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Abstract

Recent fermentation studies have identified actinomycetes of the marine-dwelling genus

Salinispora as prolific natural product producers. To further evaluate their biosynthetic potential, we

analyzed all identifiable secondary natural product gene clusters from the recently sequenced

5,184,724 bp S. tropica CNB-440 circular genome. Our analysis shows that biosynthetic potential

meets or exceeds that shown by previous Streptomyces genome sequences as well as other natural

product-producing actinomycetes. The S. tropica genome features nine polyketide synthase

systems of every known formally classified family, non-ribosomal peptide synthetases and several

hybrid clusters. While a few clusters appear to encode molecules previously identified in

Streptomyces species, the majority of the 15 biosynthetic loci are novel. Specific chemical

information about putative and observed natural product molecules is presented and discussed. In

addition, our bioinformatic analysis was critical for the structure elucidation of the novel polyene

macrolactam salinilactam A. This study demonstrates the potential for genomic analysis to

complement and strengthen traditional natural product isolation studies and firmly establishes the

genus Salinispora as a rich source of novel drug-like molecules.
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Introduction

Actinomycetes are an exceptionally prolific source of secondary metabolites accounting for

more than half of all microbial antibiotics discovered to date (1). Remarkably, the vast majority of

these compounds are derived from the single actinomycete genus Streptomyces, raising the

intriguing possibility that additional, chemically prolific taxa await discovery. Further incentive to

explore actinomycetes as a source of novel secondary metabolites comes from the genome

sequences of S. coelicolor (2) and S. avermitilis (3), both of which revealed many unanticipated

biosynthetic gene clusters thus demonstrating that even well-studied taxa have the potential to yield

new metabolites. Such genomic-based information has been used not only to predict the chemical

structures of previously unobserved metabolites but also to develop fermentation methods that

enhance their production (4-7). Bioinformatics-based approaches to natural product discovery have

also been used successfully at the industrial level, where genome scanning has led to the discovery

of significant new chemical entities (8, 9). These methods have great potential to eliminate the

redundant isolation of previously described compounds while allowing detailed fermentation

studies or molecular cloning experiments to be focused on strains that possess a high probability of

producing new chemical structures.

Genomics has already been particularly useful to microbial natural products studies because

actinomycete secondary metabolites such as polyketides, nonribosomal peptides, and hybrids

thereof are often biosynthesized by large, multifunctional synthases that in an assembly line process

sequentially assemble small carboxylic acid and amino acid building blocks into their products

(10). The biosynthetic genes responsible for the production of these metabolites are almost

invariably tightly packaged into operon-like clusters that include regulatory elements and resistance

mechanisms (2). In the case of modular polyketide synthase (PKS) and nonribosomal peptide

synthetase (NRPS) systems, the repetitive domain structures associated with these megasynthases

generally follow a co-linearity rule (11) which, when combined with bioinformatics and biosynthetic
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precedence, can be used to predict the chemical structures of new polyketide and peptide-based

metabolites.

Marine-derived actinomycetes have become a focus in the search for novel secondary

metabolites (12). Among the strains cultured from marine samples is the genus Salinispora, which

was recently described as the first seawater-requiring marine actinomycete (13). This genus is

widely distributed in tropical and subtropical ocean sediments and is currently comprised of the two

formally described species, S. tropica and S. arenicola, and a third species for which the name S.

pacifica has been proposed (14). These actinomycetes are proving to be an exceptionally rich

source of structurally diverse secondary metabolites, which are produced in species-specific

patterns (15). In the case of S. tropica, the compounds observed to date from this bacterium include

the potent proteasome inhibitor salinosporamide A (16), which is currently in phase I human

clinical trials for the treatment of cancer, the unprecedented halogenated macrolides sporolides A

and B (17), lymphostin, which was observed by scientists at Nereus Pharmaceuticals during

salinosporamide A fermentation development (R. Lam, personal communication) and was first

reported from a Streptomyces species (18) and, salinilactam, the structure of which was solved as

part of the present study.

Here we report all identified secondary metabobolic biosynthetic gene clusters deriving

from the complete genome sequence of the marine actinomycete S. tropica strain CNB-440. This

strain is now found to hold the most diverse assemblage of polyketide biosynthetic mechanisms

observed in a single organism, as well as the largest percentage of a genome devoted to natural

product biosynthesis to date. Bioinformatic analysis was used to facilitate the structure elucidation

of the novel polyene macrolactam salinilactam A. Sequence analyses further revealed that many of

these clusters are likely to have been introduced into this genome as a result of recent horizontal

gene transfer, which has important implications to origin of this organism’s secondary metabolome.
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Results and Discussion

General features of the genome and associated secondary metabolome. The complete

genome sequence of S. tropica strain CNB-440 revealed a single circular chromosome comprising

5,184,724 bp, with no plasmids, and an average G+C content of 69.5% (Fig. 1).  S. tropica has

approximately 4,500 predicted protein-coding sequences and is similar in size when compared to

other actinomycetes that harbor circular chromosomes [Mycobacterium tuberculosis (19), Frankia

sp. CcI3 (GenBank accession CP000249), and Nocardia farcinica (20)], yet is substantially

smaller than those with linear chromosomes [S. coelicolor (2) and Rhodococcus sp. RHA1 (21)]

(Table 1).

Biosynthetic gene clusters were initially identified from a draft genome sequence provided

by the Joint Genome Institute (publicly released September 1, 2006), and checked against a single

contiguous sequence provided in advance of public release. Each putative open reading frame

(ORF) was compared against a representative library of all known PKS and NRPS domains, as

well as known biosynthetic accessory-type genes (including, but not limited to, cytochrome P450s,

terpene cyclases, prenyl transferases, methyl transferases, NAD(P)H-dependent oxidoreductases,

and CoA/AMP ligases).

This analysis revealed 15 secondary metabolic biosynthesis gene clusters that we predict to

be involved in siderophore, melanin, polyketide, non-ribosomal peptide, and aminocyclitol

production (Table 1). The combined length of these gene clusters is estimated at 492 kb,

establishing that, amongst sequenced bacteria to date, S. tropica devotes the largest percentage of its

genome (~9.5%) to natural product assembly (Table 1).  These analyses also confirm that the

biosynthetic potential of this strain is considerably greater than that observed by fermentation, as

was previously reported in analyses of the S. coelicolor and S. avermitilis genome sequences (2, 3).

Two thirds of the clusters are concentrated in a single quadrant of the chromosome nearly

antipodal to the replication-controlling dnaA gene (Fig. 1). This section of the genome also harbors
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a significant proportion of the approximate 128 chromosomal mobile genetic elements such as

transposases, integrases, resolvases and phage-related ORFs. Many reside in close proximity to

secondary metabolic clusters (pks1, sal, spo, amc, sid3, slm) while several clusters have strong

similarity in ORF and domain organization to existing gene clusters (sid2, sid3, pks3), strongly

suggesting that many of these clusters may have originated from donor genomes via horizontal

gene transfer.

Biosynthetic capabilities of S. tropica. The majority of identified S. tropica secondary

metabolite gene clusters utilize carrier protein-based biosynthetic logic in the assembly of their

products. Hence, biosynthetic precursors and intermediates are expected to be largely protein-

bound during the assembly process and are not likely to crosstalk with other primary or secondary

metabolic pathways. Salinispora tropica harbors at least five (Stro0922, Stro2003, Stro3049,

Stro3460, Stro3545) 4’-phosphopantetheinyl transferase (PPTase) (22) encoding genes whose

products transfer the 4’-phosphopantetheine moiety from coenzyme A to the ~35 conserved serine

residues in fatty acid synthase-, PKS-, and NRPS-associated carrier proteins. Three are found in

identified carrier protein-containing biosynthetic clusters (Stro0922 with sid3, Stro2003 with pks3,

and Stro3545 with nrps2) and thus may be specific to their pathways.

A striking feature of the S. tropica genome is its remarkable diversity of polyketide

biosynthetic pathways, which is greater in variety than in other sequenced bacterial genomes (Table

1). Pathways include those for modular type I PKSs (slm), iterative enediyne type I PKSs (spo and

pks1), hybrid type I PKS–NRPSs (sal, sid2, sid3, and lym), heterodimeric type II PKSs (pks2 and

pks3), and a homodimeric type III PKS (pks4) (Fig. 1). Interestingly, none of the type I PKS-

associated modules, of which there are 15, contain a full set of reductive domains required to

completely reduce the transient β-carbonyl group to a saturated methylene carbon during the

polyketide elongation process. Hence, S. tropica PKS-derived products are expected to be highly

oxidized, as is the case for the characterized metabolites salinosporamide A (sal), sporolide A (spo),

lymphostin (lym), and salinilactam A (slm) (Fig. 2).
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A primary motivation for the sequencing of the CNB-440 strain of S. tropica was that it is a

producer of the potent anticancer agent salinosporamide A (16). Its biosynthetic gene cluster (sal)

encodes a 29-ORF, 41-kb unprecedented hybrid PKS–NRPS pathway (Fig. 2E) involving new

mechanisms in chlorination and β-lactone synthesis as well as 20S proteasome resistance (23). In

addition to the sal cluster, S. tropica harbors two additional hybrid PKS–NRPS pathways. The lym

cluster is proposed to synthesize the lymphocyte kinase inhibitor lymphostin, which was first

isolated from Streptomyces sp. KY11783 (18). We propose that the uniquely organized two-

module synthase LymA catalyzes a single polyketide extension followed by reductive offloading

and N-acetylation of a non-proteinogenic tricyclic planar amino acid derived from tryptophan, with

subsequent O-methylation catalyzed by an adjacent SAM-dependent methyl transferase LymB

(Fig. 2F). A set of four genes with homology to a domain of unknown function (DUF611) may

play a role in the synthesis of the tryptophan-derived primer unit. The sid2 cluster bears strong

domain organization (though lacks direct sequence similarity) to the yersiniabactin cluster (ybt)

from Yersinia pestis (24) and other organisms (Fig. 2B). Although no siderophore molecules have

yet been isolated from Salinispora species, the notable similarity in domain structure very strongly

suggests that the resulting molecule will have the yersiniabactin polyketide/non-ribosomal peptide

core with possible alterations in sites of methylation and/or oxidation.

Two independent, novel enediyne PKS biosynthetic gene clusters (spo and pks1) are found

in the S. tropica genome. Enediyne natural products, such as the potent DNA cleaving agents

calicheamicin, dynemicin, C-1027, and neocarzinostatin are polyketide secondary metabolites

produced by members of the order Actinomycetales, many of which (like the genus Salinispora)

belong to the family Micromonosporaceae (25). The enediyne polyketide structural motif falls into

two classes that possess either 9- or 10-membered rings, and their associated PKSs are

phylogenetically distinct. Phylogenetic analysis of the S. tropica enediyne PKSs associated with the

spo and pks1 clusters revealed that they are putatively involved in the biosynthesis of distinct 9- and

10-membered enediyne polyketides, respectively (Fig. 3). While no enediyne natural products have

yet been directly characterized from S. tropica, sporolides A and B (17) are putatively derived from
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a 9-membered enediyne PKS product that is uniquely halogenated with chloride during the

aromatization of the enediyne unit to yield the tricyclic hydrocarbon nucleus (26). The ~71-kb spo

cluster harbors as many as 53 ORFs, which include other conserved enediyne PKS-associated

genes, as well as those encoding the postulated biosynthesis and coupling of the sporolide

cyclohexenone unit deriving from the amino acid tyrosine. The 10-membered enediyne PKS in

gene cluster pks1 also bears the canonical enediyne PKS domain architecture, and further analysis

of its 30-kb gene cluster did not reveal accessory genes involved in deoxyhexose biosynthesis and

attachment, nor additional polyketide pathways typically associated with 10-membered enediyne

polyketide biosynthesis (i.e., calicheamicin and dynemicin), suggesting that this orphan pathway

codes for the biosynthesis of a novel natural product.

In addition to the abundance of diverse PKS pathways, S. tropica harbors four NRPS

operons (nrps1, nrps2, sid3, and sid4) (Fig. 1). While the products of the dimodular nrps1 and

novel tetramodular nrps2 gene clusters are unknown and could not be accurately predicted on the

basis of bioinformatics alone (27, 28), sid3 and sid4 are homologous to gene sets encoding known

siderophore pathway biosynthetic enzymes. When combined with the highly homologous S.

coelicolor NRPS-independent siderophore desferrioxamine (29) cluster sid1 (Fig. 2A) and the ybt

homologous PKS–NRPS hybrid cluster sid2 (Fig. 2B), a total of four identifiable siderophore-like

clusters reside in S. tropica. The three assembly line siderophore synthetases encoded by gene sets

sid2–4 each have related priming mechanisms involving homologous ATP-dependent aryl-CoA

ligases, which typically incorporate aromatic residues such as salicylate or 2,3-dihydroxybenzoate

into their NRP siderophore products such as yersiniabactin, enterobactin, and pyochelin (30). The

sid4 gene cluster has strongest homology with a biosynthetic cluster for an as-yet unisolated

siderophore (‘coelibactin’) from S. coelicolor (Fig. 2D) (2). The S. tropica sequence, however,

differs from that in S. coelicolor in that it is flanked by an additional transport system typical of

siderophore export and iron-bound uptake. The smaller sid3 cluster is adjacent to the sid4 cluster

and encodes a highly unusual type II PKS and a single NRPS module that we propose to extend

and cyclize an aromatic acid with cysteine, tentatively producing a siderophore-like intermediate



9

(Fig. 2C). It is unclear if sid3 is fully functional or is instead biosynthetically linked with sid4.

While the latter three gene clusters are traditionally found in γ-proteobacteria, these S. tropica gene

clusters bear %G+C values similar to the S. tropica total genome percentage, and therefore do not

suggest a very recent assimilation, despite similarities to existing clusters.

Genome-guided natural product discovery of salinilactam A. The slm cluster is the

largest S. tropica biosynthetic cluster and consists of six genes encoding a ten-module PKS with

49 domains. Due to the highly repetitive nature of the DNA sequence associated with the slm loci

and an extremely high level of sequence identity (>99% in many regions), assembly of the cluster

and, as a consequence, closure of the genome was problematic. Initial inspection of the partial slm

gene cluster from an early draft genome sequence suggested that it coded for a novel lysine-primed

polyene macrolactam polyketide devoid of sugar or other appendages often associated with

polyketide natural products. A fermentation broth of S. tropica CNB-440 was inspected for new

compounds with characteristic UV chromophores associated with polyene units, which led to the

isolation of a series of new polyene macrolactams exemplified by salinilactam A (Fig. 2G). NMR

and MS characterization of salinilactam A quickly revealed a novel polyene macrolactam

framework, which was only consistent with the slm cluster. Structural features included two isolated

polyene fragments, a 1,2,3,5-tetrahydroxy alkane moiety, three methyl groups, and an amide

functionality. However, completion of the structure was initially hindered due to the instability of

the compound and the presence of eight conjugated olefins with similar NMR properties.

Inspection of the structure fragments, together with the molecular formula C2 8H3 9NO5

revealed by high-resolution mass spectrometry, suggested that salinilactam A was derived from a

PKS with at least ten extension modules. This information was useful to help resolve and properly

assemble the repetitive DNA sequences associated with slm into two operons (slmABCD and

slmNO) separated by nine accessory genes presumed to be involved in starter unit biosynthesis and

macrolactam hydroxylation (Fig. 2G). On the basis of the co-linearity rule of modular polyketide

biosynthesis, the relationship of slm to the terminal region of the vicenistatin PKS (31), and partial
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NMR-based structural fragments, we were able to accurately predict the gross chemical structure of

salinilactam A. The natural product would thus be produced by chain extension of the novel lysine-

derived PKS starter unit 5-aminohex-2-enoate with eight malonate and two methylmalonate units

followed by macrolactamization and cytochome P450 hydroxylation at C-8.

The salinilactam A structure was verified by comprehensive NMR analyses on the purified

natural product to confirm the bioinformatics-based structure assignment. Although the relative and

absolute stereochemistry of salinilactam A was not determined spectroscopically, the

stereochemistry of the C-7, C-9, and C-11 hydroxyl groups was predicted to be R, S, and R,

respectively, based upon strong homology of all slm ketoreductase (KR) domains to other “A-

type” KRs (32). The intimate interplay between microbial genomics, biosynthetic logic and natural

product chemistry was critical not only in the structure elucidation of this new chemical entity, but

also in the final closure of the genome sequence.

Conclusions

There is an ongoing resurgence in natural product drug discovery research (33).  This

renewed interest is driven by the inherent structural diversity and biological activity associated with

secondary metabolites, the low productivity of alternative drug discovery strategies, and the

application of improved analytical methods that make it possible to solve structures using small

quantities of material.  A relatively new concept that can be added to this list is the molecular

genetics of natural product biosynthesis (34).  Advances in this field, in combination with increased

access to DNA sequencing, are providing a wealth of information about how natural products are

assembled, mechanisms by which natural product gene clusters can be manipulated to yield new

product diversity, and the genetic potential of individual organisms.  Concerning the later, complete

genome sequencing provides unparalleled access to the genes involved in secondary metabolism,
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how they are assembled, and in some cases, what products they may yield.  Armed with these data,

it becomes possible to compare the compounds observed using traditional fermentation procedures

with those that are predicted from gene sequences, design fermentation methods that may activate or

enhance the production of predicted products, and assess the evolutionary history of individual gene

clusters.  The genus Salinispora has become a model organism to address questions about species-

specific patterns of natural product production (15) and, as described in the present study, the

application of whole genome sequencing to the process of natural product discovery and structure

elucidation.

Genome sequencing of S. tropica has revealed an abundance of novel biosynthetic gene

clusters, the majority of which were unexpected based on previous fermentation analyses of this and

closely related species and strains. With this information now available, there is a clear need for

further genome-guided fermentation studies as our analysis clearly confirms the value of the

Salinispora genus as a source of novel drug-like molecules. In the absence of other

Micromonsporacea genome sequences, it is unclear if this natural product diversity is general to

this family or if the diversity in the genus Salinispora derives from environmental novelty.

Sequencing of a related species, Salinispora arenicola CNS-205, already underway, should shed

further light on the metabolic capabilities of this newly described marine actinomycete genus.

Outside of the exploratory aspects of this project, our bioinformatic analysis was of broad

practical utility in conjunction with natural product isolation. The isolation of a large polyene

molecule led to identification and resolution of a large, repetitive PKS sequence, the analysis of

which spurred further refinement and identification of salinilactam A as a novel polyene. With the

genome information in hand we expect that it will facilitate similar studies in the future, and this

result demonstrates the benefits that can result from greater interplay between information

technology and natural product structure elucidation. We recently developed a genetics system in S.

tropica for rapid gene knockouts via PCR targeting that will further facilitate the genome mining of

this metabolically rich bacterium (23).
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Currently, the implications for secondary metabolism due to the circular nature of the S.

tropica chromosome are unclear. A mechanism for the biogenesis of novel secondary metabolic

clusters in linear chromosomes was recently reported (35), and makes clear that the instability

found at of the terminal ends of Streptomyces linear chromosomes has been utilized to provide

rapid evolutionary adaptability to the organism. By contrast, no particular region of the circular S.

tropica chromosome seems unstable to the same degree observed in the chromosomal ends of

Streptomyces as pseudogenes are largely absent and secondary metabolic clusters and transposable

elements are more dispersed throughout the chromosome. This may indicate that Salinispora

species will have more frequently acquired their secondary metabolic systems horizontally from

other species rather than evolving most themselves. It will be appealing to put this hypothesis to the

test when the S. arenicola CNS-205 genome is completed and directly compared to S. tropica

CNB-440.

Materials and Methods

Genome sequencing, annotation and analysis. Draft sequencing and automated annotation was

provided by the Department of Energy, Joint Genome Institute (JGI) under the Community

Sequencing Program and has been deposited with GenBank (AATJ00000000). Automated gene

prediction and functional annotation was performed by the Genome Analysis Pipeline (36).

Automated prediction of protein-coding genes was based on the output of CRITICA (37)

complemented with the output of Glimmer (38). Initial functional annotation was performed using

similarity searches against TIGRFAM (39), PRIAM (40), Pfam (41), SMART (42), COGs (43),

SwissProt/TrEMBL (44) and KEGG (45) databases using a set of rules for assigning a specific

product description depending on the combination of the search results; product descriptions were

further manually refined. Annotated genome sequences are available at the Microbial Portals at

http://genome.ornl.gov/microbial/ and through the Integrated Microbial Genomes (IMG) system

(46) at http://img.jgi.doe.gov/.
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To more specifically identify and categorize natural product biosynthetic gene clusters, a

custom Perl script was written to sequentially search each translated protein sequence via BLASTP

alignment against a hand-constructed and expandable library of model natural product domains and

genes. Hits were grouped by physical proximity within the chromosome, and putative clusters were

further examined using software available at the NCBI website and visualized with Vector NTI

(Invitrogen). Transposons and other mobile genetic element ORFs were identified in a similar

manner. Annotations of all gene clusters discussed were deposited with GenBank (for accession

numbers, see Table 2).

Salinilactam A isolation and characterization. Strain CNB-440/ΔsalD was cultured in

9 x 1L Fernbach flasks containing A1bFe+C medium (10 g starch, 4 g yeast extract, 2 g peptone, 1

g CaCO3, 5 mL Fe2(SO4)3·4H2O at 8 g/L, 5 mL KBr at 20 g/L, 1 liter seawater) at 27°C while

shaking at 230 rpm. XAD-7 resin (20 g) was added to each flask after 24 hr, and the fermentation

was continued for another six days. The resin was filtered, washed with water, and then extracted

with acetone to afford 1.1 g of crude extract, which was fractionated by reversed-phase C18 vacuum

liquid chromatography eluting with increasing amounts of methanol in water. The third fraction that

eluted with 60% methanol (105 mg) was purified by RP-HPLC [Prep Nova-Pak HR C18, 6 µm,

60Å, 300 mm x 40 mm, flow rate 10 mL/min, detection at 210 nm, 25% for 10 min then a linear

gradient up to 40% CH3CN over 15 min and linear gradient to 100% over another 25 min] to afford

salinilactam A (tR = 25 min, 1.5 mg): light yellow solid; [α]D –28.8 (c 0.06, MeOH); UV (MeOH)

λmax (log ε) 250 (4.01), 305 (4.51), 335 (4.26), 355 (4.18) nm; IR (NaCl) λmax 3464, 2930, 1739,

1547, 1414, 1279, 1135, 1074, 998, and 743 cm-1; 1H NMR (500 MHz, CD3OD) δ 7.02 (1H, dd, J

= 15.6, 10.7 Hz, H-3), 6.76 (1H, d, J = 14.6 Hz, H-17), 6.51 (1H, dd, J = 15.0, 10.2 Hz, H-20), 6.49

(1H, dd, J = 14.8, 10.3 Hz, H-14), 6.30 (1H, dd, J = 15.0, 10.2 Hz, H-16), 6.29 (1H, dd, J = 14.8,

10.2 Hz, H-15), 6.27 (1H, dd, J = 14.9, 10.5 Hz, H-13), 6.25 (1H, dd, J = 15.1, 10.7 Hz, H-4), 6.10

(1H, dd, J = 14.6, 10.5 Hz, H-21), 6.05 (1H, dd, J = 15.0, 10.0 Hz, H-22), 6.02 (1H, dd, J = 15.1,

10.1 Hz, H-5), 5.95 (1H, d, J = 15.1 Hz, H-19), 5.87 (1H, d, J = 15.2 Hz, H-2), 5.77 (1H, dd, J =
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14.8, 10.5 Hz, H-12), 5.67 (1H, ddd, J = 15.0, 10.1, 7.0 Hz, H-23), 4.36 (1H, q, J = 11.2, 4.1 Hz, H-

11), 3.97 (1H, dt, J = 11.2, 6.8, 4.1 Hz, H-9), 3.86 (1H, m, H-25),  3.60 (1H, dd, J = 7.7, 4.1 Hz, H-

8), 3.50 (1H, dd, J = 7.7, 5.0 Hz, H-7), 2.59 (1H, m, H-6), 2.33 (1H, m, H-24a), 2.19 (1H, ddd, J =

14.1, 7.0, 6.5 Hz, H-24b), 1.98 (1H, m, H-10a), 1.84 (3H, s, H3-28), 1.78 (1H, dd, J = 14.8, 6.8 Hz,

H-10b), 1.27 (3H, d, J = 7.1 Hz, H3-26), 1.08 (3H, d, J = 7.2 Hz, H3-27); 1 3C NMR (125 MHz,

CD3OD) δ 168.2 (C-1), 142.1 (C-5), 139.4 (C-3), 138.9 (C-20), 136.9 (C-12), 134.4 (C-22), 133.1

(C-18), 131.2 (C-15), 130.5 (C-19), 130.3 (C-23), 129.6 (C-17), 129.4 (C-21), 128.9 (C-16), 128.8

(C-14), 128.7 (C-4), 128.6 (C-13), 123.1 (C-3), 75.6 (C-7), 75.2 (C-8), 71.3 (C-11), 69.3 (C-9),

46.7 (C-25), 39.5 (C-10), 39.4 (C-24), 38.7 (C-6), 19.7 (C-25), 19.4 (C-28), 13.8 (C-27); ESIMS

m/z 452 (M – H2O + H), 470 (M + H), 492 (M + Na), 961 (2M + Na); HRESITOFMS m/z

492.2720 [calcd for C2 8H3 9NO5Na+, 492.2726].
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Captions

Fig. 1.   Circular chromosome of Salinispora tropica CNB-440, oriented to dnaA gene. Outer ring,

locations of secondary metabolic gene clusters. Inner ring, locations of identified mobile genetic

elements.

Fig. 2.   Selected genes from S. tropica modular biosynthetic enzyme systems and their associated

natural products.  (A-D) putative siderophore clusters: (A) sid1 cluster in comparison to the

desferrioxamine cluster from Streptomyces coelicolor A3(2). (B) sid2 cluster in comparison to the

yersiniabactin cluster from Yersinia pestis. (C) sid3 cluster with putative product intermediate. (D)

sid4 cluster in comparison to proposed S. coelicolor ‘coelibactin’ cluster (unconfirmed structure).

(E-G) Novel modular enzyme systems: (E) salAB from proposed salinosporamide cluster. (F)

lymAB from proposed lymphostin cluster. (G) modular PKS system from salinilactam cluster

(stereochemistry proposed, green portion is derived from the proposed lysine-based starter unit).

Domain notation: A, adenylation (amino acid substrate noted); C, condensation; Ccyc, condensation

with cyclization; PCP, peptidyl carrier protein; KS, β-ketoacyl synthase; AT, acyl-CoA/ACP

transacylase (activates malonyl-CoA unless otherwise noted); mAT, methylmalonyl-CoA/ACP

transacylase; DH, dehydratase; ACP, acyl carrier protein; KR, ketoreductase; TE, thioesterase; OR,

oxidoreductase; MT, SAM-dependent methyltransferase; NAT, N-acetyl transferase; unk,

unknown.

Fig. 3.   (A) Representative enediyne structures (B) phylogenetic tree of representative enediyne

PKSs. GenBank accessions: MadE, AAQ17110; NcsE, AAM78012; SgcE, AAL06699; CalE8,

AAM94794; EspE, AAP92148; DynE, AAN79725. (C) Proposed biosynthesis of sporolide A.
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Table 1 - S. tropica CNB-440 genome data in comparison to other actinomycete natural product
producers

Organism

S. tropica

CNB-440

S. coelicolor

A3(2)

M. tuberculosis

H5N1

Frankia

sp. CcI3

N. farcinica

IFM 10152

Size 5.18 Mb 8.72 Mb 4.41 Mb 5.43 Mb 6.01 Mb

Chromosome organization circular linear circular circular circular

%G+C content 69.5% 72% 67% 70% 70%

% of genome dedicated to

secondary metabolism ~9.5% ~8%

Not

determined

Not

determined

Not

determined

Major NP clusters

Modular Type I PKS 1 2 7 4 4

Enediyne PKS 2 - - - -

Type II PKS 2 2 1 2 1

Type III PKS 1 3 3* - 1

Mixed PKS/NRPS 4 - - 1 1

NRPS 3 3 2 3 7

non-NRPS siderophore 1 1 - 1 -

* Two type III PKS enzymes are associated with the modular type I PKSs pks7, pks8, pks9, pks17.
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Table 2 - S. tropica CNB-440 biosynthetic gene clusters

Cluster

designation

Actual (*) or

predicted product

Type %G

+C

Size GenBank

Accession

pks1 10-membered enediyne Enediyne PKS 67 30 kb xx

pks2 Glycosylated decaketide Type II PKS 69 35 kb xx

pks3 Spore pigment Type II PKS 71 23 kb xx

spo Sporolide* Enediyne PKS 68 71 kb xx

slm Salinilactam* Type I PKS 70 80 kb xx

pks4 Aromatic polyketide Type III PKS 73 4 kb xx

nrps1 Unknown dipeptide NRPS 68 31 kb xx

nrps2 Reductively offloaded

tetrapeptide

NRPS 70 33 kb xx

sal Salinosporamide* PKS-NRPS 67 41 kb xx

lym Lymphostin* PKS-NRPS 71 33 kb xx

sid1 Desferrioxamine-like

siderophore

NRPS-

independent

72 38 kb xx

sid2 Yersiniabactin-like

siderophore

PKS-NRPS 71 28 kb xx

sid3 Unknown siderophore PKS-NRPS 72 30 kb xx
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sid4 ‘Coelichelin’-like

siderophore

NRPS 70 10 kb xx

amc Unknown aminocyclitol Aminocyclitol 70 8 kb xx
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Figure 1
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