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Comparison of continuous and discrete data-driven
predictive models for hypoelliptic systems of stochastic
differential equations

Fei Lu∗, Kevin K. Lin†, and Alexandre J. Chorin∗

Color guide

• Fei’s comments

• Kevin’s comments

How about this title:
Data-driven predictive modeling of hypoelliptic systems: a comparison of continuous and
discrete-time approaches

k: Either is
fine with
me

Abstract

We compare two approaches to the inference of predictive models of dynamical
systems from partial observations. The first is continuous in time, where one uses the
data to infer a model in the form of a stochastic differential equation which is then k: see note

1
discretized for numerical solution. The second is discrete in time, so that the model
one infers is a parametric representation of a time series that can be directly used
in computation. The analysis comparison is performed in a special case where the
observations are known to have been obtained from a hypoelliptic stochastic equation.
We show that the discrete-time approach has better predictive skills, especially when
the data are relatively sparse in time, and is easier to use. The broader significance of
the results is discussed.

Keywords: Hypoellipticity; Langevin systems; Kramers oscillator; parameter estimation;
discrete partial data; NARMA.

1 Introduction

We examine the problem of inferring predictive stochastic models for a dynamical system,
given partial observations of that dynamical system at a discrete sequence of times. This
inference problem arises in applications ranging from molecular dynamics and economics
to climate modeling (see, e.g., [GCF15, FS01] and references therein). The systems that
give rise to these observations may be stochastic or deterministic (usually chaotic). This
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inference process, often called “stochastic parametrization,” is useful both for reducing
computational cost by constructing effective lower-dimensional models, and for making
prediction possible when fully-resolved measurements of initial data and/or a full model
are not available.

k:
Awkward,
but
hopefully
clear.Stochastic parametrization often leads to hypoelliptic systems [PSW09,MH13]. Typi-

cal approaches to this problem begin by identifying a continuous-time model, usually in
the form of a stochastic differential equation, then discretizing the model to make predic-
tions. Our goal here is to compare this continuous-time approach with a fully discrete-time
approach, in which one considers a discrete-time parametric model, such as a nonlinear au-
toregression moving average model (NARMA), and infer its parameters from the data.
As we will show, advantages of the discrete-time approach include (i) it circumvents the
challenging problem of estimating parameters of a stochastic differential equation from
partial discrete observations; (ii) it potentially takes discretization errors into account (for k: see note

2
a detailed discussion, see [CL15,LLC15]) and hence it can deal with large spacing between
observations; (iii) it requires no further approximation before use. The major A main
difficulty in the discrete approach is the derivation of structure, i.e. of the terms in the
parametric form of the discrete-time system. We investigate in this paper the possibility
of deriving structure from numerical schemes for solving SDEs. k: see note

3
Stochastic parametrization often leads to hypoelliptic systems [PSW09,MH13]. We F: moved

to previous
para

perform our comparison in a special case where the observations we have are known in
advance to have been produced by a hypoelliptic system whose form is known and where
only some parameters remain to be inferred. This choice leaves in abeyance the question of
what to do in cases where much less is known about the origin of the data; in general, there
is no reason to believe that a given set of observations can be described by a differential
equation or by any Markovian model. We have made elsewhere [CL15, LLC15] the case
that the greater generality of discrete models gives them pride of place in these more

k: Not sure
what this
means...general cases. We hope that a comparison between these approaches in a relatively simple

and realtively well-understood context will clarify the the advantages and disadvantages of
discrete-time modeling for dynamical systems.

Model formulation and main findings. The specific hypoelliptic stochastic differential equa- k: see note
4

tion (SDE) we use in this paper has the form

dxt=yt dt, (1.1)

dyt=
(
− γyt − V

′(xt)
)
dt+ σdBt,

where Bt is a standard Wiener process. When the potential V is quadratic, i.e.,

V(x) =
α

2
x2 , α > 0,

we get a linear Langevin equation. When the potential has the form

V(x) =
β

4
x4 −

α

2
x2 , α,β > 0,

this is the Kramers oscillator [Kra40, SGH93,AI00,Hum05]. It describes the motion of a
particle in a double-well potential driven by white noise, with xt and yt being the position
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and the velocity of the particle; γ > 0 is a damping constant. The white noise models the
thermal fluctuations of a surrounding “heat bath”, the temperature of which is connected
to γ and σ via the Einstein relation T = σ2

2γ
. This system is ergodic, with stationary density

p(x,y) ∝ exp
(
−2γ
σ2

(
1
2
y2 + V(x)

))
. It has multiple time scales and can be highly nonlinear,

but is simple enough to permit detailed numerical study, and parameter estimation for this
system is well understood studied. We wish to predict x from the discrete observations
{xnh}

N
n=1 with a separation h > 0; the parameters γ,α,β and σ are to be determinded. The

variable y is not observed, hence even when the parameters are known, the initial value of
y is missing when one tries to solve the SDEs to make predictions.

k: See new
paragraph
below.Our specific goals are

- Short-time forecasting, i.e., to predict x from the discrete observations {xnh}
N
n=1

with a separation h > 0; the parameters γ,α,β and σ are to be determinded. The
variable y is not observed, hence even when the parameters are known, the initial
value of y is missing when one tries to solve the SDEs to make predictions.

- Estimate stationary density. [k: someone please elaborate.]

- Estimate time-autocovariance functions. [k: someone please elaborate.]

Our main finding is that the discrete-time approach makes predictions as reliably as
the true system that which gave rise to the data (which is of course unknown in general),
even for large observation separation h, while a continuous-time approach is only accu-
rate when h is small even in very low-dimensional examples such as ours. This suggests
that for the stochastic parametrization of hypoelliptic systems, it may be advantageous to
use discrete-time models. Our work also suggests that for stochastic parametrization of
high-dimensional chaotic systems, even when a good parametric family of continuous-time
models is available, the associated parameters may be too hard to estimate accurately, and
that a discrete-time model may be more effective. Another of our findings is that numerical
schemes can, in some situations, be used to select appropriate structures for discrete-time
modeling.

Paper organization. We briefly review some basic facts about hypoelliptic systems in Sec-
tion 2, including the parameter estimation technique we use to implement the continuous-
time approach. In Section 3, we discuss the discrete-time approach in detail. Section 4
presents the numerical results, and in the Conclusion we discuss some broader implications
of our results. For the convenience of the reader, we collect a number of standard results
about SDEs and their numerical solutions in the Appendices.

2 Brief review of continuous-time approach

[k: I suggest adding “review,” since almost all the material in this section is due to others.]

2.1 Inference of partially observed hypoelliptic systems

Consider a stochastic differential equation of the form

dX= f(X, Y) dt

dY=a(X, Y) dt+ b(X, Y) dWt .
(2.1)
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Because the stochastic forcing term is degenerate, the second-order operator in the Fokker-
Planck equation

∂

∂t
p(x,y, t) = −

∂

∂x
[f(x,y)p(x,y, t)]−

∂

∂y
[a(x,y)p(x,y, t)]+

1

2

∂2

∂y2
[b2(x,y)p(x,y, t)] (2.2)

for the time evolution of probability densities is not elliptic. This means that without
any further assumptions on Eq. (2.1), the solutions of the Fokker-Planck equation, and
hence the transition probability associated with the SDE, might be singular in the X
direction. Hypoellipticitiy is a condition that guarantees the existence of smooth solutions
for Eq. (2.2) despite this degeneracy. Roughly speaking, a system is hypoelliptic if the drift
terms (i.e., the vector fields f(x,y) and a(x,y)) help to spread the noise to all phase space
directions, so that the system has a nondegenerate transition density despite the degeneracy
in forcing. Technically, hypoellipticity corresponds to certain conditions involving the Lie
brackets of drift and diffusion fields known as Hörmander’s conditions [Nua06]; when these
conditions are satisfied, the system can be shown to possess smooth transition densities.

Our interest is in systems for which only discrete observations of x are available, and
use these observations to estimate the parameters in the functions f,a,b. While parameter
estimation for completely observed nondegenerate systems has been widely investigated
(see e.g. [Rao99,Sør12]), and there has been recent progress toward parameter estimation
for partially-observed nondegenerate systems [Jen14], parameter estimation for hypoelliptic
systems from discrete partial observations remains challenging. There are three main
categories of methods for parameter estimation (see, e.g., the surveys [Sør04], and [Sør12]):

(i) Likelihood-type methods, where the likelihood is analytically or numerically approx-
imated, or a likelihood-type function is constructed based on approximate equations.
These methods lead to maximum likelihood estimators (MLE).

(ii) Bayesian methods, in which one combines a prior with a likelihood, and one uses the
posterior mean as estimator. Bayesian methods are important when the likelihood
has multiple maxima. However, in many cases, suitable priors may not be available. k: slight

rephrasing

(iii) Estimation function methods, or generalized moments methods, where estimators are
found by estimating functions of parameters and observations. For example, the exact
likelihood can be viewed as an estimating function, and hence one may view estimat-
ing function methods as generalization of likelihood methods. To distinguish the two,
we only call a method an estimating function method when the estimating function
is constructed without using an (approximate) transition density. For example, the
estimating function can be constructed based on martingales or moments.

Because projections of Markov processes are typically not Markov, and the system is hy-
poelliptic, all the above three approaches face difficulties: the likelihood function is difficult
to compute, and likelihood-type functions based on approximate equations often lead to bi-
ased estimators [Glo06,PSW09,ST12]; there are no easily calculated martingales on which
to base a class of estimating functions [DS04].

There are two special cases that have been well-studied. When the system is linear,
the observed process is a continuous-time autoregression process. Parameter estimation for
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this case is well-studied, see e.g. the review papers [Bro01,BDY07]. When the observations
constitute an integrated diffusion (that is, f(x,y) = y and the Y equation is autonomous,
so that X is an integral of the diffusion process Y), consistent, asymptotically normal
estimators are constructed in [DS04] using prediction-based estimating functions, and in
[Glo06] using a likelihood type method based on Euler approximation. However, these
approaches rely on the system being linear or the unobserved process being autonomous,
and are not adapted to general hypoelliptic systems.

To our knowledge, for general hypoelliptic systems with discrete partial observation,
only Bayesian type methods [PSW09] and a likelihood type method [ST12] have been
proposed. In [PSW09] Euler and Itô-Taylor approximations are combined in a deterministic
scan Gibbs sampler alternating between parameters and missing data in the unobserved
variables. The reason for combining Euler and Itô-Taylor approximation is that Euler
approximation leads to underestimated MLE of diffusion but is effective for drift estimation,
whereas Itô-Taylor expansion leads to unbiased MLE of diffusion but is inappropriate for
drift estimation. In [ST12] explicit consistent maximum likelihood type estimators are
constructed based on Euler approximation of the unobserved process, where a scaling
factor 3

2
is used in the likelihood type function to overcome the underestimation in the

diffusion (see also in [Glo06]). However, all these methods require the observation spacing

k:
“Spacing”
instead of
“gap”, for
consistency
w/ intro

h to be small and the number of observations N to be large. For example, the estimators
in [ST12] are consistent under the condition that h → 0, Nh2 → 0 and Nh → ∞. In
practice, the observation spacing h > 0 is fixed, and large biases have been observed when
h is not sufficiently small [PSW09,ST12]. As we shall show in this paper, the bias can be
so large that the prediction from the estimated system may be unreliable.

2.2 Continuous-time stochastic parametrization

The continuous-time approach starts by proposing a parametric hypoelliptic system and
estimating parameters in the system from discrete partial observations. In the present
paper, the parametric form of the hypoelliptic system is assumed to be known. Based
on the Euler scheme approximation of the second equation in the system, Samson and
Thieullen [ST12] constructed the following likelihood-type function, or “contrast”1

LN(θ) =

N−3∑
n=1

3

2

[
�x(n+2)h − �x(n+1)h + h(γ�xnh + V

′(xnh))
]2

hσ2
+ (N− 3) logσ2,

where θ = (γ,β,α,σ2) and

�xn =
x(n+1)h − xnh

h
. (2.3)

The estimator is the minimizer of the contrast

θ̂N = argmin
θ
LN(θ). (2.4)

The estimator θ̂N converges to the true parameter value θ = (γ,β,α,σ2) under the
condition that h → 0, Nh → ∞ and Nh2 → 0. However, if h is not small enough, the

1Note that a shift in time in the drift term, i.e. the time index of γ�xnh+V ′(xnh) is nh instead of (n+1)h,
is introduced to avoid a

√
h correlation between �x(n+2)h − �x(n+1)h and γ�x(n+1)h + V ′(x(n+1)h). Note also

that there is a weighting factor 3

2
in the sum.

5



estimator θ̂N can have a large bias (see in [ST12] and in the later sections), and the bias
can be so large that the estimated system may have dynamics very different from the true
system and its prediction becomes unreliable.

Remark 2.1 In the case V ′(x) = αx, the Langevin system (1.1) is linear. The pro-
cess {xt, t > 0} is a continuous-time autoregressive process of order two (denoted
by CAR(2)), and there are various ways to estimate the parameters (see the re-
view [Bro14]), e.g. the likelihood method using a state-space representation and a
Kalman recursion [Jon81], or methods for fitting discrete-time ARMA models [Phi59].
However, none of these approaches can be extended to nonlinear Langevin systems.
In this section we focus on methods that work for nonlinear systems.

Once the parameters have been estimated, one numerically solves the estimated system
to make predictions. In this paper, to make predictions for time t > Nh (where N is
the number of observations), we use the initial condition (xNh, �xN) in solving estimated
system, with �xN being the best guess for an estimate of yNh based on observations x. Since k: see note

5
the system is stochastic, we use an “ensemble forecasting” method to make predictions.
That is, we start a number of trajectories from the same initial condition, and evolve each
member of this ensemble independently. The ensemble characterizes the possible motions
of the particle conditional on the past observations, and the ensemble mean provides a
specific prediction. For the purpose of short-term prediction, the estimated system can be
solved with small time steps, hence a low order scheme such as the Euler scheme may be k: see note

6
used.

However, in many practical applications, the true system is unknown, one has to val-
idate the continuous-time model by its ability of reproducing the long-term statistics of
data. As mentioned in the Introduction, we are also interested in long-term statistics. For
this purpose, one has to compute the ergodic limits of the estimated system. The Euler
scheme may be numerical unstable when the system is not globally Lipschitz, and a better
scheme such as implicit Euler (see e.g. [MSH02, Tal02,MST10]) or the quasi-symplectic
integrator [MT07], is needed. In our study, the Euler scheme is numerically unstable,
while the Itô-Taylor scheme of strong order 2.0 in (C.2) produces long-term statistics close
to those produced by the implicit Euler scheme. We use the Itô-Taylor scheme in this
paper, since it has the advantage of being explicit and was used in [PSW09].

["FORECASTING ENSEMBLE OF TRAJECTORIES" HAS TO BE EXPLAINED]
Did it above.

In summary, the continuous-time approach uses the following algorithm to generate a
forecasting ensemble of trajectories.

Algorithm 2.2 (Continuous-time approach) With data {xnh}
N
n=1,

Step 1. Estimate the parameters using (2.4);
Step 2. Select a numerical scheme for the SDE, e.g. the Itô-Taylor scheme in the
appendix;
Step 3. Solve the SDE (1.1) with estimated parameters, using small time steps dt
and initial

(
xNh,

xNh−xNh−h
h

)
, to generate the forecasting ensemble.

6



3 The discrete-time approach

3.1 NARMA representation

In the discrete-time approach, the goal is to infer a discrete-time predictive model for x from
the data. Following [CL15], we choose a discrete-time system in the form of a nonlinear
autoregression moving average (NARMA) model of the following form:

Xn = µ+

p∑
j=1

ajXn−j +

r∑
k=1

bkQk(Xn−p:n−1, ξn−q:n−1) +

q∑
j=1

cjξn−j + ξn (3.1)

=:Φn + ξn,

where p is the order of the autoregression, q is the order of the moving average, and the Qk
are given nonlinear functions (see below) of (Xn−p:n−1, ξn−q:n−1). Here {ξn} is a sequence
of i.i.d Gaussian random variables with mean zero and variance c20 (denoted by N(0, c20)).
The numbers p, q, r, as well as the coefficients aj, bj, and cj are to be determined from
data.

A main challenge in designing NARMA models is the choice of the functions Qk, a
process we call “structure selection” or “structure derivation”. Good structure design leads
to models that fit data well and have good predictive capabilities. Using too many un-
necessary terms, on the other hand, can lead to overfitting and inefficiency, while too few
terms can lead to underfitting. As before, we assume that a parametric family containing

k: I com-
mented
out old
text
because it
repeats
what’s said
later.

the true model is known, and we show that suitable structures for NARMA can be derived
from numerical schemes for solving SDEs. We propose the following practical criteria for
structure selection: (i) the model should be numerically stable; (ii) we select the model
that makes the best predictions (in practice, the predictions can be tested using the given
data.); (iii) the long-time statistics of the model should agree with those of the data. These
criteria are by no means optimal, and we shall discuss them further along when we discuss
the numerical experiments.

Once the Qk have been chosen, the parameters coefficients (aj,bj, cj) are estimated
from data using the following conditional likelihood method. Conditional on ξ1, . . . , ξm,
the log-likelihood of {Xn = xnh}

N
n=m+1 is

LN(ϑ|ξ1, . . . , ξm) =

N∑
n=m+1

(Xn −Φn)
2

2c20
+
N− q

2
log c20,

where m = max{p,q} and ϑ = (aj,bj, cj, c
2
0). The log-likelihood is computed as follows.

Conditional on given values of ξ1, . . . , ξm, one can computeΦm+1 from data {Xn = xnh}
m
n=1.

Then the value of {ξm+1} can be computed from (3.1). Hence the values of {Φn}Nn=m+1

and {ξn}
N
n=m+1 can be computed recursively. The estimators of the parameters ϑ =

(aj,bj, cj, c
2
0) are the minimum of the log-likelihood

ϑ̂N = argmin
ϑ
LN(ϑ|ξ1, . . . , ξm).

If the system is ergodic, the conditional maximum likelihood estimator ϑ̂N can be
proved to be consistent (see e.g. [And70,Ham94]), which means that it converges to the

7



true parameter value as N → ∞. Hence, if N is large, ϑ̂N forgets about the conditional
values of ξ1, . . . , ξm, and in practice, we can simply set ξ1 = · · · = ξm = 0. Also, in
practice, we initialize the optimization with c1 = · · · = cq = 0 and with the values of
(aj,bj) computed by least-squares.

Note that in the case q = 0, the estimator is the same as the nonlinear least-squares esti-
mator. Note that The noise sequence {ξn} does not have to be Gaussian for the conditional
likelihood method to work.

In summary, the discrete-time approach uses the following algorithm to a generate a
forecasting ensemble (see Section 2.2).

Algorithm 3.1 (Discrete-time approach) With data {xnh}
N
n=1,

Step 1. Find possible structures for NARMA;
Step 2. Estimate the parameters in NARMA;
Step 3. Select the structure that fits the data best;
Step 4. Use the resulting model to generate a forecasting ensemble.

The advantages of the discrete-time approach over the continuous-time approach are

k: Let’s
move this
paragraph
to the
Conclu-
sion?

the following. First, the estimated discrete-time system is used directly for prediction, and
there is no numerical discretization step that may introduce additional errors. Second,
parameter estimation is easier in the discrete-time approach. Third, as we will show, the
discretization error is accounted for in modeling, hence the discrete-time approach is more
tolerant of large lags between observations than the continuous time approach. Fourth,
the discrete-time approach is less sensitive to model errors than the continuous time ap-
proach, since it does not require that the data be generated by a differential equation.

k: I don’t
follow pt
#4.These benefits come at the cost of needing to design suitable structures for the NARMA

model, and having to redo this every time the observation spacing h changes.

3.2 Structure derivation for the linear Langevin equation

The main difficulty in the discrete-time approach is the derivation of the structure of the
NARMA model. In this section we discuss how to derive this structure from the SDEs,
first in the linear case.

For the linear Langevin equation, the discrete-time system should be linear. Hence we
set r = 0 in (3.1) and obtain an ARMA(p,q) model. The linear Langevin equation{

dx = ydt,

dy = (−γy− αx)dt+ σdBt,
(3.2)

can be solved analytically. The solution xt at discrete times satisfies (see Appendix A)

x(n+2)h = a1x(n+1)h + a2xnh − a22Wn+1,1 +Wn+2,1 + a12Wn+1,2, (3.3)

where {Wn,i} are defined in (A.1), and

a1 = trace(eAh),a2 = −e−γh,aij =
(
eAh
)
ij
, for A =

(
0 1

−α−γ

)
. (3.4)

8



The process {xnh} defined in equation (3.3) is, strictly speaking, not an ARMA process
(see Section B.1 for a defintion), because {Wn,1}

∞
n=1

and {Wn,2}
∞
n=1

are not linearly depen-
dent and would require at least two independent noise sequences to represent, while an
ARMA process requires only one. However, as the following proposition shows, there is
an ARMA process with the same distribution as the process {xnh}. Since the minimum
mean-square-error state predictor of a stationary Gaussian process depends only on its au-
tocovariance function (see, e.g., [BD91, Chapter 5]), an ARMA process qual in distribution
to the discrete-time Langevin equation is what we need here.

k: This
was the
content of
Remark
3.6.Proposition 3.2 The ARMA(2, 1) process

Xn+2 = a1Xn+1 + a2Xn +Wn + θ1Wn−1, (3.5)

where a1,a2 are given in (3.4) and the {Wn} are i.i.d N(0,σ2W), is the unique process in
the family of invertible ARMA processes that has the same distribution as the process
{xnh}. Here σ2W and θ1 (θ1 < 1 so that the process is invertible) satisfy the equations

σ2W
(
1+ θ21 + θ1a1

)
=γ0 − γ1a1 − γ2a2,

σ2Wθ1=γ1 (1− a2) − γ0a1,

where {γj}
2

j=0
are the auto-covariances of the process {xnh} and are given in Lemma

A.1.

Proof. Since the stationary process {xnh} is a centered Gaussian process, we only need
to find an ARMA(p,q) process with the same auto-covariance function as {xnh}. The
auto-covariance function of {xnh}, denoted by {γn}

∞
n=0, is given by (see Lemma A.1)

γn = γ0 ×
{

1
λ1−λ2

(λ1e
λ2nh − λ2e

λ1nh), if γ2 − 4α 6= 0;

eλ0nh(1− λ0nh), if γ2 − 4α = 0,

where (λ1, λ2, or λ0) are the roots of the characteristic polynomial λ2 + γλ + α = 0 of the
matrix A in (3.4).

On the other hand, the auto-covariance function of an ARMA(p,q) process

Xn − φ1Xn−1 − · · ·− φpXn−p =Wn + θ1Wn−1 + · · ·+ θqWn−q,

denoted as {γ (n)}∞n=0, is given by (see equation (B.4))

γ(n) =

k∑
i=1

ri−1∑
j=0

βijn
jζ−ni , for n > max{p,q+ 1}− p,

where (ζi, i = 1, . . . ,k) are the distinct zeros of φ(z) := 1−φ1z− · · ·−φpzp, and ri is the
multiplicity of ζi (hence

∑k
i=1 ri = p), and {βij} are constants.

Since {γn}
∞
n=0 only provides two possible roots, ζi = e−λih or ζi = e−λ0h for i = 1, 2,

the order p must be that p = 2. From these two roots, one can compute the coefficients
φ1 and φ2 in the ARMA(2,q) process:

φ1 = ζ
−1
1 + ζ−1

2 = trace(eAh) = a1, φ2 = −ζ−1
1 ζ

−1
2 = −e−γh = a2.

9



Since γk−φ1γk−1−φ2γk−2 = 0 for any k > 2, we have q 6 1. Since γ1−φ1γ0−φ2γ1 6= 0,
Example B.2 indicates that q 6= 0. Hence q = 1 and the above ARMA(2, 1) is the unique
process in the family of invertible ARMA(p,q) processes that has the same distribution as
{xnh}. The equations for σ2W and θ1 follow from Example B.3.

This proposition indicates that the discrete-time system for the linear Langevin system
should be an ARMA(2, 1) model.

Example 3.3 Suppose ∆ := γ2−4α < 0. Then the parameters in the ARMA(2, 1) process
(3.5) are given by a1 = 2e−

γ
2
h cos(

√
−∆
2
h), a2 = −e−γh and

θ1 =
c− a1 −

√
(c− a1)2 − 4

2
, σ2w =

γ1(1− a2) − γ0a1
θ1

.

where c = γ0−γ1a1−γ2a2
γ1(1−a2)−γ0a1

, and γn = σ2

2γα

(
cos(

√
−∆
2
nh) + γ√

−∆
sin(

√
−∆
2
nh)

)
for n > 0.

Remark 3.4 The maximum likelihood estimators of ARMA parameters can also be com-
puted using a state-space representation and a Kalman recursion (see e.g. [BD91]).
This approach is essentially the same as the conditional likelihood method in our
discrete-time approach.

Remark 3.5 The proposition indicates that the parameters in the linear Langevin equa-
tion can also be computed from the ARMA(2, 1) estimators, because from the proof we
have γ = − ln(−a2)

h
= −λ1 − λ2, α = λ1λ2, and σ2 = 2γασ2W, where (λi, i = 1, 2) satisfies

that (e−λih, i = 1, 2) are the two roots of φ(z) = 1− a1z− a2z.

[k: merged remark into discussion on ARMA being equal in distribution above.]

3.3 Structure derivation for the Kramers oscillator

For nonlinear Langevin systems, in general there is no analytical solution available. We
derive structures from the numerical schemes for solving stochastic differential equations.
Since the goal is to derive explicit terms in a discrete-time system, implicit schemes (in
e.g. [MSH02, Tal02,MT07]) are not suitable. Here we focus on deriving structures from
two explicit schemes: the Euler–Maruyama scheme and the Itô-Taylor scheme of order 2.0,
see Appendix C for a brief review of these schemes. As mentioned before, we expect our
approach to extend to other explicit schemes, e.g., that of [AM11].

As “warm-up”, we begin with the Euler-Maruyama scheme. Applying this scheme (C.1)
to the system (1.1), we find:

xn+1= xn + ynh,

yn+1=yn(1− γh) − hV
′(xn) +Wn+1,

where Wn = σh1/2ζn, with {ζn} is an i.id. sequence of N(0, 1) random variables. Substi-
tuting the first equation into the second, we obtain a closed system for x

xn = (2− γh)xn−1 − (1− γh)xn−2 − h
2V ′(xn−2) + hWn−1,
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Note that V ′(x) = βx3 − αx. This leads to the following possible structure for NARMA:
Model (M1):

Xn = a1Xn−1 + a2Xn−2 + b1X
3
n−2 + ξn +

q∑
j=1

cjξn−j + µ. (3.6)

Next, we derive a structure from the Itô-Taylor scheme of order 2.0. Applying the
scheme (C.2) to the system (1.1), we find

xn+1= xn + h (1− γh)yn − h2V ′ (xn) + Zn+1,

yn+1=yn
[
1− γh+ γ2h2 − h2V ′′ (xn)

]
− h (1− γh)V ′ (xn) +Wn+1 − γZn+1,

where Zn = σh3/2
(
ζn + 1√

3
ηn

)
, with {ηn} being an i.id. N(0, 1) sequence independent of

{ζn}. Substituting the first equation into the second, we obtain a closed system for x :

xn= xn−1

[
2− γh+ γ2h2 − h2V ′′ (xn−2)

]
− h2V ′ (xn−1) + Zn

+
[
1− γh+ γ2h2 − h2V ′′ (xn−2)

] (
−xn−2 + h

2V ′ (xn−2) − Zn−1

)

−h2 (1− γh)
2
V ′ (xn−2) + h (1− γh) (Wn−1 − γZn−1) .

Note that Wn is of order h1/2 and Zn is of order h3/2. Writing the terms in descending
order, we obtain

xn=
(
2− γh+ γ2h2

)
xn−1 −

(
1− γh+ γ2h2

)
xn−2 (3.7)

+Zn − Zn−1 + h (1− γh)Wn−1 − h
2V ′ (xn−1) + h

2V ′′ (xn−2) (xn−1 − xn−2)

+γh3V ′ (xn−2) + h
2V ′′ (xn−2)Zn−1 − h

4V ′′ (xn−2)V
′ (xn−2) .

This equation suggests that p = 2 and q = 0 or 1. The noise term Zn − Zn−1 +

h (1− γh)Wn−1 is of order h1.5, and involves two independent noise sequences {ζn} and
{ηn}, hence the above equation for xn is not a NARMA model. However, it suggests pos-
sible structures for NARMA models. In comparison to model (M1), the above equation
has (i) different nonlinear terms of order h2: h2V ′ (xn−1) and h2V ′′ (xn−2) (xn−1 − xn−2);
(ii) additional nonlinear terms of orders three and larger: h3V ′ (xn−2), h2Zn−1V

′′ (xn−2),
and h4V ′′ (xn−2)V

′ (xn−2). It is not clear which terms should be used, and one may want
to include as many terms as possible. However, this often leads to overfitting if too many
terms are included. To see thisHence, we consider different structures by adding more and
more terms and select the one that fits data the best.. Using the fact that V ′(x) = βx3−αx,
these terms lead to the following possible structures for NARMA:
Model (M2):

Xn = a1Xn−1 + a2Xn−2 + b1X
3
n−1 + b2X

2
n−2 (Xn−1 − Xn−2)︸ ︷︷ ︸+ξn +

q∑
j=1

cjξn−j + µ,

where b1 and b2 are of order h2, and q > 0;
Model (M3):

Xn=a1Xn−1 + a2Xn−2 + b1X
3
n−1 + b2X

2
n−2 (Xn−1 − Xn−2)︸ ︷︷ ︸

+b3X
3
n−2︸ ︷︷ ︸+ξn +

q∑
j=1

cjξn−j + µ,

11



where b3 is of order h3, and q > 0;
Model (M4):

Xn=a1Xn−1 + a2Xn−2 + b1X
3
n−1 + b2X

2
n−2Xn−1︸ ︷︷ ︸+b3X3

n−2︸ ︷︷ ︸+b4X5
n−2︸ ︷︷ ︸

+b5X
2
n−2ξn−1︸ ︷︷ ︸+ξn +

q∑
j=1

cjξn−j + µ,

where b4 is of order h4, and b5 is of order h3.5, and q > 1. (For the reader’s convenience,
we have highlighted all higher-order terms derived from V ′(x).)

From model (M2)–(M4), the number of nonlinear terms increases as their order increases
in the numerical scheme. Following [CL15,LLC15], we forget the coefficients derived from
the numerical schemes, and estimate new coefficients from data. Since there is currently
no systematic way to choose the best NARMA structure, in practice we test each possible
structure in turn and select the one that fits data the best.

[I DONT UNDERSTAND HOW THIS SHOWS THAT OVERFITTING IS BAD FOR
YOUR, OR WHAT YOU DID TO REDUCE THE NUMBER OF TERMS] We do not do
these. We propose possible models, and select the best among them. k: see note

7

4 Simulation study

We test the continuous-time approach and the discrete-time approach for data sets with
different observation intervals h. The data are generated by solving the general Langevin
equation (1.1) using Itô-Taylor scheme of order 2.0, with a small step size dt = 1/1024, and
making observations with time intervals h = 1/32, 1/16, and 1/8; the value of time step dt
in the integration has been chosen by trial and error, and is sufficiently small to guarantee
reasonable accuracy. For each one of the data sets, we estimate the parameters in the SDE
and in the NARMA models. We then compare the estimated SDE and the NARMA model
by their ability to reproduce of long-term statistics and perform short-term prediction.
[THERE SHOULD BE A DISCUSSION OF GOALS WAY BEFORE THIS. dit it]

4.1 The linear Langevin equation

We first discuss numerical results in the linear case. Both approaches start by comput-
ing the estimators. The estimator θ̂ = (γ̂, α̂, σ̂) of the parameters (γ,α,σ) of the linear
Langevin equation (3.2) is given by

θ̂ = arg min
θ=(γ,α,σ)

[
N−3∑
n=1

3

2

[�xn+2 − �xn+1 + h(γ�xn + αxn)]
2

hσ2
+ (N− 3) logσ2

]
, (4.1)

where �xn is computed from data using (2.3).
Following equation (3.5), we use the ARMA(2, 1) model in the discrete-time approach:

Xn+2 = a1Xn+1 + a2Xn +Wn + θ1Wn−1,

We estimate the parameters a1,a2 θ1 and σ2W from data using the conditional likelihood
method of Section 3.1.

12



Table 1: Mean and standard deviation of the estimators of the parameters (γ,α,σ) of the
linear Langevin equation in the continuous-time approach, computed on 100 simulations.

Estimator True value h = 1/32 h = 1/16 h = 1/8

γ̂ 0.5 0.7313 (0.0106) 0.9538 (0.0104) 1.3493 (0.0098)
α̂ 4 3.8917 (0.0193) 3.7540 (0.0187) 3.3984 (0.0172)
σ̂ 1 0.9879 (0.0014) 0.9729 (0.0019) 0.9411 (0.0023)

Table 2: Mean and standard deviation of the estimators of the parameters (a1,a2, θ1,σW)

of the ARMA(2, 1) model in the discrete-time approach, computed on 100 simulations. The
theoretical value (denoted by T-value) of the parameters are computed from proposition
3.2.

Estimator h = 1/32 h = 1/16 h = 1/8

T-value Est. value T-value Est. value T-value Est. value
â1 1.9806 1.9807 (0.0003) 1.9539 1.9541 (0.0007) 1.8791 1.8796 (0.0014)
−â2 0.9845 0.9846 (0.0003) 0.9692 0.9695 (0.0007) 0.9394 0.9399 (0.0014)
θ̂1 0.2681 0.2667 (0.0017) 0.2684 0.2680 (0.0025) 0.2698 0.2700 (0.0037)
σ̂W 0.0043 0.0043 (0.0000) 0.0121 0.0121 (0.0000) 0.0336 0.0336 (0.0001)

First, we investigate the reliability of the estimators. A hundred simulated data sets
are generated from equation (3.2) with true parameters γ = 0.5, α = 4, and σ = 1, and
with initial x0 = y0 = 1

2
and time interval [0, 104]. The estimators, of (γ,α,σ) in the

linear Langevin equation and of (a1,a2, θ1,σW) in the ARMA(2, 1) model, are computed
for each data-set. Empirical mean and standard deviation of the estimators are reported
in Table 1 for the continuous-time approach, and Table 2 for the discrete-time approach.
In the continuous-time approach, the biases of the estimators grow as h increases. In
particular, large biases occur for the estimators of γ: the bias of γ̂ increases from 0.2313

when h = 1/32 to 0.4879 when h = 1/8, while the true value is γ = 0.5; similarly large
biases of estimators were also noticed in [ST12]. In contrast, the biases are much smaller
for the discrete-time approach. In the discrete-time approach, on the other hand, the biases
in the estimators are small. The “theoretical value” (denoted by “T-value”) of a1,a2 , θ1 and
σ2W are computed analytically as in Example 3.3. Table 2 shows that the estimators in the
discrete-time approach have negligible differences from the theoretical values.

In practice, the above test of the reliability of estimators cannot be performed, because
one has only a single dataset and the true system that generated the data is unkown.

k: Do we
even need
to say this?

We now compare the two approaches in a practical setting, by assuming that we are
only given a single data set from discrete observations of a long trajectory on time interval
[0, T ] with T = 218 ≈ 3 × 105. We estimate the parameters in the SDE and the ARMA
model, and again investigate the performance of the estimated SDE and NARMA model
in reproducing long-term statistics and in predicting the short-term evolution of x. The
long-term statistics are computed by time-averaging. The first half of the data set is used
to compute the estimators, and the second half of the dataset is used to test the prediction.
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Figure 1: Empirical PDF and ACF of the ARMA(2, 1) model in the case h = 1/8. The other
two cases h = 1/32 and h = 1/16 are almost identical. The Langevin system with estimated
parameters can not reproduce the PDF and ACF because it is numerically unstable.

and the true Langevin system, we start with inital
⇣
x(ni+m)h,

x(ni+m)h�x(ni+m�1)h

h

⌘
and solve

them using the Itô-Taylor scheme of order 2.0 with a a small time step dt = 1/64 and record
the trajectories every h/dt steps to get the prediction trajectories

�
X i,j

1 , . . . , X i,j
K

�
.

We then calculate the mean trajectory for each ensemble, X
i

k = 1
Nens

PNens

j=1 X i,j
k , k =

1, . . . , K. The RMSE measures, in an average sense, the di↵erence between the mean ensem-
ble trajectory and the true data trajectory:

RMSE(kh) :=

 
1

N0

N0X

i=1

���X i

k � x(ni+k)h

���
2
!1/2

.

The RMSE measures the accuracy of the mean ensemble prediction; RMSE = 0 corresponds
to a perfect prediction, and small RMSEs are desired.

Results of RMSEs for N0 = 104 ensembles are shown in Figure 2, where we tested two
ensemble sizes: Nens = 1, 20. We observe that a larger ensemble size leads to smaller RMSEs
for all the three systems, i.e. the ARMA(2, 1), the estimated Langevin equation and the true
Langevin equation. The ARMA(2, 1) model reproduces almost exactly the RMSEs of the true
Langevin system for all three observation step-sizes, while the estimated Langevin system has
large RMSEs due to the biases in estimators and numerical instability. The steady increase
in RMSE, even for the true system, is entirely expected because the forecasting ensemble is
driven by an independent realization of forcing, as we do not assume that one can infer the
white noise driving the system that originally generated the data.

4.2 The Kramers oscillator

We consider the Kramers equation in the following form

dxt = ytdt,

dyt = (��yt � ��2x3
t + xt)dt + �dBt, (4.2)

for which the double-wells are located at x = ±�.
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Figure 1: Empirical PDF and ACF of the ARMA(2, 1) model in the case h = 1/8. The
other two cases h = 1/32 and h = 1/16 are almost identical. The Langevin system
with estimated parameters can not reproduce the PDF and ACF because it is numerically
unstable.

The long-term statistics, i.e., the empirical probability density function (PDF) and
the autocorrelation function (ACF), are shown in Figure 1. For all three observation
separations h, the estimated SDEs cannot reproduce the long-term statistics, because they
are numerically unstable, even when the Itô-Taylor scheme of order 2.0 with the time-step
dt = 1/1024 (which was used to generate data) is used. In contrast, the AMRA model
reproduces the empirical PDF and ACF almost perfectly for all three values of h.

Next, we use an ensemble of trajectories to predict the motion of x. For each en-
semble, we calculate the mean trajectory and compare it with the true trajectory from
the data. We measure the performance of the prediction by computing the root-mean-
square-error (RMSE) and the anomaly correlation (ANCR) of a large number of ensem-
bles as follows: take N0 short pieces of data from the second half of the long trajec-
tory, denoted by

{(
x(ni+1)h, . . . , x(ni+K)h

)}N0

i=1
, where ni = Ki. For each short piece of

data
(
x(ni+1)h, . . . , x(ni+K)h

)
, we generate Nens trajectories

{(
Xi,j1 , . . . ,Xi,jK

)}Nens
j=1

using

a prediction system (i.e., the NARMA(p,q), the estimated Langevin system, or the true
Langevin system), starting all ensemble members from the same several-step initial condi-
tion

(
x(ni+1)h, . . . , x(ni+m)h

)
, where m = 2max {p,q}+ 1. For the NARMA(p,q) we start

with ξ1 = · · · = ξq = 0. For the estimated Langevin system and the true Langevin system,
we start with inital

(
x(ni+m)h,

x(ni+m)h−x(ni+m−1)h

h

)
and solve them using the Itô-Taylor

scheme of order 2.0 with a a small time step dt = 1/64 and record the trajectories every
h/dt steps to get the prediction trajectories

(
Xi,j1 , . . . ,Xi,jK

)
.

We then calculate the mean trajectory for each ensemble, X
i

k = 1
Nens

∑Nens
j=1 Xi,jk , k =

1, . . . ,K. The RMSE measures, in an average sense, the difference between the mean
ensemble trajectory and the true data trajectory:
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Figure 2: The linear Langevin system: RMSEs of 104 forecasting ensembles for di↵erent
ensemble sizes Nens = 1 (dash-dot line) and Nens = 20 (solid line), produced by the true linear
Langevin system (red cross marker), the Langevin system with estimated parameters (black
triangle marker), and the ARMA model (blue circle marker). The ARMA model reproduces
the RMSEs of the true Langevin system for all three step-sizes, while the estimated Langevin
system has large RMSEs.
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Figure 2: The linear Langevin system: RMSEs of 104 forecasting ensembles for different
ensemble sizes Nens = 1 (dash-dot line) and Nens = 20 (solid line), produced by the true
system (red cross marker), the system with estimated parameters (black triangle marker),
and the ARMA model (blue circle marker). The ARMA model reproduces the RMSEs of
the true system for all three step-sizes, while the estimated system has large RMSEs.

RMSE(kh) :=

(
1

N0

N0∑
i=1

∣∣∣Xik − x(ni+k)h
∣∣∣
2

)1/2

.

The RMSE measures the accuracy of the mean ensemble prediction; RMSE = 0 corresponds
to a perfect prediction, and small RMSEs are desired.

The computed RMSEs for N0 = 104 ensembles are shown in Figure 2, where we tested
two ensemble sizes: Nens = 1, 20. We observe that a larger ensemble size leads to smaller
RMSEs for all the three systems, i.e. the ARMA(2, 1), the estimated Langevin equation
and the true Langevin equation. The ARMA(2, 1) model reproduces almost exactly the
RMSEs of the true Langevin system for all three observation step-sizes, while the estimated
Langevin system has large RMSEs due to the biases in estimators and numerical instability.
The steady increase in RMSE, even for the true system, is entirely expected because the
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Table 3: Mean and standard deviation of the estimators of the parameters (γ,β,σ) of the
Kramers equation in the continuous-time approach, computed on 100 simulations.

Estimator True value h = 1/32 h = 1/16 h = 1/8

γ̂ 0.5 0.8726 (0.0063) 1.2049 (0.0057) 1.7003 (0.0088)

β̂ 0.3162 0.3501 (0.0007) 0.3662 (0.0007) 0.4225 (0.0009)

σ̂ 1 0.9964 (0.0014) 1.0132 (0.0027) 1.1150 (0.0065)

forecasting ensemble is driven by independent realizations of the forcing, as one cannot
infer the white noise driving the system that originally generated the data.

4.2 The Kramers oscillator

We consider the Kramers equation in the following form

dxt=ytdt,

dyt=(−γyt − β
−2x3t + xt)dt+ σdBt, (4.2)

for which there are two potential wells located at x = ±β.
In the continuous-time approach, the estimator θ̂ =

(
γ̂, β̂, σ̂

)
is given by

θ̂ = arg min
θ=(γ,β,σ)

[
N−3∑
n=1

3

2

[�xn+2 − �xn+1 + h(γ�xn + β−2x3n − xn)]
2

hσ2
+ (N− 3) logσ2

]
. (4.3)

As for the linear Langevin system case, we begin with investigating the reliability of
the estimators. A hundred simulated datasets are generated from the above Kramers
oscillator with true parameters γ = 0.5,β = 1/

√
10,σ = 1, and with initial x0 = y0 = 1/2

and integration time interval [0, 104]. The estimators of (γ,β,σ) are computed for each
dataset. Empirical mean and standard deviation of the estimators are shown in Table 3.
We observe that the biases in the estimators increase as h increases, in particular, the
estimator of γ̂ has a very large bias.

For the discrete-time approach, we have to select one of the four NARMA(2,q) models,
Model (M1)–(M4). We make the selection in the practical setting where we have using data k:

repetitive
only from a single long trajectory (e.g. from the time interval [0, T ] with T = 218 ≈ 2×105,
and we use the first half of the data to estimate the parameters. We first estimate the
parameters for each NARMA model with q = 0 and q = 1, using the conditional likelihood
method described in Section 3.1. Then we make a selection by the criteria proposed in
Section 3.1. First, we test numerical stability by running the model for a large time for
different realizations of the noise sequence. We find that for our model, using the values
of h tested here, Model (M1) is often numerically unstable, so we do not compare it to the
other schemes here. (In situations where the Euler scheme is more stable, e.g., for smaller
values of h or for other models, we would expect it to be useful as the basis of a NARMA
approximation.)

[I AM LOST IN THE NEXT PARAGRAPH- DO YOU MEAN YOU USE THE RE-
MAINING HALF OF THE OBSERVATIONS TO TEST THE DATA? Yes, we use the 2nd
half of data to test prediction.]

16



0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

time

R
M

SE

 

 
M2,q=0
M3,q=0
M2,q=1
M3,q=1
M4,q=1

Figure 3: RMSEs of model (M2), (M3), (M4) with ensemble size Nens = 20 in the case
h = 1/8. Models with q = 1 have larger RMSEs than the models with q = 0. In the case
q = 0, Model (M2) and (M3) have almost the same RMSEs.

Next, we test the predictions of the second half of the data using the remaining models
we test each of the models M2, M3, and M4 using the second half of the data. The RMSEs
of models (M2), (M3) with q = 0 and q = 1 and Model (M4) with q = 1 are shown in
Figure 3. In the case q = 1, the RMSEs for models (M2)-(M4) are very close, but they
are larger than the RMSEs of models (M2) and (M3) in 4; this shows that model (M3)
reproduces the ACFs and PDFs better than model (M2), hence model (M3) with q = 0 is
selected.

The mean and standard deviation of estimated parameters of model (M3) with q = 0

and 100 simulations are shown in Table 4. Unlike the linear Langevin system case, we do
not have a theoretical value for these parameters. However, note that when h = 1/32, â1
and â2 are close to 2− γh+ γ2h2 = 1.9846 and −(1− γh+ γ2h2) = −0.9846 respectively,
which are the coefficients in equation (3.7) from Itô-Taylor scheme. This indicates that
when h is small, the NARMA model is close to the numerical scheme, because both the
NARMA and the numerical scheme approximate the true system well. On the other hand,
note that σ̂W does not increase monotonically as h increases. This clearly distinguishes
NARMA model from the numerical schemes.

Next, we test the performance of the NARMA model and the estimated Kramers system
in reproducing long-term statistics and predicting short-term dynamics. The empirical

k: Merged
two
paragraphs
here.PDFs and ACFs are shown in Figure 5. The NARMA models can reproduce the PDFs and

ACFs equally well for three cases. The estimated Kramers system amplifies the depth of
double wells in the PDFs, and it misses the oscillation of the ACFs.

Results for RMSEs for N0 = 104 ensembles are shown in Figure 6, where we tested
two ensemble sizes: Nens = 1, 20. We observe that a larger ensemble size leads to smaller
RMSEs for all the three systems, i.e. the NARMA model (M3) with q = 0, the estimated
Kramers system and the true Kramers system. The NARMA model reproduces almost
exactly the RMSEs of the true Kramers system for all three step-sizes, while the esti-
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Figure 4: Empirical PDFs and ACFs of the NARMA model (M2), (M3) and data in the case
h = 1/8. Model (M3) reproduces the ACF and PDF better than model (M2).

Table 4: Mean and standard deviation of the estimators of the parameters
(a1, a2, b1, b2, b3, µ, �W ) of the NARMA model (M3) with q = 0 in the discrete-time approach,
computed on 100 simulations.

Estimator h = 1/32 h = 1/16 h = 1/8
â1 1.9906 (0.0004) 1.9829 (0.0007) 1.9696 (0.0014)
�â2 0.9896(0.0004) 0.9792 (0.0007) 0.9562 (0.0014)

�b̂1 0.3388 (0.1572) 0.6927 (0.0785) 1.2988 (0.0389)

b̂2 0.0300 (0.1572) 0.0864 (0.0785) 0.1462 (0.0386)

b̂3 0.0307 (0.1569) 0.0887 (0.0777) 0.1655 (0.0372)
�µ̂ (⇥10�5) 0.0377 (0.0000) 0.1478 (0.0000) 0.5469 (0.0001)

�̂W 0.0045 (0.0000) 0.1119 (0.0001) 0.0012 (0.0000)

scheme is more stable, e.g., for smaller values of h or for other models, we would expect it
to be useful as the basis of a NARMA approximation.)

Next, we test the prediction of the second half of the data using the remaining models.
The RMSEs of models (M2), (M3) with q = 0 and q = 1 and Model (M4) with q = 1 are
shown in Figure 3. In the case q = 1, the RMSEs for models (M2)-(M4) are very close, but
they are larger than the RMSEs of models (M2) and (M3) in the caijrefm2m3 shows that
model (M3) reproduces the ACFs and PDFs better than model (M2), hence model (M3)
with q = 0 is selected.

The mean and standard deviation of estimated parameters of model (M3) with q = 0 on
100 simulations are shown in Table 4. Unlike the linear Langevin system case, we do not
have a theoretical value for these parameters. However, note that when h = 1/32, â1 and
â2 are close to 2 � �h + �2h2 = 1.9846 and �(1 � �h + �2h2) = �0.9846 respectively, which
are the coe�cients in equation (3.7) from Itô-Taylor scheme. This indicates that when h is
small, the NARMA model is close to the numerical scheme, because both the NARMA and
the numerical scheme approximate the true system well. On the other hand, note that �̂W

does not increase monotonically as h increases. This clearly distinguishes NARMA model
from numerical schemes.

Next we test the performance of the NARMA model and the estimated Kramers system
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Figure 4: Empirical PDFs and ACFs of the NARMA model (M2), (M3) and data in the
case h = 1/8. Model (M3) reproduces the ACF and PDF better than model (M2).

Table 4: Mean and standard deviation of the estimators of the parameters
(a1,a2,b1,b2,b3,µ,σW) of the NARMA model (M3) with q = 0 in the discrete-time ap-
proach, computed from 100 simulations.

Estimator h = 1/32 h = 1/16 h = 1/8

â1 1.9906 (0.0004) 1.9829 (0.0007) 1.9696 (0.0014)
−â2 0.9896(0.0004) 0.9792 (0.0007) 0.9562 (0.0014)
−b̂1 0.3388 (0.1572) 0.6927 (0.0785) 1.2988 (0.0389)
b̂2 0.0300 (0.1572) 0.0864 (0.0785) 0.1462 (0.0386)
b̂3 0.0307 (0.1569) 0.0887 (0.0777) 0.1655 (0.0372)

−µ̂ (×10−5) 0.0377 (0.0000) 0.1478 (0.0000) 0.5469 (0.0001)
σ̂W 0.0045 (0.0000) 0.1119 (0.0001) 0.0012 (0.0000)
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Figure 5: Empirical PDFs and ACFs of the NARMA model (M3) with q = 0 and the
estimated Kramers system, in the cases h = 1/32, h = 1/16 and h = 1/8. These statistics
are better reproduced by the NARMA models than the estimated Kramers systems.

at reproduction of long-term statistics and prediction of short-term dynamics.
The empirical PDFs and ACFs are shown in Figure 5. The NARMA models can reproduce

the PDFs and ACFs equally well for three cases. The estimated Kramers system amplifies
the depth of double-wells in the PDFs, and it misses the oscillation of the ACFs.

Results for RMSEs for N0 = 104 ensembles are shown in Figure 6, where we tested two
ensemble sizes: Nens = 1, 20. We observe that a larger ensemble size leads to smaller RMSEs
for all the three systems, i.e. the NARMA model (M3) with q = 0, the estimated Kramers
system and the true Kramers system. The NARMA model reproduces almost exactly the
RMSEs of the true Kramers system for all three step-sizes, while the estimated Kramers
system has increasing error as h increases, due to the increasing biases in estimators.

Finally, in Figure 7, we show some results computed using h = 1/1024. Figure 7(a) shows
the estimated parameters, for both the CT and DT models. (Here, the DT model is M2.)
Consistent with the theory in [ST12], our parameter estimates for the CT model are much
closer to their true values for this smaller value of h. Figure 7(b) compares the RMSE of
the CT and DT models on the same forecasting task as before. As can be seen, the CT
approach now has much better performance, essentially as good as the true model. Even in
this regime, however, the DT approach remains competitive in accuracy.

4.3 Discussion on structure design

In the above structure selection between model (M2) and (M3), we followed the criterion of
selecting the one fits the long-term statistics better. However, there is another pragmatic
criterion: consistency of estimators. Consistency can be tested by checking the oscillation of
estimators as data length increases: if the oscillation is large, then the estimator is less likely
to be consistent. Table 5 shows the estimators of the coe�cients of the nonlinear terms in
model (M2) and (M3), for di↵erent lengths of data. The estimators b̂1, b̂2 and b̂3 of model
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Figure 5: Empirical PDFs and ACFs of the NARMA model (M3) with q = 0 and the
estimated Kramers system, in the cases h = 1/32, h = 1/16 and h = 1/8. These statistics
are better reproduced by the NARMA models than the estimated Kramers systems.

mated Kramers system has increasing error as h increases, due to the increasing biases in
estimators.

Finally, in Figure 7, we show some results using a much smaller observation spacing,
h = 1/1024. Figure 7(a) shows the estimated parameters, for both the continuous-time
and discrete-time models. (Here, the discrete-time model is M2.) Consistent with the
theory in [ST12], our parameter estimates for the continuous time model are much closer
to their true values for this smaller value of h. Figure 7(b) compares the RMSE of the
continuous-time and discrete-time models on the same forecasting task as before. The
continuous-time approach now performs much better, essentially as well as the true model.
Even in this regime, however, the discrete-time approach remains competitive.

4.3 Discussion of structure design

[k: I do not understand the purpose of this section. I thought we asserted (in Section 3.1,
after the definition of the estimator) that the estimator is consistent? What’s the purpose
of showing this data, if all we can conclude is that the estimators are likely consistent
(which we already said) and we say conclusively that one model is better than another?]

In the above structure selection between model (M2) and (M3), we followed the crite-
rion of selecting the one that fits the long-term statistics better. However, there is another
practical criterion: the consistency of the estimators, i.e., whether the estimators converge
to the true value as the number of samples tends to ∞. Consistency can be tested by
checking the oscillations of estimators as data length increases: if the oscillations are large,
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Figure 6: The Kramers system: RMSEs of 104 forecasting ensembles for di↵erent ensemble
sizes Nens = 1 (solid line) and Nens = 20 (dash-dot lines), produced by the true Kramers
system (cross marker), the Kramers system with estimated parameters (triangle marker),
and the NARMA model (M3) with q = 0 (circle marker). The NARMA model has almost
the same RMSEs as the true system for all three step-sizes, while the estimated system has
larger RMSEs.

Table 6: Mean and standard deviation of the estimators of the parameters
(a1, a2, b1, b2, µ, �W ) of the NARMA model (M2) with q = 0 in the discrete-time approach,
computed on 100 simulations.

Estimator h = 1/32 h = 1/16 h = 1/8
â1 1.9905 (0.0003) 1.9820 (0.0007) 1.9567 (0.0013)
�â2 0.9896 (0.0003) 0.9788 (0.0007) 0.9508 (0.0014)

�b̂1 0.3088 (0.0021) 0.6058 (0.0040) 1.1362 (0.0079)

�b̂2 0.3067 (0.0134) 0.5847 (0.0139) 0.9884 (0.0144)
�µ̂ (⇥10�5) 0.0340 (0.0000) 0.1193 (0.0000) 0.2620 (0.0001)

�̂W 0.0045 (0.0000) 0.1119 (0.0001) 0.0012 (0.0000)
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Step sizes

(a) h=1/32

(b) h=1/16 (c) h=1/8

(a)

(c)(b)

Figure 6: The Kramers system. (a) RMSEs of 104 forecasting ensembles for different
ensemble sizes Nens = 1 (dash-dot line) and Nens = 20 (solid line), produced by the
true Kramers system (red cross marker), the Kramers system with estimated parameters
(black triangle marker), and the NARMA model (M3) with q = 0 (blue circle marker).
The NARMA model has almost the same RMSEs as the true system for all three step-
sizes, while the estimated system has larger RMSEs. (b) Estimated parameters for the
continuous-time and discrete-time models.

Table 5: Consistency test. [k: I removed the footnote: no need to repeat what’s in the
text.] Values of the estimators in the NARMA models (M2) and (M3) with q = 0. The
data come from a long trajectory with observation step-size h = 1/32. Here N = 222. As
the length of data increases, the estimators of Model (M2) have much smaller oscillation
than the estimators of Model (M3).

Data length Model (M2) Model (M3)
(×N) −b̂1 −b̂2 −b̂1 b̂2 b̂3

1/8 0.3090 0.3032 0.3622 0.0532 0.0563
1/4 0.3082 0.3049 0.3290 0.0208 0.0217
1/2 0.3088 0.3083 0.3956 0.0868 0.0845
1 0.3087 0.3054 0.3778 0.0691 0.0697
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continuous time parameters
γ̂ −β̂ σ̂

0.5163 0.3435 1.0006

DT parameters
â1 −â2 −b̂1
1.9997 0.9997 0.0097
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Figure 7: The Kramers system: RMSEs of 103 forecasting ensembles for different ensemble
sizes Nens = 1 (dash-dot line) and Nens = 20 (solid line), produced by the true Kramers
system (red cross marker), the Kramers system with estimated parameters (black triangle
marker), and the NARMA model (M2) with q = 0 (blue circle marker). Since h = 1/1024

is relatively small, the NARMA model and the estimated system have almost the same
RMSEs as the true system. Here the data is generated by the Itô-Taylor solver with step
size dt = 2−15 ≈ 3× 10−5, and data length is N = 222 ≈ 4× 106.

the estimators are likely not to be consistent. Table 5 shows the estimators of the coeffi-
cients of the nonlinear terms in model (M2) and (M3), for different lengths of data. The
estimators b̂1, b̂2 and b̂3 of model (M3) are unlikely to be consistent, since they vary a lot
for long data sets. On the contrary, the estimators b̂1 and b̂2 of model (M2) have much
smaller oscillations, and hence they are likely to be consistent.

These results of consistency tests agree with the statistics of the estimators in many
simulations in Table 4 and Table 6. Table 4 shows that the standard deviations of the
estimators b̂1, b̂2 and b̂3 are reduced by half as h doubles, which is the opposite of what
is supposed to happen for an accurate model. On the contrary, Table 6 shows that the
standard deviations of the parameters of model (M2) increase as h doubles, as is supposed
to happen for an accurate model.

In short, model (M3) reproduces better long-term statistics than model (M2), but the
estimators of model (M2) are statistically better (e.g. in consistency) than the estimators
of model (M3). However, the two have almost the same prediction skill as shown in Figure
3, and both are much better than the continuous-time approach. It is unclear which model
approximates the true process better, and it is likely that neither of them is optimal. Also,
it is unclear which criterion is better for structure selection: fitting the long-term statistics
or consistency of estimators. We leave these issues to be addressed in future work.

5 Conclusions

We have shown that for a prototypical hypoelliptic system, the discrete-time approach
to data-driven prediction based on time-discrete partial observations generally has bet-
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Table 6: Mean and standard deviation of the estimators of the parameters
(a1,a2,b1,b2,µ,σW) of the NARMA model (M2) with q = 0 in the discrete-time approach,
computed on 100 simulations.

Estimator h = 1/32 h = 1/16 h = 1/8

â1 1.9905 (0.0003) 1.9820 (0.0007) 1.9567 (0.0013)
−â2 0.9896 (0.0003) 0.9788 (0.0007) 0.9508 (0.0014)
−b̂1 0.3088 (0.0021) 0.6058 (0.0040) 1.1362 (0.0079)
−b̂2 0.3067 (0.0134) 0.5847 (0.0139) 0.9884 (0.0144)

−µ̂ (×10−5) 0.0340 (0.0000) 0.1193 (0.0000) 0.2620 (0.0001)
σ̂W 0.0045 (0.0000) 0.1119 (0.0001) 0.0012 (0.0000)

ter prediction skills than the continuous-time approach, especially when the time interval
between observations is relatively large. We have also shown that the structure of the
discrete-time model can be effectively derived from numerical schemes for solving SDEs.
Since hypoelliptic systems are often used for the stochastic parametrization of data gen-
erated by high-dimensional dynamical systems, our findings suggest that a discrete-time
approach may be both more efficient and more accurate than a continuous-time model,
even when a parametric family containing the exact model is known.

Other advantages of the discrete approach are that its formulation does not produce a
discretization error, so that it can tolerate large gaps between observation times, and does
not require an additional discretization before it can be used, unlike a SDE.

In this paper we limited ourselves to a hypoelliptic system (1.1) with additive noise.
Our discrete-time approach extends to multiplicative noise cases and general stochastic or
deterministic ergodic dynamics systems. To deal with such systems, one needs to use a
model of the following form

Xn = Φ(Xn−p:n−1, ξn−q:n−1) + Ψ(Xn−p:n−1, ξn−q:n−1)ξn,

where Φ and Ψ are functions of (Xn−p:n−1, ξn−q:n−1). The main change is in the structure
derivation for the functions Φ and Ψ from numerical schemes.

[k: This needs to be expanded a bit more, but maybe later.]

A Solutions to the linear Langevin equation

Denoting

Xt=

(
xt
yt

)
, A =

(
0 1

−α−γ

)
, e =

(
0

σ

)
,

we can write equation (3.2) as

dXt= AXtdt+ edBt.

Its solution is

Xt = e
AtX0 +

∫ t
0

eA(t−u)edBu.
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The solution at discrete times can be written as

x(n+1)h=a11xnh + a12ynh +Wn+1,1,

y(n+1)h=a21xnh + a22ynh +Wn+1,2,

where aij =
(
eAh
)
ij
for i, j = 1, 2, and

Wn+1,i = σ

∫h
0

ai2(u)dB (nh+ u) (A.1)

with ai2(u) =
(
eA(h−u)

)
i2

for i = 1, 2. Note that a12 6= 0, then from the first equation we
get ynh =

(
x(n+1)h − a11xnh − Vn+1,1

)
/a12. Substituting it into the second equation we

obtain

x(n+2)h=(a11 + a22) x(n+1)h + (a12a21 − a11a22) xnh

−a22Wn+1,1 + a12Wn+1,2 +Wn+2,1.

Combining with the fact that a11 + a22 = trace(eAh) and a12a21 − a11a22 = −det eAh =

−e−γh, we have

x(n+2)h = trace(eAh)x(n+1)h − e
−γhxnh − a22Wn+1,1 +Wn+2,1 + a12Wn+1,2. (A.2)

Clearly, the process {xnh} is a centered Gaussian process, and its distribution is de-
termined by its autocovariance function. Conditional on X0, the distribution of Xt is
N(eAtX0, �(t)), where �(t) :=

∫t
0
eAueeTeA

Tudu. Since α,γ > 0, the real parts of the
eigenvalues of the A, denoted by λ1 and λ2, are negative. The stationary distribution is
N(0, �(∞)), where �(∞) = limt→∞�(t). If X0 has distribution N(0, �(∞)), then the pro-
cess (Xt) is stationary, and so is the observed process {xnh}. The following lemma computes
the autocorrelation function of the stationary process {xnh}.

Lemma A.1 Assume that the system (3.2) is stationary. Denote by {γj}
∞
j=1

the autoco-
variance function of the stationary process {xnh}, i.e. γj := E[xkhx(k+j)h] for j > 0.
Then γ0 = σ2

2αγ
, and γj can be represented as

γj = γ0 ×
{

1
λ1−λ2

(λ1e
λ2jh − λ2e

λ1jh), if γ2 − 4α 6= 0;

eλ0jh(1− λ0jh), if γ2 − 4α = 0

for all j > 0, where λ1 and λ2 are the different solutions to λ2 + γλ + α = 0 when
γ2 − 4α 6= 0, and λ0 = −γ/2.

Proof. Let �(j) := E[XkhXT(k+j)h] = �(∞)eA
T jh for j > 0. Note that γj = �11(j), i.e., γj is

the first element of the matrix �(j). Then it follows that

γ0 = �11(∞), γj =
(
�(∞)eA

T jh
)
11
.

If γ2 − 4α 6= 0, then A has two different eigenvalues λ1 and λ2, and it can be written as

A = Q�Q−1 with Q =

(
1 1

λ1 λ2

)
, � =

(
λ1 0

0 λ2

)
.
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The covariance matrix �(∞) can be computed as

�(∞) = lim
t→∞
∫ t
0

Qe�uQ−1eeTQ−Te�
TuQTdu = σ2

(
1

2ab
0

0 − 1
2b

)
. (A.3)

This gives γ0 = �11(∞) = σ2

2γα
and for j > 0,

γj = �11(∞)
(
eA

T jh
)
11

=
1

λ1 − λ2
(λ1e

λ2jh − λ2e
λ1jh)γ(0).

In the case γ2 − 4α = 0, A has a single eigenvalue λ0 = −γ
2
, and it can be transformed

to a Jordan block

A = Q�Q−1 with Q =

(
1 0

λ0 1

)
, � =

(
λ0 1

0 λ0

)
.

This leads to the same �(∞) as in (A.3). Similarly, we have γ0 = σ2

2γα
and

γj = �11(∞)
(
eA

T jh
)
11

= eλ0jh(1− λ0jh)γ0.

B ARMA processes

We review the definition and computation of autocovariance function of ARMA processes
in this subsection. For more details, we refer to [BD91, Section 3.3].

Definition B.1 The process {Xn,n ∈ Z} is said to be an ARMA(p,q) process if it is
stationary process satisfying

Xn − φ1Xn−1 − · · ·− φpXn−p =Wn + θ1Wn−1 + · · ·+ θqWn−q, (B.1)

for every n, where {Wn} are i.i.d N(0,σ2W), and if the polynomials φ(z) := 1 − φ1z −

· · ·−φpzp and θ(z) := 1− θ1z− · · ·− θqzq have no common factors. If {Xn − µ} is an
ARMA(p,q) process, then {Xn} is said to be an ARMA(p,q) process with mean µ.
The process is causal if φ(z) 6= 0 for all |z| 6 1. The process is invertible if θ(z) 6== 0

for all |z| 6 1.

The autocovariance function {γ(k)}
∞
k=1 of an ARMA(p,q) can be computed from the

following difference equations, which are obtained by multiplying each side of (B.1) by
Xn−k and taking expectations,

γ(k) − φ1γ(k− 1) − · · ·− φpγ(k− p)=σ2W
∑
k6j6q

θjψj−k, 0 6 k < max{p,q+ 1},(B.2)

γ(k) − φ1γ(k− 1) − · · ·− φpγ(k− p)= 0, k > max{p,q+ 1}, (B.3)

where ψj in (B.2) is computed as follows (letting θ0 := 1 and θj = 0 if j > q)
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ψj =

{
θj +

∑
0<k6jφkψj−k, for j < max{p,q+ 1};∑

0<k6pφkψj−k, for j > max{p,q+ 1}.

Denote (ζi, i = 1, . . . ,k) the distinct zeros of φ(z) := 1 − φ1z − · · · − φpzp, and let ri be
the multiplicity of ζi (hence

∑k
i=1 ri = p). The general solution of the difference equation

(B.3) is

γ(n) =

k∑
i=1

ri−1∑
j=0

βijn
jζ−ni , for n > max{p,q+ 1}− p, (B.4)

where the p constants βij (and hence the values of γ(j) for 0 6 j < max{p,q+ 1}− p ) are
determined from (B.2).

Example B.2 (ARMA(2, 0)) . For an ARMA(2,0) process Xn − φ1Xn−1 − φ2Xn−2 = Wn,
its autocovariance function is

γ(n) =

{
β1ζ

−n
1 + β2ζ

−n
2 , if φ2

1 + 4φ2 6= 0;

(β1 + β2n) ζ
−n, if φ2

1 + 4φ2 = 0

for n > 0, where ζ1, ζ2 or ζ are the zeros of φ(z) = 1 − φ1z − φ2z
2. The constants

β1 and β2 are computed from the equations

γ(0) − φ1γ(1) − φ2γ(2)=σ
2
W ,

γ(1) − φ1γ(0) − φ2γ(1)= 0.

Example B.3 (ARMA(2, 1)) . For an ARMA(2,1) process Xn −φ1Xn−1 −φ2Xn−2 =Wn +

θ1Wn−1, we have ψ0 = 1,ψ1 = φ1. Its autocovariance function is of the form as in
(B.2), where the constants β1 and β2 are computed from the equations

γ(0) − φ1γ(1) − φ2γ(2)=σ
2
W(1+ θ21 + θ1φ1),

γ(1) − φ1γ(0) − φ2γ(1)=σ
2
Wθ1.

C Numerical schemes for hypoelliptic SDEs with additive noise

Here we briefly review the two numerical schemes, the Euler-Maruyama scheme and the
Itô-Taylor scheme of strong order 2.0, for hypoelliptic systems with additive noise

dx=ydt,

dy=a(x,y)dt+ σdBt,

where a : R2 → R satisfies suitable conditions so that the system is ergodic.
In the following, the step size of all schemes are h, andWn = σ

√
hξn, Zn = σh3/2

(
ξn + 1√

3
ηn

)
,

where {ξn} and {ηn} are two i.i.d sequences of N(0, 1) random variables.
Euler-Maruyama (EM):

xn+1= xn + ynh, (C.1)

yn+1=yn + ha(xn,yn) +Wn+1.
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Itô-Taylor scheme of strong order 2.0 (IT2):

xn+1= xn + hyn + h2a (xn,yn) + Zn+1,

yn+1=yn + ha (xn,yn) +Wn+1 + h
2

[
ax(xn,yn)yn +

(
aay +

1

2
σ2ayy

)
(xn,yn)

]
(C.2)

+ay(xn,yn)Zn+1 + ayy(xn,yn)σ
2h

6
(W2

n+1 − h).

The Itô-Taylor scheme of order 2.0 can be derived as follows (see e.g. Kloeden and
Platen [Hu96,KP99] ). The differential equation can be rewritten in the integral form:

xt= xt0 +

∫ t
t0

ysds,

yt=yt0 +

∫ t
t0

a(xs,ys)ds+ σ (Bt − Bt0) .

We start from Itô-Taylor expansion of x :

xtn+1 = xtn + hytn +

∫ tn+1
tn

∫ t
tn

a(xs,ys)dsdt+ I
n+1
10

= xtn + hytn + h
2a(xtn ,ytn) + σI

n+1
10 +O(h5/2),

where In+1
10 :=

∫tn+1
tn

(Bt − Btn)dt. To get higher order scheme for y, we apply Itô’s chain
rule to a(xt,yt) :

a (xt,yt) = a (xs,ys)+

∫ t
s

[
ax(xr,yr)yr +

(
aay +

1

2
σ2ayy

)
(xr,yr)

]
dr+σ

∫ t
s

ay (xr,yr)dBr.

This leads to Itô-Taylor expansion for y (up to the order 2.0):

ytn+1 =ytn +

∫ tn+1
tn

a(xs,ys)ds+ σ (Btn+1 − Btn)

=ytn + ha (xtn ,ytn) + σ (Btn+1 − Btn)

+h2

[
ax(xtn ,ytn)ytn +

(
aay +

1

2
σ2ayy

)
(xtn ,ytn)

]

+ay(xtn ,ytn)σI
n+1
10 + ayy(xtn ,ytn)σ

2In+1
110 +O

(
h5/2

)
.

where In+1
110 =

∫tn+1
tn

∫t
tn

(Bs − Btn)dBsdt. Representing σ (Btn+1 − Btn), σI
n+1
10 and In+1

110 by
Wn+1, Zn+1 and h

6
(W2

n+1 − h) respectively, we obtain scheme (C.2).
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