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SUMMARY

There is increasing appreciation that the immune system plays critical roles not only in the 

traditional domains of infection and inflammation but also in many areas of biology, including 

tumorigenesis, metabolism, and even neurobiology. However, one of the major barriers for 

understanding human immunological mechanisms is that immune assays have not been 

reproducibly characterized for a sufficiently large and diverse healthy human cohort. Here, we 

present the 10,000 Immunomes Project (10KIP), a framework for growing a diverse human 

immunology reference, from ImmPort, a publicly available resource of subject-level immunology 

data. Although some measurement types are sparse in the presently deposited ImmPort database, 

the extant data allow for a diversity of robust comparisons. Using 10KIP, we describe variations in 

serum cytokines and leukocytes by age, race, and sex; define a baseline cell-cytokine network; and 

describe immunologic changes in pregnancy. All data in the resource are available for 

visualization and download at http://10kimmunomes.org/.
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In Brief

Zalocusky et al. report the development of a data resource comprising curated, integrated, and 

normalized immunology measurements from all healthy normal human subjects in the ImmPort 

database

Graphical Abstract

INTRODUCTION

The advancement of technologies in preclinical immunology (Elshal and McCoy, 2006; 

Leng et al., 2008; Maecker et al., 2010; Saeys et al., 2016; Spitzer and Nolan, 2016) and the 

promise of precision therapeutics in immunology (Ashley, 2015; Collins and Varmus, 2015; 

Friedman et al., 2015), have together propelled a rapid increase in the production of large-

scale immunological data. Similar advancements in other fields, such as genomics, where 

high-throughput assays spurred a swell of data, have demonstrated the need and benefit of 

common reference datasets. Resources such as the 1000 Genomes Project (1000 Genomes 

Project Consortium, 2010, 2012; Sudmant et al., 2015), Health and Retirement Study 

(https://hrs.isr.umich.edu/), Wellcome Trust Case Control Consortium (Burton et al., 2007), 

and Exome Aggregation Consortium (Lek et al., 2016) have accelerated discovery of 

thousands of disease-linked variants and uniquely enable understanding of global variation 

in the human genome in health and disease. To date, however, human immunology has no 

such resource. As publicly available immunological data continue to grow, there is a need in 

the field for a framework in which those data can be accumulated and normalized, allowing 

researchers to explore the space of existing data and generate testable hypotheses.

The challenge in generating such a resource lies, in part, in the diversity of data types 

available to immunologists. A reference “immunome” might reasonably include flow 

cytometry, gene expression, human leukocyte antigen (HLA) type, cytokine measurements, 
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clinical assessments, and more. Furthermore, standardized protocols for measurement and 

conventions for naming cell types and cytokines are only currently being developed, and 

adherence is inconsistent (Finak et al., 2016). For the experimental or clinical immunologist, 

the cost of generating the necessary data from scratch—or the temporal and computational 

costs associated with standardizing and harmonizing data from publicly available cohorts 

across platforms, time points, and institutions—is prohibitive without significant resources. 

Thus, although the benefit of a common reference population is clear, and large-scale data 

are publicly available, this need has not yet been met.

Other lessons from the field of genomics offer additional direction and promise. For 

example, resources like the 1000 Genomes Project (1000 Genomes Project Consortium, 

2010, 2012; Sudmant et al., 2015) have clearly demonstrated the necessity of exploring and 

accounting for human diversity; the publication of the original data release has been cited 

more than 5,000 times. Additionally, although high-throughput assays invariably suffer from 

inter-experiment technical variation, the field has generated and validated statistical methods 

for overcoming those artifacts while preserving the underlying effects of interest (Hughey 

and Butte, 2015; Johnson et al., 2007; Leek and Storey, 2007; Leek et al., 2010; Pelz et al., 

2008). These breakthroughs, ripe for translation to immunological data, have unlocked the 

potential for deeper insight beyond the initial intent of each of the thousands of studies that 

have made their raw data publicly available to researchers.

Given the recent growth in open immunology data, we sought to establish a structure for 

synthetically constructing a reference “immunome” by integrating individual-level data from 

publicly available immunology studies. For this initial version, we began by manually 

curating the entire public contents of ImmPort (Data Release 21; http://www.immport.org/), 

the archival basic and clinical data repository and analysis platform for the National Institute 

for Allergy and Infectious Disease (NIAID) (Bhattacharya et al., 2014; Dunn et al., 2015). 

ImmPort contains studies on a diversity of topics related to immunity, including allergy, 

transplant, vaccinology, and autoimmune disease, and the data represented are diverse, 

ranging from flow cytometry and ELISA to clinical lab tests and HLA type. While most of 

these studies were not designed to examine the diversity of the healthy normal immune 

system, they nonetheless contain healthy control arms that we utilized for this purpose.

Our goal was to include in the reference only human subjects from the healthy control arms 

of studies and only samples from individuals that have undergone no experimental 

manipulation. Our filtering and data harmonization process resulted in an inaugural dataset 

consisting of 10 data types in standardized tables (mass cytometry [cytometry by time of 

flight; CyTOF], flow cytometry, multiplex ELISA, gene expression array, clinical lab tests, 

and others) on samples taken from 10,344 subjects. We unify the data from all the normal 

healthy immunomes into a fully open and interactive online resource (http://

10kimmunomes.org/), which to date has accumulated >4,200 distinct users. We expect that 

the ability to dynamically visualize the reference will accelerate discovery in immunology. 

We further show that this resource can provide a basis for studying immunity across age, 

sex, and racially diverse populations. The ImmPort Data Curation team is supporting the 

maintenance of the project as an arm of the ImmPort environment (http://www.immport.org/

resources), ensuring that the 10,000 Immunomes Project (10KIP) will only grow in value, 
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richness, and scale with the participation of the immunology community in the open-data 

movement

RESULTS

Development of the 10KIP

To develop the 10KIP, we began with ImmPort Data Release 21 (downloaded May 3, 2017), 

which contains 242 studies released to the public, with 44,775 subjects and 293,971 samples 

(Figure 1). We began by manually curating each of these 242 studies, reading inclusion and 

exclusion criteria, and selecting by hand which study arms and planned visits constitute data 

collected on samples from normal healthy human subjects prior to any experimental immune 

perturbation. This manual curation process resulted in an inaugural population of 10,344 

subjects, spanning 83 studies. An exhaustive list of all studies, arms, and planned visits that 

qualified for inclusion is available as Table S1.

This dataset consists of 10 distinct data types (flow cytometry, high-throughput serum 

protein measurements, gene expression, clinical lab tests, and others). For each of the 10 

data types, we developed a standardized pipeline for data cleaning and harmonization (see 

STAR Methods). Although the ImmPort environment boasts an exceptional degree of 

annotation, massively multi-study analysis still required substantial effort in data 

harmonization. Across all studies, we standardized analyte names and units of measurement, 

segregated data by sample type (e.g., peripheral blood mononuclear cells [PBMCs] versus 

whole blood versus serum), and corrected for differences in sample dilutions. This process 

resulted in standardized data tables, which form the backbone of the reference. The 

normalized data and their raw counterparts are available for visualization and download at 

http://10kimmunomes.org/ (Figure S6).

Contents of the Inaugural Release of the 10KIP

The initial release of the 10KIP contains 10,344 subjects. They are approximately evenly 

split between male and female, represent a diverse racial makeup, and include more than 

1,000 pediatric subjects (<18 years of age) and over 1,300 subjects above 65 years of age 

(Figure S1). As enumerated in Table 1, the resource contains secreted protein data from over 

4,800 subjects, clinical lab test data from over 2,600 subjects, flow cytometry or mass 

cytometry data from over 1,400 subjects, hemagglutination inhibition (HAI) titers from over 

1,300 subjects, and HLA types from over 1,000 subjects, in addition to several other data 

types. Because many subjects contribute more than one type of measurement, the total 

number of subjects across all measurement types substantially exceeds the number of 

distinct subjects. Data are available in “formatted” or “normalized” formats. “Formatted” 

data are segregated by biological sample type and harmonized to include standardized units 

of measurement and analyte names, but these data are not batch corrected. “Normalized” 

files are the batch-corrected versions of the formatted data (STAR Methods). Individuals 

wishing to verify the batch correction may view a whole-data visualization of each data type 

(Figure S5), view the effect of study on every analyte individually on http://

10kimmunomes.org, or to download the formatted data and conduct their preferred method 

of batch correction.
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Multiplex ELISA Measurements across the Population

The regulation of immune system components through cytokines, chemokines, adhesion 

molecules, and growth factors is central to maintenance of a healthy immune homeostasis 

and response to acute infection (Becher et al., 2017; Mackay, 2001; Neurath, 2014; O’Shea 

et al., 2002). Recent advances in the measurement of such secreted proteins with multiplex 

ELISA (also known as multiplex bead-based analysis or by the trade name Luminex) allow 

for high-throughput profiling of the immune molecular milieu (Morgan et al., 2004; Vignali, 

2000). Similar to high-throughput measurements of RNA expression, however, this type of 

measurement must be interpreted with caution, due to inter-experimental technical variation, 

as well as differences in reagents and platforms used (Djoba Siawaya et al., 2008). In fact, 

there is contention within the field of computational immunology regarding the validity of 

directly comparing high-throughput serum cytokine measurements across studies (Khan et 

al., 2004; Rosenberg-Hasson et al., 2014).

Here we suggest, however, that previously described models for statistical compensation for 

batch effects in genomics are sufficient for analysis of multiplex ELISA data. We find that, 

without batch correction, technical variation contributes significantly to the clustering of 

multiplex ELISA data as visualized by t-SNE (Figure 2A). The empirical Bayes algorithm 

ComBat (Johnson et al., 2007), originally designed for analysis of microarray data, 

compensates for both mean and variance differences across studies while preserving 

potential effects of interest, such as differences by age, sex or race (Figures 2B and S2). We 

have additionally confirmed the efficacy of this strategy through 1,000-fold simulations of 

multiplex ELISA data with mean, variance, and single-analyte batch effects (Figure S2). 

This strategy preserves known effects, such as a significantly higher serum leptin 

concentration in women as compared to men (Figure 2C; Dubuc et al., 1998).

Additionally, the ability to combine data across studies from disparate geographic locations 

and distinct ethnic populations enables us to uncover demographic diversity in cytokine and 

chemokine expression. We have systematically analyzed the multiplex ELISA data and 

report all significant associations after accounting for multiple comparisons (Figure S3). 

Strikingly, we find that 10 out of the 50 most commonly measured cytokines, chemokines, 

and metabolic factors measured by multiplex ELISA differ significantly by race (Figures 2 

and S3). Nineteen differ significantly with age and 3 by sex. To highlight one example, our 

analyses indicate a significantly higher level of C-X-C motif chemokine 5 (CXCL5) among 

African Americans as compared to other races (Figure 2D). Interestingly, CXCL5 has been 

implicated in a number of disorders that disproportionately affect African Americans, 

including acute coronary syndrome (Sirak et al., 2008; Zineh et al., 2008), chronic 

obstructive pulmonary disease (Kirkpatrick and Dransfield, 2009; Qiu et al., 2003), asthma 

(Joseph et al., 2000; Qiu et al., 2007), and insulin resistance (Chavey et al., 2009; Spanakis 

and Golden, 2013). Finally, this analysis from a population of up to 1,286 individuals across 

17 studies (STAR Methods) allows us to describe the distribution of serum cytokine 

measurements in a diverse human population (Figure 2E). Some, such as interleukin-5 

(IL-5) and IL-7, lie within a relatively small range, whereas others, such as chemokines C-C 

motif chemokine 4 (CCL4) and (CXCL9), display a many-fold range, even within this 

population of putative healthy normal human subjects. Together, these findings affirm the 
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benefit of maintaining and growing a diverse common control population for the future of 

clinical and precision immunology.

Individual-Level Cell-Subset Measurements across the Population

Similarly, even within this reference population, we find a high degree of variability in the 

proportion of immune cell subsets from PBMCs as measured by mass cytometry. This 

variability in cell subsets within a normal healthy population corroborates previously 

reported descriptions of cell-subset percentages (Brodin and Davis, 2017). CD4+, CD8+, 

and gamma-delta T cell subsets, in particular, span a wide range as a percentage of total 

leukocytes. Smaller subsets, such as memory B cells and plasmablasts, span a tighter range 

(Figure 3A). For high-throughput analysis of mass cytometry data, we have employed a 

pipeline (MetaCyto) that begins with raw flow cytometry standard (fcs) files, enacts quality 

control, implements automated gating based on a standard set of markers, and reports a 

standardized set of cell-subset percentages as a proportion of total leukocytes (STAR 

Methods; Hu et al., 2017). In a prior publication, we utilized this pipeline to enumerate a 

number of associations between race and cell-subset percentages from analysis of publicly 

available data (Hu et al., 2017).

Here, we describe the effects of age (Figures 3B and 3C), sex (Figures 3D and 3E), and race 

(Figure S4) in this larger healthy normal population. In total, we find that four of the 24 

measured cell types differ significantly by race (Figure S4), 20 change significantly with age 

(Figures 3B and 3C), and 7 vary significantly by sex (Figures 3D and 3E). As an example, 

our analysis reveals a pronounced decline in naive CD8+ T cells with age (Figure 3C) with a 

concomitant increase in memory CD4+ T cells (Figure 3C). These findings are anticipated 

given the accumulation of antigen exposures over the lifespan. Our analysis additionally 

suggests that women have significantly higher levels of naive CD4+ T cells, naive CD8+ T 

cells, naive B cells, and plasmablasts than male subjects while having a significantly smaller 

proportion of effector CD8+ T cells (Figures 3D and 3E). We additionally find that natural 

killer (NK) cells are found at a significantly higher level in Asian subjects than white 

subjects and that regulatory T cells are measured at a significantly higher level in African 

American subjects as compared to all other races (Figure S4). These age, sex, and race-

related differences in immune cell subsets may help explain population differences in 

infections and autoimmune disease or impact clinical decision-making as it pertains to 

treatment selection. Developing and continuing to grow a diverse reference of immune 

measurements specifically enables this type of discovery.

Systems-Level Network Analysis of Cellular and Molecular Immunity

In addition to characterizing the diversity of the immune system in terms of cellular and 

molecular markers, a framework such as the 10KIP also has the potential to facilitate 

systems-level network analysis. We selected 321 individuals from the dataset for which 

immune cell subsets in PBMCs and protein measurements of serum cytokines, as measured 

by mass cytometry and multiplex ELISA, respectively, were assessed in the same biological 

samples. We modeled the partial correlation between each cell type and each cytokine, 

statistically controlling for age, sex, and race (Figure 4), all of which our analyses suggest 

can have significant effects on cellular and molecular immune repertoire (Figures 2 and 3), 
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and then display only those correlations that remain significant at a false discovery rate 

(FDR) of 0.01 following Benjamini-Hochberg (BH) correction. Although we recognize the 

potential for generating a network that incorporates additional datatypes, such as gene 

expression, as an initial demonstration, we restrict ourselves to a bipartite network of cells 

and cytokines, generating a rich but interpretable network.

Our analysis recovers some known relationships; for example, we see that effector CD4+ T 

cells function as a major hub in the network, contributing positive associations with known 

Th2 cytokines IL-5, IL-10, and IL-13 (Wynn, 2003). We additionally see a negative 

association between regulatory T (Treg) cells and the pro-inflammatory CSF3 (formerly 

granulocyte colony stimulating factor [GCSF]), consistent with the known 

immunomodulatory role of Treg cells (Belkaid and Rouse, 2005; Vignali et al., 2008). We 

detect an association between CXCL10 and monocyte subsets, concordant with evidence 

that this cytokine is expressed by and acts to recruit monocytes (Lee et al., 2009). 

Furthermore, acute phase reactants interferon alpha-2 and IL-6 are negatively associated 

with central memory CD8+ T cells and memory B cells, which is concordant with the 

understanding of the kinetics of the transition from acute inflammation to memory formation 

(Huber and Farrar, 2011). This exploratory analysis of the cell-cytokine network in the 

normal, healthy immune system also generates testable hypotheses about human immune 

function. For example, this analysis suggests a positive association between leptin and 

transitional and memory B cells, connections that are potentially of interest given B cell 

expression of the leptin receptor and the recent discovery that B cells may promote insulin 

resistance (La Cava and Matarese, 2004; Winer et al., 2011). Furthermore, this connection 

through memory B cells extends to the adipokine resistin and to the adhesion molecules 

ICAM-1 and VCAM-1, a cluster of molecules also known to be affected by adiposity 

(Procaccini et al., 2013; Skilton et al., 2005; Verma et al., 2003). These analyses together 

demonstrate the utility of this framework for generating systems-level hypotheses from 

publicly available immunology data collected for a variety of disparate purposes.

Use as a Common Control Population for Precision Immunology in Pregnancy

Finally, to illustrate the potential of the 10KIP to serve as a common control group for 

clinical studies, we used an age- and sex-matched subset of the 10KIPto compare with 

immune measurements in pregnancy, derived from ImmPort study SDY36. In this ImmPort 

study, researchers collected rich clinical data, as well as flow cytometry and serum cytokine 

measurements, from a population of 56 women during each trimester of pregnancy, 6 weeks 

postpartum, and 6 months postpartum. Cell count data from this study, as well as trends in 

cytokine secretion from cultured cells, have been published previously (Kraus et al., 2012). 

Changes in serum cytokine levels over gestation and analyses of cell-subset percentages 

(which are potentially differentially affected during pregnancy; Ekouevi et al., 2007), 

however, remain undescribed as of this writing. Additionally, the study design did not 

incorporate a pre-pregnancy control, leaving open the question of whether cell subsets and 

serum cytokines truly return to baseline by 6 months postpartum. Given work demonstrating 

persistence of fetal cells and DNA in maternal blood and brain many years postpartum 

(Bianchi et al., 1996; Chan et al., 2012), the comparison to a common healthy control has 

the potential to enrich our understanding of the immune system in pregnancy and maternity.
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We first applied principal-component analysis (PCA) to the serum cytokine measurements, 

which revealed a major shift in cytokine regulation during the first trimester of pregnancy as 

compared to second and third trimester measurements, postpartum measurements, and 

measurements taken from age and sex-matched 10KIP controls (Figure 5A). This shift is 

primarily driven by increased concentrations of CCL2, CCL3, CCL4, CCL5, CCL11, 

CXCL10, and IL-6. As an example of this modulation, we see that CCL5 concentration is 

significantly increased during the first and second trimester and is decreased during the third 

trimester and up to 6 weeks postpartum, but it returns to baseline by 6 months postpartum 

(Figure 5B). In contrast, IL-15 measurements remain relatively constant over the entire 

course of gestation (Figure 5C).

In addition to analysis of serum cytokine concentrations, we also examined changes in cell-

subset percentages in pregnancy. PCA analysis of flow cytometry measurements indicated 

that changes in cell subsets over the course of gestation are not the primary source of 

variation as compared to postpartum or reference measurements (Figure 5D). This is not to 

say, however, that cell subsets remain static over the course of pregnancy. We see, for 

example, that CD4+ T cells, as a percent of lymphocytes, undergo a significant increase 

during all three trimesters of pregnancy as compared to the 10KIP reference population 

(Figure 5E). B cells, in contrast, exhibit a small but significant dip during the second and 

third trimesters (Figure 5F). Although we recognize that, to date, ImmPort does not contain 

dense data for all measurement types, this analysis demonstrates that the size and scope of 

even this initial version of the 10KIP are sufficient to generate age- and sex-matched control 

cohorts for two types of high-throughput immune measurements as a baseline or comparator 

to immune perturbation or disease.

DISCUSSION

Although the availability of large common control cohorts, such as the 1000 Genomes 

Project (1000 Genomes Project Consortium, 2010, 2012; Sudmant et al., 2015) and the 

Wellcome Trust Case Control Consortium (Burton et al., 2007), has proven immensely 

useful for various biological research communities, no parallel resource exists for 

immunological measurements. Here, we produced, through manual curation and study-by-

study harmonization, the 10,000 Immunomes Project (10KIP), a framework for growing a 

standardized reference dataset for the immunology community. To enable its use by 

experimental and clinical immunologists, we developed an interface for interactive data 

visualization, as well as custom cohort creation and data download (available at http://

10kimmunomes.org/). Through statistical testing and validations in simulated data, we 

demonstrate the ability to compensate for technical artifacts that invariably arise from 

collecting data on different days, across different platforms, or at distant institutions by 

repurposing algorithms developed in computational genetics.

We not only recover many known differences by age and sex across serum cytokine and cell-

subset measurements but also reveal differences, particularly by race, that would have been 

impossible to uncover without the combination of dozens of independent datasets generated 

to answer varied and unrelated questions in immunology. Through network analysis, we 

additionally demonstrate the utility of the resource for generating insights into cell-cytokine 
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relationships in the human immune system. Finally, we demonstrate that the size and scope 

of the extant publicly available data are sufficient for custom cohort selection, enabling us to 

generate a reference cohort of women between the ages of 18 and 40 years who have both 

cell-subset and serum cytokine data available on the same blood samples for comparison 

with an external dataset derived from measurements taken during pregnancy. Generating a 

sufficiently powered sex- and age-matched population with multiple immune measurements 

for comparison allowed us to explore the cell-subset and cytokine changes that occur as the 

immune system is modulated over the course of gestation. We expect that as more and more 

measurements are uploaded to NIAID’s ImmPort database, the 10KIP will expand into an 

increasingly powerful resource for future clinical and preclinical immunological studies.

While we recognize the ideal would be to recruit and collect immune measurements from a 

large cohort, the resources and time required to collect immunologic measurements from a 

sufficiently sized heterogeneous population would be considerable, while this sizable 

volume of subject-level human immunology data are currently available to the research 

community. We also acknowledge further potential limitations in this work. For example, we 

are selecting subjects, standardizing labels and units, and otherwise curating the data with 

the best available information on these studies, but it is possible errors in the original data 

descriptions or labeling might persist. Also, we present the data after normalization and 

batch correction, but of course, we recognize that all of these source datasets were collected 

independently across institutions, technologies, and time. It is possible that our 

normalization efforts and assumptions might not hold true for every analysis in every study. 

On the other hand, the large inter-study variation (see Figure S5) supports the idea that the 

batch-corrected consensus may be more robust than the results of each study taken 

separately. We also note that, to date, some data types might not be measured densely 

enough to make reliable models that span all ages or races, and to date, racial information in 

ImmPort is acquired at a relatively coarse grain. Additionally, some highly sought data 

types, such as RNA sequencing (RNA-seq), are not yet available in sufficient volume in 

ImmPort to merit inclusion in the initial release of the resource. As high-throughput 

immunological techniques become more widely available and as experimentalists continue 

to deposit these data in ImmPort, however, this scaffold will continue to grow, enabling well-

powered analyses on more specific populations and over an increasing number of data types 

with time.

Finally, we want to recognize current reference datasets for immunology. The extant 

resources, while of clear import to the research community, serve different purposes than 

does the 10KIP. ImmGen (Shay and Kang, 2013), for example, represents an immense 

resource of immune gene expression in murine models, while the 10KIP instead focuses on 

multiple data types in human immunology. Likewise, ImmuneSpace (Sauteraud et al., 2016) 

provides a suite of visualization and analysis tools, allowing users to interact and download 

data at the level of individual human immunology studies. The 10KIP, in contrast, has as its 

primary goals to filter the extant data for only healthy normal subjects and enable 

visualization and analysis across many studies. The 10KIP takes full advantage of the 

structure of ImmPort, in which subjects are assigned a unique accession number and are 

associated with their age, sex, and race. The resource allows researchers to subset the 

population or to look for associations with these general demographic phenotypes. 
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Additionally, it leverages the richness of data available through ImmPort, which 

encompasses soluble protein and cytokine measurements, such as multiplex ELISA, cell-

phenotyping measurements such as flow-cytometry and CyTOF, standard medical laboratory 

test panels, gene expression data, and others. We believe that integrating these datasets and 

presenting them as a fully open resource will pay dividends in terms of both basic research 

and the precision and robustness of ongoing translational efforts in immunology.

STAR⋆METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Studies from ImmPort Data 
Release 21

Detailed in 
Table S1

https://aspera-immport.niaid.nih.gov:9443/login

Software and Algorithms

MetaCyto (Huetal., 2017) https://bioconductor.org/packages/release/bioc/html/MetaCyto.html

ComBat (Johnson et al., 
2007)

https://bioconductor.org/packages/release/bioc/html/sva.html

affy (Gautier et al., 
2004)

https://www.bioconductor.org/packages/devel/bioc/html/affy.html

GEOquery (Davis and 
Meltzer, 2007)

https://bioconductor.org/packages/release/bioc/html/GEOquery.html

preprocessCore (Bolstad, 2017) https://www.bioconductor.org/packages/release/bioc/html/preprocessCore.html

impute (Hastie et al., 
2017)

https://bioconductor.org/packages/release/bioc/html/impute.html

RmySQL (Ooms et al., 
2018)

https://cran.r-project.org/web/packages/RMySQL/index.html

limma (Ritchie et al., 
2015)

https://bioconductor.org/packages/release/bioc/html/limma.html

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Atul J. Butte (atul.butte@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects were extracted from Data Release 21 of ImmPort database, which contains 242 

open-access studies, together comprising 44,775 subjects and 293,971 samples. Each subject 

in ImmPort is assigned a unique identifier, allowing every measurement in the ImmPort 

database to be assigned to a unique subject. Each subject has, at minimum, race, age, and 

sex demographic information. The ImmPort data architecture requires that each study 

contain detailed descriptions of inclusion and exclusion criteria for subjects. Additionally, 

each arm (experimental and control arms) of each study is assigned a unique accession. 

Finally, each experimental measurement is time stamped with a unique planned visit 

accession. Manual review of the inclusion/exclusion criteria, arms, and planned visits 

allowed us to select control subjects, and to examine only those measurements taken before 

the onset of any experimental manipulation, such as vaccine, drug, or surgery that may have 

Zalocusky et al. Page 10

Cell Rep. Author manuscript; available in PMC 2018 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://aspera-immport.niaid.nih.gov:9443/login
https://bioconductor.org/packages/release/bioc/html/MetaCyto.html
https://bioconductor.org/packages/release/bioc/html/sva.html
https://www.bioconductor.org/packages/devel/bioc/html/affy.html
https://bioconductor.org/packages/release/bioc/html/GEOquery.html
https://www.bioconductor.org/packages/release/bioc/html/preprocessCore.html
https://bioconductor.org/packages/release/bioc/html/impute.html
https://cran.r-project.org/web/packages/RMySQL/index.html
https://bioconductor.org/packages/release/bioc/html/limma.html


occurred. A complete list of qualifying studies, arms, and planned visits contained in the 

10KIP is available in Table S1.

METHOD DETAILS

Extract Immune Cell Frequencies from Cytometry Data—Meta-analysis of 

Cytometry data is conducted using the MetaCyto package (Hu et al., 2017). Briefly, flow 

cytometry data and CyTOF data of healthy human blood samples from ImmPort studies 

SDY89, SDY112, SDY113, SDY144, SDY167, SDY180, SDY202, SDY212, SDY296, 

SDY305, SDY311, SDY312, SDY314, SDY315, SDY364, SDY368, SDY387, SDY404, 

SDY420, SDY472, SDY475, SDY478, SDY514, SDY515, SDY519, SDY702, SDY720, and 

SDY736 were downloaded from ImmPort web portal. Flow cytometry data from ImmPort 

were compensated for fluorescence spillovers using the compensation matrix supplied in 

each fcs file. All data from ImmPort were arcsinh transformed. For flow cytometry data, the 

formula f(x) = arcsinh (x/150) was used. For CyTOF data, the formula f(x) = arcsinh (x/8) 

was used. Transformation and compensation were done using the preprocessing.batch 
function in MetaCyto (Hu et al., 2017). The cell definitions from the Human 

ImmunoPhenotyping Consortium (Finak et al., 2016) were used to identify 24 types of 

immune cells using the searchClster.batch function in MetaCyto. Specifically, each marker 

in each cytometry panels was bisected into positive and negative regions. Cells fulfilling the 

cell definitions are identified. For example, the CD14+ CD33+ CD16- (CD16- monocytes) 

cell subset corresponds to the cells that fall into the CD14+ region, CD33+ region and 

CD16- region concurrently. The proportion of each cell subsets in the PBMC or whole blood 

were then calculated by dividing the number of cells in a subset by the total number of cells 

in the blood. Differences by age, sex, and race were detected with a linear model, with 

Tukey’s Honestly Significant Difference (Tukey’s HSD) post hoc tests and Benjamini-

Hochberg (BH) correction for false discovery rate.

Multiplex ELISA analysis—Secreted protein data measured on the multiplex ELISA 

platform were collected from ImmPort studies SDY22, SDY23, SDY111, SDY113, 

SDY180, SDY202, SDY305, SDY311, SDY312, SDY315, SDY420, SDY472, SDY478, 

SDY514, SDY515, SDY519, and SDY720. Data were drawn from the ImmPort parsed data 

tables using RMySQL or loaded into R from user-submitted unparsed data tables. Across the 

studies that contribute data, there are disparities in terms of the dilution of samples and units 

of measure in which the data are reported. We corrected for differences in dilution factor and 

units of measure across experiments and standardized labels associated with each protein as 

HUGO gene symbols. This step represents the “formatted” multiplex ELISA data table. For 

our own analysis, as represented in Figure 2, we analyzed only those proteins that were 

measured in more than half of the subjects leaving the 50 most-commonly measured 

proteins. Compensation for batch effects was conducted using the ComBat function of the R 

package sva, with study accession representing batch and a model matrix that included age, 

sex, and race of each subject. Data were log2 transformed before normalization with 

ComBat to better fit the assumption that the data are normally distributed (Figure S6). We 

verified that a linear model associating age, sex, ethnicity, and study accession of each 

subject no longer revealed any significant associations between study accession and protein 

concentration following batch correction, and that known differences, such as the difference 
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in leptin concentration by sex, were captured following our batch correction procedure. We 

additionally validated our approach using 1000-fold data simulations (see below). 

Differences by age, sex, and race were detected with a linear model, with Tukey’s Honestly 

Significant Difference post hoc tests and Benjamini-Hochberg correction for false discovery 

rate. For dimensionality reduction analysis, which is not robust to missing values, missing 

values were imputed by k-nearest neighbors, using impute.knn with default values.

Network Analysis—The bipartite network depicted in Figure 4 represents an analysis over 

the 24 immune cell subset percentages calculated in the mass cytometry analysis described 

above in Extract Immune Cell Frequencies from Cytometry Data and the 50 soluble protein 

measurements, normalized and batch-corrected as described above in Multiplex ELISA 
analysis. Data were included from the 321 subjects where both multiplex ELISA and mass 

cytometry measurements were conducted on the same biological sample. Edges depict the 

Spearman’s p of a partial correlation between each cytokine concentration and each 

individual cell type, accounting for age, sex, and race. Only correlations that remained 

significant at a BH-corrected p < 0.01 are shown.

Cell and cytokine modulation in pregnancy—We compared serum cytokine and cell 

subset percentages from 10KIP samples to measurements taken from women during and 

after pregnancy. We selected samples from the 10KIP from women aged 18–40 who 

contributed CyTOF data from PBMC and multiplex ELISA measurements. Samples from 

pregnancy were taken from ImmPort study SDY36. The serum cytokine and flow cytometry 

from SDY36 was batch corrected together with the ImmPort reference data, using the default 

parameters of the ComBat algorithm, and including age, sex, race, and time point in 

pregnancy in the model while using study accession as a surrogate for batch. Because 

SDY36 measured a smaller number of cytokines and cell subsets than are available as part of 

the 10KIP, we further selected a subset of the 10KIP to include just those parameters 

measured in SDY36. These data were used to conduct standard PCA analysis (R: prcomp, 

ggbiplot). Differences were calculated using ANOVA with a Tukey’s HSD post hoc test.

Gene expression array harmonization and normalization—Gene expression array 

data were obtained in three formats. For data collected on Affymetrix platforms, we utilized 

the ReadAffy utility in the affy Bioconductor package to read in raw CEL files. The rma 
utility was used to conduct Robust Multichip Average (rma) background correction (as in 

(Irizarry etal., 2003)), quantile normalization, and log2 normalization of the data. For data 

collected on Illumina platforms and stored in the Gene Expression Omnibus (GEO) 

database, we utilized the getGEO utility in the GEOquery Bioconductor package to read the 

expression files and the preprocessCore package to conduction rma background correction, 

quantile normalization, and log2 normalization of the gene expression data. Finally, for data 

collected on Illumina platforms but not stored in GEO, we utilized the read.ilmn utility of 

the limma Bioconductor package to read in the data, and the neqc function to rma 

background correct, quantile normalize, and log2 normalize the gene expression data. In all 

instances, probe IDs were converted to Entrez Gene IDs. Where multiple probes mapped to 

the same Entrez Gene ID, the median value across probes was used to represent the 

expression value of the corresponding gene. The background-corrected and normalized 
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datasets were combined based on common Entrez IDs, missing values were imputed with a 

k-nearest neighbors algorithm (R package: impute, function: impute.knn) using k= 10 and 

default values for rowmax, colmax, and maxp. To create the normalized and batch corrected 

dataset available through the www.10kImmunomes.org portal, we utilized a well-established 

empirical Bayes algorithm for batch correction (Johnson et al., 2007), compensating for 

possible batch effects while maintaining potential effects of age, race, and sex across 

datasets and mapped Entrez IDs to HUGO gene IDs.

Simulations to validate the batch correction algorithm—The empirical Bayes 

algorithm we have used to generate the normalized data available for download has 

previously been validated in its use for gene expression microarray analysis (Johnson etal., 

2007). To assess the efficacy of using an empirical Bayes algorithm to compensate for batch 

effects in multiplex ELISA data, we generated simulated multiplex ELISA data as skewed 

normal distributions from a set of parameters selected to mimic those skewed normal 

distributions that best fit the actual multiplex ELISA data used in our analysis. We generated 

this data for 50 analytes and 1500 subjects and purposefully introduced batch effects 

intended to mimic the types of batch effects we might encounter in real multiplex ELISA 

data. To account for use of a differently calibrated machine, for example, we simulated data 

in which one batch had a higher mean than the other batches. To account for the possibility 

that one lab’s data might be more variable than others, in one simulation we introduced 

random noise into one batch of the data. Finally, to account for the fact that the antibodies 

used may differ in efficacy across lots and experiments, we devised a simulation in which 

just one analyte in just one batch has a perturbed mean. In each of 1000 simulations of this 

data, we then generated a linear model to test whether the empirical Bayes algorithm 

ComBat (Johnson et al., 2007) would successfully correct for these deviations from the true 

value of the simulated data. Additionally, we took the largest single batch of multiplex 

ELISA data (data from ImmPort study SDY 420) and intentionally introduced the same 3 

types of batch effects we introduced into the simulated data. Following the same procedure, 

we demonstrate that ComBat successfully removes these introduced batch effects from real 

multiplex ELISA data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Detailed descriptions of data collection and modeling are available in the Method Details 

section. All publicly available software is enumerated in the Key Resources table. Statistical 

tests used, p values of those tests, and the n of each test are detailed in the figure legends. In 

all cases, n represents the number of distinct human subjects represented in the test. In PCA 

and tSNE plots, each point represents an individual human subject. In violin plots, each 

black dash represents an individual human subject. The width of the violin can be read as a 

histogram, representing the density of subjects at each value. The length of the violin 

represents the range of values. In ribbon plots, each point represents an individual human 

subject, while ribbons indicate the mean and standard error of each group as a loess-

smoothed curve, as implemented in the geom_smooth aesthetic of the R ggplot2 package. In 

forest plots, each point represents the effect size the variable of interest (age, sex, or race) 

has on the measured values, while the error bars represent the standard error of that estimate. 

In boxplots, the central line indicates the mean, the edges of the box represent the 25th and 
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75th percentile of the data. The upper whisker represents the smaller of the maximum value 

and the 75th percentile + 1.5 × the interquartile range. If the latter, outliers are represented by 

individual points. The lower whisker represents the larger of the minimum value and the 25th 

percentile −1.5 × the interquartile range. If the latter, outliers are represented by individual 

points.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Subject-level immunology data from >10,000 healthy normal human subjects

• Curated data are available in raw or batch-corrected and normalized formats

• Interactive visualizations and downloads at 10kimmunomes.org
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Figure 1. Resource Development and Selected Applications
Data from 242 studies and 44,775 subjects (including flow cytometry and CyTOF, mRNA 

expression, secreted protein levels [including cytokines, chemokines, and growth factors], 

clinical lab tests, HAI titers, HLA type, and others) were collected from the NIAID 

Immunology Data and Analysis Portal, ImmPort (http://www.immport.org/). We hand 

curated the entire contents of ImmPort to filter for normal healthy control human subjects. 

Each of the 10 data types was systematically processed and harmonized. These data 

constitute the largest compendium to date of cellular and molecular immune measurements 

on healthy normal human subjects. Both the normalized data and their raw counterparts are 

openly available for visualization and download at http://10kimmunomes.org/.
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Figure 2. 
High-Throughput Secreted Protein Data: Characterizing the Range of Unperturbed Secreted 

Protein Levels in a Diverse Population

(A) t-distributed stochastic neighbor embedding (tSNE) visualization of high-throughput 

secreted protein data, colored by study accession, reveals that much of the variance across 

the data is explained by batch.

(B) After batch correction with an empirical Bayes algorithm, which accounts for both mean 

and variance difference across studies while maintaining effects of covariates such as age, 

sex, and race, the data no longer cluster by batch.

(C) Secreted protein data as measured by multiplex ELISA across 17 studies captures known 

effects, such as elevated levels of serum leptin in female relative to male subjects (analysis 

of covariance [ANCOVA], n = 906, p = 9 × 10−28). Each point represents an individual 

subject. Ribbons indicatethe mean and standard error ofeach group.

(D) Analysis of the reference population reveals demographic associations, including 

elevated CXCL5 in African American subjects as compared to other races. (ANCOVA, n = 

917, p values: *p < 0.05, **p < 0.01). Each dash represents an individual subject. The width 

of the violin represents the relative density of subjects at each value. The length of theviolin 

represents the range ofvalues.

(E) We characterize the distribution of secreted protein levels from serum across the 

reference population (n = 1,286). Each dash represents an individual subject. The width of 
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the violin represents the relative density of subjects at each value. The length of the violin 

represents the range of values.
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Figure 3. 
Mass Cytometry: Characterizing the Range of Cell-Subset Percentages in a Diverse 

Population

(A) Distribution of cell-subset percentages across the 10KIP. The width of the violin 

represents the relative density of subjects at each value. The length of the violin represents 

the range of values.

(B) Analysis of mass cytometry data reveals significant effects of age on cell-subset 

percentages while accounting for sex and race. Only cell-subset associations with 

Benjamini-Hochberg-corrected p values < 0.05 are shown. (ANCOVA, n = 578, *p < 0.05, 

**p < 0.01, ***p < 0.001). Effect sizes are displayed as Pearson’s r ± 95% confidence 

intervals. Each point represents the effect size of age. Error bars represent the standard error 

of that estimate.

(C) Naive CD8+ T cells decrease significantly with age (ANCOVA, n = 565, p = 1.1 × 

10~21), and central memory CD4 T cells increase significantly with age (ANCOVA, n = 578, 

p = 5.3 × 10−6), while accounting for sex and race. Each point represents an individual 

subject. Ribbons indicate the mean and standard error of each group.

(D) Analysis of mass cytometry data reveals significant effects of sex on cell-subset 

percentages, while accounting for age and race. Only cell-subset associations with 
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Benjamini-Hochberg-corrected p values < 0.05 are shown. (ANCOVA, n = 578, *p < 0.05, 

**p < 0.01, ***p < 0.001). Effect sizes are displayed as Cohen’s d ± 95% confidence 

intervals. Each point represents the effect size age. Errorbars representthestandard 

errorofthat estimate.

(E) T cells (ANCOVA, n = 565, p = 7.4 × 10−6) and naive CD4+ T cells (ANCOVA, n = 

578, p = 3.3 × 10−8) are significantly elevated in women as compared to men, accounting for 

age and race. Each dash represents an individual subject. The width of the violin represents 

the relative density of subjects at each value. The length of the violin represents the range of 

values.
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Figure 4. Immune Cell and Serum Cytokine Bipartite Graph
Immune cell percentages and serum protein concentrations, as measured by CyTOF and 

multiplex ELISA, were processed as described in STAR Methods, and the cell-cytokine 

relationship was described as partial correlations accounting for age, sex, and race. Only 

relationships significant at a BH-corrected p < 0.01 are shown.
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Figure 5. Comparing Pregnancy Data to the Common Control Reveals Cell-Subset and Immune 
Protein Modulation in Pregnancy
(A) PCA plot depicting the variation in serum proteins, as measured by multiplex ELISA, 

over the course of pregnancy, taken from ImmPort Study SDY36, as compared to multiplex 

ELISA measurements from women between the ages of18–40 from the reference 

population. The variance in measurements is dominated by a deviation in serum cytokine 

measurements during the first trimester(teal) relative to all other time points during 

pregnancy and relative to the 10KIP controls (green). These differences are driven primarily 

by changes in CCL2, CCL3, CCL4, CCL5, CCL11, IL6, and CXCL10.

(B) As an example of cytokine modulation in pregnancy, serum CCL5 levels are 

significantly increased in the first and second trimester relative to the 10KIP controls, 

decrease during the third trimester and remain low for at least 6 weeks postpartum. CCL5 

levels return to baseline levels by6months postpartum (ANOVA with Tukey HSD, n = 142 

controls, n = 57 pregnancy, *p < 0.05, **p < 0.01, ***p < 0.001).

(C) In contrast, serum IL15 levels make no significant deviations from normal over the 

course of pregnancy (ANOVA with Tukey HSD, n = 142 controls, n = 57 pregnancy).

(D) PCA plot depicting the variation in immune cell subsets, as measured by flow cytometry, 

over the course of pregnancy, taken from ImmPort Study SDY36, as compared to cytometry 

measurements from women between the ages of18and 40yearsfromthe 

10KIPcontrols.Asopposed to cytokine measurements(A), the preponderance of variation in 
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cell-subset measurements is not due to changes over the course of pregnancy. All time points 

during and following gestation substantially overlap with the controls (green).

(E) The percentage ofCD4+ T cells, as a fraction of lymphocytes, is significantly elevated 

over the duration of pregnancy but returns to baseline in the postpartum period (ANOVA 

with Tukey HSD, n = 94 controls, n = 57 pregnancy, *p < 0.05, ***p < 0.001).

(F) The percentage of B cells, as a fraction of lymphocytes, exhibits a small but significant 

dip in the second and third trimesters (ANOVA with Tukey HSD, n = 94 controls, n = 57 

pregnancy, *p < 0.05).

(B, C, E, and F) The central line indicates the mean. Edges of the box represent the 25th and 

75th percentile of the data. The upper whisker represents the smaller of the maximum value 

and the 75th percentile + 1.5 × the interquartile range. If the latter, outliers are represented 

by individual points. The lower whisker represents the larger of the minimum value and the 

25th percentile — 1.5 × the interquartile range. If the latter, outliers are represented by 

individual points
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Table 1.

Data Available in the Initial Release

Measurement Subjects

ELISA 4,035

Multiplex ELISA (Luminex) 1,286

Virus neutralization titer 2,265

HAI titer 1,344

Complete blood count 1,684

Comprehensive metabolic panel 664

Fasting lipid profile 664

Questionnaire 1,422

Flow Cytometry (PBMCs) 907

CyTOF (PBMCs) 583

Flow cytometry (whole blood) 164

HLA type 1,093

Gene expression (whole blood) 311

Gene expression (PBMCs) 165

Counts of distinct subjects for whom raw data of each type is represented in the initial release of the 10KIP. Because many subjects contributed 
multiple measurement types, the totals across all measurement types substantially exceed the number of distinct subjects. Data are available in the 
10,000 Immunomes Project
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