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RESEARCH PAPER

Genetic and microbial determinants of azoxymethane-induced colorectal tumor 
susceptibility in Collaborative Cross mice and their implication in human cancer
Dan Lia,b*, Chenhan Zhonga,c*, Mengyuan Yanga*, Li Hec,d, Hang Changc,e, Ning Zhua, Susan E Celnikerc, 
David W Threadgillf,g, Antoine M Snijdersc,e, Jian-Hua Mao c,e, and Ying Yuana,h,i

aKey Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical 
Sciences, Hangzhou, ZJ, China; bDepartment of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 
Hangzhou, ZJ, China; cBiological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; dDepartment of 
Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China; eBerkeley Biomedical Data Science Center, Lawrence Berkeley National 
Laboratory, Berkeley, CA, USA; fTexas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA; 
gDepartment of Molecular and Cellular Medicine and Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 
USA; hZhejiang Provincial Clinical Research Center for CANCER, Hangzhou, ZJ, China; iCancer Center, Zhejiang University, Hangzhou, ZJ, China

ABSTRACT
The insights into interactions between host genetics and gut microbiome (GM) in colorectal tumor 
susceptibility (CTS) remains lacking. We used Collaborative Cross mouse population model to identify 
genetic and microbial determinants of Azoxymethane-induced CTS. We identified 4417 CTS-associated 
single nucleotide polymorphisms (SNPs) containing 334 genes that were transcriptionally altered in 
human colorectal cancers (CRCs) and consistently clustered independent human CRC cohorts into two 
subgroups with different prognosis. We discovered a set of genera in early-life associated with CTS and 
defined a 16-genus signature that accurately predicted CTS, the majority of which were correlated with 
human CRCs. We identified 547 SNPs associated with abundances of these genera. Mediation analysis 
revealed GM as mediators partially exerting the effect of SNP UNC3869242 within Duox2 on CTS. 
Intestine cell-specific depletion of Duox2 altered GM composition and contribution of Duox2 depletion 
to CTS was significantly influenced by GM. Our findings provide potential novel targets for personalized 
CRC prevention and treatment.
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Introduction

Colorectal cancer (CRC) is the third most common 
cancer and the second most common cause of cancer 
death in the United States.1 It is well-documented that 
the risk of developing CRC is influenced by both 
genetic and environmental factors. Approximately 
25% of the CRC patients have a genetic predisposition 
with 5% of CRC being inherited;2–5 about 70% CRCs 
are sporadic, which may be linked to an interaction 
between genetics and environmental factors such as 
dietary habits, cigarette smoking, and alcohol 
consumption,6–8 Genome-wide association studies 
(GWAS) in both humans and mice suggest that non
familial CRC susceptibility results from the interac
tion among multiple small-effect alleles.2,3,5,9,10 About 
100 genetic susceptibility regions related to CRC risk 
have been identified with GWAS.2,3

Strong evidence indicates that the abundance and 
composition of gut microbiome (GM) vary among 
individuals and determine the development of many 
diseases including cancer,11–13 Metagenome-wide asso
ciation studies aim to identify the host microbes that 
are associated with diseases.14 An increasing number of 
studies suggest that the GM is directly involved in 
colorectal carcinogenesis,15–17 Enterococcus faecalis, 
Bacteroides fragilis, Escherichia coli, and 
Fusobacterium nucleatum were found to be enriched 
in the feces of CRC patients and to promote the occur
rence of CRC.17,18 However, understanding the impact 
of host genetics, GM, and their interactions on the 
variability in CRC susceptibility remains limited.19,20 

Direct human studies face a huge challenge due to the 
complex interplay among host genetics and GM in the
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context of uncontrollable environmental exposures 
and lifestyles.

Mouse models have contributed greatly to our 
understanding of cancer biology.21 The azoxy
methane (AOM)-induced CRC mouse model has 
been widely used since AOM induces tumors in the 
distal mouse colon that resemble sporadic CRC of 
the descending colon in humans both histologically 
and molecularly.22,23 Moreover, researchers have 
identified many genetic loci that are susceptible to 
AOM-induced CRC by crossing resistant and sus
ceptible mice.9,10 However, genetic variants distin
guishing these commonly used strains are limited, 
and additional variants that are relevant to human 
CRC are likely missing. The Collaborative Cross 
(CC) mouse resource was established by combining 
the genomes of eight genetically diverse founder 
strains, which contains a level of genetic diversity 
on par with the human population,24–26 The genetic 
variants are randomly distributed across the genome 
and are roughly twice the number of common single 
nucleotide polymorphisms (SNPs) as present in the 
human population.24 Many studies have also 
reported phenotypic diversity including spontaneous 
tumor development across CC mice.27–35

In this study, using CC mice together with an 
AOM-induced CRC protocol, we aimed to identify 
genetic and microbial determinants of AOM-induced 
colorectal tumor susceptibility (CTS) and investigate 
host gene-microbiota interactions contributing to 
colorectal tumorigenesis and their implications in 
human CRC using publicly available datasets includ
ing The Cancer Genome Atlas (TCGA) dataset.

Results

Variation in AOM-induced CTS across 30 CC strains

To investigate AOM-induced CTS, 426 mice across 
30 CC strains were intraperitoneally injected with 5  
mg/kg AOM weekly for six weeks (Figure 1(a)). All 
mice were monitored up to 1 year after the last 
injection. Finally, 355 mice were sacrificed to assess 
colon tumor development. CC008, CC021, CC038 
strains were excluded from study since the number 
of mice in each strain was less than 6. Colorectal 
tumors were observed in 25 out of 27 CC strains 
(Supplemental Table S1). We didn’t observe signifi
cant differences in tumor incidence between male

and female mice as previous studies on common 
laboratory strains.26 Overall, the size of majority of 
tumors was small (about 1 mm of diameter), and 
number of tumors per mouse was few (<5). But we 
found that the incidence of AOM-induced color
ectal tumorigeneses ranged from 100% of mice 
from CC033 and CC057 strains to none of mice 
from CC001 and CC040 strains, suggesting that 
host genetics control AOM-induced colorectal 
tumors. Therefore, the tumor incidence was the 
only phenotype to be focused on. 14 strains whose 
tumor incidence was higher than 25% were defined 
as high CTS group, while the remaining 13 strains 
were defined as low CTS group (Figure 1(b)).

Genetic factors associated with AOM-induced CTS 
and their implication in human CRC

We performed GWAS across 27 CC strains and iden
tified 4417 of 94,909 SNPs significantly associated 
with CTS (p < 10−12) (Figure 1(c), Supplemental 
Table S2), containing 936 know human genes, 334 
of which transcriptionally altered in human CRCs 
using TNMplot36 (Supplemental Figure S1, 
Supplemental Table S3). Additionally, we used 
a cross-validation (leaving one strain out) approach 
to confirm these identified SNPs and candidate genes 
(Supplemental Figure S2). Kyoto Encyclopedia of 
Genes and Genomes (KEGG) revealed that 936 
genes were significantly enriched in cGMP-PKG and 
calcium signaling pathway among others (Figure 1(d), 
Supplemental Table S4). These pathways have been 
reported to play important roles in CRC development. 
To further assess clinical values of 334 candidate CTS 
genes, we clustered CRC patients based on their tran
scriptional expression in cancer and found that CRC 
patients were clustered into two groups that was 
determined by the optimal perceptual separation of 
consensus matrix in TCGA Colon Adenocarcinoma 
(TCGA-COAD) dataset (Figure 2(a), Supplemental 
Figure S3), which are significantly associated with 
overall survival (OS) (Figure 2(b)). Importantly, 
applying this pre-built classifier model to the valida
tion cohort (GSE39582) subtyped patients into two 
groups that had significant differences in OS with the 
same directionality (Figure 2(c)). These findings sug
gest that the candidate genes identified in CC mice 
have clinical implications in human CRC.
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Gut microbiota community structures correlated 
to CTS

Strong evidence showed that the GM plays 
a vital role in CRC development.17,18,37 

Therefore, we next determined whether any

specific members of the early life GM could 
serve as biomarkers for predicting AOM- 
induced CTS. The reads from 16S rRNA 
sequencing analysis of fecal samples collected 
before AOM treatment from all 27 CC strains 
were mapped to 4364 OTUs corresponding to

Figure 1. Identification of genetic variations and candidate genes associated with colorectal tumor susceptibility in CC mice. (a) 
Illustrative graphics for study design. (b) AOM-induced colorectal tumor incidence in 27 CC strains. CC strains were divided into high 
susceptibility and low susceptibility groups based on their incidence. (c) Manhattan plot for the genetic association analysis of AOM- 
induced colorectal tumor in CC mice. The – log10(p-value) is shown for SNPs ordered based on genomic position. Representative 
candidate genes located in each QTL are listed. (d) Network plot for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis of candidate susceptible genes.

Figure 2. Subtyping human CRCs based on 334 CTS candidate genes. (a) Consensus clustering model for CRC patient subtypes 
discovery and inference. (b, c) Subtype specific patients in TCGA-COAD (b) and GSE39582 (c) cohort show significant difference in 
overall survival.
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157 bacterial genera (Supplemental Table S5). 
Compared to low CTS group, high CTS group 
had significantly higher richness and diversity of 
microbiota assessed by Shannon, Simpson and 
Inverse Simpson indices (p < .001, Figure 3(a)). 
Principle coordinates analysis (PCoA) based on 
Bray–Curtis dissimilarity index (beta diversity) 
revealed a significant difference in GM compo
sition and abundance between low and high 
CTS groups (PERMANOVA: p = .001, 
Figure 3(b)).

At the order level, we observed similar commu
nity structures between low and high CTS groups 
(Figure 3(c)). At the genus level, the abundances of 
29 genera were significantly different between high 
and low CTS group (adjusted p < .05, Figure 3(d), 
Supplemental Table S6). To validate these findings, 
we conducted high dimensional class comparisons 
using linear discriminant analysis (LDA) effect size 
(LEfSe) that detected many more differences in the 
predominance of bacterial communities between 
high and low CTS groups. The LDA showed 
a clear alteration of the microbiota characterized 
by significantly higher Allobaculum, Sutterella, and 
Turicibacter levels and lower Roseburia level in 
high CTS group (LDA score > 2, Figure 3(e)). We 
consistently found that Akkermansia, 
Ruminococcus, Desulfovibrio, and Bifidobacterium 
genera were enriched in low CTS group, while 
Blautia, Coprobacillus, and Parabacteroides genera 
were enriched in high CTS group (Figure 3(d,e)). 
According to the bacterial community profiles, 
a hierarchical heatmap indicated that the most sig
nificantly different genera showed different pat
terns between high and low CTS groups 
(Figure 3(f)). Collectively, these findings suggest 
that early life gut microbiota community structures 
are significantly correlated with AOM-induced 
CTS in CC mice.

Identification of a gut microbial signature for 
predicting CTS

To explore the predictive value of the early life GM in 
CTS, we built a random forest classifier to distinguish 
the high and low CTS groups at the genus levels. We 
carried out 10-fold cross-validation with five repeats 

to evaluate the importance of genera. The optimal 
model was created utilizing 16 genera (Desulfovibrio, 
Akkermansia, Bacteroides, Sutterella, Roseburia, 
Ruminococcus, Lactococcus, Clostridiales_unclassi 
fied, Parabacteroides, Bifidobacterium, Alloba 
culum, Rikenellaceae_unclassified, Coprobacillus, 
Bacteroidales_unclassified, Clostridium, Dorea), 
which produced the best discriminatory power 
(Figure 4(a)). Random forest classification based on 
the relative abundance levels of 16 genera resulted in 
an area under the Receiver Operating Characteristic 
curve (AUC) of 0.933 (Figure 4(b)). These results 
suggest that specific gut microbes in early life may 
serve as biomarkers for predicting risk susceptibility 
to AOM-induced colon tumors.

To further understand the microbial contribu
tions to CTS, we examined the microbiota network 
and bacterial function prediction. We constructed 
a cross-niche microbial network for each CTS 
group and found large differences in the microbial 
networks (Figure 4(c)). In low CTS group, the 
interactions among genera occurred mostly within 
same family with small cluster size, whereas in high 
CTS group, the gut microbiota formed two densely 
connected modules composed of diverse genera 
(Figure 4(c)). One module was centered on “bene
ficial microbiota”, including Ruminococcus, 
Akkermansia, and Bifidobacterium. The other 
module was centered on Bacteroides, Sutterella, 
and Parabacteroides. This result suggests that 
there are less microbial connections in low CTS 
mice than in high CTS mice, indicating that host 
genetics associated with CTS impact microbial 
networks.

We further performed Tax4Fun2 analysis to pre
dict and test the difference in metagenome func
tions of KEGG pathways between high and low 
CTS groups. The low CTS group was enriched 
with pathways associated with antigen processing 
and presentation, progesterone-mediated oocyte 
maturation, GABAergic synapse, and apoptosis. 
In contrast, the pathways related to chemical car
cinogenesis, transcriptional misregulation in can
cer, p53 signaling pathway, colorectal cancer, and 
NF-kappa B signaling pathway increased in high 
CTS group (adjusted p < 0.05, Figure 4(d)). Taking 
all findings together, we conclude that host GM
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Figure 3. Differences in gut microbiome between high and low CTS group. (a) Alpha diversity boxplot between high and low CTS 
group. (b) PCoA using Bray–Curtis metric distances of beta diversity. The p value was obtained from PERMANOVA test of significant 
difference between low and high CTS groups based on Bray–Curtis dissimilarity. (c) Difference in abundance at order level between
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plays a critical role in the susceptibility to AOM- 
induced colorectal tumor in CC mice.

GM as a mediator between genetic variants and CTS

To investigate whether genetic variations control 
CTS through GM, we first identified the genetic 
variants associated with the 16 genera that predicted 
CTS (Supplemental Table S7). GWAS analysis dis
covered 547 SNPs significantly associated with the 
abundance of 5 or more of 16 genera (p < 10−6, 
Figure 5(a–c), Supplemental Table S8). Among 
them, 47 SNPs overlapped with CTS SNPs 
(Figure 5(d)). 5 (DUOX2, PDE4D, WASF1, SOBP 
and SLC39A11) of corresponding genes for these 47 
SNPs were among 334 CRC transcriptionally altered 
genes. To further investigate the potential causal 
links between GM and CTS, we then performed 
mediation analysis (Figure 5(e)) to determine 
whether genetic variants indirectly contribute to 
CTS by controlling the abundance of the 16 genera. 
Mediation analysis revealed that Ruminococcus, 
Akkermansia, Allobaculum, Bacteroides, Sutterella, 
and Bifidobacterium function as mediators for the 
effect of SNP UNC3869242 within Duox2 on CTS 
(Figure 5(f)). Similar findings were observed for 
other 4 gene SNPs (Supplemental Figure S4). 
These results indicate that the effect of genetic var
iants on CTS is at least partially mediated by the 
GM, suggesting that the host genetics and GM inter
act to play an important role in CTS.

GM composition alteration in Duox2 deficient mice

Duox2 is one of five candidate genes that may 
control both CTS and the abundance of many 
genera and are transcriptionally altered in human 
CRCs. Therefore, we next investigated the role of 
Duox2 in CRC development and GM composition.

DUOX2 is a critical modulator in mutualistic 
host-microbiota interactions that are fundamental 
in maintaining gut immune homeostasis, which 
has been reported to be involved in colitis- 
associated colorectal tumorigenesis.38,39 Our find
ings in CC mice suggest contribution of Duox2 to 
colorectal tumor development is possible via mod
ulation of the GM composition. Experimental 
models of colitis-associated tumorigenesis are 
indispensable to improve our understanding of 
intestinal pathophysiology and host-microbiota 
interactions. Inflammation-dependent tumor 
growth can be investigated by combining the 
administration of AOM with the inflammatory 
agent dextran sodium sulfate (DSS) in drinking 
water. AOM/DSS Chemically induced model that 
replicates the aspect of colitis associated tumori
genesis is widely used.40,41 The knockout of Duox2 
gene in mice causes both hypotension and brady
cardia basally.39 To exclude the possibility that 
these deficiencies confound our findings, we gen
erated intestine-specific Duox2-deficient mice by 
crossing Duox2fl/fl mice with Villin-Cre transgenic 
mice, which specifically deleted Duox2 from intest
inal epithelia (denoted as Duox2 CKO mice) to 
investigate the effect of Duox2 deficiency on com
position of GM (genotype by PCR shown in 
Supplemental Figure S5). 16S rRNA sequencing 
analysis of the feces from Duox2 wildtype (WT) 
and CKO mice (Figure 6(a)) revealed that deple
tion of Duox2 in intestinal cells significantly altered 
both alpha and beta diversity in the GM (Figure 6 
(b,c)). Additionally, we observed significant taxo
nomic differences in the feces microbiome between 
Duox2 WT and CKO mice (Figure 6(d), 
Supplemental Table S9). The relative abundance 
of Bifidobacterium and Akkermansia genera were 
significantly reduced, while the abundance levels of 
Bacteroides and Sutterella genera were significantly 
increased in CKO mice compared to WT mice

high and low CTS group. (d) Volcano plot showing genera enriched in high and low CTS group. Each dot represents a single genus. 
Genera significantly enriched in high and low CTS group are indicated by red and green dot, respectively (False discovery rate < 0.05 
and | log2(FC) |>1.0). (e) Histogram representation of differentially abundant genus between high and low CTS group identified by 
Linear Discriminant Analysis (LDA) effect size (LEfSe). 26 genera were significantly enriched for their respective groups (Kruskal-Wallis 
test, p < 0.05, LDA score > 2). (f) Cladogram representation of 26 genera from Figure 3(e). The green highlighted the genera enriched 
in low CTS group; the red highlighted the genera enriched in high CTS group.
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Figure 4. The core genera for predicting CTS and their related function analysis. (a) Random-forest analysis identified bacterial taxa 
that accurately predict high and low CTS. Biomarker taxa are ranked in descending order of importance to the accuracy of the model. 
The inset represented ten-fold cross-validation error as a function of the number of input genera used to differentiate high and low
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(Figure 6(d,e)). Moreover, we found a large differ
ence in the microbial networks between Duox2 WT 
and CKO mice. Contrary to weaker gut microbiota 
interactions in Duox2 WT mice, the gut microbiota 
in Duox2 CKO formed two densely connected 
modules composed of diverse genera 
(Figure 6(f)). One module was centered on “bene
ficial microbiota”, including Lactobacillus and 
Bifidobacterium. The other module was centered 
on Bacteroides, Sutterella, and Parabacteroides, 
which are reported to be related to CTS. Thus, we 
considered this module to consist of “pathogenic 
microbiota” (Figure 6(f)). Collectively, we conclude 
that Duox2 may regulate the composition of GM.

Interplay between DUOX2 and GM contributes to CTS

We next investigated whether interplay between 
DUOX2 and GM contributed to CTS. Duox2 WT 
and CKO mice were administered with AOM and 
DSS to establish a colitis-associated tumorigenesis 
(Figure 7(a)). There was similar CTS between CKO 
and WT mice evidenced by the number, size, and 
tumor load of macroscopic polyps between CKO 
and WT mice (p > .05, Figure 7(b), Supplemental 
Figure S6). Since significant alteration of the GM 
composition was found in Duox2 deficient mice, 
we investigated the influence of GM on contribu
tion of Duox2 loss to CTS. Therefore, before treat
ment of AOM and DSS, mice were treated with 
antibiotic (ABX), 2 weeks prior to induction with 
AOM and DSS. The efficacy of ABX was verified 
(Figure 7(c)). After AOM and DSS administration, 
there was less CTS in Duox2 CKO mice than WT 
littermates evidenced by significant lower number, 
size, and tumor load of macroscopic polyps (p  
< .05, Figure 7(d), Supplemental Figure S6). These 
data demonstrated that the contribution of 
DUOX2 depletion to colon tumorigenesis is influ
enced by GM.

To discover underlying mechanisms by which 
Duox2 contributes to colorectal tumor development, 
we conducted RNA-Seq analysis of colon-derived 
RNA from Duox2 WT and CKO mice. Depletion 
of Duox2 led to the differentiated expression of 48 
genes (adjusted p values < .05 and |log2(FC)| > 1.0; 
Supplemental Figure S7, Supplemental Table S10). 
Gene set enrichment analysis (GSEA) revealed that 
the knockout of Duox2 resulted in downregulation 
of the Wnt/β-Catenin, inflammatory response and 
interferon-g response pathways and increased acti
vation in reactive oxygen species and oxidative 
phosphorylation pathways (Figure 7(e,f)), all of 
which play an important role in both tumor devel
opment and gut microbiome composition.

Evaluation of DUOX2 and its associated gut 
microbiota in human CRC

To evaluate DUOX2 and its associated gut micro
biota in human CRC, we conducted a series of 
bioinformatics analysis. In the GMrepo database, 
we found that compared with healthy donors, 
patients with CRC had significantly lower levels of 
Bifidobacterium, Ruminococcus, and Akkermansia 
(p < 0.001), and higher levels of Allobaculum, 
Bacteroides, and Sutterella (p < .001, Figure 8(a)), 
consistent with our findings in CC mice.

In The Cancer Microbiome Atlas (TCMA),42 

we found that DUOX2 expression is significantly 
negatively correlated with Bacteroides abundance 
(Figure 8(b), Supplemental Table S11). To 
explore the association of DUOX2 expression 
with the GM community, 106 cases of CRC 
patients were divided into two groups based on 
the median of DUOX2 expression in CRC tis
sues, defined as DUOX2 high and low expres
sion groups (Supplemental Table S11). PCoA 
analysis revealed a significant difference in GM 
community between the two groups (p = .001, 

CTS. The dashed red line indicated the optimal cutoff for number of genera selected in the random forest predictive model. (b) ROC of 
the random forest model constructed using the 16 genera. The 95% confidence intervals were shown as shaded areas. (c) Microbial co- 
occurrence network was constructed based on samples of the low (n = 180, left panel) or high (n = 162, right panel) CTS group. The 
network connections were based on correlation test (p < 0.05 and Pearson’s correlation coefficient > 0.5). Genera nodes were colored 
according to families. (d) TaxFun2 analysis defines the difference of KEGG pathways between high and low CTS group.
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PERMANOVA, Figure 8(c)). The boxplot 
showed that the abundance of Akkermansia 
and Prevotella genera was significantly higher, 
while the abundance of Bacteroides and 

Parabacteroides genera was significantly lower 
in high group than that in low group (p < .05, 
Figure 8(d), Supplemental Table S11), consistent 
with our findings in Duox2 CKO mice.

Figure 5. Gut microbiome partially mediates the effects of genetics on CTS. (a) The Venn diagram showed the microbiome-GWAS 
profile of 16 selected genera. Each compartment indicated the included selected genera and the number of microbiome-related SNPs 
in it. A SNP is considered related to microbiome when p < 10−6. All number values were included. (b) Circular visualization of 
chromosomal positions for all SNPs related to selected only genetic variants (SNPs) significantly associated with both the abundance 
of the five and above of 16 genera and colorectal tumorigenesis susceptibility. The outer layer shows chromosome location and 
candidate genes within each genetic locus are listed on the outside of the outer ring. The second layer (blue) shows SNPs related to 
colorectal tumorigenesis susceptibility (Mann-Whitney U test, p < 10−6). The inner layer (red) shows the microbiome related SNPs 
for ≥ 5 genera. (c) Boxplot showing Duox2 (UNC3869242)-specific association with Bacteroides, Allobaculum, Sutterella, Ruminococcus, 
Akkermansia, and Bifidobacterium abundance according to its genotype. (d) Venn diagram showing 47 SNPs related to selected only 
genetic variants (SNPs) significantly associated with both the abundance of the five and above of 16 genera and colorectal 
tumorigenesis susceptibility. (e) Microbial genera mediate the effect of host genetics on colorectal tumorigenesis susceptibility. (f) 
Six microbial genera were identified as mediators between genetic variants and colorectal tumorigenesis susceptibility. The estimate 
score and 95% CI for microbial genera associated with colorectal tumorigenesis susceptibility was calculated by mediation analysis.

GUT MICROBES 9



Discussion

Using the CC mouse population-based model 
together with the AOM-induced colorectal tumor 
model, we deciphered the contribution of host 
genetics, microbiome, and their interactions to

colorectal cancer risk. Many genetic and microbial 
factors were identified to control AOM-induced 
CTS. We provide evidence for interactions between 
host genetics and GM, and meditation effects of 
microbes on the genetic contribution to CTS in

Figure 6. Depletion of Duox2 alters gut microbiome structure in mice. (a) The microbiota structure of Duox2 fl/fl (WT) and Duox2fl/fl : 
Vilin-cre (CKO) mice. (b) Alpha diversity boxplot between WT and CKO group. (c) Principal component analysis and maximally 
collapsing metric learning of WT and CKO. (d, e) Differentially abundant taxa between low and high group analyzed by Linear 
Discriminant Analysis (LDA) effect size (LEfSe) were projected as histogram (d) and cladogram (e). (f) Microbial co-occurrence network 
constructed based on samples of WT and CKO group. The network connections are based on correlation test (p < .05 and Pearson’s 
correlation coefficient > 0.5). Edge connection between genera is shown in black lines. Genera nodes are colored according to families.
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Figure 7. Interplay of Duox2 with gut microbiota and contributed to colorectal tumorigenesis susceptibility. (a) Duox2fl/fl (WT) and 
Duox2fl/fl Villin-Cre (CKO) mice were challenged with AOM and DSS to establish colitis-associated tumorigenesis, which mimics the 
colitis-related tumorigenesis. (b) After AOM and DSS administration, there is similar colorectal tumorigenesis in CKO mice (n = 14) and
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both population-based and gene knockout mouse 
models. We further demonstrated the genes and 
microbes identified in this CC mouse population 
study have an impact on human CRC.

This study showed that the CC mouse popula
tion, equivalent to a genetically diverse human 
population, provides a useful resource for revealing 
a genetic architecture of AOM-induce CTS. 4,417 
SNPs corresponding to 936 known human genes, 
have been identified to be significantly associated 
with AOM-induced CTS, including the majority of 
the loci identified in previous studies.9,10 Especially 
our findings are comparable to a recent study in 40 
mouse inbred strains,10 consistent with the report 
that CC mice captures 90% of genetic variations in 
laboratory inbred mice.24 The results from the CC 
mice extend the catalog of CTS genes that can be 
used to evaluate human CRC susceptibility. 
Additionally, 75 of 936 genes have been found to 
be associated with human CRCs by GWAS 
(Supplemental Table S3). Moreover, 334 of 936 
genes have transcriptionally altered in human 
CRCs. Genetic variants in Duox2 were found to 
be associated with human CRC through GWAS. 
Moreover, the transcriptional expression of human 
334 genes classified CRC patients into two different 
prognostic groups. These suggest that the findings 
in this CC mouse population study can be trans
lated into humans.

Overwhelming evidence suggests that the GM 
plays a critical role in CRC development.16,18,43 In 
this study, we found that the abundance levels of 16 
genera were significantly associated with AOM- 
induced CTS. The relative abundance levels of 16 
genera predict high or low CTS with AUC of 0.933. 
13 of 16 genera have been reported to be altered in 
human CRC.37,44 Specifically, abundance of 
Bacteroides was elevated in colorectal cancer 
patients,37 consistent with our finding that

Bacteroides was more abundant in high CTS 
group. Increased tumorigenesis has been reported 
in mice colonized with Bacteroides through an IL- 
23-dependent and STAT3-dependent manner 
associated with TH17 activation.45 Bacteroides are 
not all the same – a specific strain of B. fragilis 
produces a toxin that induces IL17. Also, we cannot 
exclude the possibility that there are other non- 
toxigenic strains that may promote tumorigenesis 
via other mechanisms. Bifidobacterium is more 
abundant in the low CTS group, consistent with 
previous reports that Bifidobacterium species have 
anti-cancer effects in CRC.46 Interestingly, 
Bifidobacterium is one of the most used probiotics 
and has also been reported to enhance the efficacy 
of cancer immunotherapies.47 Further characteri
zation of these putative probiotic species identified 
in this study can offer promising potentials for 
preventative and therapeutic treatment of 
human CRC.

DUOX2 is a critical modulator in mutualistic 
host-microbiota interactions, which has been 
reported to be involved in colitis-associated color
ectal tumorigenesis. Many reported studies have 
showed that the gut microbiota engages different 
signaling pathways including MyD88, p38 MAPK 
pathways to induce Dual Oxidase 2 (DUOX2) 
expression in the ileum and colon epithelium.48 

Epithelium is a first line of defense against micro
organisms in the gut. Reactive oxygen species 
(ROS) play an important role in controlling the 
normal gut microbiota and pathogenic bacteria. 
DUOX2 is an important source of hydrogen per
oxide in the small and large intestine, and the gut 
microbiota can induce DUOX2 expression.48 The 
microbiota activates TLR4 which in turn stimu
lates epithelial ROS through DUOX2. Increased 
epithelial ROS production is associated with pro- 
tumorigenic microbiota. Both an altered

WT littermates (n = 14) evidenced by similar the number, size and tumor load of macroscopic polyps between CKO mice and WT 
group. (c) Mice were treated with antibiotics (ABX) two weeks prior to induction with AOM and DSS. The efficacy of ABX was verified. 
(d) After AOM and DSS administration, less colorectal tumorigenesis susceptibility was seen in CKO mice (n = 15) than WT littermates 
(n = 16) via comparing the number, size, and tumor load of macroscopic polyps. (e) GSEA plot showed that conditional knockout 
Duox2 would lead to downregulate Wnt/β-Catenin pathway, inflammatory response and interferon-γ response pathway. (f) GSEA plot 
showed that conditional knockout Duox2 would lead to upregulate reactive oxygen species pathway and oxidative phosphorylation 
pathway.
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Figure 8. Validation of core different abundant taxa and the function of DUOX2 according to public data. (a) Compared with healthy 
donors, patients with colorectal cancer (CRC) had significantly lower levels of Bifidobacterium (p < .001), Ruminococcus (p < .001) and 
Akkermansia (p < .001), while the abundance of Allobaculum (p < 0.001), Bacteroides (p < .001), and Sutterella (p < .001) bacterial
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microbiota and epithelial ROS are essential for 
colonic tumorigenesis.39 In this study, we discov
ered dual functions of DUOX2 on CRC develop
ment, which provides a new insight into 
mechanisms of DUOX2 for tumor development. 
Depletion of DUOX2 significantly altered intest
inal homeostasis through a decrease in “benefi
cial” gut microbes and an increase in “harmful” 
gut microbes. Moreover, we showed that GM 
influences the contribution of DUOX2 depletion 
to colon tumorigenesis in an inflammatory model 
of colon cancer. The interrelationship between 
DUOX2 and tumor-promoting microbiota 
requires a two-pronged strategy to reduce the 
risk of dysplasia in colitis-associated colorectal 
tumorigenesis.49 Although the causal effects of 
other genetic variants on GM and CTS still 
require further investigation, our findings suggest 
that host genetics and GM interactions play an 
important role in CRC development.

While this study successfully identified novel 
targets for CRC prevention and treatment, there 
were some limitations. First, we used 16S rRNA 
gene sequencing to study the metagenomic com
position. A key limitation of 16S rRNA gene 
sequencing is the difficulty in determining the 
exact microbial species. Therefore, we limited our 
analysis to genera level analysis. One specific lim
itation of amplification-based 16S rRNA sequen
cing is the introduction of PCR and/or sequencing 
errors, that may result in sequence classification 
errors, and ultimately the detection of similar, but 
incorrectly identified microorganisms, or the mis
taken belief that new microorganisms have been 
found. To address this problem, we used OTU 
clustering for this study since we explored the 
large-scale biodiversity across CC strains to link 
the microbiome to colon tumor susceptibility. 
Future studies should incorporate metagenomic 
sequencing to detect less abundant genera that 
may play an important role in CTS. Second, our

study focused on the role of Duox2 in mediating 
the effects of GM on CTS. In this study, we identi
fied additional candidate genes that are likely to 
contribute to CTS which should be further 
investigated.

In conclusion, we used the population-based CC 
mouse model together with AOM-induced CRC 
protocol to identify many existing and new genetic 
and microbial determinants of AOM-induced CTS 
and used a conditional mouse knockout model to 
validate the importance of host gene-microbiota in 
colorectal tumorigenesis. DUOX2 plays dual func
tional roles in CRC development, so clinically tar
geting DUOX2 for the treatment of gut associated 
diseases must consider both the autonomous and 
non-autonomous functions. Overall, the findings 
in this study shed light on directions for future 
applications in personalized CRC prevention and 
treatment.

Materials and Methods

CC mice and AOM treatment

All CC mice were purchased from the Systems 
Genetics Core Facility at the University of North 
Carolina. Mice were acclimated at the Lawrence 
Berkeley National Laboratory (LBNL) for 8 weeks 
prior to the initiation of breeding. Offspring were 
weaned at 21 days of age. Mice were raised in 
groups of 2–5 mice per cage in individually venti
lated cages in a light-controlled room with 12:12 h 
light/dark cycle. All mice were maintained on stan
dard chow (PicoLab Rodent diet 5053). Since 10  
mg/kg of AOM is lethal to some CC strains,50 426 
11-week-old mice were injected intraperitoneally 
once weekly with 5 mg/kg of AOM (Sigma, 
St. Louis, MO) for six weeks for tumor induction 
and were monitored for one year (Figure 1(a)). 
Finally, a total of 355 surviving mice from 30 CC 
strains were used in this study (Supplemental Table

abundance significantly increased. (b) DUOX2 was significant negatively with Bacteroides abundance based on The Cancer 
Microbiome Atlas (TCMA) database. (c) 106 cases of colorectal cancer patients were divided into two groups with high expression 
(High) and low expression (Low) with the median of DUOX2 expression in colorectal cancer tissues. It was found that there was 
a significant difference in gut microbiome community between the two groups. Bray–Curtis distance for PCoA analysis and 
PERMAOVA for difference testing. The PCol interpretation rate was 33%, the PCo2 interpretation rate was 14%, and the PERMAOVA 
test (p = 0.001). (d) Boxplot showed that the abundance of Akkermansia and Prevotella was significantly higher in the high group than 
that in low group, while the abundance of Bacteroides and Parabacteroides were significantly lower in high group than that in low 
group.
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S1). Three strains with less than 6 mice were 
excluded from analysis. This study was carried 
out in strict accordance with the Guide to the 
Care and Use of Laboratory Animals of the 
National Institutes of Health. The Animal Welfare 
and Research Committee at Lawrence Berkeley 
National Laboratory approved the animal use 
protocol.

GWAS on CTS

GWAS analysis has been described as 
previously.30,50,51 Briefly, CC strains were 
divided into high and low CTS groups based 
on tumor incidence. At each SNP, the Chi- 
Square test was used to assess the significance 
of associations between tumor susceptibility and 
allele types. p < 10−12 was criteria for signifi
cance based on permutation analysis. Putative 
candidate genes were defined as those genes 
containing a significant SNP within the bound
aries of the gene sequence (http://www.infor 
matics.jax.org/).

16S rRNA sequencing analysis of fecal samples

Fecal samples were collected from individual cages 
16 h following cage change prior to the first AOM 
injection and were stored at −80°C until microbial 
analysis. At least four independent cages were 
sampled for each CC strain. We extracted genomic 
DNA from the homogenized fecal samples, ampli
fied 16S rRNA by PCR using primers targeting the 
V4 region, performed 16S rRNA sequencing by 
Illumina MiSeq and analyzed the data as previously 
described.30,50,51 Briefly, the sequence reads were 
quality-filtered using QIIME2 (version 2019.7).52 

Filtered reads were clustered into operational taxo
nomic units (OTUs), using an open reference pick
ing process with a threshold of 97% similarity to 
the reference database (Greengenes OTUs (16S) 
v13_8). Mouse 16S rRNA sequence data from the 
CC mouse cohort, which was used in our previous 
study,30 is available on OSF (https://osf.io/jbt5g/).

Association analysis of metataxonomics with CTS

The PERMANOVA method was used to test for 
differences in bacterial community composition, as

quantified by weighted UniFrac distance between 
samples. Relative abundance was assessed using the 
most specific taxonomic assignment available for 
each OTU. Taxa were selected for testing if the 
mean abundance exceeded 1% among the samples 
to be analyzed. Differences in the alpha diversity 
and microbiome features between high and low 
CTS groups were assessed by Mann–Whitney test 
and/or linear discriminant analysis of effect size 
(LEfSe). The random forest classification model 
with 10 cross-validation iterations was used to 
evaluate the effectiveness of the microbial signature 
for predicting CTS. The microbial co-occurrence 
networks were established using Spearman’s rank 
correlations and visualized in ggplot2 package (ver
sion 3.2.1). Tax4Fun2 (version 1.1.5) was used to 
predict metagenome functional content and test 
the difference of Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways between high 
and low CTS groups.

Mediation analysis of GM between genetic variants 
and CTS

Mediation analysis is a statistical model to deter
mine whether the relationship between two vari
ables (e.g., genetic variant and CTS) is mediated 
through a third variable (e.g., GM), which was 
performed using mediation package (version 
4.4.7) and visualized using ggplot2 package (ver
sion 3.2.1) in R (version 3.5.0).

Conditional knockout mice and AOM/DSS-induced 
colorectal tumorigeneses

We generated intestine-specific Duox2-deficient 
mice by crossing Duox2 floxed (Duox2fl/fl) mice 
with Villin-Cre transgenic mice, resulting in dele
tion of Duox2 exon 4–6 in the intestine cell. The 
feces were collected from Duox2fl/fl, Villin-Cre 
(CKO) and Duox2fl/fl (WT) mice for 16S rRNA 
analysis. The GM composition was compared 
between CKO and WT mice. To minimize the 
effect of recolonization of the GI tract on tumor 
development after antibiotic (ABX) clearance of 
the microbiome, we used the AOM/DSS protocol 
to accelerate colorectal tumor development. For 
AOM/DSS-induced colorectal tumorigeneses, 
CKO and WT mice at 8-weeks of age were given
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an initial intraperitoneal injection of 10 mg/kg 
AOM. After 1 week, mice were given 3% DSS 
(MP Biomedicals) in drinking water for 1 week, 
followed by normal drinking water for 2 weeks. 
This cycle was repeated 3 times. In an additional 
study, before AOM/DSS induction, mice were trea
ted with an antibiotic cocktail containing 1.86 mg/ 
kg ampicillin, 1.86 mg/kg neomycin sulfate, 1.2  
mg/kg metronidazole, and 0.96 mg/kg vancomycin 
in 300 μL double distilled water to deplete the gut 
microbiota.53 All mice were euthanized at 20-weeks 
of age for assessing tumor development. This study 
was approved by the Institutional Animal Care and 
Bioethical Committee of Zhejiang University.

RNA-seq, differentiated gene, and gene enrichment 
analysis

Colon samples from WT and CKO mice were dis
sected and stored at −80°C. Total RNA was 
extracted using the mirVana miRNA Isolation Kit 
(Ambion) following the manufacturer’s protocol. 
RNA integrity was evaluated using the Agilent 
2100 Bioanalyzer (Agilent Technologies). The 
libraries were constructed using TruSeq Stranded 
mRNA LTSample Prep Kit (Illumina) according to 
the manufacturer’s instructions. Then these libraries 
were sequenced on the Illumina sequencing plat
form (HiSeqTM 2500) and 125bp/150bp paired- 
end reads were generated. Raw reads were processed 
using Trimmomatic. Then, the clean reads were 
mapped to reference genome using hisat2. DESeq2 
package (version 1.22.2) was used to identify differ
entially expressed genes (DEGs) between WT and 
CKO groups. The adjusted p values < .05 and |log2 
(fold change (FC))| > 1.0 were considered as signifi
cance. GSEA was used to analyze the functions of 
DEGs using ClusterProfiler package (version 3.8.1). 
The annotated gene collections downloaded from 
the Molecular Signatures Database (MSigDB v7.0) 
for H (hallmark gene sets).

Data analysis of human colorectal cancer patients 
using public database

The difference in gene expression between normal 
and colon adenocarcinoma tissues was assessed 
using TNMplot (https://tnmplot.com/analysis/).36

TCGA-COAD transcriptome and clinical data 
were downloaded from the cBioPortal (https:// 
www.cbioportal.org/).54,55 The GSE39582 cohort 
was downloaded from Gene Expression Omnibus 
(GEO) database. There was no additional modifi
cation in the downloaded data during our analyses. 
Human gut metagenomic data was obtained from 
GMrepo (https://gmrepo.humangut.info/home). 
GMrepo organizes the collected human gut meta
genomes according to their associated phenotypes 
and includes all possible related data. Using this 
database, we identified differential genus abun
dance distribution between two phenotypes (health 
versus colorectal cancer) on a per-project basis for 
selected projects. TCGA intestinal microbiome 
data was obtained from The Cancer Microbiome 
Atlas (TCMA) (https://tcma.pratt.duke.edu/). 
TCMA was a statistical model to analyze the pre
valence of microbial compositions for TCGA 
sequencing data across sample types. TCMA 
enables paired microbial-host transcriptome ana
lyses that identify associations between microbial 
and host gene expression patterns and pathways. 
The level-3 RNA-sequencing data in the TCGA 
Colon Adenocarcinoma (TCGA-COAD) project 
were retrieved from UCSC xena (https://xenabrow 
ser.net/).

Statistical analysis

CRC patients were stratified using consensus cluster
ing (ConsensusClusterPlus package in R, version 
1.50.0) with k-means clustering, Pearson’s correlation 
and 500 bootstrapping iterations; and the optimal 
number of subtypes was determined by the consis
tency of cluster assignment (i.e., the consensus 
matrix). The difference in overall survival (OS) was 
assessed by Kaplan-Meier analysis (survminer pack
age in R, version 0.4.8) and log-rank test (survival 
package in R, version 3.2–3). The t-test or Mann- 
Whitney test were employed to analyze differences 
in the abundance between two groups for normally 
or not normally distributed data, respectively. The 
p values were adjusted using the method of 
Benjamini and Hochberg with the function p.adjust 
in R. The correlation matrix between the gut micro
biota and gene expression was generated using 
Pearson’s correlation coefficient. The p or adjusted
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p value < .05 was taken as statistically significant. All 
data analyses were performed, and plots were gener
ated using R software (version 3.5.0).
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