For Lorentz 

reciprocity, the transfer matrix behaves as T =T l T l  where l  is defined in (1.3.5). 

 1
2 j

− =  + 
0 1l 1 0  (1.3.5) 

For a symmetric system, the transfer matrix behaves as 1−=T rT r  where r  is defined in 

(1.3.6). 

  =  
 

0 1r 1 0  (1.3.6) 

Finally, for a lossless system, the transfer matrix behaves as † =T pT p  with p  defined in 

(1.3.7). 

 + =  − 
1 0p 0 1  (1.3.7) 

This forward transfer matrix and the generalized scattering matrix can be used to describe the 

same network. As such, it is useful to describe the transformation between these two 
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representations. Equations (1.3.8) and (1.3.9) describe the transformation from the scattering to 

the transfer matrix and from the transfer matrix to the scattering matrix, respectively. In the 

formulations presented, each sub-block of the full transfer or scattering matrix can represent 

another matrix for more than two port networks. 

 

1 1
22 21 2211 12

1
11 12 22 2121

1
12 2222

, ,

,

− −

−

−

= −    =

= −

=

S T T S T

S T T T T

S T T

 (1.3.8) 

 

1
11 21 22 12 11

1 1
12 2122 12 12 11

1
22 12

,

, ,

−

− −

−

= −

=    = −

=

T S S S S

T S S T S S

T S

 (1.3.9) 

 

1.4 Organization of this Thesis 

The remainder of this thesis details first how we model the OWG using a transfer matrix 

analysis. Each subblock of the system is described along with how the transfer matrix of the entire 

unit cell is constructed. Care is taken to describe the distributed Bragg reflector (DBR) modeling 

and how to incorporate electromagnetic field solver results into an analytic transfer matrix method 

model. We also detail the modeling of a distributed directional coupler in terms of even and odd 

modes and how to convert to a more useful state vector representation for our analysis. 

The dispersion diagram of the unit cell structure is then described and shown in the context of 

Floquet-Bloch periodic structure theory. Multiple representations of the dispersion relation are 

shown that highlight various points important to understanding the structure’s behavior. Using the 

eigenvectors of the unit cell structure, we present a key figure of merit called the coalescence 

parameter to describe how close the system operates to the SIP. 
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We finally analyze the finite length structure for a given number of unit cells N using proper 

boundary conditions. The transfer function is used to calculate the group delay at the SIP resonance 

frequency and the quality factor of the structure. We present a trend in the group delay as the 

number of unit cells increase.  
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THIRD ORDER EXCEPTIONAL POINT WAVEGUIDE 

 

2.1 Outline and Subsections of Geometry 

To engineer and observe SIP behavior, we must first model the unit cell of the system and 

individual elements of the system. This section gives proper form to a  and b  for the transfer and  

scattering matrices and describes the state vector used in modeling system elements. We also 

describe a second state vector useful when converting between scattering and transfer matrices, as 

well as converting between state vector representations. This section will finally describe the phase 

delay and directional coupling scattering and transfer matrices while the next section will describe 

the distributed Bragg reflector. 

We start with the description of a z-direction traveling electromagnetic wave in the form 

( ) ( )( , ) Re{ }n nj t k z j t k z
n n nz t e eω ω− += +E a b


 with the overbar arrow signifing that the time convention 

is included. More simply, we write , )( () ( )
T

n n nz zE E z+ − =  E  with the j te ω  time convention 

assumed, the superscript ‘T’ representing the transpose operation, and the subscript ‘n’ 

representing the port. In this description, the total electric field is a combination of the forward 

propagating and backwards propagating components of the electric field. Using this notation, we 

write the state vector for our six-port network in (2.1.1) and geometry shown in Fig. 1. 

 
1

2

3

( )
( ) ( )

( )

z
z z

z

 
 =
 
 

E
Ψ E

E
 (2.1.1) 

This definition of the state vector groups the electric fields by the primary waveguides in which 

they are propagating rather than grouping the fields by the forwards and backwards directions of 

propagation. This secondary state vector is described by ( )'( ) ( ), ( )
T

z z z+ −=Ψ E E  where 
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1 2( ) ( ), ( ), ... ( )
T

nz E z E z E z+ + + + =  E  in general for N ports and similarly for the backwards 

propagating waves. 

 

Using the state vector in (2.1.1), we can write the relationship between a point 1z  and 2z  in 

the network as 

 

(a) 

 

(b) 

Figure 1. (a) Geometry of a single unit cell with period 2( ')d L L= +  for the point coupling 
model. (b) Geometry of a single unit cell with period 2 cDBR cL Ld L= + +  for the distributed 
coupling model. The figure shows the directional coupler and the distributed Bragg reflector 
along with the orientation of the electric field amplitudes corresponding to the three 
waveguides. 
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 2 2 1 1( ) ( , ) ( )z z z z=Ψ T Ψ  (2.1.2) 

where 2 1( , )z zT  is the forwards transfer matrix from 1z  to 2z . In the context of a unit cell in the 

periodic structure of length d, we can write 

 ( ) ( )Uz d z+ =Ψ T Ψ  (2.1.3) 

where UT  is the transfer matrix for one unit cell. This formalism and methodology are similar to 

those presented in [1], [17], [18], [48]–[51]. We can also convert between transfer matrices 

describing the evolution of Ψ  and 'Ψ  using (2.1.4) below. 

 1' −=T ATA  (2.1.4) 

For a six port network, 6A  is defined as 

 6

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 
 
 
 
 
 
  
 

=A  (2.1.5) 

Similarly, a four-port network transfer matrix transformation has 4A  defined as 

 4

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 
 
 
 
 
 

=A  (2.1.6) 

Converting the opposite direction uses the same definitions of A  and reversing (2.1.4) as 

 1 '−=T A T A  (2.1.7) 

It is critically important to note that the equations describing the conversion between transfer 

and scattering matrices is contingent upon using 'Ψ  instead of Ψ  for more than two-port 

networks. This is entirely due to the grouping of electric field amplitudes by direction rather than 
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port. Equivalent equations for conversion between transfer and scattering matrices for higher 

number port networks are possible yet are more complicated. 

When modeling the propagation of a signal in a linear isotropic media without gain or loss, the 

signal experiences only a phase delay dependent on the length of the waveguide and the effective 

refractive index seen by the signal in the waveguide. The phase delay for a forward propagating 

wave over a given length x can thus be described by wjk x
w e−

+Ω =  where 0w wk n k= . In this 

equation 0k  represents the free space wavenumber, wn  is the effective refractive index or the modal 

index in the waveguide, and wk  is the propagation wavenumber in the waveguide. The phase delay 

for a backwards propagating wave is written in the same form with a positive exponent. In general, 

wn  is geometry and material dependent. For our system, we are modeling a waveguide with a cross 

section of dimensions h = 220 nm and w = 450 nm as shown in Fig. 2. Silicon dioxide cladding 

with a refractive index 
2

1.45SiOn =  is used around the silicon core. We use a standard refractive 

index value for Silicon of 3.476Sin = . These values give an approximate modal refractive index 

of 2.351wn =  at 193 THz. The phase delay transfer matrix can finally be written as 

 0
0
w

phase
w

+

−

 
 
 

Ω= ΩT  (2.1.8) 

 

 

Figure 2. General description of the silicon core-cladding waveguide. 
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For the directional coupler, it is first useful to write the scattering matrix describing the 

relationship between incident and reflected electric field amplitudes as (2.1.9) where ,cτ κ  

represent the transmission and coupling coefficients, respectively. We assume real values for cτ  

and κ  without a loss of generality and that the coupling is lossless, or 2 2 1cτ κ+ =  [52], [53].  We 

use both notations for the electric field amplitudes to explicitly demonstrate the usefulness of the 

two state vector definitions and the conversion between them. 

1 1 1 11 1 1 1

2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2

( ) ( ) 0 0( ) ( )
0 0( ) ( ) ( ) ( )

( ) ( ) 0 0( ) ( )
( ( ) ( ) (

,

) )

,
c

c
couple couple couple

c

c

E z zb jz z
jz z E z z

z z jE z z
z z jE z

Ea
b a E
b a E
b a E z

τ κ
κ τ

τ κ
κ τ

− +

− +

+ −

+ −

    
    
 =   
     

 
 
  = =
 
        


 

S S S

0 0

 
 
 
  
 

 (2.1.9) 

Before converting directly to the transfer matrix describing the evolution of Ψ , we must first 

use the transformation of the scattering to transfer matrix in (1.3.8) where the transfer matrix 

describes the evolution of 'Ψ . This '→S T  transformation gives a transfer matrix 

 

0 0
0 0

0 0
0 0

'
c

c
couple

c

c

j
j

j
j

τ κ
κ τ

τ κ
κ τ

 
 

=  −  − 

T  (2.1.10) 

To finally arrive at our intended transfer matrix describing 2 1( ) ( )couplez z=Ψ T Ψ , we apply 

(2.1.7) and write the transfer matrix as 

 

0 0
0 0

0 0
0 0

c

c
couple

c

c

j
j

j
j

τ κ
τ κ

κ τ
κ τ

 
 
 
 
 
 

−=

−

T  (2.1.11) 

We perform three checks for the scattering and transfer matrices described in this section: 

lossless, reciprocal, and symmetric. It is clear that the scattering matrices are symmetric and 
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reciprocal, and easy to demonstrate they are unitary once the lossless condition is applied. Some 

care must be taken when using (1.3.9) for the four-port transfer matrix. As shown in (1.3.4), the 

conditions of the transfer matrix are written with the field amplitudes grouped by propagation 

direction rather than by port. Thus, 'coupleT  must be used instead of coupleT . 

 

2.2 Modeling a Distributed Bragg Reflector  

Similar to modeling the directional coupler, we start with the scattering matrix when describing 

the distributed Bragg reflector, or DBR. The primary concept of any DBR is using constructive 

and destructive interference to selectively reflect specific wavelengths in a waveguide. Many 

dielectric DBR designs are made for high reflectivity ( > 99.5%) [31], [52]–[56], yet our 

requirements are less restrictive. Our design should provide a modest field reflection coefficient at 

193 THz (~1550 nm) and minimize losses due to scattering, mode mismatch, and more. 

 

Generally, the period between high and low refractive index materials is a quarter of the 

wavelength, or ~380 nm. Our initial design selects a period of 350 nm and a duty cycle of 50% 

between perturbed and unperturbed widths in the waveguide. We also choose a difference between 

the unperturbed waveguide width and the perturbed waveguide width of 50 nm on each side, or a 

total width of 350 nm. The waveguide height is not changed. Increasing this difference increases 

the size of the effective index variation and thus the magnitude of the reflection coefficient. 

 

Figure 3. Half of the chirped distributed Bragg reflector with key sections highlighted. 



15 
 

However, there is a tradeoff between the perturbation size and losses. With a larger disconnect, 

more power will be scattered away from the waveguide and increase losses in the system. The last 

initial design choice is the number of unit cells in the DBR. The more unit cells, the stronger the 

interference and the larger the reflection coefficient at the expense of a larger system. We choose 

10 unit cells initially and perform a full-wave simulation using CST Studio Suite. 

After plotting the loss in the DBR described by (2.2.1), we notice losses are too significant 

when cascading multiple full unit cell structures together. In this equation, 22S  and 21S  can be 

used interchangeably with 11S  and 12S  as the DBR is symmetric and reciprocal. The normalization 

impedance is also arbitrary when using this formula as the scattering parameters are not yet 

analyzed with respect to the overall structure. 

 2 2
11 1210log( )dBL S S= − +  (2.2.1) 

 

We now modify our design from a DBR to a chirped DBR, or cDBR. One of the defining 

characteristics of a cDBR is varying the perturbed waveguide width gradually from 450 nm 

(unperturbed) to 350 nm (fully perturbed). There can be significant tradeoffs between the number 

of unit cells used to step the widths smaller and the losses in the cDBR. For our updated cDBR 

 

Figure 4. dB loss calculations from CST Studio Suite for the DBR and cDBR designs. 
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design, we first step down from 450 nm in 20 nm increments over four periods. This is performed 

on each side of the DBR for a total of eight extra periods with gradually varying widths. 

From the CST simulation of the cDBR, we effectively decrease the losses in the system 

significantly without greatly affecting the reflection coefficient around 193 THz. This is primarily 

because the signal in the waveguide does not experience a sharp reflection and scattering from a 

450 nm to 350 nm jump and alternatively experiences multiple softer reflections as the signal 

propagates through the waveguide. While the cDBR provides an improved design over the DBR, 

we further minimized the loss by modifying the stepped widths. The current best design is shown 

in Fig. 3. This cDBR uses stepped widths of 430 nm, 400 nm, 375 nm, and 360 nm between the 

unperturbed 450 nm and repeating unit cell of 350 nm perturbed widths. At 193 THz,      

11 6| | 0.51S = , 12 6| | 0.85S = , and 0.0027dBL = , which is similar to the scattering parameters for 

the DBR but with an order of magnitude less loss. 

Before including the cDBR in the overall structure, it is important to note waveguide 

impedance and scattering parameter renormalization. When connecting the cDBR to a regular 

waveguide with the same dimensions, the only reflection should be from the cDBR itself and not 

a waveguide mismatch or equivalently an impedance mismatch. When CST exports the frequency 

dependent scattering parameters, the values are generally all normalized to 50 Ω for convenience. 

To effectively incorporate the transfer matrix of the cDBR in an analytic formulation consistent 

with the previously defined phase delay and directional coupler transfer matrices, the scattering 

matrix from CST must be renormalized to the frequency dependent port impedance corresponding 

to the same waveguide dimensions used throughout the system. Renormalizing the scattering 

parameters is commonly documented in [45], [46], and has built-in implementations in many 
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software suites including MATLAB. Once the scattering matrix has been renormalized, the 

standard conversion between the scattering and transfer matrix is used as before.  

We also use de-embedding in CST to filter out evanescent modes which are nonexistent in the 

infinite length structure from Floquet-Bloch theory. We move the port a sizable fraction of the 

wavelength away from the first cDBR perturbed width and let CST shift the scattering matrix 

reference plane back the equivalent length added. This length is arbitrary if the evanescent modes 

resulting from a width change in the waveguide have distance to decay. 

For comparison and optimization purposes, we can also develop a model for the cDBR which 

is lossless. To start, we impose the reciprocal and symmetric conditions and write 

11 22
jS S e ρθρ= = , 12 21 0

jSS e τθτ= = . To impose the lossless condition, we first consider the 

magnitude condition derived from the diagonal elements of the unitary matrix then the phase 

condition derived from the off-diagonal elements of the unitary matrix. The magnitude equation is 

written as * * 2 2 2
11 22 21 12 11 12 12 11|1 || | || 1 | |S S SS S SS S+ + −= == →  or equivalently 2

0 01τ ρ= − . 

The phase equation is written as * *
11 21 12 220 S S S S= +  and using minimal algebraic simplification 

along with employing Euler’s identity, we write 211 12 21 2( ) ( )j S S j S See π∠ −∠ −∠ +∠= . This can be 

equivalently represented as / 2τ ρθ θ π= − . Thus, the complete lossless cDBR representation is 

 
2 2

0 0 0
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e e

e
e
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 −

−=T  (2.2.2) 

 

2.3 Modeling the Coupled Waveguide 

Not unlike a regular, straight, waveguide, where we describe the electric field propagation by 

the modal, or effective, refractive index, we can describe the field in coupled waveguides by the 
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even and odd modes. The motivation for analyzing and implementing a distributed coupled 

waveguide model when we have already described a point coupling model is for more accurate 

representations of physical systems. As is clear from Fig. 1, the middle waveguide couples to both 

the upper and lower waveguides over a given distance. While the point coupling model is an 

excellent proxy for physical behavior, a full and more accurate model of coupled waveguides is 

significantly more useful to employ in modeling the unit cell. 

These coupled waveguide modes are characterized by the relative polarization of the electric 

field. In the even mode, the fields in the waveguides constructively add in the same polarization 

direction. Thus, we generally see a stronger field between the waveguides in the silicon dioxide 

cladding. Conversely, the odd modes have opposite polarization fields relative to the two 

waveguides and thus we generally see a weaker field in the cladding region. We can describe the 

even and odd field modes in terms of the individual electric field modes in each waveguide as 

 , 1 1 2 2

, 1 1 2 2

( , , ) ( ) ( , ) ( ) ( , ) ( ) ( , )
( , , ) ( ) ( , ) ( ) ( , ) ( ) ( , )

t e e e

t o o o

x y z V z x y V z x y V z x y
x y z V z x y V z x y V z x y

= + =

= − =

E e e e
E e e e

 (2.3.1) 

In (2.3.1), e1 and e2 represent the individual transverse waveguide electric field mode profiles 

whereas ee and eo represent the even and odd mode profiles, respectively. Fig. 5 illustrates an 

overlay of the even and odd mode field contour and polarization from a CST simulation. As 

expected, we see the even mode polarization states are matched with a substantial field in the gap 

between waveguides and opposite polarization states for the odd mode with minimal field in the 

gap. 

Furthermore, we can describe the scattering matrix relating the incident and reflected even and 

odd mode fields as in (2.3.2) where ,e oΩ Ω  are defined shortly. We draw attention to two aspects 

of this scattering matrix: the diagonal terms are zero and the cross-coupling terms are zero. 

Intuitively, it may be surprising to see no interaction between even and odd modes.  
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However, since we are not currently describing individual fields in each waveguide, the even and 

odd modes simply propagate through the coupled waveguides not unlike a given mode propagating 

through a regular isolated waveguide. Additionally, since the scattering matrix is given with 

respect to the characteristic even and odd mode impedances, all reflection coefficients are zero. 

Or, in other words, there is purely the transmission of even and odd modes. 

In calculating the transmission coefficients and thus the scattering matrix, we simplify by using 

the same formulation as the forward propagating field term in (2.1.8). However, instead of using 

the effective refractive index for an isolated waveguide, we use the effective refractive indices for 

even and odd modes. The particular values are frequency dependent and are calculated using high 

accuracy CST simulations. Implementing the same formulation, we write 0ejn k x
e e −Ω =  and 

0ojn k x
o e −Ω =  for a given length x where en  and on  represent the effective even and odd mode 

refractive indices or equivalently modal indices. 

While the even and odd mode representation is useful in various calculations, our analytic 

model uses forward and backward waves in each waveguide. As such, we need to convert from 

even and odd modes to individual waveguide mode profiles making use of the definitions stated 

above. Before describing the transformation, we first describe the expected form the resulting 

matrix will take. In the simplest representation, the magnitude of the distributed coupling transfer 

matrix will be identical to the representation in (2.1.11) for point-like coupling. The transmission 

coefficients will be along the diagonal terms and the coupling coefficients will be imaginary and 

negative with respect to the forward and backward modes. The primary difference in using the 
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even and odd mode formulation is that the transmission coefficients will have a phase delay 

included directly related to the length of the coupled waveguides. Substituting the relationships 

between even/odd modes and forward/backward modes into a symbolic equation solver, we solve 

for the forward and backward modes at one end of the structure in both waveguides in terms of the 

scattering matrix parameters. 

The resulting transfer matrix parameters are comprised of over ten terms each for the general 

case. However, we can simplify the transformation in the ideal case (scattering matrix diagonal 

terms are zero, cross coupling terms are zero). The resulting distributed coupling transfer matrix 

for individual waveguide modes based on the scattering matrix from even and odd modes is 

described as 
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 (2.3.3) 

We compute the even and odd mode effective refractive indices from a high quality CST 

simulation of coupled waveguides with the same dimensions as the isolated waveguide (Fig. 2) 

and a 150 nm gap between the waveguides. This gap size is somewhat arbitrary and can be adjusted 

depending on fabrication tolerances, size constraints, and much more. A gap below 50 nm may 

provide more coupling in a shorter distance yet risks more fabrication error in physical models. 
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Conversely, a wider gap may help with physical model reproducibility yet requires a longer 

distance for the same coupling strength. Fig. 6 shows the CST generated plot of the port effective 

dielectric constant. Even modes are denoted with a one in parenthesis and odd modes a two for 

both ports. Fig. 7 illustrates the magnitude of the field coupling coefficient and phase of the 

transmission coefficient for a given coupler length. 

While it may be difficult to verify the accuracy of the distributed coupled transfer matrix in 

terms of the lossless, reciprocal, and symmetric conditions in symbolic terms, we provide an 

example using numerical values for a 1 μm long coupler. We also compare the results to the CST 

scattering matrix transformed to the transfer matrix at 193 THz per (1.3.9) and the following 

analysis in that section. Using the analytic distributed coupler model and the proper effective 

even/odd mode refractive indices, we determine the analytic transfer matrix as 

 ,
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whereas the transfer matrix from CST is 

 ,

0.995 0 0.103 0
0 0.995 0 0.103

0.103 0 0.995 0
0 0.103 0
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173.

5

3 83.6
82.99 17

.
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83.0 1739 .30 9
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=  
 
 

∠ ∠
∠ ∠ −

∠ ∠
∠ − ∠ −

T

° °
− ° °
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° °

 (2.3.5) 

We note here, however, the zero terms in (2.3.5) are abbreviated to zero. Upon carrying out 

the simulation and necessary transformations, these terms were on the order of 410−  or smaller. As 

expected, the analytic model near perfectly matches the simulation. 
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Figure 5. Even (a) and odd (b) electric field mode profiles from CST shown with the 
contour overlayed with the polarization arrows of the field. 

 

 

Figure 6. Effective dielectric constant of the even (1) and odd (2) modes for a coupled 
waveguide CST simulation with a 150 nm gap size. 
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2.4 Modeling the Middle Waveguide Curve 

In this section, we describe the geometric construction of the curved sections in the middle 

waveguide. Unlike designs at RF or in similar regimes, optical waveguides must make smooth 

transitions when changing propagating directions. The smaller the radius of the bend, generally 

the more losses the waveguide will incur. Additionally, as described in the distributed Bragg 

reflector section, changing the waveguide width will also incur more losses. Thus, in modeling the 

curved section, we have two primary goals: the curvature of the waveguide has a continuous slope, 

and the radius of curvature is maximized for given geometric parameters. 

 As is clear from observing of the unit cell structure, we can divide the curved section into four 

equivalent subsegments corresponding to two segments on the left and two on the right, each with 

a positive and negative concavity when taking the standard coordinate axis as a reference. As such, 

we only need to solve this problem once and mirror or translate the resulting arc through the unit 

cell. We will also take the center of our rectangular coordinate system as point O shown in Fig. 8. 

This point corresponds to the boundary where the straight waveguide transitions to the arc and the 

 

Figure 7. Magnitude of the field coupling coefficient and phase of the transmission 
coefficient for a distributed coupler of a given length and with a 150 nm gap size at 193 THz. 
Unitary coupling is achieved in 15 μm. 
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center of the middle waveguide’s width. We also mark point M which corresponds to half of the 

height and half of L’ shown in Fig. 1(a). With minimal algebra, an equivalent point can be marked 

with the values defined in Fig. 1(b). 

 

 

In our formulation, line MO and radius R1 are equivalent and are calculated using the 

Pythagorean theorem. We also know, to satisfy the maximum radius condition, the R2 circle must 

have points O and M included on the perimeter. To ensure the arc’s tangent at point O is always 

horizontal and thus satisfying the continuous curvature condition, we know the center of the R2 

circle must be directly above point O. We first write the general equation for the intersection of 

two circles described by the center point and radius as 1 1 1, , )( y Rx  and 2 2 2, , )( y Rx  in (2.4.1). By 

then setting the y-value intersection solution equal to the y-value of point M, we can solve for R2. 

 

Figure 8. Geometric description of the bottom left middle curved waveguide arc. 
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Setting the initial x-values to zero and 1 0y = , we simplify the solution to be solely dependent on 

H, w, and L’, or the spacing of the middle waveguide, the width of the waveguides, and the distance 

of the curved section. This simplified formula is given in (2.4.2). 
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As stated, the calculated radius R2 is the same for every arc. The other three arcs can be 

constructed starting at the boundary between straight and curved sections, then drawing the 

appropriate circle either above or below the waveguide. 

While it may seem unnecessary to detail the precise construction of these curved sections, it is 

critical to minimize losses in physical models. The formulation presented here also allows for a 

specific radius to be selected based on the height and length of the curve. This may be useful if 

fabrication tolerances allow for only specific radii, and the design can be quickly modified to 

ensure a minimum radius is not used. 

 

2.5 Dispersion of the Eigenmodes 

Before optimizing a design for the SIP, we must understand and solve the eigenvalue problem 

to find the modes of the infinite length unit cell. From Floquet-Bloch theory, periodic solutions to 

the eigenvalue problem given by (2.5.1) are in the form jk de−   where k is the Floquet-Bloch 

complex wavenumber and where jk deλ −  ≡ . 
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 U λ=T Ψ Ψ  (2.5.1)  

The eigenvalues nλ  with n=1,2, … 6 are obtained by solving the characteristic equation 

) det[ ] 0( , UD k ω λ−≡ =T 1  with 1  representing the 6 6×  identity matrix. Due to the reciprocity of 

the unit cell structure, the determinant of the unit cell transfer matrix satisfies the equation 

1det[ ]U =T . Additionally, because we are working with a six port system, the eigenvalues will 

come in three sets of reciprocal pairs corresponding to the forwards and backwards directions of 

propagation. The dispersion diagram thus shows a symmetry such that if )(k ω  is a solution of the 

eigenvalue equation, then )(k ω−  is also a solution. Equivalently, the dispersion diagram is 

symmetric with respect to the center of the Brillouin Zone defined here with ( )kℜ  from 0 to 2 / dπ  

where d is the length of the unit cell. 

In this thesis, we present two models of the unit cell: one with point coupling and one with 

distributed coupling corresponding to Fig. 1(a) and Fig. 1(b), respectively. In turn, each of these 

two models are separated between the analytic and CST cDBR models. In the analytic version for 

the point coupling model, we use an ideal point reflection based on the CST cDBR parameters. 

Similarly, the analytic version for the distributed coupling model uses an ideal model of the 

reflection but accounts for the length of the cDBR as well. In the CST cDBR versions for both the 

point and distributed coupling models, the entire CST S-parameter file is used. Thus, in summary, 

the analytic models are perfectly lossless whereas the CST cDBR models account for the minimal 

losses associated with the reflecting structure. 

We start with a description of the point coupling model. The full unit cell transfer matrix is 

calculated using a combination of the individual subblock matrices divided between five sections. 

The first section incorporates the cDBR block in the upper waveguide and the directional coupler 

between the bottom two waveguides. The second and fourth blocks are identical and describe the 
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phase delay in each of the waveguides as the middle waveguide curves between the upper and 

lower waveguides. The formulation for the arc length and geometric construction of the curved 

section is described in previous sections. The third block is similar to the first except the cDBR is 

in the lower waveguide and the directional coupler is between the middle and upper waveguide. 

The fifth block is simply a phase delay in each of the waveguides. We do not include the directional 

coupler or cDBR in the last subblock as to not account for these structures twice at the same 

location. 

 

The dispersion diagram for the point coupling model with 

0.273, 11.17μm, 4.468μm, 1.737μmL L Hκ ′= = = =       is shown in Fig. 9 for the analytic 

(lossless) model and for the CST cDBR (lossy) model where 193 THzSIPf =  . As expected, the 

two models are in very close agreement and only deviate close to the SIP as shown in Fig. 10 

where we zoom in on the SIP. We additionally show the evanescent and propagating branches of 

 

Figure 9. Point coupling model complex dispersion diagram of the infinite length unit cell 
structure using the analytic (lossless) and CST cDBR (lossy) models. 
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the dispersion diagram in Fig. 11 for the analytic model where, for 1R ( / )e kd π < , the SIP 

experiences a negative slope in the real part of the wavenumber. Above one the slope of the real 

wavenumber dispersion eigenmode is positive. 

 

An additional useful view of the dispersion diagram is shown in Fig. 12 where the six 

eigenvalues are plotted with the imaginary component of their wavenumber versus the real part of 

their wavenumber. It is clear that three eigenmodes share the same real and imaginary wavenumber 

at the SIP and are offset 60° to each other directly before and after the SIP. Not only is this figure 

useful in visualizing the coalescence of the SIP, we can also plot the degree to which the unit cell 

transfer matrix solves the characteristic equation shown in Fig. 13. The depth of this contour plot 

represents how close the determinant for a given eigenvector is to zero on a logarithmic scale. 

 

Figure 10. Point coupling model zoomed in complex dispersion diagram illustrating the 
differences between the two models at frequencies very close to the SIP frequency. 
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Figure 11. Dispersion diagram of the point coupling analytic model with the evanescent 
modes shown in red and propagating modes shown in black. 

 

 

Figure 12. Imaginary versus real wavenumber of the dispersion diagram for the point 
coupling analytic model. 

 



30 
 

 

We also notice that this particular SIP is close to the Brillouin Zone center with a normalized 

separation of less than 0.05 on each side of one. For the infinite length structure, there is no current 

consensus on the effect the closeness has on the quality of the SIP. However, for finite length 

models, interactions in the OWG because of the SIP closeness may cause a deterioration of the 

transfer function amplitude near the SIP resonance frequency. From iterative searching over the 

four parameter space, and even when modifying the cDBR design, efforts to move the SIP away 

from the Brillouin Zone center were unsuccessful. While the particular reason for this limit is 

unknown, we hypothesize the geometry may restrict movement of the SIP location to a range. 

We now turn our discussion to the distributed coupling model instead of the point coupling 

model. As stated, the two primary differences in the point vs. distributed model are that the transfer 

matrix for the coupler uses the even/odd mode formulation and the full length of the cDBR is 

 

Figure 13. Contour of the propagating branches of the dispersion diagram for the point 
coupling analytic model. 
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considered. The same analysis for the characteristic equation and eigenvalues is performed for this 

model but with a different unit cell transfer matrix. In the distributed coupling model, we can 

construct the unit cell transfer matrix using four subblocks instead of five. 

Similar to the point coupling model, the first and third subblock incorporate the cDBR and 

coupler. The first subblock has the cDBR relating the upper OWG field amplitudes and the 

distributed coupler relating the lower two OWG field amplitudes. In the third subblock, the roles 

are reversed. Also like the point coupling model, the second and fourth subblocks incorporate 

purely phase delay elements. Therefore, the subblock matrices describing these sections only have 

diagonal terms. 

We note here two aspects of the distributed coupling model which are improvements over the 

point coupling model and two aspects of the distributed coupling model which do not accurately 

reflect the OWG behavior. As the cDBR clearly has an associated length, and coupling cannot 

occur at a singular location, incorporating the length of the cDBR and the length of the coupled 

waveguides are immediate improvements over un-realistic yet useful first order point like models. 

The arc length and radius of the middle OWG curved section is directly influenced by the cDBR 

length and the length of the coupler, so adding complexity to the model allows for a better 

approximation of the actual OWG modes. 

A somewhat significant yet expected imperfection of the distributed coupling model involves 

including the coupling from the middle OWG curved section. As the middle waveguide arcs start 

curving, they experience a gradually decreasing coupling between the top and bottom waveguides 

as it approaches the center of the geometric height. This small but present coupling depends on the 

quickness the middle waveguide deviates from the straight top and bottom waveguides. The 

quicker the middle waveguide turns, the less coupling is added. Because the subblocks modeling 
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the curved section are only represented as phase delays, this additional coupling is not modeled or 

included in the unit cell transfer matrix. The quickness with which the middle waveguide deviates 

from the straight waveguides is proportional to the radius of curvature of the arcs. Therein lies the 

second imperfection in this distributed model: accounting for bending losses. As discussed 

previously, the smaller the radius of curvature, the more losses in the bend. The phase delay 

elements do not account for any amplitude decrease proportional to the radius of curvature. The 

two points discussed in this paragraph are left for further studies and research. 

Now that we have described the distributed coupling model and its construction, we present 

similar diagrams to that of the point coupling model. Naturally, as seen from Fig. 1(a), we use 

different geometric parameters to describe the unit cell optimized for the SIP. These parameters 

are μm, 2.230 μm,  1.781 μm1.333 cL L H == =  and correspond to a unit cell period of m11.8 μ95 d =

. Compared to the point coupling model, we have tried to minimize the unit cell length to decrease 

the physical footprint of the device and have achieved a reduction in approximately one third of 

the unit cell period. We also pushed the next closest RBE away from the SIP by approximately 

250 GHz compared to the point coupling model which has a separation of approximately 130 GHz. 

Figures 14 through 18 show the following: the dispersion relation of the unit cell for the 

distributed model; a zoomed in view highlighting the slight differences in the analytic and CST 

cDBR models; the propagating and evanescent modes; the real vs imaginary wavenumber; and a 

contour of the dispersion. 
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Figure 14. Distributed coupling model complex dispersion diagram of the infinite length 
unit cell structure using the analytic (lossless) and CST cDBR (lossy) models. 

 

 

Figure 15. Distributed coupling model zoomed in complex dispersion diagram illustrating 
the differences between the two models at frequencies very close to the SIP frequency. 
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Figure 16. Dispersion diagram of the distributed coupling analytic model with the 
evanescent modes shown in red and propagating modes shown in black. 

 

 

Figure 17. Imaginary versus real wavenumber of the dispersion diagram for the 
distributed coupling analytic model. 
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In the distributed model, we have also tried to move the SIP away from the BZ center. After 

extensive searching of the parameter space, we were unable to characterize a SIP with more than 

~0.04 normalized wavenumber spacing away from the BZ center. 

In the vicinity near the SIP, the dispersion is characterized by SIPω  and SIPk , the angular 

frequency at which the three modes coalesce and the wavenumber at the SIP, respectively. Around 

SIPf , the dispersion is well approximated by 

 3( )SIP SIPk kω ω η− ≈ −  (2.5.2) 

where η is a constant describing the flatness of the SIP. 

As a final validation of the accuracy and drawbacks of the distributed coupling model, we have 

simulated the unit cell in CST. The simulation uses over 1.6 million tetrahedral mesh cells and a 

scattering parameter tolerance on the order of 410− . We highlight a few key elements of Fig. 19, 

 

Figure 18. Contour of the propagating branches of the dispersion diagram for the 
distributed coupling analytic model. 
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particularly the RBE seen in both the real and imaginary normalized wavenumber plots and the 

deviation from zero in the imaginary plot. The analytic distributed coupling model and the full 

CST simulation both exhibit a split in the real part of the wavenumber around 0.9985 and 0.998, 

respectively. The imaginary part of the wavenumber shows the same split. In the lossless analytic 

model, we see the imaginary part of the dispersion perfectly equal zero for some branches. In the 

full CST model, we see a slight deviation from zero for the same branches. This deviation is 

interpreted as losses resulting from the cDBR, the curved sections, and more. 

 

 

2.6 Validation of Third Order Exceptional Point 

We can consider the closeness, or coalescence, of any given two eigenvector by the magnitude 

of the sine of angle between the eigenvectors. If two eigenvectors have the same magnitude and 

 

Figure 19. Comparison of the distributed coupling model to a full wave CST simulation 
of the same structure. 
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direction, the magnitude of the sine of the angle between them is zero. Extending this idea to three 

eigenvectors, we simply take the algebraic average of the sine magnitude between the three 

positive eigenvectors. To calculate the sine between two vectors, we use the definition of the inner 

product normalized by the product of the vector’s norms. Put more concisely, the coalescence 

parameter, which measures the extent to which three eigenvectors have degenerate eigenmodes, is 

given by 
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where mnθ  is the angle between the two six-dimensional normalized complex state vectors [1], 

[2]. The inner product is defined as †,m n m n〈 〉 =Ψ Ψ Ψ Ψ  with the dagger symbol † representing the 

complex conjugate transpose operation, or the Hermitian operation. mΨ  and nΨ  denote the 

norms of the two vectors, and with our six-port system, 1Ψ , 2Ψ , and 3Ψ  represent the three 

eigenvectors associated with the three positive wavenumbers in the dispersion diagram. 

The coalescence parameter C is always positive and less than one, with zero representing 

perfect coalescence. At perfect coalescence, the system experiences the SIP. However, in any 

model and notably in practice, perfect coalescence is impossible and instead we say the system 

operates in the SIP regime or near the SIP. This impossibility is due to numerical errors where we 

can go arbitrarily close to the SIP, or due to losses either in fabrication, scattering losses, and more. 

The coalescence parameter for the analytic and CST cDBR models are shown in Fig. 20 for the 

point coupling and distributed coupling variations. 

By minimizing the coalescence parameter through changes in the unit cell transfer matrix 

parameters, we can design a structure which operates in the SIP regime. The dispersion diagrams 

shown in the previous section were the result of such optimization in system parameters. It should 



38 
 

be noted, however, the reflection coefficient magnitude and angle are based on the CST cDBR 

design and were not directly included in the optimization. Once the main cDBR was designed, the 

scattering parameters were used as-is. This still provides great flexibility in designing the structure 

while reducing time and uncertainty associated with multiple iterative CST simulations. 

In the analytic models, the threshold we set for the coalescence parameter to be considered a 

SIP was 410− , which again can be set arbitrarily close to zero. Replacing the lossless reflection 

transfer matrix with the lossy cDBR transfer matrix, we still see a coalescence parameter around 

110− . While this value is orders of magnitude larger than for the lossless model, based on the 

dispersion diagram and the contour of the dispersion diagram, we can still say the structure is 

operating in the SIP regime. 
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(a) 

 
(b) 

Figure 20. Coalescence parameter calculated for (a) the point coupling and (b) the 
distributed coupling models representing the amount of degeneracy in the eigenmodes. A zero 
value corresponds to perfect coalescence. 
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2.7 Summary 

This section detailed the state vector used to describe the electric field propagation over a given 

distance and an alternate representation useful for multiple conversions. Equations were also given 

to transform transfer matrices representing the two state vectors. These details proved to be 

important when modeling the directional coupler based on commonly known field relationships. 

The transfer matrices of each system subblock were also given in terms of the appropriate state 

vector and variables used to describe physical behavior. We detailed the design of a DBR and then 

a less lossy cDBR along with taking note of normalization impedances. We also detailed the 

modeling of coupled waveguides using even and odd modes along with the conversion to forward 

and backward fields. The construction of the middle OWG curved sections was presented with 

equations to calculate the radius of curvature for the arcs. Using all of the subblocks, we described 

how the full unit cell transfer matrix is built for the point coupling model and the distributed 

coupling model. 

Finally, the dispersion relationship was discussed based on the infinite length structure and 

Floquet-Bloch theory. We described how we found the eigenmodes and highlighted key aspects 

of the dispersion diagram. The system appears to behave in the SIP regime based on modal 

structure and dispersion diagram behavior. Using the coalescence parameter, we further verified 

SIP behavior. The agreement between the lossless or analytic model and the lossy or cDBR model 

is also strikingly accurate due to the minimal losses in the cDBR model. This holds true for the 

point and disturbed coupling models. We can detect these losses both from a divergence from the 

0I ( / )m kd π =  vertical line and from the increase of the coalescence parameter. 
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FINITE LENGTH ANALYSIS 

 

3.1 Boundary Conditions 

When performing a finite length analysis, we must set termination conditions on the six ports 

of the waveguide and determine which ports will be used as the input and output. For this structure, 

we terminate the bottom and middle waveguide with perfectly reflecting mirrors and consider the 

top waveguide terminated with matched waveguides on either end to prevent additional reflections. 

In practice, the middle and bottom waveguides may have broadband DBRs with very high 

reflectivity around 193 THz and the top waveguides may have impedance matching optics 

included. However, for simplicity and conciseness, these factors will not be discussed further here. 

It is also possible for the input and output to be taken from any of the six ports unlike some 

other photonic structures such as a coupled resonator optical waveguide (CROW) or serpentine 

optical waveguide (SOW) [1], [19], [57]. While we have performed analysis on various 

input/output arrangements, using the top waveguide as the input and output appears to be sufficient 

for finite length models. 

For the sake of reducing repeated analysis, we will only discuss the distributed coupling model 

in the following sections. As the point coupling model and distributed coupling model have 

similarities in accuracy, the distributed coupling model is a more accurate model and thus the 

primary focus for finite length analysis. 

Taking the unit cell as in Fig. 1(b), we modify the repeating structure so the input and output 

waveguides are not terminated by the cDBR and coupled waveguides. For the additional leftmost 

segment, we remove the cDBR and the distributed coupler and add a length to the upper waveguide 

to match with the lower two waveguides. Similarly, for the additional rightmost unit, we remove 
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the coupled section and extend the topmost waveguide to match the lower two waveguides. The 

additional segments are denoted and described as the auxiliary transfer matrix AT  and the auxiliary 

transfer matrix BT . Fig. 21 shows the geometry for the two auxiliary segments. 

 

 

3.2 Transfer and Reflection Functions 

From the previous section, we take both the input and output from the top waveguide. If we 

have N unit cells of length d beginning at 0z = , we can write the transfer function at the output 

as 

 
(a) 

 
(b) 

Figure 21. Auxiliary finite length segments for (a) the start of the unit cell and (b) the end 
of the unit cell. 
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where 'd  is the added length from the auxiliary geometries. 

Similarly, we can write the reflection function as 

 1

1

(0)
(0)fR E

E

−

+=  (3.2.2) 

 

If we normalize the electric field at the input to one, the transfer function and reflection 

function are simplified in further calculations. To calculate these functions, we calculate the 

transfer matrix for one unit cell and cascade the matrix N times to find the state vector at the output 

as described by 

 ( ') ( 0)N
UB Az Nd d z= + = =Ψ T T T Ψ  (3.2.3) 

where AT  and BT  are described in Fig. 21. 

 

Figure 22. Magnitude in dB and phase normalized to π of the transfer function for a given 
number of unit cells N. 
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Fig. 22 and Fig. 23 show the transfer and reflection function magnitude and phase for a few 

different numbers of unit cells. Sharp jumps in the transfer function phase plot are partially due to 

wrapping around the unit circle every 2π. The phase plots are normalized to π for better readability. 

As we increase the number of unit cells to infinity in the analytic model, we expect unity magnitude 

at the SIP frequency. With more unit cells, our model conforms more to Floquet-Bloch theory of 

periodic structures. There is, however, a tradeoff in the number of unit cells, complexity, and size 

of the structure, especially when considering a real, lossy, system. As the number of unit cells 

increase, the dimensions of the system may become too large and losses may compound to provide 

no clear benefit to operating in the SIP regime. Conversely, not enough unit cells and the structure 

cannot realize any characteristics of SIP behavior as the waves in the structure have not been able 

to propagate and interfere enough. As a result, we consider N between approximately six and 

twenty. 

From the transfer and reflection functions, we can clearly see a trend in the peaks and valleys 

close to the SIP as the number of unit cells increase. With eight unit cells (the blue curve), the 

transfer function peak is about 0.0002 f/f away from the SIP, or approximately 37 GHz in absolute 

frequency units. As we approach 16 unit cells (the green curve), the peak is spaced only 6 GHz 

away from the ideal Floquet-Bloch analysis. We also see a similar trend at frequencies lower than 

the SIP frequency where the peaks of the transfer function seem to converge with more unit cells. 

Without further analysis, either peak could correspond to the SIP resonance predicted in the infinite 

unit cell description. We will see shortly how the group delay may shed light on the trends seen in 

the transfer and reflection function plots. 
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3.3 Quality Factor and Group Delay 

Two important figures of merit in a finite length cavity are the quality factor and group delay. 

We use the standard definition of the group delay as 

 
( )f

g

T ω
τ

ω
∂∠

= −
∂

 (3.3.1) 

and we use the definition of the quality factor based on the group delay as 

 ,

2 2
SIP res g SIP gQ

ω τ ω τ
≈=  (3.3.2) 

where we approximate the SIP resonance frequency as the ideal SIP frequency for frequencies of 

interest. 

 

Figure 23. Magnitude in dB and phase normalized to π of the reflection function for a 
given number of unit cells N. 
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Before detailing the group delay and quality factor plots, it is helpful to describe the SIP 

resonance frequency ,SIP resf   as the frequency closest to the SIP frequency SIPf  where the reflection 

function is minimal. There may also be consideration before choosing the closest valley to the SIP 

frequency as the SIP resonance frequency. As the number of unit cells increase, we may notice a 

trend in the transfer and reflection functions as described in the prior section. Thus, if there is a 

valley in the reflection function for a given number of unit cells which is closer to the SIP 

frequency yet does not experience the described trend, the closer valley may not be the SIP 

resonance frequency in the finite length structure. We see this clearly in Fig. 24 where the group 

delay is experiencing a seemingly linear decrease as the number of unit cells increase for 

normalized frequencies around 0.99975. We compare this decreasing trend to frequencies very 

close to the SIP frequency which are experiencing an increasing trend. Although only a limited 

 

Figure 24. Group delay of the finite length structure for a given number of unit cells. 
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number of unit cells are displayed in the figure, we verify that as the number of unit cells continues 

to increase the increasing trend closest to the SIP frequency dominates. 

 

A key characteristic of the SIP is zero group velocity, or a frozen mode at the SIP. Equivalently, 

the group delay at the SIP is infinite. Due to the structure being finite, we only see peaks in the 

group delay in the SIP regime. 

We also show trends in the group delay in Fig. 26 at the SIP resonance frequency. As the 

number of unit cells increase, we notice a cubic relationship between the maximum of the group 

delay and number of unit cells, expressed at 3
,g max baNτ +∝  where a and b are fitting constants. 

Based on Fig. 26, 6.54 fsa =   and 24.36 psb =  . We can also numerically describe the 

improvement in group delay over a straight waveguide of equal length. We calculate the delay in 

a straight waveguide as / phNd v  where 81.275 10 m/sphv ≈ ×  was calculated from CST Studio 

Suite and d includes the two auxiliary cells. For an equivalent N = 30 non-SIP structure (total 

 

Figure 25. Quality factor of the finite length structure for a given number of unit cells. 
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length ≈ 400 μm) the group delay is 3.13 ps compared a group delay at the SIP resonance of          

190 ps. This gives an increase in group delay over 60 times that of the non-SIP structure. 

 

 

3.4 Summary 

Analyzing the finite length structure involves careful consideration of boundary conditions and 

the termination of each waveguide port. Approximating ideal reflections to terminate the middle 

and bottom waveguide ports and connecting equal impedance waveguides to the input and output 

ports, we calculated important aspects of the finite length structure with auxiliary blocks added to 

the unit cell. The transfer and reflection functions were calculated using the unit cell transfer matrix 

cascaded N times for the number of unit cells. As N → ∞ , the structure operates more like ideal 

Floquet-Bloch theory when not accounting for losses. 

 

Figure 26. Group delay at the SIP resonance frequency for a given number of unit cells N. 
The fitting curve is described by 3aN b+  where a = 6.54 fs and b = 24.36 ps. 
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The group delay and quality factor were also presented with some discussion on the differences 

between the SIP frequency and the SIP resonance frequency. The group delay and thus the quality 

factor experienced third order scaling based on the number of unit cell included. This scaling is 

consistent with other SIP geometries and further verifies operation in the SIP regime. 
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CONCLUSION AND FUTURE WORK 

The field of exceptional points of degeneracy is growing rapidly as more systems are designed, 

analyzed, and fabricated. New applications of this theory are discovered regularly and may 

significantly affect a variety of fields from quantum computing to biomedicine. This section gives 

an overview of some applications of the third order degeneracy or stationary inflection point along 

with next steps in SIP devices. In this thesis, an optical waveguide design has been presented that 

operates in the SIP regime with both lossless and lossy models along with considering point 

coupling/reflections and distributed coupling/reflections. The finite length structure based on the 

waveguide unit cell exhibits expected yet interesting power scaling of the group delay and quality 

factor. 

We have optimized the design using the coalescence parameter as the primary figure of merit 

and a cDBR with an order of magnitude less loss than its DBR counterpart. Three geometric 

parameters are used to describe the unit cell structure along with the directional coupler coupling 

coefficient and cDBR scattering matrix. This SIP, while close to the Brillouin Zone center, is 

isolated from other EPDs by a relatively large bandwidth of approximately 250 GHz. 

SIP structures may be useful in a handful of devices, including optical delay lines, very 

sensitive sensors, lasers, and more. With an exponential increase in the group delay of an incident 

signal, all-optical routers and switches are more feasible because of the increased time for coherent 

light storage. EPDs are also generally sensitive to perturbations and may be tuned to be either more 

or less robust to parameter variations. This behavior can be used in sensing devices to detect 

changes much finer than non-SIP counterparts. 

The last application to discuss, lasers, is also the topic of significant future work. As the 

dispersion diagram does not have a stop-band and remains monotonically increasing or decreasing 
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depending on the wavenumber for propagating eigenmodes, lasers operating in the SIP regime 

show great promise. More work is needed to determine conditions for lasing and how to fabricate 

waveguides in silicon which exhibit the discussed properties. 
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