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ABSTRACT 1 

Based on the Connected Vehicle (CV) technology, a number of Eco-Approach and Departure 2 

(EAD) strategies have been designed to guide vehicles to travel through signalized intersections 3 

in an eco-friendly way, avoiding unnecessary idling and minimizing acceleration/deceleration 4 

events. Most of the existing EAD applications were developed and tested in traffic-free scenarios 5 

or in a fully connected environment where presence and behavior of surrounding vehicles are 6 

detectable and predictable. In this study, we propose a prediction-based EAD strategy for more 7 

realistic scenarios, where there is a preceding vehicle, which can be either a connected or non-8 

connected vehicle. Unlike in highway scenarios, predicting vehicle speed trajectory along 9 

signalized corridors is much more challenging due to the disturbances from signals, traffic queues 10 

and pedestrians. Based on vehicle activity data available via inter-vehicles communication or 11 

onboard sensing (e.g., by radar), we developed several artificial neural network (ANN)-based 12 

algorithms to perform short-term speed prediction of the preceding vehicle. Using signal phase 13 

and timing (SPaT) information and predicted state of the preceding vehicle, we improve the 14 

existing EAD algorithm to achieve better fuel economy and emissions reduction in the presence 15 

of preceding traffic and queues at intersections. Results from the numerical simulation show that 16 

the proposed prediction-based EAD strategy achieve 4.3% energy savings and 3.0%~28.6% air 17 

pollutant emission reduction compared to a conventional car following strategy. 18 

 19 

Keywords: Preceding vehicles, Vehicle speed prediction, Prediction-based EAD, Emission 20 

estimation 21 

  22 
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I. INTRODUCTION 1 

Our daily transportation activities not only consume a great amount of energy, but also produce a 2 

myriad of tailpipe emissions which contribute significantly to air pollution and global warming. 3 

For example, it is reported that transportation sector in the United States accounts for 27% of the 4 

total U.S. greenhouse gas (GHG) emissions, where surface vehicles (including light vehicles and 5 

medium/heavy duty trucks) play a dominant role [1][2]. The increasing worldwide concerns on 6 

these traffic-related socio-economic problems have driven a significant amount of research effort 7 

towards developing various environmentally sustainable strategies. Among others, eco-driving 8 

strategies such as vehicle speed limit control [3], fuel-efficient platooning [4], cooperative adaptive 9 

cruise control system [5], and eco-routing [6], are deemed to be cost-effective and potentially 10 

deployable in the near term. Besides, many eco-friendly applications and technologies have been 11 

well studied and highlighted in some major programs, such as the European Commission’s 12 

ECOSTAND program [7] and the U.S. Department of Transportation’s AERIS (Application for 13 

the Environment: Real-Time Information Synthesis) program [8]. One of the promising 14 

applications identified in the AERIS program is the Eco-Approach and Departure (EAD) 15 

application at signalized intersections, which takes full advantage of signal phase and timing 16 

(SPaT) and Geometric Intersection Description (GID) information via wireless communications 17 

to provide eco-friendly driving suggestions (e.g., speed profiles) as vehicles approach signalized 18 

intersections.  19 

 20 

It is well known that vehicle fuel consumption and emissions are directly related to vehicle’s speed 21 

trajectory [9]. Unlike driving on freeways, traffic streams on arterial roads can be interrupted by 22 

traffic signals. The frequent stop-and-go maneuvers in the arterial driving lead to excessive fuel 23 

consumption and GHG emissions [10]. Such effects are more prominent when vehicles approach 24 

the intersection in the red phase and have to decelerate from cruising speeds to full stops, idle to 25 

wait for the green phase, and then accelerate to depart from the intersection. Knowledge of SPaT 26 

information has been proven to be significantly effective in terms of improving fuel economy for 27 

arterial driving [9][11]. With the recent advances in Connected Vehicle (CV) technology, it is 28 

promising to develop advanced driving assistance systems (ADAS) such as EAD application to 29 

improve energy efficiency for traveling along signalized intersections. In [12], the authors adopted 30 

a Model Predictive Control (MPC) approach to obtain a sub-optimal cruise speed to achieve timely 31 

arrival at green lights, thus minimizing the idling time and stops at red phase along a signalized 32 

corridor. Another study utilized dynamic programming (A-star algorithm) to find the most fuel-33 

efficient speed trajectory through a fixed time control signalized intersection [13]. A multi-stage 34 

optimal control approach was proposed in [14] adding the estimated queue dissipation time and 35 

location at the intersection as constraints. However, constraints from the preceding vehicle’s speed 36 

trajectories were not considered. A series of EAD applications were designed in recent years for 37 

both fixed-time signals and actuated signals [11], [15-19]. However, to the best of our knowledge, 38 

the aforementioned studies either were conducted under traffic-free conditions or applied simple 39 

rules (e.g., keeping a safe distance) to passively handle the presence of preceding vehicles. 40 

Therefore, it would be beneficial for real-world deployment of EAD application to further explore 41 

the dynamic states from preceding vehicles and fuse this information into the trajectory planning 42 

process.  43 

 44 

To this end, we propose a prediction-based EAD system which makes full use of activity 45 

information of preceding vehicles. Such information can be acquired via vehicle-to-vehicle (V2V) 46 
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communication (if the preceding vehicle is a CV), onboard sensors (e.g., radar), or even 1 

infrastructure-based assistance (e.g., roadside camera). Based on the SPaT information and future 2 

states of the preceding vehicle predicted by artificial neural network (ANN)-based vehicle speed 3 

predictor(s), the improved EAD algorithm can provide an eco-friendly speed trajectory in the 4 

presence of preceding traffic and queues at intersections. Data from the Next Generation 5 

SIMulation (NGSIM) program [20] are used for model training and system performance 6 

evaluation. The remainder of this paper is organized as follows: Section II introduces some 7 

background information on existing EAD applications and state-of-the-art methods in time series 8 

prediction. Section III presents a detailed description of the prediction-based EAD system 9 

architecture and its components (e.g., ANN-based speed predictor), followed by a comparative 10 

numerical simulation study and result analyses in Section IV. The last section concludes the paper 11 

with further discussion. 12 

 13 

II. BACKGROUND 14 

A. Existing Eco-approach and departure (EAD) Applications  15 

The EAD application was initially developed for fixed-timing signals whose phase sequence and 16 

duration are predetermined, and thus the advisory speed trajectory can be well defined with the 17 

available SPaT and GID information [15]. The EAD application for fixed-time signals has been 18 

shown to reduce fuel consumption and emissions by 10%-15% in microscopic simulation models 19 

[15] and by 13%-14% from real world testing [16]. An enhanced EAD application has shown 20 

satisfactory results for congested urban traffic conditions in a fully connected environment [17]. 21 

Extended efforts were made to develop an EAD application for actuated signals. In [18], the 22 

authors developed an EAD framework for actuated signals which uses the derived minimum and 23 

maximum times to next phase as principal SPaT information and considers the dynamics (e.g., 24 

relative speed and distance from radar detection) of the preceding vehicle (along the same lane). 25 

Numerical analysis showed significant benefits in terms of fuel savings and GHG emissions 26 

reduction, especially for roadway segments with relatively low speed limit (less than or equal to 27 

30 mph).  28 

 29 

 30 

Most of the existing EAD studies focused on the interaction between the subject vehicle and the 31 

traffic signals. Those applications work well under light traffic conditions, but not effective in 32 

congested traffic, especially when there are preceding vehicles or queues. Figure 1 shows a rule-33 

based strategy to deal with preceding vehicles. When there is no preceding vehicle ahead (within 34 

the detection range) in the same lane, the target speed estimated from the EAD algorithm is then 35 

displayed on the artificial dashboard. When radar detects a preceding vehicle in the near front, the 36 

display of target speed is turned off to avoid any distraction. With such a heuristic strategy, the 37 

EAD application may not work effectively in congested urban traffic, especially when there is 38 

often a preceding vehicle within the detection range. To address this issue, we need to consider 39 

both preceding traffic and signal information in the EAD application development in order to 40 

achieve desired system performance even under congested traffic conditions.  41 

 42 

 43 
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 1 
 2 

FIGURE 1  Speed profile for non-adjusted profile and adjusted profile (Source: [19]) 3 

 4 

B. Car-following Models 5 

At the core of a microscopic traffic simulation model, the car-following model governs the vehicle 6 

behaviors when following a preceding vehicle in traffic. In the past decades, a variety of car-7 

following models have been proposed and studied [21-22]. For example, the optimal velocity 8 

model [23] and the full velocity difference model [24] were proposed based on the intuitive vehicle 9 

speed changing. The well-known Gipps’ model [25] and the intelligent driver model (IDM) [26] 10 

were proposed with emphasis on driver’s acceleration and deceleration strategies. More recently, 11 

to identify the cause and formation of the stop-and-go traffic oscillations, Laval et al [27] 12 

incorporated non-equilibrium driver behavior into Newell’s simplified car-following model [28]. 13 

Traffic oscillations captured by [29] use a desired acceleration model with a white-noise term. It 14 

showed that small driver errors can result in the stop-and-go oscillation. Comparative studies 15 

between major car-following models can be found in [30]. In this work, the Gipps’ model is 16 

adopted as the baseline driving behavior in the microscopic traffic simulation tool.  17 

 18 

C. State-of-the-art Approaches for Vehicle Movement Prediction 19 

Accurate and reliable prediction of vehicle speed trajectory is an important component in many 20 

Intelligent Transportation Systems (ITS) applications, particularly for safety and environmental 21 

related applications. It is a challenging task as the vehicle speed trajectory may be affected by 22 

many factors, e.g. signal status, surrounding vehicles’ maneuver. In the literature, various 23 

approaches for vehicle speed prediction have been investigated and evaluated. In general, the 24 

existing vehicle speed prediction strategies can be categorized into two major classes: model-based 25 

approaches and data-driven approaches. The model-based approaches predict the vehicle speed 26 

trajectory based on pre-defined model structures such as Constant Speed Model (CS), Constant 27 

Acceleration Model (CA), Constant Yaw Rate and Acceleration Model (CYRA). A comparison of 28 

these different models in applications of target tracking was conducted in [31] which indicates that 29 
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CYRA is superior to others for vehicle trajectory prediction. However, the underlying dynamics 1 

of human cognition, decision making and execution of drivers and vehicle systems are extremely 2 

complex and these simplified models may not be applicable [32]. On the other hand, data-driven 3 

approaches are recently well investigated since they show more flexibility and applicability in 4 

representing system dynamics. Good examples of effective data-driven approaches for vehicle 5 

speed trajectory prediction include Non-Parametric Regression (NPR), Gaussian Mixture 6 

Regression (GMR) and Artificial Neural Networks (ANNs) [33-35]. In [33], the defined maneuver 7 

recognition algorithm selected the best vehicle trajectory that minimizing a cost function by 8 

comparing the current maneuver to the pre-defined trajectory set. However, this maneuver 9 

recognition-based prediction has some limitation in applying for vehicle movement prediction in 10 

a signalized intersection. The road structure and driving behaviors in the signalized arterials are 11 

much more complex compared to highways segments, resulting in high dimensional vehicle 12 

trajectory structure. Considering the requirement for large sampled vehicle trajectories and 13 

complexity of maneuver recognition in large time series datasets, it is challenging to apply 14 

maneuver recognition approach to vehicle movement prediction in the real world urban traffic. 15 

Gaussian Mixture Regression (GMR) is another promising parametric method to approximate or 16 

predict vehicle trajectories by calculating a conditional probability density function that consists 17 

of a weighted linear combination of Gaussian component densities [34]. Since the Gaussian 18 

Mixture Regression (GMR) method is applicable under the assumption of jointly Gaussian 19 

distribution of input and output datasets, it may result in huge deviation if the assumption does not 20 

hold. Artificial Neural Networks (ANNs) have been proven to be an effective method for 21 

accurately forecasting vehicle speed, and position. It is necessary and beneficial for designing safe 22 

and fuel/energy efficient eco-driving applications [35]. The strong capability of capturing the 23 

complex and nonlinear dynamics makes ANNs a popular approach in prediction problems. A 24 

comparative study of major parametric and non-parametric approaches for vehicle speed 25 

prediction on highways indicates that ANNs outperform all the other methods in terms of both 26 

predictive accuracy and applicability [35].  27 

 28 

 29 

III. PREDICTION-BASED ECO-APPROACH AND DEPARTURE 30 

STRATEGY   31 

A. System Architecture  32 

In this work, we aim to develop an enhanced EAD application that is applicable in relatively 33 

congested urban traffic. The overall architecture of the proposed Prediction-based EAD application 34 

is shown in Figure 2. The proposed system acquires various information from multiple data 35 

resources: SPaT and GID information from DSRC-equipped signal controller at the intersection, 36 

subject vehicle dynamics from on-board diagnostics (OBD) port, subject vehicle positions from 37 

on-board GPS receiver and activity data of preceding vehicle either from V2V communication if 38 

it is an DSRC-equipped vehicle or from on-board radar detection if it is an unequipped vehicle. A 39 

vehicle trajectory planning algorithm is developed to provide an eco-friendly speed trajectory in 40 

both light traffic and relatively congested traffic conditions based on the above acquired 41 

information and reliable prediction of preceding vehicle’s future states. Human-Machine Interface 42 

(HMI) is designed to inform driver a number of items such as vehicle’s current speed, vehicle’s 43 

Revolutions Per Minute (RPM), SPaT information, vehicle’s distance to intersection and the target 44 

speed calculated from the Enhanced Vehicle Trajectory Planning Algorithm (EVTPA) with the 45 

consideration of preceding traffic. As what we highlighted in the flow chart, predicting preceding 46 
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vehicle’s future state and design an eco-friendly trajectory according to that is the key contribution 1 

of this paper. 2 

 3 

 4 

Enhanced Vehicle 

Trajectory Planning 

Algorithm (EVTPA) 

Human-Machine 
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Estimate Subject Vehicle 

Dynamics
Instantaneous Speed 

and Acceleration

 5 
 6 

FIGURE 2  Prediction-based EAD system architecture  7 

 8 

B. Artificial Neural Network (ANN)-based Vehicle Speed Prediction 9 

A reliable and accurate prediction on preceding vehicle’s future state is essential for applying EAD 10 

strategy in congested urban traffic conditions. As aforementioned, a number of studies have 11 

evaluated various time series prediction approaches for predicting vehicles’ speeds under the 12 

highway scenarios. However, to the best of our knowledge, none of them have discussed the 13 

prediction performance for urban driving. The prediction of vehicle speed trajectory along the 14 

signalized corridors is much more challenging due to the disturbances from signals, traffic queues 15 

and pedestrians.  16 

 17 

In this study, we implement a radial basis function neural network (RBF-NN) [36] for arterial 18 

driving under three different scenarios. ANN-based vehicle speed predictor has a basic input-19 

output structure as shown in Figure 3. The network input is the historical preceding vehicle speed 20 

trajectory and the output is predicted future speed trajectory.  21 

 22 

The implemented RBF-NN is a two-layer feed-forward networks with K hidden nodes. A radial 23 

basis function needs to be predefined for each hidden node to activate neurons in the hidden layer. 24 

Each hidden node contains a nonlinear activation function. Here, we chose the Gaussian function 25 

as the activation function for the RBF-NN, formulated as: 26 

 27 

   1

_ _ _exp
T

j m j m j j j m jS S       
  

                                                                  (1) 28 

 29 



Ye, Hao, Qi, Wu, Boriboonsomsin, Barth  8 

_ _

0

n

j m ij x i ij

i

S w x b


                                                                                                                    (2) 1 

 2 

where 
_j m  is the activated response of node m in layer j ; 

ix  is the activation of a particular node 3 

i  in the prior layer; 
_j mS  is the accumulator output of all the relevant nodes in the prior layer with 4 

their corresponding weights; 
ijw is the set of input weights for node x; and 

ijb is the constant bias;5 

j  and j   are the mean and covariance matrix of the thj   Gaussian function. The mean 
j6 

represents the center and j  indicates the shape of the activation function. Finally, the output of 7 

each node at the RBF-NN’s output layer is computed as a linear combination of the outputs of the 8 

hidden nodes.  9 

 10 

 11 
 12 

FIGURE 3  ANN-based vehicle speed predictor structure 13 

 14 

C. Trajectory Planning Algorithm with Consideration of Preceding Traffic 15 

An enhanced vehicle trajectory planning algorithm (EVTPA) is developed to address the situation 16 

where there exist mixed connected and conventional preceding vehicles. Two situations are 17 

considered in designing the desired trajectory for the subject vehicle in terms of both safety and 18 

energy/fuel economy. If the vehicle is approaching the intersection during the red phase, the SPaT 19 

information and estimated preceding queue end location are utilized to design the optimal 20 

trajectory to avoid unnecessary idling and acceleration/deceleration. Otherwise, we apply Gipps’ 21 

model to develop a trajectory that is safe and energy-efficient. The proposed EVTPA is illustrated 22 

by the overall block diagram in Figure 4. When the proposed EAD system is triggered in relatively 23 

congested urban traffic, location of the end of queue with respect to the subject vehicle is estimated 24 

based on the predicted preceding vehicle trajectories. A virtual stop line is defined as a buffer space 25 

(i.e. length of vehicle) behind the preceding queue end. The EAD trajectory planner takes the delay 26 

caused by the preceding queue and distance to the estimated virtual stop line as the inputs to 27 

generate a trajectory that minimizing the fuel consumption and emission. At each time step, the 28 

vehicle trajectory planning algorithm also predict the time to collision based on the preceding 29 
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vehicle’s movement to guarantee safety in our planed maneuver. If the subject vehicle will be 1 

under the risk of collision in the near future, car following mode will take over to guide the driver 2 

through the intersection while keep safety distance from the preceding vehicle. The transitions 3 

between EAD trajectory planner and car following mode enable the proposed EVTPA to maximize 4 

fuel savings and environmental benefits without compromising the safety. We refer interested 5 

readers to [9] about any detail in basic EAD velocity planning algorithm.   6 

 7 
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subject vehicle

Real-time 
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No
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No

If Vp>>Vs && signal phase =green

 8 
 9 

FIGURE 4  Block diagram of enhanced vehicle trajectory planning algorithm   10 

 11 

IV. RESULTS AND DISCUSSION 12 

A. Data Descriptions  13 

The Next Generation SIMulation community (NGSIM) data collected from an arterial segment on 14 

Peachtree in Atlanta, GA are used for training and testing the ANN-based vehicle speed predictors. 15 

The NGSIM Peachtree datasets include the spatial and temporal information of all the vehicles as 16 

well as the traffic light information of four signalized intersections within the arterial segment from 17 

two periods: 12:45 p.m. to 1:00 p.m., and 4:00 p.m. to 4:45 p.m. [20]. We utilized 4:00 p.m. to 18 

4:45 p.m. period data for training and 12:45 p.m. to 1:00 p.m. period data for testing. The SPaT 19 
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information in both datasets are accessible for index reference. To develop accurate and reliable 1 

prediction of vehicle speed trajectory, we extract speed trajectory of each individual vehicle from 2 

both datasets by vehicle ID. Then, we utilized a sliding window to partition the time series dataset 3 

into a number of segment pairs with finite lengths. For each pair of segments, one is the past 4 

segment and the other is the future segment. This enables us to utilize the historical speed trajectory 5 

to predict the future speed trajectory within a pre-defined prediction horizon. In addition, the traffic 6 

signal status and distance to the stop-bar jointly effect the driver behavior when approaching a 7 

signalized intersection. Therefore, we divide the whole vehicle speed trajectories into three 8 

subgroups based on different driving situation. In Situation 1, the vehicle is still far away from the 9 

stop-bar and current phase is red; In Situation 2, the vehicle is close to the stop-bar but current 10 

phase is still red; In Situation 3, the current phase is green. The classified vehicle speed trajectories 11 

are used for developing and evaluating ANN-based vehicle speed predictors in each scenario, 12 

respectively.  13 

 14 

B. Evaluating the Performance of ANN-based Vehicle Speed Predictors  15 

We first analyze the performance of developed ANN-based vehicle speed predictors based on real 16 

world driving data in urban traffic (NGSIM Peachtree data). To better forecast speed trajectories 17 

for vehicle driving through signalized corridors, current signal phase and vehicle’s distance to the 18 

signalized intersection as two major influential factors are utilized to partition the time series data 19 

into three subgroups with different driving conditions. ANN-based speed The Root Mean Square 20 

Error (RMSE) is adopted in this study to measure the time series forecasting accuracy, defined as  21 

 22 

2ˆ( ) /
N

RMSE y y N                                                                                                          (3) 23 

 24 

where N is the number of measurements, y  and ŷ indicate the actual value and predicted value, 25 

respectively.  RMSEs of the predicted vehicle speed trajectories with respect to the ground truth 26 

under three driving conditions are 3.54 ft/s, 2.98 ft/s and 4.59 ft/s, respectively. Figure 5 illustrates 27 

the predicted speed from the developed ANN-based predictor vs. the actual speed with prediction 28 

horizon of 3 seconds under three driving scenarios, respectively. The selected horizon length of 3 29 

sec for predicting vehicle’s speed seems to be an acceptable choice. As shown in Figure 5, the 30 

developed ANN-based vehicle speed predictor is able to provide reliable results with satisfying 31 

prediction accuracy for each driving condition.  32 

 33 
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FIGURE 5  Results of vehicle speed prediction under different driving conditions 43 

 44 

 
(a) Condition 1: Red signal phase; Distance to intersection> predefined threshold  

 
(b) Condition 2: Red signal phase; Distance to intersection<predefined threshold 

 

 
(c) Condition 3: Green signal phase  
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C. Validation of the Trajectory Planning Algorithm with Traffic 1 

Based on NGSIM Peachtree data, we take each northbound through movement vehicles as 2 

preceding vehicles (185 vehicles in total), and create an imaginary subject vehicle that is following 3 

that preceding vehicle. As the preceding vehicle trajectories are generated from vehicle’s driving 4 

information in NGSIM, they are utilized as the input for the proposed prediction method, and the 5 

criterion for a safety check, i.e. if any trajectory of the following vehicle comes too close to that 6 

of the preceding vehicle, the trajectory planned algorithm is not reliable on safety. We also generate 7 

the baseline vehicle trajectories that follow Gipps’ car following model in simulation for 8 

comparison. 9 

 10 

Figure 6 uses the trajectory of three example vehicles to illustrate how the proposed EAD system 11 

reduces unnecessary idle time and speed oscillation, while keeping a safe distance from the 12 

preceding vehicle when driving through signalized corridors. We show a representative trajectories 13 

of preceding vehicle, baseline vehicle and EAD equipped vehicle through signalized corridors by 14 

blue, black and red curves respectively.  15 

 16 

In Figure 7, we show the speed distribution for the total 185 trajectories of EAD equipped vehicles 17 

and baseline vehicles respectively. We observe a significant drop on the percentage of idling or 18 

near idling situations (speed between 0 ~ 5 ft/s) for vehicles with the assistance of EAD system 19 

compared to baseline vehicles. Meanwhile, the percentage of vehicles driving in high speed (i.e. 20 

speed larger than 40 ft/s) is significantly reduced. Those findings imply the proposed EAD system 21 

is able to avoid unnecessary idling, accelerations and decelerations even in congested urban traffic. 22 

 23 

To quantify the effectiveness of the proposed EAD system in terms of energy savings and 24 

emissions reduction, the U.S. Environmental Protection Agency’s MOtor Vehicle Emission 25 

Simulator (MOVES) model [37] is applied to estimate the associated energy consumption and 26 

emissions. MOVES is a state-of-the-art on-road emission modeling system that uses Vehicle 27 

Specific Power (VSP) as its primary metric. The second-by-second Vehicle Specific Power (VSP) 28 

can firstly be calculated based on vehicle’s speed trajectory and road grade information. Then, the 29 

operating mode (OpMode) distribution over 23 bins for running exhaust emissions can be derived 30 

from a mapping of VSP, speed and acceleration values. Finally, with the OpMode distribution, we 31 

are able to estimate the energy consumption and emissions of all the vehicle trajectories based on 32 

the emission factors from MOVES database.  33 

 34 

Table 2 shows the energy and environmental benefits of the proposed prediction-based EAD 35 

system. We compare the overall performance of the vehicles that equipped with EAD system and 36 

baseline vehicles that follow Gipps’ model in terms of energy savings and emissions reduction. 37 

Total 4.5% energy savings are achieved by applying the proposed EAD system compared to 38 

traditional car following method. Also, we observed significant reduction in air pollutant emissions 39 

of the EAD-equipped vehicle. The emissions of HC, CO, NOX, CO2 and PM2.5 per mile in the 40 

EAD-equipped vehicles are 3.0%, 11.8%, 30.6%, 4.3%, 4.3% and 28.6% less, respectively.  41 

 42 

 43 

 44 
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   1 

FIGURE 6  A comparison of different driving strategies.  2 

 3 

 
(a) Time-space trajectories 

 
(b) Speed profiles 
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(a) Speed distribution for EAD equipped vehicles  2 
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(b) Speed distribution for baseline vehicles  4 

FIGURE 7  Impact of proposed EAD system on vehicle speed distribution  5 
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TABLE 1 Performance of the proposed prediction-based EAD algorithm 1 

 2 

Vehicle 
HC 

(g/mile) 

CO 

(g/mile) 

NOX 

(g/mile) 

CO2 

(g/mile) 

Energy 

(KJ/mile) 

PM2.5 

(mg/mile) 

Preceding vehicle 0.49 8.27 1.24 773 10767 21.9 

Baseline vehicle 0.44 7.61 1.10 694 9662 19.5 

EAD vehicle 0.42 6.71 0.76 664 9245 13.9 

Saving in % 3.0 11.8 30.6 4.3 4.3 28.6 

 3 

 4 

V. CONCLUSIONS 5 

This research proposes a prediction-based EAD system that enables the driver to travel through a 6 

signalized intersection in a safe and eco-friendly manner in congested urban traffic. The validation 7 

results indicate that the proposed ANN-based predictor can predict preceding vehicle’s speed 8 

trajectory with reasonable accuracy under different scenarios. Based on SPaT and GID information 9 

as well as predicted states of preceding vehicle, the proposed EAD algorithm can provide a 10 

smoothed and energy-efficient trajectory, considering the preceding traffic and possibly queues at 11 

intersections. Numerical simulation results show that the proposed system is able to save 4.5% of 12 

energy and reduce air pollutant emissions by 3.1%~30.6% compared to conventional vehicles 13 

(simulated by Gipps’ car-following model). In the future, more research will be conducted based 14 

under the proposed framework. 15 

 16 

(1) We will upgrade the proposed EAD system into an automated, longitudinally-controlled 17 

system. It is expected that better system performance and more environmental benefits can 18 

be achieved as the vehicle automation is able to mitigate the negative impacts due to 19 

manual driving (e.g., distraction). 20 

(2) We will conduct sensitivity analysis on the prediction time horizons to find the most 21 

reasonable prediction time length. In addition, the computation time and robustness of the 22 

trajectory prediction method will be further investigated.  23 

(3) We plan to implement the proposed EAD system in a test vehicle and conduct a field 24 

operational test to further evaluate performances of the algorithm.  25 

 26 
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