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Abstract

Objective—Genome-wide association (GWA) studies have identified multiple genetic variants 

affecting the risk of coronary artery disease (CAD). However, individually these explain only a 

small fraction of the heritability of CAD and for most, the causal biological mechanisms remain 

unclear. We sought to obtain further insights into potential causal processes of CAD by integrating 

large-scale GWA data with expertly curated databases of core human pathways and functional 

networks.

Approaches and Results—Employing pathways (gene sets) from Reactome, we carried out a 

two-stage gene set enrichment analysis strategy. From a meta-analyzed discovery cohort of 7 

CADGWAS data sets (9,889 cases/11,089 controls), nominally significant gene-sets were tested 

for replication in a meta-analysis of 9 additional studies (15,502 cases/55,730 controls) from the 

CARDIoGRAM Consortium. A total of 32 of 639 Reactome pathways tested showed convincing 

association with CAD (replication p<0.05). These pathways resided in 9 of 21 core biological 

processes represented in Reactome, and included pathways relevant to extracellular matrix 

integrity, innate immunity, axon guidance, and signaling by PDRF, NOTCH, and the TGF-β/

SMAD receptor complex. Many of these pathways had strengths of association comparable to 

those observed in lipid transport pathways. Network analysis of unique genes within the replicated 

pathways further revealed several interconnected functional and topologically interacting modules 

representing novel associations (e.g. semaphorin regulated axonal guidance pathway) besides 

confirming known processes (lipid metabolism). The connectivity in the observed networks was 

statistically significant compared to random networks (p<0.001). Network centrality analysis 

(‘degree’ and ‘betweenness’) further identified genes (e.g. NCAM1, FYN, FURIN etc.) likely to 

play critical roles in the maintenance and functioning of several of the replicated pathways.

Conclusions—These findings provide novel insights into how genetic variation, interpreted in 

the context of biological processes and functional interactions among genes, may help define the 

genetic architecture of CAD.
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GWAS; coronary artery disease; pathway analysis; network analysis
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Introduction

Meta-analysis of genome-wide association studies (GWAS) involving tens of thousands of 

subjects have provided a wealth of new information on the genetic basis of coronary artery 

disease (CAD), yet common susceptibility variants with achieved genome-wide significance 

explain only a small fraction of the heritability of CAD (∼10.6%)1, 2. It has been proposed 

that much of the residual genetic risk may be attributable to rare variants with large 

effect3, 4. However, recent simulation, exome sequencing, and fine mapping studies of 

established GWAS loci support the hypothesis that joint contributions from common variants 

with modest effects are likely to account for a sizeable fraction of the missing heritability of 

complex diseases5-7.

It is likely that many more common variants are linked to CAD but have not achieved 

genome-wide significance in GWAS because of small effect size and/or lower allele 

frequency and insufficient sample size. However, based on the premise that clinically 

informative polymorphisms related to complex disease occur in systems of closely 

interacting genes8, even weakly associated variants may provide important information 

regarding the biological basis of disease when such variants cluster within a common 

functional module or pathway. One common approach for pathway-based analysis of 

genomic data is gene-set enrichment analysis (GSEA), originally developed and extensively 

utilized for the analysis of gene expression data9. In 2007, Wang et al.10 described a 

modified version of the GSEA, designed to analyze genome-wide SNP associations rather 

than gene expression data. Since then, several other GSEA methods have been developed for 

this purpose11-15. The common goal of these analytic algorithms is to identify a subset of 

genes whose variants collectively demonstrate strong association with a trait of interest even 

if the component SNPs individually exhibit relatively modest or non-significant association. 

Importantly, pathway analysis can also place the set of validated SNPs for a trait of interest 

into a broader and clearer biologic context. A natural extension of this list-based pathway 

approach is the interrogation of molecular networks to unravel the architecture underlying 

complex diseases. A molecular network is based on ‘interactions’ among biomolecules 

(genes, protein, metabolites, etc.), where such interactions can take various forms (protein-

protein interactions, coexpression, gene regulation, functional interactions, etc.). Efforts at 

the characterization of disease-associated genes reveal that genes associated with the same 

or similar disorders tend to occupy similar neighborhoods in molecular networks through 

physical or functional modules16, 17. Furthermore, the study of network topology suggests 

that key disease-related genes differ from other genes in terms of their network connectivity 

and network centrality properties17. Finally, molecular networks provide two distinct 

enhancements over traditional pathway based approach – (i) they provide additional 

information on interactions among gene subsets within a given pathway, and (ii) they allow 

for the identification of interactions between components of different biological pathways. 

Through these analyses, one is able to draw a clearer picture of the functional connectivities 

that influence pathway functions, and how multiple pathways may interact with one another 

to influence a phenotype.

Several studies have applied molecular networks for generating insights from GWAS 

data8, 18-20 in disorders such as schizophrenia, multiple sclerosis and prostate cancer. 
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However, most of these approaches have relied mainly on protein-protein interaction 

networks, thereby missing the rich mechanistic information available from traditional 

biological pathway repositories and networks based on functional interactions. In this study, 

we have coupled the advantages of a well curated biological pathway repository with a 

similarly curated functional interaction network to identify mechanism-based processes that 

may underlie the genetic architecture of CAD. First, to identify novel associations between 

established biological mechanisms and CAD, we have carried out a two-stage pathway-

based GSEA analysis of sixteen GWAS data sets for CAD using the i-GSEA4GWAS tool15 

and the Reactome pathway database21. Collectively, these GWAS include over 25,000 

subjects with CAD and over 66,000 controls. We have then taken the replicated pathways as 

a starting point to explore functional interactions within and between pathways via 

interrogation of molecular interacting networks. Lastly, we have characterized the CAD-

associated genes based on their topological properties within these networks as a way of 

prioritizing gene candidates for functional follow-up studies.

Materials and Methods

Materials and Methods are available in the online-only Data Supplement. Briefly, employing 

pathways (gene sets) from Reactome, we first carried out a two-stage gene set enrichment 

analysis strategy. From a meta-analyzed discovery cohort of 7 CAD GWAS data sets (9,889 

cases/11,089 controls), nominally significant gene-sets were tested for replication in a meta-

analysis of 9 additional studies (15,502 cases/55,730 controls) from the CARDIoGRAM 

Consortium (Table 1). Genes from the replicated pathways were then mapped onto well-

curated interaction networks.

Results

Significant Pathways

A total of 85 out of the 639 Reactome pathways tested in Stage 1 achieved a gene set 

enrichment p-value < 0.05 at a false discovery rate <0.25. Thirty two out of these 85 

pathways were further replicated in Stage 2 at a nominal p<0.05 (Table 2). When the 

replicated pathways were compared to the full pathway content of Reactome, at least one 

replicated from 9 of the 21 core Reactome-defined biological processes. These included the 

core processes of ‘metabolism’, ‘signal transduction’, ‘developmental biology’, 
‘extracellular matrix organization’, ‘immune system’, ‘metabolism of proteins’, ‘cell-cell 
communication’, ‘transmembrane transport of small molecules’, and ‘gene expression’ 
(Figure 2). Due to the hierarchical organization of Reactome pathways, several replicated 

pathways were nested within larger gene sets, either completely or partially (Figure SII, 

online-only Data Supplement). This hierarchical structure enabled us to identify instances of 

pathway selectivity – for example, although the ‘CRMPS in SEMA3A signaling’, ‘Sema4D 
in semaphorin signaling’ and ‘Sema3A PAK dependent axon repulsion’ pathways all nested 

completely within the ‘Semaphorin Interactions’ pathway, only the former was significantly 

replicated (p<0.001) whereas the latter two pathways were not. In order to put the identified 

pathways in a broader context, we have also listed the non-replicated pathways that share 
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similar levels of hierarchy as the replicated pathways in Table SI (online-only Data 

Supplement).

About a third of the 32 replicated pathways were also significant in Stage 2 (p<0.05) after 

correcting for linkage disequilibrium between the SNPs, by analyzing SNPs pruned genome-

wide at either r2>0.5 or r2>0.2 (Table SII, online-only Data Supplement). The pathways that 

were in common to all three pruned and unpruned SNP analyses were ‘Toll receptor 
cascades’, ‘degradation of the extracellular matrix’, ‘lipid digestion, mobilization and 
transport’, and ‘lipoprotein metabolism’, While the association of these pathways may be of 

higher confidence, pruning of SNPs may also lead to loss of power due to significant 

reduction in SNP number (5-15% of unpruned SNPs) and to the fact that the pruning was 

agnostic to the actual CAD SNP association p-values. Hence, for downstream gene and 

network analyses we chose to use the full set of 19 pathways that replicated with the 

unpruned list of SNPs.

Lastly, we examined the possible effect of LD among genes leading to inflated significance 

scores for the replicated pathways by considering the extent of LD among the gene-tagging 

(best scoring) SNPs for all genes in a pathway. The extent of LD among the most significant 

SNPs was found to be minimal. Specifically, of all the SNPs tested, we found only 2 SNP 

pairs with an r2 >0.8, observed across 3 pathways. Even at the more permissive r2 threshold 

of 0.2, only 4 SNP pairs were observed across 5 pathways (Table SIII, online-only Data 

Supplement).

Gene and Pathway Prioritization

The 32 replicated pathways contained a total of 770 unique genes that were taggable by at 

least one SNP (no SNP tags were available for 83 genes). Figure SIII (online-only Data 

Supplement) summarizes the proportion of genes within the replicated pathways that were 

associated with CAD. All replicated pathways contained 50% or more genes above the 

significance threshold (range 50.0% to 92.3%), confirming that the pathway findings were 

driven by the combined contributions of multiple genes in each pathway and not due to large 

effects from a small minority of genes. For comparison purposes, we also analyzed a 

synthetic pathway derived from genes within the CARDIoGRAM loci reaching genome 

wide significance. This synthetic pathway contained the second highest proportion of genes 

reaching the significance threshold.

Network analysis

Statistical evaluation of network—A total of 770 genes from the replicated pathways 

were mapped to the InWeb PPI network and the observed network connectivity parameters 

(‘degree’, and number of edges) compared to random networks of similar size and degree 

distribution. A network of direct interactions could be created with 620 genes (assuming a 

minimum interaction size of 2 genes). The resulting network (Figure SIV) was significantly 

different with respect to random networks; thus there were 3726 direct edges in the network 

compared to only 1548 edges expected by chance (p<0.001), and the observed average 

connectivity per gene (‘degree’ of gene) was 12, compared to an expected 5.8 from random 
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networks (p<0.001). These results indicate that the networks constructed from the replicated 

pathway genes are likely not due to chance.

Mapping of replicated pathway genes to an interaction network—Although this 

PPI-based analysis provided confidence that the networks derived from the replicated 

pathway genes are unlikely to arise from chance, it allows only limited insights into the 

various biological mechanisms impacted by these pathways. Thus, in order to identify 

networks that contain more relevant information onbiological processes (including PPI), the 

genes from the replicated pathways were mapped to a functionally interacting network 

curated and maintained at Reactome. A total of 733 genes could be mapped to the larger 

network. This sub-network was further clustered to reveal within-network modules. 

Clustering resulted in the identification of 17 clusters with 10 clusters containing >10 gene 

members (Figure 3 and Table SIV). Within each cluster, a diverse array of interactions 

(reactions, complex formation, activation, etc.) was represented by the edges connecting the 

genes (nodes), as exemplified in Figure SV (online-only Data Supplement) for the genes in 

clusters 8 and 9. We also observed considerable inter-connectivity between the clusters; for 

example, the links between cluster 4 and other clusters are highlighted in Figure 3 

(additional inter-cluster connectivities for each of the remaining clusters are shown in Figure 

SVI, online-only Data Supplement). Enrichment analysis within each cluster using Gene 

Ontology identified several cluster-specific overrepresentations of biological processes, as 

further highlighted in Figure 3. The following are some notable examples of functional 

enrichment within the clusters (FDR<0.001):‘innate immunity’ (cluster 1 and 4),‘Notch 

signaling’ (cluster 6), ‘extracellular matrix organization’ (cluster 7), ‘lipid metabolism’ 

(cluster 8) and ‘axon guidance’ (cluster 9). The full list of all significantly overrepresented 

GO-BP terms (FDR<0.001) is provided in Table SV (online-only Data Supplement).

Gene and pathway prioritization based on network topology

Network topology provides vital information towards the understanding of network 

architecture and performance and allows for the prioritization of genes based on their 

topological characteristics within the network. Thus, we interrogated the topological 

properties of the networks derived from the replicated pathways. Specifically, we 

investigated two key node centrality measures, namely ‘degree’ and “betweenness”, due to 

their reported significance in biological networks as drivers for gene/protein essentiality (see 

online-only Data Supplement for additional information on ‘degree’ and ‘betweenness’).22 

For this purpose, the replicated pathways were first converted into Reactome functional 

interaction networks (conversion was successful for 29 pathways, with the exclusion of 

‘collagen formation’, ‘metabolism of polyamines’ and ‘organic cation anion zwitterion 
transport’ pathways) and subsequently analyzed for the above two node centrality measures. 

Figure 4 depicts the ‘betweenness’ centrality measures for a merged network derived from 

two pathways related to cell-cell interactions (‘NCAM signaling for neurite outgrowth’ and 

‘CRMPs in Sema3a signaling’). In this network, the NCAM1 and Fyn proteins display large 

‘betweenness’ centrality and act as bridges connecting multiple other proteins in the 

network. Some additional genes with GWAS association p<0.001 that occupy potentially 

critical positions (betweenness > 100) in a subset of the replicated pathways include FURIN 
(component of ‘degradation of extracellular matrix’, ‘extracellular matrix organization’, 
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‘signaling by NOTCH1′ pathways), MMP1 (‘degradation of extracellular matrix’ and 

‘extracellular matrix organization’ pathways), and RPS6KA5 (‘Toll receptor cascades’ and 

‘NCAM signaling for neurite outgrowth’ pathways). Results for the remaining pathways are 

shown in Figure SVII and Table SVI (online-only Data Supplement).

Discussion

Despite the recent successes of large GWAS meta-analyses1, 2, the genetic architecture of 

CAD remains poorly understood and the identified loci explain a small proportion of genetic 

risk. By integrating GWAS data with expertly curated databases of core human pathways as 

well as gene and reaction-based functional networks, we sought to obtain novel insights into 

the potential causal processes of coronary atherosclerosis. Additionally, the large size of the 

discovery population and replication sample (25,000 CAD cases and 66,000 controls) and 

the two-step discovery-replication strategy increases confidence in the results. The current 

analysis implicates 32 core human pathways representing 9 distinct biologic processes as 

being most etiologically relevant to CAD.

Notably, a number of replicated pathways from the two-stage GWAS analysis strategy 

converged on processes regulating cellular growth, migration and proliferation, such as the 

‘Signaling by TGF-β receptor’ and ‘Signaling by PDGF’, pathways previously intensively 

investigated for their functional role in coronary atherosclerosis. By combining GWAS-

based findings with such a priori information we obtained evidence that genetic variation in 

a critical number of genes representing these pathways contribute to the heritability of CAD. 

Moreover, these data support hypotheses that alterations in these pathways are potentially 

causally related to CAD. Specifically, TGF-β is known to control cell proliferation, cell 

migration, matrix synthesis, wound contraction, calcification and the immune response, all 

of which are major components of the atherosclerotic process23. PDGF is expressed in every 

cell type of the atherosclerotic arterial wall, as well as in infiltrating inflammatory cells24 

and plays a key role in the migration of vascular smooth muscle cells from the media into 

the intima and their subsequent proliferation. Although both pathways have been studied in 

animal models, animal data are often conflicting or inadequate and there are no data related 

to modulation of these pathways in humans. A number of pathways related to the integrity of 

the extracellular matrix were also highly significant including ‘Extracellular matrix 

organization’, ‘degradation of the extracellular matrix, and ‘Cell Extracellular matrix (ECM) 

interactions’. The ECM is responsible for maintaining not only the structural integrity of 

vessel wall plaques, but also participates in several key events such as cell migration, 

lipoprotein retention and thrombosis that are critically linked to plaque stability25.

Two of the axon guidance pathway sub-classes, ‘CRMPs in Sema3 signaling’, and ‘NCAM 

signaling for neurite out-growth’ also replicated. The axon guidance pathways modulate 

diverse biological phenomena including cellular adhesion, migration, proliferation, 

differentiation, survival and synaptic plasticity through the participation of highly conserved 

families of guidance molecules including netrins, slits, semaphorins, and ephrins, and their 

cognate receptors26. Neural guidance cues such as netrin-1 and semaphorins have important 

roles outside the nervous system. Moore et al. provide compelling evidence that netrin-1 is 

secreted by macrophage foam cells in atherosclerotic plaques and acts to inhibit emigration 
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of these cells out of lesions by causing dysregulation of the actin cytoskeleton27. Oksala et 
al. reported that NTN1 is downregulated in atherosclerotic plaques and its expression 

correlates negatively with inflammatory markers and M2 signals28. Like netrin-1, 

semaphorin 3A, encoded by SEMA3A, one of the top ranked genes in this analysis, is also 

expressed in coronary artery endothelial cells and potently inhibits chemokine-directed 

migration of human monocytes29, 30. The present study also provides further supportive 

evidence for a causal role of innate immunity in atherosclerosis and/or plaque rupture with 

significant pathways including both ‘Toll receptor cascades’ and ‘initial triggering of 

complement’. Innate immune responses mounted by macrophages and other immune cells 

recruited to the arterial wall in response to an inflammatory challenge have a major role in 

the initiation of atherosclerosis31.

An important advance encompassed in the current work is our further examination of the 

topological characteristics of genes comprising the replicated gene-sets and the potential 

implication of topology on biological function. Specifically, we applied the Reactome FI 

tool to identify gene-sets related to biological processes such as innate immunity, cell 

adhesion, and lipid metabolism that were further reorganized into functionally interacting 

networks and sub-network clusters demonstrating a high degree of inter-connectedness. 

Network clustering, followed by pathway enrichment analysis on the identified clusters via 

Gene Ontology, generated new insights on interrelationships among the enriched pathways, 

not available through our initial traditional gene-set analysis. For example, whereas the lipid-

metabolizing genes were largely concentrated in a single cluster (cluster 8), genes related to 

innate immunity were, by contrast, distributed within three separate clusters (clusters 0, 1, 

4), along with other biological processes, highlighting the possibility of extensive 

interactions among these processes. Lastly, through analysis of such networks, we were 

further able to evaluate the possible criticality of genes in network function, based on 

the‘degree’ and ‘betweenness’ centrality properties of the network genes.

Collectively, these additional analytic approaches provide important insights into the 

interrelationships among genes that are not usually available through conventional gene-set 

enrichment analysis, and could assist in the formation of testable hypotheses on areas of 

robustness and vulnerability in functional networks otherwise not intuitively evident. For 

example, topological analysis implicated a potential role for the axonal growth related 

pathways in CAD with NCAM1 (neural adhesion molecule 1) being a major hub in a 

network including plexins (PLXNA1, PLXNA2), neuropilin (NRP1) as well as adhesion 

molecules (CNTN2) and several members of the collagen family relevant to the extracellular 

matrix of the vessel wall (Figure 4). These data support the concept that neuronal guidance 

cues have important roles in both arteriogenesis32, 33 and atherosclerosis by regulating 

macrophage retention in plaques27, 29, 30. Other studies demonstrate that semaphorin 3A and 

its receptors, neuropilin-1 and -2, plexins A1/A2/A3 are highly expressed in human 

monocyte derived macrophages and play a role in induction of macrophage apoptosis34.

Despite these plausible observations, we are cognizant that ‘betweenness’ is but only one of 

several network centrality measures that could play critical roles in network function. As 

both fields of network biology and network pharmacology are currently evolving, our 

findings should be considered more as hypotheses-generating rather than conclusive 
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evidence of the importance of one gene or one pathway over another. Functional testing is 

necessary as the next step, and can take several forms, including (i) overexpression or 

knockdown of medium to high ‘betweenness’ genes in target pathways (e.g. NCAM1, FYN, 

for the network in Figure 4) in CAD-relevant cell models (e.g. human coronary artery 

endothelial or smooth muscle cells, macrophages, etc.) and to interrogate their effects on cell 

function (cell migration, lipid accumulation, etc.); (ii) testing the effects of candidate genes 

(e.g. NCAM1, FURIN) in knockout or overexpression mouse models (generated by somatic 

manipulation or transgene creation) on lesion formation (similar to studies on candidate 

GWAS genes for lipoprotein metabolism35-38); (iii) statistical epistasis analysis, limited to 

genes within a replicated pathway, to uncover functionally important interactions underlying 

the genetic basis of atherosclerosis, and (iv) prioritizing gene products from replicated 

pathways based on the availability of pharmacologic agents against them, and testing these 

for potential benefits in animal models of atherosclerosis (successfully demonstrated in 

identification of memory-modulating drugs39). We hope our approach stimulates extensive 

further discussion on how to experimentally interrogate CAD related networks and 

pathways.

We acknowledge potential caveats pertaining to this study. First, the number of pathways 

identified and replicated was modest but the pathways are biologically plausible. In the 

discovery analysis, 85 of the 639 (13%) pathways tested were significant at p<0.05 (and 

FDR <25%) with at least 50% of the genes in any given pathway being individually 

significant at a p<0.05. A total of 32 of these 85 (37%) pathways, achieved replication, a 

number somewhat lower than expected (75%) given the FDR threshold used in the discovery 

phase to select pathways for testing in the replication sample. This may reflect the less 

stringent criteria for age of onset of CAD cases applied in some of the replication studies as 

well as study-specific differences in inclusion/exclusion criteria and adjudication of 

outcomes, leading to increased sample heterogeneity1. Our study also highlights several 

generic issues that currently impose limitations on the conduct and interpretation of pathway 

analyses40. Some of these issues pertain to (i) the mapping of SNPs to genes, (ii) choosing 

the optimum ‘pathway analysis’ tool for GWAS, (iii) consequences of the permutation 

scheme used in i-GSEA4GWAS, and (iv) the effects of inter-SNP linkage disequilibrium on 

pathway analysis results. An additional caveat is the potential for bias in the network and 

topological analyses due to limitations in the extent and type of experimental data available 

in the source databases. We have provided a further detailed discussion of issues related to 

pathway and network analysis in the Results section of the online-only Data Supplement.

This is an area of emerging methodology and different approaches can yield complementary 

findings. Our findings extend gene-centric verification of CAD GWAS loci41 and those 

recently reported by CARDIoGRAM+C4D, applying Ingenuity network analysis only on the 

top 239 candidate genes 2. In another recently published study, based on this large-scale 

meta-analysis of GWAS studies for CAD, we used a very different approach42. Rather than a 

location based approach to map SNPs to genes, we used eQTL data from CAD-related 

tissues and primary cells to link CAD SNPs to their empirically defined target genes. We 

then created data-driven, tissue-specific gene expression networks from a multitude of 

human and mouse experiments 42. These networks relied heavily on available gene 

expression data and did not involve other types of interactions such as protein-protein 
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interactions or biochemical reactions. In contrast, the present analysis is based on gene-to-

SNP mapping methods for gene set enrichment rather than eQTL data and our analysis of 

the topological relationships among genes in the filtered, replicated pathways using 

Reactome FI and PID cover a more extensive array of molecular interactions, thus revealing 

important aspects that we failed to capture from the gene expression based networks. It is 

encouraging that these two approaches have yielded consistent results in terms of core 

processes related to lipid metabolism, immune system, Notch-HLH transcription and PPAR 

signaling. However, here we have identified additional biologically relevant pathways 

including extracellular matrix integrity, TGF-β signaling and axon guidance, the latter being 

of particular interest given recent laboratory findings27-30, 32-34. Many of these pathways had 

strengths of association comparable to those observed in known pathways related to 

lipoprotein metabolism.

The findings of this extensive but preliminary analysis do not imply causality. However, the 

utility of the integrative approach in elucidating the genetic bases of disease has been 

demonstrated by studies in several complex phenotypes. For example, in an investigation of 

the WTCCC Crohn's disease GWAS data set, only 3 genes at 2 loci showed GWAS 

significant signals but pathway analysis carried out by Wang et al. identified the 20 gene 

IL-12/IL-23 pathway to be associated with Crohn's disease that remained significant even 

when the 2 original loci were removed11, 43. In a similar vein, Holmans et al. provided 

supporting evidence for the immunogenetic origins of Parkinson's disease by identifying the 

regulation of leukocyte/lymphocyte activation and cytokine-mediated signaling as conferring 

increased susceptibility to Parkinson's disease, although none of the SNPs linked to genes 

within these pathways had achieved GWAS significance44. On the contrary, pathway 

analysis studies have had little success in generating new biological insights for other 

disorders including type 2 diabetes. Due to this variability, extensive mechanistic and 

functional validation of pathway and interactome-derived networks at multiple levels will be 

essential. An example of systematic experimental perturbation of interactome networks to 

understand cancer predisposition has been presented in Rozenblatt-Rozen et al.45 and a 

framework for network inference and validation based on gene knock-down has been 

proposed in Olsen et al.46

In summary, the present analysis has provided potential new insights into mechanisms 

underlying atherosclerosis and its clinical sequelae. The results of this investigation suggest 

a possible link between several core human biological processes and CAD, including several 

with and several without a substantial body of prior experimental evidence. Further study of 

the genes within the highlighted pathways may facilitate the development of novel testable 

hypotheses that could ultimately improve our understanding of atherosclerosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GWAS genome-wide association study

CAD coronary artery disease

CARDIoGRAM Coronary Artery DIsease Genome wide Replication and Meta-analysis

GSEA gene-set enrichment analysis

CEU Center d'Etude du Polymorphisme Humain

MSIGDB Molecular Signatures Database v3.1

PID Pathway Interaction Database
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Significance

Genome-wide association studies (GWAS) have identified over 45 loci associated with 

CAD risk but provide limited insight into causal mechanisms. Furthermore, the identified 

signals explain little more than 10% of the predicted heritability of CAD. Part of this 

“missing heritability” It is likely because many more common variants are linked to CAD 

but have not achieved genome-wide significance in GWAS because of small effect size 

and/or lower allele frequency and insufficient sample size. However, even weakly 

associated variants may provide important information regarding the biological basis of 

disease when such variants cluster within a common functional module or pathway. By 

integrating GWAS data with extensive databases on core biological processes, we have 

identified novel biological pathways relevant to the pathogenesis of CAD. These findings 

provide new insight into how genetic variation, interpreted in the context of biological 

processes and functional interactions among genes, may help define the genetic 

architecture of CAD.
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Figure 1. Analytical approach
Schematic of analytical approach as described in detail in Methods section.
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Figure 2. Replicated Reactome pathways for CAD using i-GSEA4GWAS with a 100kb mapping 
interval
Replicated pathways are represented in a hierarchical Reactome pathway diagram. Top-level 

pathways, representing core biological processes, are listed to the left, and sub-levels 

corresponding to each top level are illustrated progressively to the right. The 9 top-level 

pathways that contain at least one replicated pathway (top-level and/or sub-levels) are 

shown. No sub-level pathways are shown to the right of the last replicated pathway. 

Pathways are color coded according to their gene-set enrichment p-value from the 

replication stage as indicated in the legend. A p <0.05 corresponds to an FDR <12.5%. 

Pathways containing less than 10 or greater than 200 genes were not tested. Replicated 

pathways with >50% overlap of genes with other replicated pathways are also identified as 

indicated in the legend.
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Figure 3. Functionally interacting network modules constructed from genes belonging to the 
replicated, CAD-associated pathways
Functional interactions among the genes from all replicated pathways were analyzed and 

clustered by the ReactomeFI tool and visualized in Cytoscape. Genes are represented as 

nodes and interactions among genes are represented as edges. The parent network was 

further analyzed to yield sub-network clusters; each cluster is shown separately and color 

coded for clarity. Inter-cluster connectivity is exemplified in red for cluster 4. The top GO-

BP terms that are enriched in each cluster are listed in the blue boxes. For each cluster, all 

terms are at FDR<0.0001 and contain a minimum of 10 genes (unless otherwise indicated in 

parentheses). A maximum of 10 GO-BP terms are shown for each cluster. Genes that were 

not linked to at least one other gene were excluded from the network diagram.
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Figure 4. Topology based network analysis in replicated pathways
Topological relationships among genes are shown for a merged Reactome functional 

interaction network created in Cytoscape from two replicated pathways associated with cell-

cell interactions (NCAM signaling for neurite outgrowth and CRMPs in Sema3a signaling). 

Genes (nodes) in the network are color coded by their replication p-values (deep red, 

p<0.001; lighter red, 0.001<p<0.01; lightest red, 0.01<p<0.05; white, p>0.05) and sized by 

their “betweenness” network centrality score (calculated via Centiscape 2.0). The individual 

gene names and their “betweenness” scores are listed beside the network diagram. 

Betweenness scores are not calculated for genes that do not connect to at least one other 

gene in the network (these genes are indicated with #N/A for betweenness).
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Table 1
Demographics of Discovery & Replication Cohorts

GWAS Data Set Number Cases/controls Age (mean±SD) Cases/controls % male Cases/controls % MI cases

Stage 1 Studies

OHGS_A 921/994 48.2±7.0/74.9±4.9 78.1/54.6 54.6

OHGS_CCGB-B 2,688/1,819 49.8±7.7/74.8±5.4 75.1/49.0 59.8

DUKE_2 1,200/648 56.7±9.7/63.3±8.7 69.4/42.0 48.0

GerMIFs I 875/1,644 50.2±7.8/62.6±10.0 50.6/49.2 100

GerMIFs II 1,222/1,298 51.4±7.5/51.2±11.9 66.9/51.7 100

GerMIFs III (KORA) 1,157/1,748 58.6±8.7/55.9±10.7 79.9/51.1 100

WTCCC 1,926/2,938 49.8±7.7/N/A 79.3/50.0 71.5

Total Stage 1 9,889/11,089

Stage 2 Studies

ADVANCE 278/312 45.8±6.2/45.3±5.7 42.1/41.0 50.4

CADomics 2,078/2,952 60.8±10.1/55.3±10.8 78.1/49.5 58.3

CHARGE 2,287/22,024 60.0±7.9/63.1±8.0 66.6/40.4 48.0

deCODE CAD 6,640/27,611 74.8±11.8/53.7±21.5 63.7/38.1 54.7

LURIC/AtheroRemo 1 652/213 61.0±11.8/58.3±12.1 79.7/54.0 71.9

LURIC/ AtheroRemo 2 486/296 63.7±9.4/56.4±12.7 76.6/51.4 79.0

MedStar 874/447 48.9±6.4/59.7±8.9 67.0/45.4 48.1

MIGen 1,274/1,407 42.4±6.6/43.0±7.8 62.8/60.1 100

PennCATH 933/468 52.7±7.6/61.7±9.6 76.3/48.1 50.3

Total Stage 2 12,501/55,730

Total Stage 1 & 2 25,491/66,819
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