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Abstract

This report presents closed-form expressions for the eigenvalues and eigenvectors of
enhanced strain finite elements in finite strain conditions. An undistorted square

material model is given by a general compressible Ogden hyperelastic model. Dif-
ferent element enhancements are tested. The results presented herein confirm the
existence of zero energy modes in compression in the original enhanced formulation
of SIMO & ARMERO [1992], and indicates the absence of these modes in the new
formulations presented in GLASER & ARMERO [1995]. It is further shown that
models exhibiting negative axial stiffness in tension lead to negative stiffness of the
transversal hourglass mode.

1. Introduction

The formulation of enhanced strain finite element methods for finite deformation
methods has been considered in SiMO & ARMERO [1992], S1MO, ARMERO & TAYLOR
[1993], and GLASER & ARMERO [1995], as a generalization of the infinitesimal enhanced
strain elements of S1IMO & RIFAI [1990]. Alternative enhancement strategies have been pre-
sented by other authors; see e.g. NAGTEGAAL & Fox [1995] and CRISFIELD et al. [1995],
among others. The original strategy involves an additive enhancement of the deforma-
tion gradient resulting of the standard isoparametric bilinear interpolation. This approach
leads to elements exhibiting a locking-free response in bending and the incompressible
limit, maintaining a strain driven structure of the final formulation. This last property
makes this formulation especially suited for the numerical implementation of general in-
elastic models. However, it was observed in the first of these references that the proposed
element suffered of zero energy modes, which lead to severe hourglassing in compression.
Modifications were presented in the following references to alleviate this problem.
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The appearance of the zero energy mode in compression has been characterized
analytically in WRIGGERS & REESE [1994], who calculated explicitly the eigenvalues for
an undistorted element with the original enhanced formulation in plane strain conditions
under uniaxial compression. The material model considered by the authors correspond to
a Neo-Hookean material. We consider the same problem in this report but with a general
Ogden model and involving alternative enhancements of the deformation gradient. In
addition, we give closed-form expressions of the complete set of eigenvalues and eigenvectors
of the element, thus allowing the understanding of the response of the elements under
consideration.

The rest of this report is organized as follows. Section 2 includes a summary of
the formulation of enhanced strain finite element methods. The characterization of the
elastic material model consider herein is presented in Section 2.2.1. Section 3 presents the
calculations leading to the closed-form expressions of the eigenpairs of the finite elements
under consideration. A discussion of the results 1s presented in Section 4, for different
particular material models. Finally, Section 5 presents some concluding remarks.

2. The Enhanced Strain Finite Element Method

This section presents a summary of the general formulation of enhanced strain
finite element methods in finite deformation problems. The reader is referred to the original
references SIMO & ARMERO [1992], SiMO, ARMERO & TAYLOR [1993], and GLASER &
ARMERO [1995], for complete details.

2.1. The Enhanced Deformation Gradient

Denote by 2" a discretization in quadrilateral finite elements of a domain £ C R?
occupied by the reference placement of a solid B. Let ¢/ : 2" — R? be a piecewise bilinear
isoparametric interpolation of the deformation (X)) for X € (2, that is, at the element

02" we have
Mnode

EHX)= > (Xa+da)N* o X1, (2.1)
A=1

where X = X (£) denotes the isoparametric map X : [] — 2" from the parent domain
(] := [~1,1]%2. Here, the vectors ds € R? denote the unknown 4 nodal displacements,
X 4 € R™i= are the nodal reference coordinates, and N are the standard isoparametric
shape functions, that is,

NAE) = {1+t foré=(Em e, 22)
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in 2D, where (fA,nA) for A = 1,4 are the vertices of the parent domain []. Similar
constructions apply to 3D problems.

Our point of departure is the three-step procedure described in S1MO, ARMERO
& TayLOR [1993] for the construction of an additive enhancement of the deformation
gradient F' := GRADx at the element level. This procedure results in the expression

F'" = agrabpyp"+ F" | (2.3)
—_—

conforming  enhanced

with the enhanced part Fh given by

F=F,F, (2.4)
where F, denotes the conforming part of the deformation gradient at the centroid

| ;
F, = GRADgp" = GRADXgOh’iS , (2.5)
=0

and F is a given enhanced interpolation field. This enhancement can be constructed as

iﬁ‘ = z’?“](} ]F J(:l 7 (26)
J
following the original formulation in SiMO & ARMERO [1992], or as
ﬁ:%@?ﬁJﬁ, (2.7)

following GLASER & ARMERO [1995]. Here, J, denctes the Jacobian of the isoparametric
map X = X (€) at the centroid, i.e.,

. 0X
J=J(§) = e J5—~J(£ﬂ£:0, (2.8)
with determinants denoted by
=€) = det () o=, - (2.9)

Note that both constructions (2.6) and (2.7) are frame indifferent under change of observer
due to the presence of F, in (2.4). We observe that for a reference undistorted element, as
considered in the calculations below, J, = 1 and the two transformations (2.6) and (2.7)
coincide.
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The enhanced interpolations F = F(£) are defined in the parent domain [}, and
assumed of the form

Tlenkh

F(&)=> F'(€) I, (2.10)
=1

with nenn enhanced parameters /7 € R 1 = 1,nenn), (fenn = 4 in the cases below). With
this notation in hand, we consider the following elements for plane strain analyses:

1. The Q1/E/ element. The original formulation of SiMO & ARMERO [1992] is
recovered by

e 0] 00 0 7 ~fo o ‘
F_MI][O OJ4—[}[§ O}+—f§[0 ol H 1 NE (2.11)

The transformation rule (2.6) is considered in this case.

2. The Q1/ES4 element. Numerical experiments (see below) have shown the pres-
ence of spurious zero energy modes in the original Q1/E4 element. To avoid these
difficulties the following modification has been proposed in GLASER & ARMERO

[1995]
= ¢ 0 0 ¢ 0 n 0 0
F=1 [O 0J+FQ[£ ()J+F3[77 0] ~%—F4[O "7] , (2.12)

involving the symmetrization of (2.11). The transformation rule (2.6) is consid-

ered in this case.

3. The Q1/ET4 element. Numerical experiments show that the above modification
suppresses the hourglass modes that appear for the Q1/E4 quad in compression.
However, a stiff response of the element has been observed in bending dominated
problems. To avoid this drawback, the following basis of the enhanced deforma-
tion gradient is considered

e o o €], oo 0 0 o
eon S el gent enfl 0] e

involving the transpose of (2.11). The transformation (2.7) is considered in this
case leading to an improved performance of the element.

Similar enhanced interpolations fields apply to the 3D and axisymmetric problems. See all
the original references for details.

The three interpolation fields (2.11), (2.12) and (2.13) satisfy the condition
/dezo, (2.14)
I

proposed in SiMO & ARMERO [1992] for the element to satisfy the patch test. Constant

4

strain states are captured exactly by the element with zero enhanced modes (I'7 = 0,
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I =1,4). We note that the purpose of considering the transformations (2.6) and (2.7), with
the Jacobian J, at the centroid of the element (i.e. constant) is precisely the satisfaction
of the patch test in general distorted configurations of the element. These ideas were first
proposed in TAYLOR et al. [1976] for the original infinitesimal incompatible modes element
QM6.

2.2. The finite element equations

The weak form of the governing equations are written for a general hyperelastic
material characterized by a stored energy function W = W (F') as

/ [aFW; [GRAD x 6" + GRADO" ﬁ‘]]drz CGem(B") =0,  (2.15.4)
Jor b

/ OpW:F, 0F] d2=0,  (215.0)
J ok

for all admissible variations d¢ (satisfying homogeneous essential boundary conditions as
usual), and all variations 0F. These equations can be obtained as the first variation of a
three-field variational formulation of the Hu-Washizu type, with the proper orthogonality
conditions for the stress field to drop out of the formulation. See the original references
for details. In what follows, we use the notation

W a*wW
= and A= —

oF OF?
for the first Piola-Kirchhoff stress tensor resulting from the stored energy function W and
corresponding tangent, respectively.

(2.16)

The linearization of the weak equations (2.15) leads to a stiffness matrix K given
by the expression

(6d 6I'|K [2}{] - / [10F +6F,  + F, 0F): A:[AF + AF, F + F, AR
4 _(Zh
+ P:[AF, 6F + 6 F, A]?‘]] e (2.17)
where .
AF = GraDx[AQ"] = Z Adg © GRADx NA |
A=1

AF, = AF'igzﬂ ?

4 y (2.18)
AF = Z AR,
I=1

Ad=[AdT Adl Adl Adf]"

Al =[AIT AL, A, AT
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and similarly for the §[-] variations. It is to be noted that, since the enhanced parameters I'y
are defined independently for each element, an efficient numerical implementation involves
their static condensation at the element level leading to an effective (8 x 8) stiffness of
the element. See SIMO & ARMERO [1992] for completed details, and the considerations in
Section 3 below.

2.2.1. The material tangent
We consider a general Ogden material model characterized by a stored energy
function in terms of the principal stretches {A1, A2} (A3 = 1 in plane strain). The principal
second Piola-Kirchhoff stresses S4 (A = 1,2) are given by
1 oW

Sa = SV (no sum in A), (2.19)

and, denoting the Lagrangian principal directions N4, we have the formulas
2
S=)Y SsNi@Ns, with P=FS§, (2.20)
A=1

for the (in-plane) second and first Piola-Kirchhoff stresses, respectively. The material
tangent dS = CL1dC (with the right Cauchy-Green tensor C = FT F) is given by

1 9 1 8w
C= ——-——-{«-—— }N & Ns© Np@ N
Aa OhaLdgargl AT YA B NS
A.B
A25, — A%LS
+ Y 2 PR PPN, @ N+ Np© Na)® 3(Nsa© Ng+ Np © Na) .(2.21)

2 32 2
A#B Aa = Ap

From this last expression, we can identify the components of the material tangent C in the
Lagrangian principal frame

N4S4 — AL S
Na— b

(A#B),

(2.22)
where no sum over repeated indices is implied. The expression (2.22)s assumes different
principal stretches. In the case of Ay = Ay, this last expression is replaced by

Capap = CapBpa =

Caapp = L o [ ! aM/}»

Aa OAg LAp O)p

0
CABBA=:(1unu3::gxf(A%SA“"AESB), (2.23)
a

with A4 being equal to A after differentiation. The tangent A in (2.16), is obtained by

Az'BkD — F/%FgCABCD + SBD(S’N: ) (224)
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2 A,

v

¥

2 A,

FIGURE 2.1. Undistorted single element test under uni-
axial tension/compression state of stress.

The reader is referred to OGDEN [1983], Section 6.1.4, for details on all the formulas above.

The case of interest herein corresponds to an Ogden hyperelastic model of the

form
Wik, A2) = U(J) + g— AY + A = 2] —plnJ, (2.25)

for a volumetric response function U(J) in terms of the Jacobian J := AjA;. A state of
uniaxial tension in the 2-direction, characterized by a deformation gradient of the form

P ﬁ)l /&] ? (2.26)

is considered. The principal directions N4 are then the two Cartesian directions of refer-
ence. Setting the Kirchhoff stress 71 := 5; /\f = {J, we obtain

T=JU 4 pA 1) =0 = JU =-pu(A§-1), (2.27)
and conclude that
Ty = SoAi = JU 4 p(A§ — 1) = u(A§ — A) . (2.28)

See Figure 2.1 for an illustration of this state of stress. In this case, the tangent A is given
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in components as

LU axg
A = ¥ + p ¥
(JU'Y  (a+1)AS + A%
Anooo = - - ] ,
2222 )\é i )\% :
(JU"Y
Aj1og = Ao = - ) ; .
AT — A%
Aoz = Agior = p——
A5 = A
AT — A¢ A
Apgoy = Agi1g = p2—L =
1221 2112 M)\é . Xf A
Aapas = Aspps = Asapa = Appap =0 (A+# B),

after some simple manipulations. Furthermore, equation (2.27) allows to obtain a closed
form expression of the transversal stretch A; in term of the axial stretch As.

In the numerical examples considered in Section 4, the particular volumetric

response
U(J)= 1A(InJ)*, (2.30)

is considered. In this case, the volumetric contribution to the tangent in (2.29) is given by
(JU"Y = A, (2.31)

and equation (2.27) leads to the relation

1 L ~
Ao = ep[=5 (¢ = 1)), (232)
A A

between Ay and As.

3. Modal Analysis

We particularize the above developments to a single undistorted finite element
occupying the parent domain as in WRIGGERS & REESE [1995], ie. 2" = []=[-1,1] x
[—1,1]. The element is assumed to be subjected to a homogeneous deformation consisting
of a uniform axial tension in the 7 direction (2-direction), leading to F = F, given by
(2.26); see Figure 2.1. In this situation, the enhanced parameters I'Y = 0 (I = 1, neun),
since the element is designed to capture exactly constant states of deformation (patch test)
by imposing (2.14).
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We introduce the vector notation
Py AFy
AP — AP = ?jj and AF — AF = 2%2 (3.1)
Py AFy

where, for simplicity, we use the same symbol for the tensor and corresponding matrix.

Using the relations (2.29), we can write

APN n AFU

APy | A 0 AFy

Aplg - s APEZJ

APgl 0 A AFQl
= A

where we have introduced the notation

ry [ Az a2 0
gury [32 1 HOEA 1
A'I‘L s E N + ! ((Y-i-l)%?—%z\? J 5

o), 4 G y
AT AG 1 X_; /JO )\;23
= A
‘ R i B
AS = p 2 1 2
= /,W/\Q eV Y .
2 1 b 1

for the material constants involving the normal and shear components.

With this notation in hand, we can write for the case of interest
AF - [Pcons + BPitour] Ad i

after some straightforward manipulations, where

-1 0 1 0 1 0 -1 07
P 1o -1 0 -1 0 1 0 1
cons T 401 0 -1 0 1 0 1 0}

.0 -1 0 1 0 1 —1

oy
<
|
.
o

11 0 -1 0
o 1 0 -1 0 1 0 -1

oM O3
[ O O

(3.3)

(3.4)

(3.6)



F. Armero 10

Translation 1 Translation 2 Constant 1 Constant 2
(inf. rotation) (shear)

U

_______ 4 B 4

Constant 3 Constant 4 Hourglass 1 Hourglass 2
(stretch 1) (stretch 2)

FIGURE 3.1. The eight modes of an undistorted square
element: two translations, one infinitesimal rotation, one
shear, two stretchings (infinitesimally isochoric in the incom-
pressible limit, and otherwise), and two hourglass modes.

Remark 3.1. We also introduce the matrix

1f1 0o 1 0 1 0 1 0 B
Poo =300 1 0o 1 0 1 o 1| (3.7)

and observe that the three matrices P, Pi..., and P, ., . have full rank
rank [P,,,,] = rank [P,,,..] = 2, rank [P, .. ] =4 (3.8)

In fact, the rows of these three matrices are orthogonal, and span R®. We also conclude
that
Ker[P,,..] = span{rows of P,,,, and P, } ,

, 3.9
Ker [P,,..] = span{rows of P, and P,....} , (39)

hence

Ker [P,,..] N Ker [P,,..] = span{rows of P,,,..} - (3.10)
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We introduce the following vectors for the developments that follow

—11 r—117 [ 17 07
1 -1 0 1
-1 -1 —1 0
\qeons L | 1 cons _ 1 1 hour _ 1|0 hour _ 1| =11
adpe = | Ty ade =g | adr =1 (A=)
-1 1 0 1
1 1 -1
| 1] ~1 L 0 -1
(3.11)
and
- 1 07
0 1
1 0
1 : 1
Adiers = i ? , Adyee = : (1) (3.12)
0 1
1 0
L 0 L1

We can identify Ad!*" and Ad}™"* as the rows of P, . and P,......, respectively. Physically,

the nodal incremental displacements Ad;°™* correspond to an infinitesimal rotation, Adg™™*

corresponds to the shearing mode, whereas Adi°*" and Ad4°*” correspond to an hourglass
pattern in the 1 and 2-directions, respectively. This modes are represented in Figure 3.1.
The stretching modes Ad§ ™ and Ady"™* are identified below. B

The enhanced part of the deformation gradient can be written as

ATy

R APt 0 A¢ 0 Xxnl [0 o ALY ,
F"AF”{[G 0}’[/\25 0 | [3an 0| 0o xm|flan| G

ATy
which, in the vector notation defined by (3.2), reads

ME 0 0 0

= : 10 2\15 A0
F,AF = GAT with G = 0 Ao gm0 (3.14)
0 0 0 Agpy

Here we have introduced the symbols S\i and :\i (i = 1,2) to track the contributions of the
different terms in the final expressions. The different elements described in Section 2 are
recovered as follows:

1. Q1/B4: A\, =X and A, =0 (i =1,2).
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2. C}l/ES‘l :\j, == )\L and 5\1 == /\1 (1 = 12)
3. QI/ET4: A, =0and \; =\ (i = 1,2).

With this notation, the stiffness matrix K (12 x 12) is expressed as follows

Pz;nsKi:{])nsPcons O ]PTourKilfur ouT Pj;urK’fé)ur
K = o S ' . (3.15)
O 0 11201”‘» Phour Kélé)ur
where
Kfins = A dQ P 4 A(4x4) N (316)
Q
. ' t 4 1477/ + 443 ()
FChovr — BTAB A = = l: 11 11 . :I ’ 3.17)
H Ja 3 0 Ay + Ay |, (3.17)
K = / BTAG 402
J
4 0 A5 A 4+ A5, 0 AT\, ,
=3 AT 3 ; B AS Y. o AS 3 E (318)
3 | A 0 Ay AL+ A A 0 xd)
KL = / GTAG df2
Ja
FAY A ) AO ) 0 0 7
A [Ail)\l + Ai’z/\gJ
0 T s - 0 0
4 +/\2 [,’ 5 )\] + A3 )\Q]
_ 4 21 22 i - A (5.19)
3 by [4;1/\1 | 4;2/\2}
0 0 R - 0
L 0 0 0 2,02 ] (ax)

Finally, the enhanced degrees of freedom I' are eliminated at the element level,
leading to the statically condensed stiffness matrix

K . =P KPP, +P]

(B8x8) cons hour

our our CUT -1 ourT s
K - K (Kg) KT | B | (320)

o K*,hour

After some manipulations, we obtain

hour
“1 0 J , (3.21)

hour
0 ws

K*,hour — 4 {
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where
i 2

whour — }. 4’1‘1, o (J ?2) +_ 451 . (All)\l + AIF’AZ)

1 ”“ <311 ) i - j
3 Asy A 411» +Afp s + A2 | A5 A + Azz)\z

o 1 8 (A hs + Agho)®

“o = 3 |z y 22 77 T - N - T - -
3 1 M A+ AR+ Re [A3, 3 + 45,0,

(3.22)
Examination of (3.20) and after the considerations in Remark 3.1, we identify w}*” and
whe*" as the eigenvalues of K* corresponding to the eigenvectors Ad}* and Ad5™" in
(3.11), respectively. These are the two hourglass modes of the element.

The constant part of the stiffness matrix contributes with the 4 constant modes
of K{5"* = 4A. These eigenvalues can be obtained with a simple calculation involving the
2 x 2 matrices A™ and A°. The contributions of A® are

s e AF AT
[< A - \/ Afy — +44‘12 :' T o At A

8 8 & 5 2 8 K “ /\a /\CY
[( 11+ Az) + \/(A‘n — A3y)" +4AAS, } =% m ;

,cons

£
l
[

(3.23)

cons

N fi—

with the corresponding eigenvectors given by Adi°™ and Ady™® of (3.11), respectively.
The ws°™ corresponds to the (infinitesimal) rigid rotation, and we observe that it does not
vanish unless Ay = Ag, i.e. in the undeformed state in the case of interest. This eigenvalue
is positive in uniaxial tension Ay < 1, Ay > 1, and negative in uniaxial compression A\; > 1,
Az < 1. On the other hand, the eigenvalue w5™° corresponds to the shearing mode, and it
has the value au in the undeformed configuration.

The two contributions of the normal components A™ of the tangent are given by

COTL8 [ 2 1
=3 |(AT, + AD,) — \/(Aﬁ — ABp)" + 44T, A%,

(3.24)
wy't = % (AY )+ \/ At - 24 4A12A21
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corresponding to the stretching modes. The corresponding eigenvectors are obtained as

- 1A
—b
1
—b; A |y H o W é

1| where bi:j\—; 1+Za)\l-» /T—/‘\f (3.25)

J

ot

oy

1
Adgons —
! 4

for i = 3,4. We observe that in the incompressible limit A — oo (= A; — A by (2.32))
these two eigenvalues are such that w§"* — oo and ws remains finite (infinitesimally
isochoric stretching), with the eigenvectors given by

17 1]
2 %E
-1 -
Ady™ = 1 mi\.\% , and  Ady™ = E % : (3-26)
4 -1 4 -1
1 1

A simple calculation shows that the infinitesimal strain associated to the incremental nodal
displacements Adg™* is isochoric. The two stretching modes given by (3.25); are shown
in Figure 3.1.

Finally, the set of element eigenvalues is completed with the two translational
modes wi{™™® = w§"* = 0 with eigenvectors given by Adi™“"* and Ady*"* as given by
(3.12). These modes correspond to the translation in the 1 and 2 directions, respectively.

Remark 3.2. As expected, the homogeneous deformation modes wi°** (i = 1,4), and
the two translational modes w!™"* = 0 (i = 1,2) are captured exactly by all the elements
since they all pass the patch test. Constant state of stresses are represented exactly by the
elements. B

4. Discussion of results

We first consider the case of a Neo-Hookean model, characterized by o = 2.
A value of A/y = 10°/20 is considered, leading effectively to the quasi-incompressible
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b)

Eigenvalue

Eigenvalue

[}
T

cons

0.5 1.0 1.5 2.0 2.5

FIGURE 3.2. Neo-Hookean model o = 2.0, A/p =
10%/20. a) Homogeneous deformation modes for all the ele-
ments: w{?e, infinitesimal rotation; wg°™%, shearing; wg°"?,
isochoric stretching; and wi°™?, volumetric (note the scal-
ing). b) Hourglass modes for the different elements. Note

the negative eigenvalue of the Q1/E4 in compression.
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Stress

FIGURE 3.3. Neo-Hookean model @ = 2.0, Afp =
10°/20. Axial Kirchhoff stress (72), second Piola-Kirchhoff
stress (52 = TQ/)\%), and nominal axial stress (Py = 72/A2,
first Piola-Kirchhoff stress).

range. Figure 3.2.a depicts the eigenvalues w{°™* (¢ = 1,4) associated to the constant
strain modes for this case. As observed above, the eigenvalue w{’** corresponding to an
infinitesimal rotation is negative in compression and positive in tension. Note the scaling
of the volumetric mode wj°*®. As indicated in Remark 3.2, since all the elements pass the
patch test, these four modes (and the two translational zero modes) are captured exactly
by all the elements. Figure 3.2.b depicts the eigenvalues associated to the two hourglass
modes for the three different elements Q1/E4, Q1/ES4, and Q1/ET4. Clearly, the original
Q1/E4 shows a negative eigenvalue (passing through a zero energy mode) in compression,
confirming the results of WRIGGERS & REESE [1995].

Particularizing expression (3.22) to the Q1/E4 element (A; = Ay, A = 0, i = 1, 2),
we observe

(whowr det A"  det A°

1
W )QI/E4:‘§ a5, (4.1)

]
22
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where
“@ o — le% ue 2oy @ .
devar g, — | £l@HDX +@-DX]+a (£)2 28 A8 + A2 (a 1)]] o o
A1+ 4 ((@+ 1008 +9))] I
det A°/A5, = [f)j\% (NS — )\?)} < 0 in compression, > 0 in tension. (43)
2 =2

Clearly w{°*” becomes negative because det A® < 0 in compression, that is, because in-
finitesimal rotations have negative stiffness in uniaxial compression. This mode corre-
sponds to hourglassing (bending) in the 1-direction (transversal to the load), as given by
Adlierm. The Q1/ES4 and Q1/ET4 elements do not exhibit this zero energy mode. Figure
3.3 includes the axial stress/axial stretch relations for the Kirchhoft stress 75, nominal
stress Py = 79/ Ay (first Piola-Kirchhoff stress), and the second Piola-Kirchhoff principal
stress Sy = 75/ A3, for this case.

We note that in the infinitesimal case (A = A2 = 1) all the elements reduce to
the same element, the infinitesimal QM6 element of TAYLOR et al [1976]. In this case, the
contribution of A® to the stiffness of the hourglass modes vanishes, and we obtain

2 A 2
(QJ;wur)inf = (ML‘LOur)in]ﬁ‘ = gﬂy”j—:—_{”—ag:— . (44)

oy

As it was the original motivation in WILSON et al [1973], the bending response of beam
theory is recovered in this case, with the stiffness in bending relying on the axial stiffness of
the material. Note that, for a = 2 the right-hand-side of (4.4) is proportional to E/(1-1v?),
the uniaxial stiffness in plane strain infinitesimal elasticity, with E' and v being the standard
Young’s modulus and Poisson’s ratio, respectively, functions of the Lamé constants A and
ji. We observe also that the hourglass modes become finite in the incompressible limit
A — oo, thus assuring the characteristic locking-free response of the element, even in finite
strain conditions.

Next the case of an Ogden model characterized by o = 0.5 is considered. The
motivation for this particular choice is to obtain a limit point in the nominal stress/stretch
relation. In the incompressible limit, Ay = 1/\;, we can write
T9 . i

BEN TN

(A5~ A7) (4.5)

for the nominal stress Ps, after using (2.28). Calculation of the tangent modulus for this

relation leads to
P,

A A
Setting dP,/dX; = 0 results in the critical value of the stretch

[(a = DA + (@ +1)A7°%] . (4.6)

ST s oo’

Ay = —— . 4.7
2,C 1_0 ( ‘)



F. Armero

18

b)

Eigenvalue

Eigenvalue

1.0

0.8

0.6

b
NN

T T

T T ¥ T 7 T T T T

v I
2‘0 : I shour (Q'l /hT4

8 “Wo LB e
ﬁwg Q1/ES4

Twh Q1/E4

p—t
[
/\4"

1.0 wimur Ql/ES4 N
0.5 : -
0 !
| _
= i -
0.5 pwhert Q1/B4
L | i
1.0 | !
i | wherr Q1/ET4 -
.-1.5 H l 4 l A l i i i i 1
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
A2
FIGURE 4.1. Ogden model o = 0.5, A/u = 10%/20.
a) Homogeneous deformation modes for all the elements:
w{™®, infinitesimal rotation; w§°™®, shearing; w{°™*, iso-

choric stretching; and w§°™*, volumetric (note the scaling).
Observe that w§°™® becomes negative in this physical model.
b) Hourglass modes for the different elements. Note the neg-
ative eigenvalue of the Q1/E4 in compression, and in tension
for all the elements just after the stretching eigenvalue w§®™?
becomes negative.
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1.5 :

Stress

3.5 4.0

A2

FIGURE 4.2. Ogden model a = 0.5, A/p = 10°%/20. Axial
Kirchhofl stress (72), second Piola-Kirchhoff stress (5 =
TQ/)\%). and nominal axial stress (P = 79/Ag, first Piola-
Kirchhoff stress). Observe the limit point in the P2 (and
Sa) law at Ap == 3.

The particular choice o = 0.5 leads to Ay . = 3 In this incompressible limit. Note that no
limit point exists for a > 1, and that for 0 < o < 1 the limit point appears in tension only.

We consider again the quasi-incompressible limit characterized by A/p = 10°/20,
with @ = 0.5. Figure 4.2 depicts the nominal stress/stretch relations for this case. We
observe the presence of a limit point at Ay . =~ 3, with a negative nominal axial stiffness
afterwards. This can be observed in the appearance of the negative constant stretching
mode w5*. We observe also that the first hourglass mode (bending transversal to the stress
direction) becomes negative slightly after the appearance of the physical negative stretching
mode in tension. This negative eigenvalue in tension appears in the three elements. The
origin of this mode becomes clear after the closed-form expression (3.22) for the hourglass
modes, and the discussion above. We observe that the appearance of an axial negative
stiffness leads to det A™ < 0, making the stiffness of the hourglass modes negative even
if det A® > 0 in tension. The vanishing of w§*** and w}°*" do not coincide because of the
presence of the terms depending on A® in (3.22). The hourglass modes become negative
slightly after the stretching mode.
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Further numerical experiments (not shown here) involving general meshes indicate
that this mode propagates, leading to a characteristic hourglass pattern in the direction
transversal to the load. This situation has been observed in simulations involving finite
strain inelastic models, see GLASER & ARMERO [1995], where a similar limit point appears
in the stress/stretch relation. In this case, the appearance of this limit point is to be
assigned to the plasticity, since Neo-Hookean or Hencky (logarithmic, a — co) models are
considered for the elastic part. High-order integrations rules reduce the severity of these
modes. The reader is referred to this last reference for further details. In compression, the
Q1/E4 element still exhibits the zero energy method, whereas the modified Q1/ES54 and
@1/ET4 elements do not exhibit this drawback.

Remark 4.1. It is to be pointed out again that the motivation behind the consideration
of an Ogden model with exponent o = 0.5 is the appearance of a limit point in the
stress/stretch relation, emulating the observed response in plasticity models. It is known
that in order to have an Ogden model satisfying the polyconvexity condition (thus assuring
existence of solutions) we must have

ap>0 and |a]>1, (4.8)

see OGDEN [1972] and CIARLET [1988]. Given these considerations, the physical signifi-
cance of the considered model can certainly be argued.

5. Concluding Remarks

A modal analysis of an enhanced finite element in plan strain has been presented
for three different enhancement strategies. A general Ogden hyperelastic model has been
considered. Results show the appearance of a zero energy method in compression for
the original Q1/E4 element. This mode disappears with the modification considered in
the Q1/ES4 (based on a full symmetrization of the enhanced field) or the Q1/ET4 quad
(based on the transpose of the original enhancement only). Despite these results, it has
been shown that zero energy hourglass modes appear in constitutive laws exhibiting limit
points (negative axial stiffness). This situation appears to be of particular concern in
inelastic simulations.

Acknowledgements: 1 am indebted to Stefan Glaser and Robert L. Taylor for many
helpful discussions.
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