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Cognition and Behavior

Multimodal Temporal Pattern Discrimination Is
Encoded in Visual Cortical Dynamics
Sam Post, William Mol, Omar Abu-Wishah, Shazia Ali, Noorhan Rahmatullah, and Anubhuti Goel

https://doi.org/10.1523/ENEURO.0047-23.2023

Department of Psychology, University of California, Riverside, Riverside, California 92521

Abstract

Discriminating between temporal features in sensory stimuli is critical to complex behavior and decision-making.
However, how sensory cortical circuit mechanisms contribute to discrimination between subsecond temporal compo-
nents in sensory events is unclear. To elucidate the mechanistic underpinnings of timing in primary visual cortex (V1),
we recorded from V1 using two-photon calcium imaging in awake-behaving mice performing a go/no-go discrimina-
tion timing task, which was composed of patterns of subsecond audiovisual stimuli. In both conditions, activity dur-
ing the early stimulus period was temporally coordinated with the preferred stimulus. However, while network activity
increased in the preferred condition, network activity was increasingly suppressed in the nonpreferred condition over
the stimulus period. Multiple levels of analyses suggest that discrimination between subsecond intervals that are con-
tained in rhythmic patterns can be accomplished by local neural dynamics in V1.

Key words: two-photon; audiovisual temporal patterns; temporal discrimination; temporal learning; visual cortical
dynamics

Significance Statement

Judging whether to stop or go through a yellow light requires determining the duration of the yellow light, and lan-
guage users must produce sequences of syllables in a temporally structured manner: thus, the ability to tell time is
critical. An emerging hypothesis is that local changes in neural activity can contain information about time in the
subsecond range. Based on prior human experiments, we have designed a novel timing task for mice and show
that mice learn to discriminate between two temporal patterns of audiovisual stimuli. Task performance is accom-
panied by visual cortical circuit mechanisms. By combining cutting-edge tools with simple behavior, we provide
fundamental insight into the neural mechanisms of timing which will also guide future therapies for timing deficits.

Introduction
A key aspect of sensory discrimination in learning and

memory and in generating complex behavior is extracting
temporal features from external stimuli. For example, one
may need to keep a beat and synchronize tempo when in
a band; a prey may need to jump out of the way of a pred-
ator at just the right moment; the timing of a yellow light
must be predicted to decide whether to slow down or to
go through it; and meaning in spoken language derives
from sequences of syllables that are highly temporally
structured. Based on psychophysical and pharmacologi-
cal data, it is most likely that there are multiple neural
mechanisms that code for the temporal structure of sen-
sory events since they are timed over a broad range of
scales, ranging from microseconds to days (Mauk and
Buonomano, 2004; Buhusi and Meck, 2005; Paton and
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Buonomano, 2018). However, a growing body of literature
suggests that time intervals in the subsecond and second
range are encoded in the emergent changing patterns or
neural dynamics across many brain areas, including sen-
sory cortex (Pastalkova et al., 2008; Carnevale et al.,
2015; Gouvêa et al., 2015; Namboodiri et al., 2015; Goel
and Buonomano, 2016; Soares et al., 2016; Bakhurin et
al., 2017; Emmons et al., 2017; Heys and Dombeck, 2018;
Tsao et al., 2018; Zhou et al., 2020; Tonoyan et al., 2022).
In the traditional hierarchical view of brain organization,

the role of primary sensory cortex is to generate a reliable
representation of the sensory world, and sensory repre-
sentations are then decoded by higher-order areas (Hubel
and Wiesel, 1962; Felleman and Van Essen, 1991; Miller
and Cohen, 2001). Other studies suggest a more active in-
volvement that shapes sensory perception (Glickfeld et al.,
2013; Znamenskiy and Zador, 2013); a large body of experi-
mental evidence has now shown that sensory areas contrib-
ute to several “higher-order” nonsensory features (Gordon
and Stryker, 1996; Shuler and Bear, 2006; Niell and Stryker,
2010; Zhou et al., 2010; Brosch et al., 2011; Zelano et al.,
2011; Keller et al., 2012; Gavornik and Bear, 2014a, b;
Namboodiri et al., 2015), such as timing and temporal con-
text. Although the locus of temporal predictions and sub-
second and second timing has traditionally been attributed
to higher-order cortical areas (Leon and Shadlen, 2003;
Jazayeri and Shadlen, 2015; Licata et al., 2017) and subcort-
ical areas (Bakhurin et al., 2017; Zhou et al., 2020; Toso et
al., 2021), accumulating evidence suggests that primary vis-
ual cortex (V1) exhibits response modulation to “higher”
functions such as spatiotemporal learning as well as reward
prediction and attention (Gavornik and Bear, 2014a).
Specifically, Shuler and Bear (2006) showed that as rats per-
form a visually cued timing task, V1 cortical activity rapidly
modulated to predict the arrival of reward. Additionally, cho-
linergic function contributed to themodification of V1 activity
(Chubykin et al., 2013). Namboodiri et al. (2015) used a simi-
lar task and showed that indeed cortical activity in V1 re-
flected the duration of a target interval.
While most studies implement timing tasks as discrete

durations or time intervals, temporal structure in sensory
stimuli is often organized as sequential events. Sequences
may be composed of simple isochronous stimuli and inter-
vals between stimuli, as in rhythms, or complex arrange-
ments of varying stimulus and interval durations, such as in
language and music. However, the neural dynamic regimes
in the sensory cortex that contribute to processing and
learning rhythmic patterns remain largely unclear. One pre-
vailing idea is that neural oscillations allow communication
between sensory and motor cortical areas, thus producing
temporal predictions and entrainment to rhythms (Merchant
et al., 2015). Specifically, do emergent neural dynamics in
V1 contribute to learning the temporal structure of rhythmic
patterns? To understand how visual cortical dynamics
adapt to the temporal structure of a multimodal rhythm in a
goal-directed task, we implemented a novel audiovisual (AV)
timing task, temporal pattern sensory discrimination (TPSD),
in awake behaving mice using two-photon calcium imaging
in V1, layer 2/3 (L-2/3). In the TPSD task, mice learn to dis-
criminate between two temporal patterns. Our paradigm

builds on previous work in temporal pattern discrimination,
which suggests that multisensory stimuli enhance the dis-
criminability of sequences (Raposo et al., 2012; Barakat
et al., 2015). Examination of visual cortex as a locus of
change, in an audiovisual task, was influenced by studies
showing modulation of visual cortical plasticity by function-
al input from other brain areas such as hippocampus
(Finnie et al., 2021) and auditory cortex (McIntosh et al.,
1998; Zangenehpour and Zatorre, 2010; Deneux et al.,
2019; Garner and Keller, 2022). Studies have also shown
that audiovisual stimuli evoke multimodal plasticity in V1
(Morrell, 1972; Petro et al., 2017).
Here, we show that mice can discriminate between two

temporal patterns to achieve expert status on a goal-directed
task and that learning was accompanied by robust changes
in visual cortical dynamics that reflected the temporal struc-
ture of the experienced rhythms. Further, using multiple anal-
yses we show that emergent activity in V1 contributes to trial
outcomes. In conclusion, this study underscores the hypoth-
esis that intrinsic network mechanisms contribute to learning
and representation of temporal patterns.

Materials and Methods
Experimental animals
All experiments followed the US National Institutes of

Health GUIDE for the Care and Use of Laboratory Animals,
under animal use protocols approved by the Chancellor’s
Animal Research Committee and Office for Animal Research
Oversight at the University of California, Riverside (ARC
#2022–0022). We used male and female FVB.129P2 (FVB)
WT mice (stock #004828, The Jackson Laboratory). All mice
were housed in a vivarium with a 12 h light/dark cycle, and
experiments were performed during the light cycle. The FVB
background was chosen because of its robust breeding.

Go/no-go TPSD task for head restrainedmice
Awake, head-restrained young adult mice (2–4months)

were allowed to run on an air-suspended polystyrene ball
while performing the task in our custom-built rig (Fig. 1A).
Before performing the task, the animals were subjected to
handling, habituation, and pretrial phases. After recovery
from headbar/cranial window surgery, mice were handled
gently for 5min every day, until they were comfortable with
the experimenter and would willingly transfer from one hand
to the other to eat sunflower seeds. This was followed by
water deprivation (giving mice a rationed supply of water
once per day) and habituation to the behavior rig. During ha-
bituation, mice were head restrained and acclimated to the
enclosed soundproof chamber and allowed to run freely on
the 8cm polystyrene ball. Eventually, mice were introduced
to the lickport that dispensed water (3–4mL) and recorded
licking [custom-built at the University of California, Los
Angeles (UCLA) electronics shop], followed by the audiovi-
sual stimuli. This was repeated for 10min per session for
3d. Starting water deprivation before pretrials motivated the
mice to lick (Guo et al., 2014). After habituation and an
;15% weight loss, mice started the pretrial phase of the
training. During pretrials, mice were shown the preferred
stimulus only with no punishment time associated with
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incorrect responses. This was done (1) to teach the mice the
task structure and (2) to encourage the mice to lick and to re-
mainmotivated. The first day consisted of 150 trials, and sub-
sequent days of 250 trials. The reward, as in the TPSD main
task, was dispensed at 1.2 s and remained available to the
mice until 2 s, at which time it was sucked away by a vacuum.
The mice were required to learn to associate a water reward
soon after the stimulus was presented and that there was no
water reward in the intertrial interval (4 s period between tri-
als). Initially during pretrials, the experimenter pipetted small
drops of water onto to the lickport to coax the mice to lick.
Once the mice learned this and licked with 80% efficiency,
they were advanced to the go/no-go task.
The TPSD task is a go/no-go task composed of two se-

quences of synchronous audiovisual stimuli (Fig. 1B).
Visual stimuli are 90° drifting sinusoidal gratings and are
accompanied by a synchronous 5 kHz tone at 80dB.
Within each sequence, four stimuli are presented that differ
only in temporality. Our preferred sequence is composed
of four stimuli of 200ms; our nonpreferred sequence is
composed of four stimuli of 900ms.
Each set of the sequences is separated by a 200ms pe-

riod of silence accompanied by a gray screen. A water re-
ward is dispensed at 1.2 s and remains available until 2 s, at
which time it is sucked away by a vacuum. A custom-built
lickport (UCLA engineering) dispensed water, vacuumed it,
and recorded licking via breaks in an infrared beam. Breaks

were recorded at 250Hz. The window in which the licking of
mice counts toward a response is 1–2 s in both stimuli. A
time-out period (6.5–8 s), in which the monitor shows a
black screen and there is silence, is instituted if the mouse
incorrectly responds. The first session was composed of
250 trials, and subsequent days of 350. Depending on the
stimulus presented, the behavioral response of the animal
was characterized as “Hit,” “Miss,” “Correct Rejection” (CR)
or “False Alarm” (FA; Fig. 1B). An incorrect response re-
sulted in the time-out period.
To expedite learning, we set the preferred (P)/nonpre-

ferred (NP) stimuli ratio to 70:30 as we found that mice are
more prone to licking (providing a “yes” response) than to
inhibiting licking (providing a “no” response). We addition-
ally instituted an individualized lick rate threshold to en-
courage learning as we found that lick rates differed
significantly from mouse to mouse. Licking thresholds
were calculated from lick rates for mice and shows no sig-
nificant correlation between licking thresholds and learn-
ing rates (Pearson’s correlation coefficient, r¼ 0.4684;
p ¼ 0.3012). This indicates that the individualized lick rate
threshold was used as a learning aid to complete the task
and did not affect their learning rates or their reliance on
the stimulus for task completion. To confirm that mice
learned rather than took advantage of the biased 70:30
preferred to nonpreferred trial ratio, we tested mice for
two additional sessions using a 60:40 ratio of preferred to
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Figure 1. Mice achieve expert status on the TPSD task (n¼8). A, Schematic of mouse on polystyrene ball. B, Experimental paradigm is a
go/no-go task composed of synchronous audiovisual stimuli. C, d9 shows mice learn to discriminate temporal patterns (one-way ANOVA:
F(1,16) ¼ 5.45, p¼1.23�10�7). D, Hrs and CRrs do not significantly change with learning (Hr: Kruskal–Wallis test: H(16)¼21.74. p ¼ 0.1515;
CRr one-way ANOVA: F(1,16) ¼ 1.23, p ¼ 0.26). E, Hr and CRr in naive and learned sessions are significantly different (Hr: two-tailed t test:
t(14)¼4.42, p¼5.85�10�4; CRr: two-tailed t test: t(14)¼ 4.46, p¼ 5.3� 10�4). Refer to Extended Data Figures 1-1, 1-2, 1-3, 1-4, which
show no dependence on trial ratios or training paradigm. The Extended Data also show dependence on the stimulus for learning.
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nonpreferred stimuli (Fig. 1). We retain a greater number
of preferred stimuli as the total time mice encounter pre-
ferred stimuli is less than that of encountering nonpre-
ferred stimuli within a 60:40 trial session (294 vs 588 s,
respectively). Following this, mice performed a control
task, during which visual and auditory stimuli were not
presented. Our data show that mice did not retain learned
performance, indicating that they relied on the sensory
stimuli for task completion (Fig. 2).
We additionally performed experiments on mice (n¼ 2)

using a modified paradigm of TPSD (TPSDmod) in which the
longer duration was the preferred stimulus and the shorter
was the nonpreferred (Figs. 1-3). We modified the paradigm
to also have the same total time between the preferred and
nonpreferred stimuli (2.6 s). This paradigm entailed either
three or seven synchronous audiovisual stimuli separated by
0.2 s gray screens, in which there was no sound. The pre-
ferred stimulus was three intratrial stimuli of 733ms; the non-
preferred stimulus was seven intratrial stimuli of 200ms.
Water was dispensed at 2.3 s in the preferred stimulus. The
period in which lick counted toward a decision was 2–3.2 s.
Water remained available to the mice until 3.2 s. Like in the
original paradigm, lick rate thresholds were individualized to
mice.
Custom-written routines and Psychtoolbox in MATLAB

were used to present the visual stimuli, to trigger the lick-
port to dispense and retract water, and to acquire data.

Cranial window surgery
Craniotomies were performed at 6–8weeks. Before sur-

gery, mice were given dexamethasone (0.2mg/kg, i.p.) and
carprofen (5mg/kg, s.c.). Mice were anesthetized with iso-
flurane (induction, 5%; maintenance via nose cone, 1.5–
2%) and placed in a stereotaxic frame. Under sterile condi-
tions, a 4.5-mm-diameter craniotomy was drilled over the
right V1 and covered with a 5 mm glass coverslip. Before
securing the cranial window with a coverslip, we injected
60–100 nl of pGP-AAV-syn-jGCaMP7f-WPRE. A custom
U-shaped aluminum bar was attached to the skull with
dental cement to restrain the head of the animal during be-
havior and calcium imaging. For 2 d following surgery,
mice were given dexamethasone (0.2mg/kg) daily.

Viral constructs
pGP-AAV-syn-jGCaMP7f-WPRE were purchased from

Addgene and diluted to a working titer of 2e13 with 1% fil-
tered Fast Green FCF dye (Thermo Fisher Scientific).

In vivo two-photon calcium imaging
Calcium imaging was performed on a Scientifica two-pho-

ton microscope equipped with a Chameleon Ultra II Ti:sap-
phire laser (Coherent), resonant scanning mirrors (Cambridge
Technologies), a 20� objective (1.05 numerical aperture;
Olympus), multialkali photmultiplier tubes (catalog #R3896,
Hamamatsu) and ScanImage software (Pologruto et al.,
2003). Before calcium imaging, head-restrained mice were
habituated to a soundproof chamber and allowed to run
freely on a polystyrene ball (Figs. 1A, 3A). Visually evoked
responses of L-2/3 pyramidal (Pyr) cells from V1 were

recorded at 15Hz in 1 field of view (FOV). Each FOV con-
sisted of a mean of 108 Pyr cells (SD¼ 39.2). In each ani-
mal, imaging was performed at 150–250mm.

Data analysis
Discriminability index and CR and Hit rates
The discriminability index (d9) was calculated using the

MATLAB function norminv, which returns the inverse of
the normal cumulative distribution function, as follows:

d9¼ norminv fraction of hitsð Þ � norminvðfraction of FAsÞ:

If either rate reached 100% or 0%, we arbitrarily
changed the value to either 99% or 1%, respectively. We
did this to avoid generating z scores of infinity that would
inaccurately characterize the performance of the mice.
The d9 values of the best 150 trials were selected by a slid-

ing 150 trial window; the highest value was then selected. CR
rates (CRrs) and Hit rates (Hrs) use the same best 150 trial
interval.

Licking thresholds
Licking thresholds for each mouse was determined by

using the average licking in the last Pretrial session minus 1
SD.

Licking probabilities
Probabilities were taken by binning licks per 0.1 s win-

dow per trial per mouse. We then averaged the probability
per time of each mouse to generate a distribution of prob-
abilities based on trial session, stimulus type, and trial
outcome. We use the best 150 trials from each day and
each mouse as determined by the d9 value.

Data analysis for calcium imaging
Calcium-imaging data were analyzed using suite2p

(Pachitariu et al., 2017) and custom-written MATLAB rou-
tines. All data were then processed using suite2p for image
registration, region of interest (ROI) detection, cell labeling,
and calcium signal extraction with neuropil correction. Once
suite2P had performed a rigid and nonrigid registration and
then detected ROIs using a classifier, we manually selected
cells using visual inspection of ROIs and fluorescence traces
to ensure the cells were healthy. We then used the decon-
volved spikes determined by suite2p in our subsequent
analysis that used custom-written MATLAB scripts.

Mean network activity
We performed a bootstrap of 1000 iterations per mouse

to select average activity patterns. Putative spikes were
composed of either on or off times (0s or 1s). We then
composed a grand distribution and used average network
activity (Fig. 3F,H, Extended Data Fig. 3-1A,C). Shaded
areas represent 95% confidence intervals of each respec-
tive activity curve.

Correlation of mean network activity with stimuli
Pearson’s correlations were calculated using each

bootstrapped iteration of mean network activity and a
separate matrix of 0s and 1s, with 0s representing stimulus
off periods and 1s representing stimulus on periods.
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Time-sorted heatmaps
Heatmaps featuring sorted activity (Fig. 3E, Ex-

tended Data Fig. 6-1) were sorted using the maximum
value over a given time course per unit. Units were

then displayed such that cells having a maximum
value at time t were placed together; each successive
grouping of cells at t1 1 was placed below the previ-
ous value t.
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Figure 2. Licking profiles index learning (n¼8). A, Raster plots of licking in naive and learned sessions, using the best 150
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Lick-modulated cells
Lick-modulated cells were determined by using a boot-

strapped support vector machine (SVM; see below for
SVM methods). Hit and FA trials were compared with CR
and Miss trials within the response period. The difference
between these two predictors within this period should
only be whether there was licking or not licking, as stimuli
and the presence or absence of reward differ within pre-
dictors. The sequentialfs function in MATLAB, a sequen-
tial forward feature selection function, was used to
identify 20 cells that contained the most predictive infor-
mation per mouse per time bin per session. Upon comple-
tion, each time a cell was selected, it received a score
based on the z-scored accuracy of the prediction (e.g.,
,50% accuracy resulted in a negative score, .50% ac-
curacy resulted in a positive score, 50% accuracy re-
sulted in a 0 score). All scores were then summed. The
total scores of cells were then correlated with the number
of times they were selected per mouse per session.
Correlations that were positive and significant (a¼ 0.05),
indicative of reliable predictability, were admitted. Cells
that were .1 SD from the mean of the total scores were
then selected as lick-modulated cells; 16.836 8.5 lick-
modulated cells were found per mouse. One mouse was
found to have no lick-modulated cells.

Neural trajectories
We averaged the activity of each cell over each of its trials

based on output (Hit, Miss, CR, FA) and then ran a principal
component analysis using the MATLAB function pca.
Trajectories of the first three components were plotted. The
variance explained as follows: mean¼ 75.5, SD¼ 11.9.

SVM
We used the SVM available in the MATLAB Machine

Learning and Deep Learning toolbox via the function
fitcsvm. We used a radial basis function as the kernel.
Eighty percent of our data were applied to training the ma-
chine, and 20% were applied to testing it. Instead of train-
ing one machine, we developed a strategy wherein we
performed a bootstrapped SVM per time per mouse. This
allowed us to generate a distribution of accuracy percen-
tages per time such that we could locate critical times of
difference during stimulus presentation. Ten thousand
machines were generated per time per mouse for the lick-
ing predictor and then were averaged as one grand distribu-
tion. One thousand machines were generated per time per
mouse for the imaging predictor and then were averaged as
one grand distribution. The fewer number of machines for
the imaging predictor was because of computational con-
straints. The licking predictor consisted of binning licks per
0.067 s window per trial per mouse with either the stimulus
type (preferred or nonpreferred) or trial outcome (Hit, Miss,
CR, FA) as the outcome. The imaging predictor was the ac-
tivity of the network with either the stimulus type (preferred
or nonpreferred) or trial outcome (Hit, Miss, CR, FA) as the
outcome in 0.067 s time bins. For a given mouse, the puta-
tive spiking activity of each cell was used as a feature space
per a given time. With our licking data, we performed no pre-
training optimization as we essentially were testing the accu-
racy of individual features (i.e., time bins of licking).

We performed optimization procedures on our neural
data, however. We performed a fivefold cross-validation
and used the built-in Bayesian optimizer in MATLAB (baye-
sopt function) to tune the hyperparameters (see Fig. 6A–F,
all non-lick-modulated cells in the network as features). We
also performed a feature selection procedure wherein we
ran the SVM as done previously but by selecting a given
number of cells as features (see Fig. 6G,H). This again en-
tailed using the sequentialfs function in MATLAB to find
the most predictive cells per a given interval. As an example,
when we chose four cells, at each time bin for each mouse,
the feature selection algorithm chose four cells that were
most representative of the difference between two catego-
ries, which were then used to predict the difference between
the two categories. Thus, there was a distribution of 4000
cells that were selected for that time point (4 cells by 1000
machines) and 1000 accuracy percentages (1000 ma-
chines). These machine accuracies were then averaged (see
Fig. 6G,H), and the distribution of cells was sorted by time
(Extended Data Fig. 6-1) to show when a given cell was
most likely to be selected.
Each set of trials we performed with the SVM included

all trials so as to have the most robust dataset possible.
All uses of the SVM were accompanied by control trials in
which outcomes were randomly shuffled.

Statistical analyses
Statistical analysis of normality (Lilliefors test) was per-

formed on each dataset, and, depending on whether the
data significantly deviated from normality (p, 0.05) or did
not deviate from normality (p. 0.05), appropriate nonpara-
metric or parametric tests were performed. The statistical
tests performed are mentioned in the text and the legends.
For parametric two-group analyses, a Student’s t test
(paired or unpaired) was used; for parametric multigroup
analyses, a one-way ANOVA was used. For nonparametric
tests, we used the following: Wilcoxon rank-sum test (two
groups), Kolmogorov–Smirnov test (KS; two groups), and
Kruskal–Wallis test (multigroup). When multiple two-group
tests were performed, a Bonferroni correction was applied
to readjust the a value. In the figures, significance levels are
represented with the following convention: *p , a; **p ,
a/10, ***p, a/100. a Values are 0.05 unless otherwise speci-
fied. In all of the figures, we plot either the SEM or 95% confi-
dence intervals. Graphs show either individual data points
from each animal or group means (averaged over different
mice) superimposed on individual data points.

Exclusion of mice
Five WT mice were excluded from the data because the

mice lost.25% body weight (a criterion we established a
priori). This had adverse effects on their health that was
manifested in listlessness, reduced grooming, interaction
with cage mates, and, occasionally, seizures.

Data availability
All the analyzed data reported in this study are available

from the corresponding author on request. All code, in-
cluding the SVM analysis used in this article, is available
from the corresponding author on request.
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Results
Mice learn to perform amultimodal temporal pattern
sensory discrimination task
To examine temporal pattern learning, we have de-

signed a novel go/no-go TPSD task (see Materials and
Methods). We test our paradigm in mice as they are a
robust animal model for temporally and spatially fine re-
cording methods and for cell type-specific tagging and
manipulation. Awake, head-restrained young adult mice
(2–3months of age) are habituated to run on a polystyrene
ball treadmill while they perform the TPSD paradigm.
Water-deprived mice are presented with two audiovisual
temporal patterns (preferred and nonpreferred), as shown
in the schematic in Figure 1B. Each pattern consists of
four AV stimuli, where each AV stimulus lasts either 0.2 or
0.9 s and is separated by a 0.2 s gray screen. The visual
stimulus consists of a drifting sinusoidal 90° grating, and
the auditory stimulus consists of a 5 kHz tone. Both audi-
tory and visual stimuli are presented concurrently; there-
fore, the stimuli are audiovisual. The temporal pattern with
0.2 s AV stimuli is associated with a water reward (pre-
ferred pattern), and the temporal pattern with 0.9 s AV
stimuli is not (nonpreferred pattern; Fig. 1B). We quanti-
fied the performance of mice using a d9 value in which
d9 ¼ 2 was set as a learning threshold (Fig. 1C). Mice learn
to preferentially lick to the preferred pattern and to with-
hold licking for the nonpreferred pattern (12.136 3.52
sessions to learn; n¼ 8; one-way ANOVA, F(1,16) ¼ 5.45,
p¼ 1.23� 10�7). A positive d9 value of 0.5 on session 1
likely resulted from mice learning to associate stimulus
with reward in the pretrial task before the TPSD task.
During the pretrial task, mice experience only the pre-
ferred stimulus and every trial is rewarded. This allows
mice to learn to lick reliably (.80% licking) and learn the
task structure–association of stimulus with water reward
(see Materials and Methods). This pretrial task is similar to
previous studies (Goel et al., 2018) and is a common strat-
egy used in behavior assays (Guo et al., 2014).
Similar to other go/no-go tasks, to aid learning, we use

a 7:3 preferred to nonpreferred stimulus ratio in the main
task, which can artificially amplify the effect of Hit rate on
the d9 value of the mice. To confirm that learning is not
simply a biased feature of the differential preferred/non-
preferred ratio and to examine the decision strategy of
mice between learned and naive days, we compared Hrs
with CRrs (Fig. 1D,E). Mice improved performance primar-
ily by improving their CRrs in which the CRr changed from
negative to positive (Fig. 1E; n¼ 8; two-tailed, paired-sam-
ple Student’s t test, t(14)¼ 4.46, p¼ 5.3� 10�4). Although
significant, we find that the Hr of mice remains relatively
unchanged across sessions (Fig. 1E; n¼ 8; two-tailed,
paired-sample Student’s t test, t(14)¼ 4.42, p¼ 5.85�
10�4) but that their ability to inhibit licking increases across
sessions, indicated by a positive CRr in learned sessions.
Licking profiles that accompany learning were more re-

fined in expert mice (Fig. 2). We quantified the probabilities
of the licking by the mice based on session day (naive vs
learned), stimulus type (preferred vs nonpreferred), and trial
outcome (Hit, Miss, CR, FA) as a function of time. We find
that on learned days licking to the preferred stimulus is

enhanced, while licking to nonpreferred stimuli dramatically
decreases before the water reward, indicative of a learned
response (Fig. 2B). The most robust change in licking oc-
curred in the nonpreferred stimulus in which mice peak in
their lick probabilities in CR trials before the onset of the
water reward in learned days (Fig. 2D).

Licking profiles in learnedmice predict stimulus type
To causally establish that licking is both (1) a viable

measure of performance and (2) demonstrates differential
learning between sessions, we developed a bootstrapped
SVM, a type of binary classifier. We run our SVM 10,000
times within 0.067 s time bins using licking within a trial as
the predictor and the stimulus of that trial as the outcome
(see Materials and Methods). This allows us to generate a
distribution of correctly predicted outcomes per time bin
per mouse, which are then compared with a randomly
shuffled control. We find that there is little predictability
beyond chance in naive days with somewhat greater pre-
dictability following the water reward, likely attributable to
increased licking at their chance encounter with the water
reward (Fig. 2E). On learned days, licking becomes pre-
dictive beyond chance at 0.7 s and then accelerates be-
ginning at 0.8 s. This suggests that mice relied on
stimulus information to make a decision rather than on the
presence or absence of the water reward. The high per-
formance of the SVMs before the water reward in learned
sessions establishes that mice indeed learn to discrimi-
nate temporal patterns. In addition, it identifies the deci-
sion period at;0.7–0.8 s.

Learning is not an artifact of behavior design
Following learning, mice underwent the following two

additional protocols: (1) performing the same paradigm
with a 6:4 P/NP stimulus ratio; and (2) performing the
same paradigm without any visual or auditory input as a
control (Control). We performed the 6:4 P/NP stimulus
ratio task to confirm that learning was not a feature of the
differential P/NP stimulus ratio of 7:3 in the main task, and
the Control task to confirm that learning was stimulus
dependent.
In the 6:4 P/NP stimulus ratio task, the d9 values of mice

for CRr and Hr were not significantly different from the
main task (Extended Data Fig. 1-1A). Licking probabilities
were similar as well, albeit there was less overall licking in
the P/NP stimulus ratio of 6:4 task than in the main task
(Extended Data Fig. 1-1B,C). We again used licking to
predict stimulus type and found that predictability was
maintained nearly identically in the P/NP stimulus ratio of
6:4 task (Extended Data Fig. 1-1D). These results confirm
that learning was not a result of the P/NP stimulus ratio of
the main task.
Control sessions confirmed that learning was stimulus

dependent: expert performance on the task required the
audiovisual stimuli and was not simply dependent on the
availability of a water reward. d9, CRr, and Hr were all sig-
nificantly different from the main task, showing poor per-
formance (Extended Data Fig. 1-2A). Licking profiles
showed considerable changes, both in the volume of
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licking and in stimulus-dependent licking (Extended Data
Fig. 1-2B,C). Using licking in Control trials to predict stimuli
via the bootstrapped SVM showed chance performance
throughout the trial period (Extended Data Fig. 1-2D). Thus,
learning is dependent on the presence of stimulus and is not
an artifact of some unknown confound.
In the TPSD task, the P and NP stimuli had the same

number of intratrial stimuli; because each was a different
duration, the total durations of the sequences were differ-
ent (P¼ 1.4 s; NP¼ 4.2 s). To control for this potential
confound, we subjected a separate cohort of mice (n¼ 2)
to a modified task (TPSDmod; Extended Data Fig. 1-3A).
Additionally, we inverted the stimuli such that the longer
intratrial stimulus was the P and the shorter was the NP to
ensure that learning was not dependent on a specific du-
ration or simply the shorter of the two durations. Mice
learned the task in a mean of eight sessions, with most
improvement occurring in CRr (Extended Data Fig. 1-3C–
E). Licking profiles additionally verified learning with lick-
ing ramping in predictability before the water reward in
learned sessions but remaining at chance level in naive
sessions (Extended Data Fig. 1-3B,F–I). We performed a
modified P/NP stimulus ratio as before in which the P/NP
stimulus ratio in the TPSDmod task (7:3) was changed to 6:4
to rule out artifacts of experimental design. Performance re-
mained similar to learned sessions (Extended Data Fig. 1-
4A–D). Control sessions were then run in which the monitor
and speakers were turned off; performance decreased as
before in the original paradigm to chance levels (Extended
Data Fig. 1-4E–H).

Pyramidal cell dynamics in primary visual cortex
accompany temporal pattern learning
A previous published study using sensory cortical orga-

notypic slice cultures (Goel and Buonomano, 2016) found
that information about stimulus duration is encoded in a
change in pyramidal cell activity wherein the neural activ-
ity is refined to represent the learned interval. We pre-
dicted that a similar emergent neural activity contributed
to learning temporal patterns in vivo. Therefore, to exam-
ine the pyramidal cell dynamics that are associated with
TPSD, we performed two-photon calcium imaging in V1 to
provide a real-time assay of neural activity during TPSD.
Studies have shown that auditory inputs strongly influence
neural responses in primary visual cortex (McIntosh et al.,
1998; Zangenehpour and Zatorre, 2010; Deneux et al.,
2019; Garner and Keller, 2022) and audiovisual stimuli
evoke multimodal plasticity in V1 (Morrell, 1972; Petro et al.,
2017), thus justifying V1 dynamics as a locus of change ac-
companying learning on the TPSD task.
We recorded from V1 L-2/3 using two-photon calcium

imaging and jGCaMP7f (half-rise time ¼ 276 2ms) with a
synapsin promotor via an adeno-associated virus (AAV)
vector (Dana et al., 2019; Fig. 3A–C). This indicator has
been used by numerous published studies and is routinely
used by researchers performing calcium imaging during
behavior because of its enhanced signal-to-noise ratio
and fast rise-time kinetics. Mounting evidence suggests
that movement-related activity accounts for a consider-
able amount of variance in neural recordings, including in

primary sensory areas (Zagha et al., 2022). Further, timing
and movement are linked, and therefore neural dynamics
that encode time information may also code for licking. To
exclusively examine neural codes for the temporal struc-
ture of the pattern, following recording we identified lick-
modulated cells and removed them from subsequent
analyses of neural data (see Materials and Methods;
Extended Data Fig. 3-3) to distinguish sensory activity
from motor and/or decision-related activity.
We find that in mice (n¼ 5) during the TPSD task, there

are time-dependent changes in mean network activity be-
tween naive and learned sessions. Naive sessions do not
show temporal structure in either P or NP stimuli through-
out the period of either (Extended Data Fig. 3-1A,C).
Learned sessions show changes in activity to both stimuli.
Activity is correlated until ;0.7 s, at which there remains
sustained activity in the preferred condition and sup-
pressed activity in the NP condition (Extended Data Fig.
3-1A,C). Additionally, activity in the preferred condition is
temporally coordinated with the preferred stimulus, peak-
ing at times of intrastimulus presentation. Activity in the
nonpreferred condition is likewise time locked to the pre-
ferred stimulus until 0.7 s. We suspect that the network
predictively codes the preferred stimulus in both conditions,
but that it is successively suppressed as it encounters the
nonpreferred stimulus. Cumulative distributions of maxi-
mum spiking support this hypothesis as NP maximum spik-
ing is significantly left shifted in learned sessions compared
with naive sessions (Extended Data Fig. 3-1B,D).
Furthermore, network activity in naive sessions does

not distinguish trial outcome (Hit, Miss, CR, FA; Fig. 3E,F,
Extended Data Fig. 3-2A). In learned sessions, network
activity indexes both stimuli and trial outcome (Fig. 3G,H,
Extended Data Fig. 3-2B). In learned Hit trials, activity is
temporally coordinated with the preferred stimulus (Fig.
3H). Hit learned session activity is the only condition in
which activity is positively and significantly correlated
with the preferred stimulus (learned Hit: (r¼ 0.0134, p¼
8.33� 10�6; learned CR: r ¼ –0.004, p¼ 0.1892; learned
FA: r¼ 0.0077, p¼ 0.0112; naive Hit: r ¼ –0.008, p¼
0.0073; naive Miss: r¼ –0.0123, p¼ 1.76� 10�12; naive CR:
r ¼ �5, p¼ 0.8; naive FA: r ¼ -0.021, p¼ 1.31� 10�12). CR
trials show suppression of activity at;0.7 s, whereas FA tri-
als show delayed suppression, likely leading to the incorrect
response (Fig. 3G,H, Extended Data Fig. 3-2B). Delayed
suppression in learned FA trials lasts until the preferred stim-
ulus period ends at 1.4 s. We suspect that FA trial activity is
predictively coded as the preferred stimulus, leading to sus-
tained activity. CR trial activity is coded as the preferred
stimulus until 0.7 s, at which point broad inhibitory activity
likely suppresses the network.
We examined when cells were mostly likely to fire in

naive and learned sessions. In naive sessions, maximum
spiking was significantly different save for between Hits
and FAs, and Misses and CRs, respectively, which indi-
cates that network activity was not driven exclusively by
sensory discrimination (Fig. 4A). Learned sessions showed
significant differences between Hits and CRs, and Hits and
FAs, respectively, which indicates that temporal features
generate distinct network activity (Fig. 4B). Additionally,
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learned session CR and FA trials were significantly left
shifted from naive session CR and FA trials, with learned
CR trials the most left shifted (Fig. 4C). This demonstrates
that the network in naive sessions was active throughout
the NP stimulus period, whereas in learned sessions, the
network had been tuned to the preferred stimulus and there-
fore suppressed activity in nonrelevant stimuli. Additionally,
the level of suppression of activity in the NP stimulus in-
dexes correct or incorrect responses.

Visual cortical neural dynamics contain temporal
information
As previously discussed, we suspected that learning

would be enabled through distinct patterns of network dy-
namics. That is, the amount of difference in neural trajec-
tories through state space should index learning. Indeed,
on naive days in which performance is poor, there is little
difference in network activity regardless of stimulus type
or trial outcome (Fig. 5A–C). In learned sessions, the tra-
jectory of the network shows divergence between Hit and
CR trials (Fig. 5D), but shows clustering in Hit and FA trials
(Fig. 5E). Notably, the greatest divergence between Hit
and CR trajectories in learned sessions begins at ;0.7 s,
the period at which licking also began to be most predic-
tive of stimulus type in learned sessions. We suspect that
this divergence does not exist between Hit and FA trials
as FA trials predictively code the preferred stimulus.
However, an outstanding question is whether network

divergence causes a decision to be made or whether the
decision is made elsewhere, which then leads to feedback
release or inhibition (I) of the network. We addressed this
by using our bootstrapped SVM (0.067 s time bins, 1000
iterations/bin) to predict stimulus and trial outcome from
neural activity. We found that network activity accurately
predicts stimuli in learned sessions and moderately so in

naive sessions (Fig. 6A). In naive sessions, there is little
predictability, suggesting that the network is not differen-
tially tuned to stimuli or trial outcome (Fig. 6B). In learned
sessions, there is high predictability between Hit and CR
trials, moderate predictability between CR and FA trials,
and no predictability between Hit and FA trials (Fig. 6C).
The respective predictability profiles of Hit versus CR and
Hit versus FA in learned sessions accord with the analysis
of neural trajectories in which CR trials diverge from Hit
trials, but FA trials do not (Fig. 5D,E). Because Hit and FA
trials generate the same network response, evinced by
predictability at chance levels, it is likely that FA trials pre-
dictively encode the preferred stimulus. Thus, in learned
sessions, accurate encoding of stimuli directly contrib-
utes to trial outcome.
Not surprisingly, the neural dynamics of lick-modulated

cells contained information about the trial outcome
(Extended Data Fig. 3-3). We further verified this finding
by comparing licking predictability with neural predictabil-
ity in learned sessions (Extended Data Fig. 3-4). In Hit ver-
sus CR trials, neural predictability first rises above chance
in nonlick cells at ;0.3 s and then ramps at 0.7 s; predict-
ability of lick-modulated cells and licking, however, oc-
curs later at 0.7 s (Extended Data Fig. 3-4A). In Hit versus
FA trials, there is no predictability in nonlick cells, lick-
modulated cells, or licking (Extended Data Fig. 3-4B).
These results indicate that it is necessary for the network
to accurately encode temporal information before making
a decision, and thus implicates sensory-driven activity in
learning and trial outcome.
We additionally recorded from V1 L-2/3 in a separate

cohort of mice (n¼ 2) using our TPSDmod paradigm to en-
sure that learning was not dependent on potential arti-
facts within our original paradigm (Figs. 1-3). Notably, we
found the network dynamics tune to the longer preferred
stimulus as indicated by a right-shifted distribution in
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maximum spiking in Hit trials in learned sessions com-
pared with naive sessions (Extended Data Fig. 3-5D). CR
maximum spiking was left shifted, indicating suppression
of nonrelevant stimuli similar to that seen in learned ses-
sions in the original paradigm (Extended Data Fig. 3-5C,
D). Additionally, the decoder accurately predicted stimu-
lus type from learning in learned sessions but not in naive
sessions (Extended Data Fig. 3-5E).

Temporal information is encoded by intrinsic
mechanisms in V1
Based on the results of the SVM using the entire network,

we next characterized the dynamics by which V1 encoded
temporal information. It has been shown previously that
temporal information can be encoded in a variety of neural
mechanisms including linear ramping, high-dimensional dy-
namics, and a combination of oscillators (Bakhurin et al.,
2017; Zhou et al., 2020). Here we specifically addressed
whether temporal coding in the TPSD task relies on dedi-
cated or intrinsic mechanisms. We tested this by using neu-
ral data to predict stimulus outcome in learned and naive
sessions as before, but by using a forward sequential fea-
ture selection algorithm for various numbers of cells, with
each cell for a given mouse representing a feature. First, if
temporal information is encoded in specialized functionally
connected cells or circuits (i.e., through dedicated mecha-
nisms), we predict that we would see high predictability of

stimuli using a small subset of cells in both naive and
learned sessions. Additionally, we predict that the same
cells would be selected throughout the stimulus period as
they contain a unique ability to represent temporal informa-
tion. If, however, temporal information was encoded through
intrinsic mechanisms, we predict that cell selection would
vary through the stimulus period, that greater numbers of
cells would provide higher predictability, and that predict-
ability would emerge over learning likely through refinement
of the network.
We find that there is only high predictability in learned

sessions and that cells that are selected vary over the
stimulus period, indicating that in V1 timing is achieved
without dedicated timing mechanisms but rather through
changing patterns of intrinsic neural dynamics (Fig. 6G,H,
Extended Data Fig. 6-1). Additionally, predictability and
selectivity in learned sessions is stimulus dependent.
These results suggest that temporal information in V1
does not invariantly rely on dedicated mechanisms.
However, we find that systematically there is higher pre-

dictability earlier in the stimulus period in fewer cells in the
learned sessions. The high early predictability ramps im-
mediately following 0.2 s, which is the first period at which
the P and NP stimuli differ. This result suggests that in V1,
temporal information can be encoded by a small subset
of cells. However, as the stimulus period continues, and a
decision is reached before the arrival of water, there is
ramping in predictability in all cell selections, and in
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greater numbers of cells there is systematically greater
predictability. Notably, at 0.4–0.5 s, in which stimuli are
visually and aurally the same, there remains high predict-
ability that differentiates P and NP stimuli, which impli-
cates temporal information as what is most saliently
encoded in V1.

We suspect that a small subset of cells at ;0.2 s in-
dexes the temporal difference between stimuli whose ac-
tivity then propagates throughout the network as the
stimulus period continues and more sensory information
is received. This leads to network-level tuning, which
causes the network itself to be more predictive than a

A B C

D E F

0 0.2 0.4 0.6 0.8 1 1.2
time (s)

35

40

45

50

55

60

65

70

75

A
cc

ur
ac

y 
(%

)

Hit vs CR
Hit vs FA
CR vs FA

0 0.2 0.4 0.6 0.8 1 1.2
time (s)

35

40

45

50

55

60

65

70

75

A
cc

ur
ac

y 
(%

)

0 0.2 0.4 0.6 0.8 1 1.2
time (s)

30

35

40

45

50

55

60

65

70

A
cc

ur
ac

y 
(%

)

Hit vs CR
Hit vs Miss
Hit vs FA
CR vs FA
Miss vs CR
Miss vs FA

0 0.2 0.4 0.6 0.8 1 1.2
time (s)

35

40

45

50

55

60

65

70

75

A
cc

ur
ac

y 
(%

)
0 0.2 0.4 0.6 0.8 1 1.2

time (s)

35

40

45

50

55

60

65

70

75

A
cc

ur
ac

y 
(%

)

Pref vs NP - Naive
Pref vs NP - Learned

0 0.2 0.4 0.6 0.8 1 1.2
time (s)

35

40

45

50

55

60

65

70

75

A
cc

ur
ac

y 
(%

)

1.41.41.4

1.4 1.4 1.4

0 0.2 0.4 0.6 0.8 1 1.2
time (s)

40

45

50

55

60

65

70

75

A
cc

ur
ac

y 
(%

)

Naive
1 cell
2 cells
4 cells
8 cells
16 cells
32 cells
64 cells
100 cells

0 0.2 0.4 0.6 0.8 1 1.2
time (s)

40

45

50

55

60

65

70

75

A
cc

ur
ac

y 
(%

)

Learned
1 cell
2 cells
4 cells
8 cells
16 cells
32 cells
64 cells
100 cells

1.41.4

G H
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small subset of cells. However, as this ramping in net-
work-level predictability occurs following the decision pe-
riod, it is unknown whether this tuning is caused by the
stimulus, by the early activity of a small subset of cells
that generate a particular neural trajectory, or by top-
down areas amplifying relevant functional populations in
V1. Thus, a combination of distinct mechanisms may be
responsible for timing within the stimulus period.

Discussion
Using a go/no-go audiovisual timing task, we have

demonstrated that mice learned to perform the TPSD
task successfully, as assessed through an increase in
the discriminability index and a refinement of licking pro-
files. Learned performance was attributable to changes
in response to the nonpreferred temporal pattern in
which licking was suppressed early into the stimulus
period. Similar results were seen in neural activity in V1
L-2/3 in which activity was suppressed in the nonpre-
ferred stimulus but was released in a temporally defined
manner in the preferred stimulus. Whereas naive ses-
sions showed decided overlap in neural trajectories,
learned sessions showed trajectories that indexed stim-
ulus type and trial outcome, suggesting that distinct
functional populations developed with learning. Neural
activity was also used to decode stimulus type and trial
outcome in learned sessions but not in naive sessions,
which indicates that V1 undergoes synaptic plasticity
changes to support temporal learning. Additionally, we
found that subsecond temporal encoding relies on intrin-
sic temporal mechanisms. Early decoding predictability
using a small subset of cells suggests that the state the
of entire network does not index temporal information
but that it is contained within a few cells. As the stimulus
period progresses, the dynamics of the entire network be-
comemore predictive than a small subset of cells, indicating
that the network state does index elapsed time. However,
how this transition occurs and whether it is achieved locally
or via top-down inputs require further investigation.
Because of the complexity of understanding temporal

processing, time has been categorized into distinct types
such as sensory versus motor timing and interval versus
pattern timing, as well as distinguishing between different
timescale ranges (Paton and Buonomano, 2018). For ex-
ample, many tasks in interval timing require the identification
of isolated segments of time such as in waiting to cross a
street or identifying a single musical note. While interval tim-
ing can be studied as its own entity, it is also important in
pattern timing. Pattern timing is composed of intervals and
contains a temporal structure (Paton and Buonomano,
2018). For instance, to understand language, one must rec-
ognize the overall prosody of speech, as well as the pauses
between words. The timescale in which interval and pattern
timing occur is on the order of tens of milliseconds to a few
seconds, although it is unknown whether the neural mecha-
nisms of interval and rhythmic timing are shared and
whether intrinsic timing mechanisms that contribute to inter-
val timing also contribute to learning of temporal patterns
(Hardy and Buonomano, 2016). Although early theories of
timing proposed centralized mechanisms dedicated entirely

to temporal perception, it has since been established that
different neural mechanisms are involved in processing
time at different timescales (Paton and Buonomano, 2018).
However, it has yet to be determined whether the mecha-
nisms of temporal perception in the range of seconds and
subseconds are distributed across brain regions or whether
local networks within different regions can intrinsically en-
code time, albeit through a diversity of network dynamics
(Zhou et al., 2020, 2022). Primary visual cortical circuits
show robust plasticity to spatiotemporal features in stimuli
and predict temporal associations (Chubykin et al., 2013;
Gavornik and Bear, 2014a,b; Fiser et al., 2016; Garrett et al.,
2020). Our data show robust V1 dynamics that encode tem-
poral information about the experienced stimuli as shown
by the accuracy of the decoder. As is the case in many be-
haviors, perturbation experiments are typically performed to
establish causality between neural activity and behavior.
However, using machine-learning algorithms to show a re-
quirement of neural activity is increasingly used by many
groups (Bakhurin et al., 2017; Zhou et al., 2020; Lazar et al.,
2021; Toso et al., 2021). While not the same as a perturba-
tion experiment, a bootstrapped SVM allowed us to deter-
mine whether neural activity contained information about
stimulus type and trial type. Importantly, we find that infor-
mation in the TPSD task is learned through intrinsic changes
in V1 dynamics. Further, depending on the time during the
trial duration, learned information about the temporal pat-
terns was encoded in a small selection of cells indicative of
“time cells,” a medium-sized selection indicative of oscilla-
tors, as well as a large selection of cells suggestive of a
change in network state. In conclusion, our data show the
contribution of multiple mechanisms that allow learning and
representation of time intervals.
There is a growing consensus that movement-related

and arousal-related signals as well as sensory and cogni-
tive processes may be contained in the same evolving
neural activity (Zagha et al., 2022). However, identifying
and dissociating neural circuits and dynamics that contrib-
ute to sensory, motor, arousal, and other cognitive process
is still a challenge. We used two strategies to address this
challenge: (1) the design of the TPSD task, which consisted
of a separation of stimulus onset from the response window,
thus attributing the very early neural activity to sensory proc-
esses (temporal discrimination); and (2) we exclusively ex-
amined neural activity that contributed to encoding time by
removing lick-modulated cells from our analysis.
Complex interplay of synaptic excitation (E) and I al-

lows cortical neurons to adaptively respond to sensory
stimuli, discriminate between stimuli, and integrate sen-
sory inputs (Isaacson and Scanziani, 2011; Ferguson
and Cardin, 2020). Converging evidence across many
studies and model systems shows that selectivity to the
interval of a stimulus duration is the result of dynamic shifts in
E–I balance (Edwards et al., 2007; Kostarakos and Hedwig,
2012; Goel and Buonomano, 2016). Consistent with previous
in vitro work in cortical slices (Goel and Buonomano, 2016),
our data suggest that network suppression is one potential
mechanism that drives learning. Encoding of intervals and
patterns in sensory cortical circuits can result from changes
in the E/I ratio at temporally defined periods (Goel and
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Buonomano, 2016) and by multiple interneuron populations
(Cardin, 2018). V1 L-2/3 is composed primarily of Pyr cells,
which are synapsed by parvalbumin (PV) cells at the cell
body and axonal hillock (Gonchar and Burkhalter, 1997).
Somatostatin (SST) cells synapse onto the dendrites of py-
ramidal cells, thus providing more fine-tuned inhibition. Both
PV and SST cells have been implicated in short-term plastic-
ity, which is one of the mechanisms proposed to drive sub-
second sensory timing (Buonomano, 2000; Motanis et al.,
2018; Seay et al., 2020). PV cells provide reliable inhibition
within a short window, which can help to constrain pyrami-
dal cell firing to temporally defined windows (Pouille and
Scanziani, 2001; Cardin et al., 2010). We speculate that inhi-
bition, driven by PV cell activity, which is broadly tuned be-
cause of their anatomic connectivity, can drive temporal
encoding of rhythmic patterns. Indeed, in a recent study, PV
neurons were shown to be important in mediating reward
timing (Monk et al., 2020). However, SST cells alsomodulate
cortical output. SST neurons not only provide dendritic py-
ramidal cell inhibition but also control PV cell output (Atallah
et al., 2012). Therefore, a complex interaction between SST
and PV cells determines the balance between somatic and
dendritic inhibition on pyramidal cells (Xue et al., 2014), thus
contributing to temporal encoding (Cardin, 2018). However,
it is important to emphasize that circuits in V1 are not the
only contributors to the TPSD task and that multiple areas
such as auditory cortex, ACC, and other downstream areas
are likely involved.
Our results thus far suggest that the emergence of com-

plex neural dynamics in V1 accompanies temporal pattern
learning. An important hallmark of learning is being sensi-
tive to and remembering the temporal structure of events
so that we can make predictions and guide our future de-
cisions. As a result, it is not surprising that disruptions in
timing and timed performance are associated with a num-
ber of neurologic disorders such as Parkinson’s disease,
schizophrenia, and autism spectrum disorder. Our study
opens the door to future studies probing the mechanistic
substrates of excitation and inhibition that fine-tune tem-
poral pattern learning and offers insights into translational
studies of time perception.
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