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Abstract

Radiative relativistic magnetohydrodynamic simulations of neutron star column

accretion

by

Lizhong Zhang (张力中)

Accretion onto a strongly magnetized neutron star at a sufficiently high mass accre-

tion rate results in the formation of a radiation pressure-supported columnar structure

near the polar regions. In this region, the accretion inflow is magnetically constrained

and shocked above the stellar surface. Below the shock, the accretion column liberates

most of the accretion power through the sideways radiation emission in a so-called ‘fan-

beam’ pattern, in contrast to the ‘pencil-beam’ emission where radiation leaves directly

from the top of the column. The physics of the accretion column plays a defining role in

understanding the observations of accretion-powered X-ray pulsars, including pulsating

ultraluminous X-ray sources (ULXs). The observed pulsations arise from the misalign-

ment between the anisotropic radiation emission and the spin axis of the rotating neutron

star.

We perform radiative relativistic MHD simulations to study the nonlinear dynamics

of the accretion column. The column structure is extremely dynamical and exhibits kHz

quasi-periodic oscillations. The existence of the photon bubble instability is identified

in simulated accretion columns but proved to be not responsible for triggering the os-

cillatory behaviors. Instead, the oscillations originate from the inability of the system

to resupply heat and locally balance the sideways cooling. When the oscillation ampli-

tude is sufficiently large, the emergent radiation can exhibit hybrid fan- and pencil-beam

patterns. The column structure is very sensitive to the shock geometry, which directly

x



determines the cooling efficiency. A more diverging geometry of the accretion column

can provide more heat support through PdV work. The time-averaged column structures

from the simulations can be approximately reproduced by a 1D stationary model, given

the correction for the actual 2D mound shape of the time-averaged column. The increase

in magnetic opacity with temperature below the radiative shock may introduce an ad-

ditional unstable mechanism in the dynamics of the accretion column. Pair production

can boost the opacity above ∼ 4× 108 K near the base of the column, which is likely to

introduce further dynamical effects. To further investigate these problems, we propose

an extension of the current numerical framework by incorporating magnetic polarization

into the radiation module.
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Chapter 1

Introduction

1.1 Observation of Accretion onto Strongly Magne-

tized Neutron Stars

In marked contrast to a black hole accretor in an X-ray binary, a strongly magne-

tized neutron star can truncate the accretion disk in the vicinity of the Alfvén radius.

Within this truncation region, magnetic stresses become dominant and therefore guide

the accreting matter through the magnetosphere toward the magnetic poles (Ghosh et al.

1977). At a low accretion rate, the infalling gas is shocked near the stellar surface and

forms a hot spot (Basko & Sunyaev 1975). With sufficiently high accretion rates, a shock

forms above the stellar surface, below which a radiation pressure dominated columnar

structure is established (Inoue 1975; Basko & Sunyaev 1976). In either case, the mis-

alignment of the anisotropic radiation-emitting polar regions with respect to the stellar

rotation axis produces the observed pulsations.

These magnetized neutron star accretors widely exist in a variety of astronomical

systems. Accretion-powered X-ray pulsars, most of which are in high mass X-ray binaries,
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1.1 Observation of Accretion onto Strongly Magnetized Neutron Stars Chapter 1

have been known since the early days of X-ray astronomy (see e.g. Caballero & Wilms

2012, Walter et al. 2015, and Mushtukov & Tsygankov 2022 for recent reviews). Accreting

millisecond pulsars in low mass X-ray binaries were discovered much later (Wijnands &

van der Klis 1998; see Burderi & Di Salvo 2013 for recent review). Beginning with the

discovery by Bachetti et al. (2014), some ultraluminous X-ray sources (ULXs, see e.g.

Kaaret et al. 2017 and King et al. 2023 for recent reviews) are now known to exhibit

coherent pulsations and are therefore clearly accreting, magnetized, rotating neutron

stars. These make up a sizable fraction (∼ 25%) of all ULX populations (Rodŕıguez

Castillo et al. 2020).

1.1.1 X-ray Pulsars and Pulsating ULXs

An accretion-powered X-ray pulsar refers to a binary system characterized by a

strongly magnetized, rotating neutron star that accretes material from its donor star.

In this system, the accretion matter falls into the deep gravitational well of the accretor,

liberating its mechanical energy through X-ray radiation emission. According to the na-

ture of the binary companion stars, X-ray pulsars can have different accretion types and

a wide range of accretion rates. High-mass X-ray pulsars generally consist of strongly

magnetized neutron star accretors (B ≳ 1012 G) and massive donor stars (≳ 8M⊙; O-

type or B-type). These young, massive optical companions enable the neutron stars to

directly accrete at high mass rates from their strong stellar winds (e.g. Vela X-1, Na-

gase et al. 1986). Low-mass X-ray pulsars are rare and typically older systems, where

the surface magnetic fields of neutron stars tend to have relatively weaker B ∼ 109 G

and the donor stars are less massive (≲ 2M⊙). These systems usually undergo the disk

accretion at relatively lower rates via the Roche lobe overflow (e.g. SAX J1808.4-3658,

Wijnands & van der Klis 1998). However, it is worth noting that some low-mass X-ray

2
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pulsars are also observed to exhibit strong magnetic fields near B ∼ 1012 G (e.g. Her

X-1, Tananbaum et al. 1972).

Ultraluminous X-ray sources are classified as non-nuclear X-ray sources with their

assumed isotropic, apparent X-ray luminosity LX ≥ 1039 erg s−1, which roughly corre-

sponds to the Eddington luminosity for a 10M⊙ black hole. Therefore, ULXs were gener-

ally thought to be powered by accretion onto an intermediate-mass black hole or a stellar-

mass black hole with strongly beamed radiation. However, recent observations have

discovered some ULXs with coherent pulsations, which also make the super-Eddington

accreting neutron star a promising candidates. There are two effects that enable the ac-

creting neutron star (∼ 1.4M⊙) to achieve such high Eddington ratio (ranging from 1 to

500): 1. a strong beaming effect resulting from anisotropic accretion, and 2. significant

opacity reduction in strong magnetic fields, enabling very high mass accretion rates. Nev-

ertheless, the geometric beaming effects might result in the smearing out of the observed

neutron star spin pulsations (Mushtukov et al. 2017, 2021), and the reduction in magnetic

opacity ceases when pair production occurrs at magnetic fields B ≳ 1014 G (Suleimanov

et al. 2022). Therefore, how a neutron star can accrete in the super-Eddington regime is

still not well understood.

1.1.2 Magnetic Field

What distinguishes neutron star accretion from other accretion systems is the presence

of strong magnetic fields. These magnetic fields give rise to various observational effects,

greatly enriching the phenomenology of accreting neutron star systems. Firstly, the

geometric configuration of the magnetic field plays a defining role in determining the

accretion geometry by confining the gas motion near the neutron star (Basko & Sunyaev

1975, 1976; Ghosh et al. 1977). Secondly, the strength of the magnetic field can modify

3
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the scattering opacity, thus influencing the interaction between the gas and radiation

(Arons et al. 1987; Mushtukov et al. 2016). Both of these factors significantly contribute

to determining the beam pattern of radiation emission, which ultimately manifests in

the shape of observed pulse profiles. In addition, the anisotropy of magnetic fields can

introduce strong polarization in the emergent radiation (Caiazzo & Heyl 2021). The

occurrence of anisotropic scattering, resulting from strong magnetic fields, makes neutron

star accretion a rare case where polarization can directly impact the dynamics of the

accretion system.

The magnetic field strength of an accreting neutron star can be directly measured

from the cyclotron absorption lines, produced by the resonant scattering of photons by

electrons or even protons. Since the geometry of the radiation-emitting region strongly

depends on local magnetic fields and accretion rates, different variations of observed

cyclotron lines can serve to constrain the existing theoretical model and enhance our un-

derstanding of the underlying physics. For instance, in Figure 1.1 (reproduction of Fig. 9

in Staubert et al. 2019), the two most luminous X-ray pulsars, V 0332+53 and SMC X-2,

demonstrate a negative correlation between cyclotron energy and X-ray luminosity. This

relationship is likely to be directly elucidated by the accretion column model. When the

accretion onto a neutron star is supercritical (i.e. capable of forming an accretion column

structure), higher luminosities/accretion rates lead to an increase in the effective column

height. This height increase, in diverging magnetic fields, then results in a reduction

of the field strength and consequently a decrease in the emergent cyclotron energy. An

alternative explanation involves the reprocessing of X-ray radiation by the atmosphere

of the neutron star (for details see the review by Mushtukov & Tsygankov 2022). Fur-

thermore, the variation of cyclotron lines in pulse phase can provide an extra constraint

for tracking the height of line-forming region, which however, might be confused by light

bending near the neutron star (Staubert et al. 2019). Hence, it is necessary to employ a

4
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Figure 1.1: Reproduction of Fig. 9 in Staubert et al. (2019). Correlation between
cyclotron energy (ECRSF) and X-ray luminosity for eight accretion-powered X-ray
pulsars. The two most luminous sources exhibit a clear negative correlation, which can
be interpreted as an increase in height of the accretion column with higher accretion
rates in diverging magnetic fields.

ray tracing model that incorporates general relativistic effects and even birefringence, to

ensure accurate quantifications.

1.1.3 Pulse Profile

The coherent pulse profile is perhaps the most prominent observational characteris-

tic that sets apart neutron star accretors from black holes in X-ray binaries. Its shape

directly reflects the manifestation of the beamed radiation emitted by the X-ray pulsar.

Moreover, the variations in pulse profiles, dependent on observables such as luminosity

and photon energy, provide valuable insights that may help resolve some long-standing

theoretical challenges in the neutron star accretion. These challenges, including the tran-

sition from the hot spot to the accretion column and the radiation dynamical feedback

5
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on the surrounding accreting material (e.g. accretion curtain), have not been fully un-

derstood.

In X-ray transient sources powered by the accretion onto neutron stars, the light

curves display distinct shapes in different luminosity states (e.g. 4U 1901+03, Ji et al.

2020), indicating significant variations in radiation beam patterns across subcritical to

supercritical accretion regimes. Although stationary 1D models for neutron star accretion

tend to favor distinct beam patterns, with pencil beams representing surface hot spots

and fan beams corresponding to the accretion column, a mixture of pencil and fan-beam

emission geometries is frequently required to accurately interpret observed pulse profile

shapes (e.g. Klochkov et al. 2008; Becker et al. 2012; Iwakiri et al. 2019). This might

be simply explained by the oscillating structure of the accretion column (for details see

chapter 4). Furthermore, pulse profiles can significantly vary with the observed photon

energy in the intermediate luminosity regime (e.g. 4U 1626-67, Iwakiri et al. 2019), but

display only slight differences in the ULX regime (e.g. SMC X-3, Tsygankov et al. 2017).

These distinctions indicate the intrinsic differences between the sub- and super-Eddington

accretion process onto a strongly magnetized neutron star.

1.1.4 Polarization

The X-ray polarization is another observable that directly arises from the inherent

anisotropic nature of accretion-powered X-ray pulsars. Recent unprecedented observa-

tions conducted by the Imaging X-ray Polarimetry Explorer (IXPE) have successfully

detected polarizations in three X-ray pulsars, Cyg X-2, Her X-1, and Cen X-3 (Farinelli

et al. 2023; Doroshenko et al. 2022; Tsygankov et al. 2022), which span the regime from

low- to high-mass optical companions and weakly to strongly magnetized neutron star

accretors. However, the observed polarizations are far below the predictions of the clas-
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sical theoretical model. Multiple physical scenarios have been proposed to address this

unexpected result, such as the intrinsic low polarization degree of the pencil-beam radi-

ation from surface hot spots and radiation reprocessing in different regions, particularly

reflection from the stellar surface. Therefore, to confirm the underlying reason of the low

polarization degree, we need to further investigate the time-dependent accretion struc-

ture near the neutron star accretor and its nonlinear dynamics, which is significantly

influenced by the radiation feedback.

1.2 Neutron Star Accretion Column

1.2.1 Analytical Models and Numerical Simulations

When the accretion rate is supercritical and the magnetic confinement is sufficiently

strong, the accretion flow can be shocked above the stellar surface, resulting in the for-

mation of a radiation pressure dominated columnar structure below. Above the shock,

the inflow free falls directly onto the shock front (known as the ’free-fall zone’), where a

substantial fraction of its kinetic energy is converted into heat. Below the shock, the ma-

terial is in approximate hydrostatic equilibrium between outward radiation pressure and

gravity, thereby subsonically settling down (known as the ’sinking zone’) and liberating

the remaining gravitational energy through the sideways emission (Inoue 1975; Basko &

Sunyaev 1976).

The accretion column model is widely preferred for achieving a high Eddington ratio

by generating beamed radiation due to the anisotropic nature of strongly magnetized

neutron stars. An early analytical solution of the accretion column was proposed by

Basko & Sunyaev (1976) and assumed a simplified 1D geometry of a stationary columnar

structure with a constant scattering opacity. Following this work, a series of 1D station-

7



1.2 Neutron Star Accretion Column Chapter 1

ary models were developed by using more careful treatments of radiative transfer and

magnetic opacities (e.g. Becker 1998; Becker & Wolff 2007; Mushtukov et al. 2015; West

et al. 2017a,b). More recent work done by Abolmasov & Lipunova (2022) has further

relaxed the time dependence in the 1D accretion column model.

Nevertheless, the accretion column is generally thought to be inherently unstable

due to the growth of entropy waves, a phenomenon which is also known as the ’photon

bubble instability’ (Arons 1992; Begelman 2006). The pioneering numerical simulations

conducted by Klein & Arons (1989) and Klein et al. (1996) revealed that the accretion

column structure is not stationary but highly dynamical. These simulations displayed

evidence of oscillatory behavior in the nonlinear development of accretion columns, and

predicted that these might be observable as ‘photon bubble oscillations’ at frequencies

ranging from ∼ 102 − 104 Hz. Unfortunately, those simulations were poorly resolved and

did not run long enough due to the limited computational resources in the past. However,

Figure 1.2: 3D-rendered structures of density snapshots of the accretion column in a
split-monopole magnetic field over one full oscillation period. The fountain-shaped 3D
structures result from the propagation of the entropy waves that are associated with
the slow-diffusion photon bubble instability. However, the oscillation is not driven the
photon bubbles but the thermal imbalance between heating and cooling.

in more recent simulations conducted by Zhang et al. (2022, 2023) as shown in Figure 1.2,

the results suggest that the photon bubbles add additional spatial complexity to the

8
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column structure but do not appear to be directly responsible for the high-frequency

oscillatory behavior. Instead, it is caused by the instantaneous imbalance between global

heating and cooling due to inefficient vertical energy transport (for details see chapter 3

and chapter 5).

1.2.2 Photon Bubble Instability

A linear analysis of the growth of infinitesimal fluctuations due to the photon bubble

instability was first explored by Arons (1992) and Gammie (1998), and then extended to

shorter length scales by Blaes & Socrates (2003). The instability grows exponentially in

time at a rate that is faster for shorter length scales, presumably until the fluctuations

are large enough that nonlinear effects come into play. However, at the shortest length

scales, radiative diffusion eventually becomes fast enough to smooth out fluctuations in

radiation pressure (the rapid diffusion regime). There the growth rate levels off at length

scales of order the gas pressure scale height, and the instability becomes a radiatively

amplified slow magnetosonic mode in the gas alone. Even before this linear behavior was

understood, Begelman (2001) analytically predicted that the nonlinear development of

the instability in the rapid diffusion regime would result in trains of shock waves, and

this was confirmed in detail by radiation MHD simulations of Turner et al. (2005). The

rapid diffusion limit of the instability can even exist in regimes where gas pressure is

comparable to radiation pressure or magnetic pressure (Blaes & Socrates 2003), and its

nonlinear outcome has been simulated by Fernández & Socrates (2013).

Deep inside a neutron star accretion column, the optical depths are so high that

the rapid diffusion regime is only achieved on wavelengths much smaller than the scale

height of the column. It is here that the slow diffusion regime version of the photon bub-

ble instability first studied by Arons (1992) is most relevant, and where the instability
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takes on the character of a diffusion entropy mode. The first numerical simulations that

studied the development of this instability were conducted by Hsu et al. (1997). These

simulations were 2D, and assumed 1D gas motion along prescribed rigid magnetic field

lines. Radiation transport was treated within the flux-limited diffusion approximation,

and accounted for nonzero chemical potential effects in a Bose-Einstein spectrum. The

linear growth of the instability agreed well with the Arons (1992) dispersion relation

and photon bubbles were found to transport energy efficiently. More recent simulations

of photon bubbles in the slow diffusion regime, conducted by Zhang et al. (2021), have

employed a state-of-the-art numerical algorithm that solves both the angle-dependent

radiation transfer and relativistic magnetohydrodynamics. The simulation results are

highly consistent with the linear solution and also confirm, for the first time, that radi-

ation viscosity sets the smallest length scale of the photon bubbles. In addition, a new

instability driven by the temperature-dependent magnetic opacity can take place in the

strong magnetic field regime, where the temperature width of the opacity peak can be

resolved in the accretion column structure (for details see chapter 4 and section A.4).

1.3 Permissions and Attributions

1. Figure 1.1 is a reproduction of Fig. 9 in Staubert et al. (2019) with permission by

Ruediger Staubert. The introductory text in section 1.2 is partially adapted from

the introduction section of Zhang, Blaes & Jiang (2021).

2. The content of chapter 2 is the result of a collaboration with Omer Blaes and Yan-

Fei Jiang, and was published in the Monthly Notices of the Royal Astronomical

Society as Zhang et al. (2021).

3. The content of chapter 3 is the result of a collaboration with Omer Blaes and Yan-
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1.3 Permissions and Attributions Chapter 1

Fei Jiang, and was published in the Monthly Notices of the Royal Astronomical

Society as Zhang, Blaes & Jiang (2022).

4. The content of chapter 4 is the result of a collaboration with Xin Sheng, Omer

Blaes and Yan-Fei Jiang, and was published in the Monthly Notices of the Royal

Astronomical Society as Sheng, Zhang, Blaes & Jiang (2023).

5. The content of chapter 5 is the result of a collaboration with Omer Blaes and Yan-

Fei Jiang, and was published in the Monthly Notices of the Royal Astronomical

Society as Zhang, Blaes & Jiang (2023).

6. The content of chapter 6 is original work conducted by Lizhong Zhang, Omer Blaes

and Yan-Fei Jiang. Figure 6.1, created by Matthew Middleton, is used with his

permission.

7. The first three sections of Appendix A is adapted from the appendix A of Zhang

et al. (2021). The last section of Appendix A is adapted from the appendix B of

Sheng et al. (2023).

8. The content of Appendix B is adapted from the appendix B of Zhang et al. (2021).

9. The calculations and numerical tests in Appendix C were performed by Lizhong

Zhang.

10. The content of Appendix D is original work conducted by Lizhong Zhang.

11. The first two sections of Appendix E is original work conducted by Lizhong Zhang

and Omer Blaes. The last section is adapted from the appendix A of Sheng et al.

(2023).
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Chapter 2

Simulations of Slow-Diffusion

Photon Bubble Instability

This chapter is adapted from our research work published as Zhang, Blaes & Jiang

(2021). In this chapter, we establish a numerical framework and simulate the photon

bubble dynamics in static non-accreting columns. This chapter is organized as follows.

In section 2.1, we give a brief explanation of the photon bubble physics. In section 2.2,

we introduce the numerical approaches and model configurations behind the simulations.

In section 2.3, we present and explain the simulation results, compare the simulation

with linear theory, and study the behavior of the photon bubble simulations at different

resolutions. In section 2.4, we discuss the significance of the simulation results and

summarize our conclusions.

2.1 Overview of Photon Bubble Instability

The linear analysis of the photon bubble instability in the slow diffusion regime was

explored by Arons (1992) and Gammie (1998), although both of these studies also in-
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cluded aspects of the shorter wavelength rapid diffusion regime behavior. We begin by

briefly describing the physics of the slow diffusion mode. More details can be found

in Appendix A, where we present a detailed derivation of our version of the instability

dispersion relation that includes the effects of radiation viscosity. We assume a constant

opacity and use this dispersion relation to compare with our numerical simulations.

Consider a static column at one of the magnetic poles of the neutron star, and assume

for simplicity that its vertical extent is much smaller than the radius of the star, so that

the magnetic field can be treated as purely vertical and the gravitational acceleration

g can be assumed constant. For the purposes of this physics discussion, imagine the

magnetic field to be so strong as to be perfectly rigid, although we will allow for the

field to be dynamic in our numerical simulations below. Because no fluid can then

move horizontally, and radiation pressure completely dominates gas pressure, hydrostatic

equilibrium in the column states simply that the vertical radiation flux is Fr,z = cg/κ.

Taking the opacity κ to be constant1 this then implies that the vertical radiation flux is

constant. Assuming radiative diffusion, Fr,z = −(c/3κρ)dEr/dz then relates the vertical

gradient in radiation energy density Er to the density ρ.

A key reason why the column is vulnerable to instability is that such an equilibrium

is completely unchanged if we add arbitrary vertical fluctuations in density, provided

we maintain a vertically constant flux Fr,z = cg/κ by adjusting the radiation energy

density gradient to be such that dEr/dz ∝ ρ. Because such fluctuations necessarily

involve fluctuations in radiation entropy, this static mode is an entropy mode. However,

the finite horizontal extent of the accretion column means that such fluctuations must

themselves have horizontal variations, and the resulting horizontal radiative diffusion

then causes time dependence in the density and radiation energy density. Provided this

1Throughout this chapter we assume that the opacity is simply that of non-magnetic Thomson
scattering, neglecting the angle and polarization dependence that is in fact important for neutron star
accretion columns. We intend to incorporate these effects in future work.
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time-dependence is slow enough that the gas inertia is truly negligible, then vertical

hydrostatic equilibrium would still be maintained, and of course horizontal equilibrium

is maintained by the strong vertical magnetic field.

However, the gas inertia, while small, is still finite in the slow diffusion regime, and

cannot in fact be neglected. As first shown by Arons (1992) (see also section A.3), the

inertia introduces a finite perturbed vertical flux, which provides extra radiation support

to balance the perturbed net force. This response of the force balancing has a 90◦

phase delay with respect to the density perturbation ((A.21), (A.22) and Figure A.2),

which causes a small amount of radiation to flow from high-density regions to low-density

regions. Although this unstable effect is small, this tendency would eventually evacuate

the perturbed low-density regions by feeding in radiation and leading to an increasing

amplitude of density perturbation.

In section A.2, we derive a short-wavelength (WKB) linear dispersion relation that

fully includes the effects of radiation viscosity for the first time (A.7). Numerical solutions

of this dispersion relation using constant opacity for the instability growth rate are shown

in Figure A.1. Smaller length scale modes generally grow faster until reaching a maximum

growth rate at a length scale lvis (A.10) set by radiation viscosity. The purpose of our

simulations below will be to test our numerics against the predictions of this linear

dispersion relation, and to explore the nonlinear outcome of the instability.

2.2 Numerical Method

2.2.1 Equations

Accreting neutron stars in high mass X-ray binary systems have strong surface fields

∼ 1012−13 G (e.g. Bellm et al. 2014; Dall’Osso et al. 2015) that may in some cases even
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extend up to magnetar field strengths (1014 G, Tsygankov et al. 2016). Because of this,

the Alfvén speed in Newtonian MHD can easily exceed the speed of light in low density

regions, which slows down the numerical simulation because of the CFL condition on

the time step. On the other hand, the Alfvén speed in relativistic MHD is intrinsically

limited to the speed of light. Therefore, we couple special relativistic MHD (RMHD,

Beckwith & Stone 2011) and the radiative transfer equation (Jiang et al. 2014) in the

Athena++ code (Stone et al. 2020), and solve them together for the radiation pressure

dominated static column on the neutron star. We provide details of our modifications to

the Athena++ algorithms in the appendix C of Zhang et al. (2021).

The primitive variables (ρ, vi, Pg, B
i) in RMHD are defined in the fluid rest frame,

where ρ is the gas density, Pg is the gas pressure, vi is the fluid three-velocity, and Bi is

the magnetic field three-vector. Hereafter, we use Latin indices in italics to denote spatial

components of three-vectors (from 1 to 3) and Greek indices to denote components of

four-vectors (from 0 to 3), where 0 represents the time component. We adopt velocity

units with c = 1 and Minkowski metric ηµν = diag(−1, 1, 1, 1) for flat spacetime. Given

a Lorentz factor defined as Γ = (1 − vjv
j)−1/2, the fluid four-velocity components are

u0 = Γ and ui = Γvi. The magnetic field four-vector bµ and the total enthalpy w are

defined as follows for convenience

b0 = ujB
j, bi =

1

Γ
(Bi + b0ui) , (2.1)

w = ρ+
γ

γ − 1
Pg + bνb

ν , (2.2)

where the equation of state for ideal gas is adopted in (2.2) with the gas adiabatic index γ.

The system is governed by the gas conservation laws and the radiative transfer equation.

We summarize these equations below in the sequence of particle number conservation,
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momentum conservation, energy conservation and radiative transfer.

∂0(ρu
0) + ∂j(ρu

j) = Sgr1 , (2.3a)

∂0(wu
0ui − b0bi) + ∂j

(
wuiuj +

(
Pg +

1

2
bνb

ν

)
δij − bibj

)
= Si

gr2 − Si
r2 , (2.3b)

∂0

[
wu0u0 −

(
Pg +

1

2
bνb

ν

)
− b0b0

]
+ ∂j(wu

0uj − b0bj) = Sgr3 − Sr3 , (2.3c)

∂0I + nj∂jI = L−1(S̄r) , (2.3d)

where Sgr1, S
i
gr2 and Sgr3 are the gravitational source terms that mock up the gravity in

special relativity. I is the frequency-integrated intensity and the unit vector ni is the

direction of the intensity. L is the Lorentz boost operator from the lab frame to the

fluid frame and L−1 vice versa. Si
r2 and Sr3 are the momentum and energy exchange

between gas and radiation. The radiative transport term S̄r is defined in the fluid frame

including the processes of elastic scattering, absorption and Compton scattering. Note

that the coordinates and radiation variables are defined in the lab frame and we denote

these quantities in the fluid frame with overbars.

When the plasma is radiation pressure dominated and the Lorentz factor is near unity

or varies slowly in spacetime, we can treat the gravitational field near the neutron star

surface by using the following approximate source terms in RMHD (see derivations in

Appendix B).

Sgr1 =(2Γ2 + 1)ρuj∂jϕ , (2.4a)

Si
gr2 =2(2Γ2 + 1)wgu

iuj∂jϕ− (2Γ2 − 1)wg∂iϕ , (2.4b)

Sgr3 =2Γ(2Γ2 − 1)wgu
j∂jϕ , (2.4c)

where ϕ = −GMr−1 is the Newtonian gravitational potential and wg = ρ+ γ(γ− 1)−1Pg
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is the gas enthalpy.

The radiative transfer equation is solved in the mixed frame by operator splitting the

advection and source term steps. The source term S̄r is used to update the intensity

in the fluid frame. Then we Lorentz transform back to the lab frame and compute the

momentum (Si
r2) and energy exchange (Sr3) between gas and radiation to update the gas

primitive variables. The momentum and energy exchange between gas and radiation are

Si
r2 =

∮
L−1(S̄r)n

idΩ , (2.5a)

Sr3 =

∮
L−1(S̄r)dΩ , (2.5b)

where Ω is the solid angle of the radiation field. The radiative transport source term in

the fluid frame is

S̄r = Γ(1− vjn
j)

[
ρκs(J̄ − Ī)

+ρκR

(
arT

4
g

4π
− Ī

)
+ ρ(κP − κR)

(
arT

4
g

4π
− J̄

)
+ρκs

4(Tg − T̄r)

Te
J̄

]
,

(2.6)

where κs = 0.34 cm2 g−1 is the electron scattering opacity for a fully ionized plasma.

κR and κP are the Rosseland and Planck mean thermal absorption opacities, which

can be numerically computed following the approximations in Hirose et al. (2009).2

Other quantities are the radiation density constant ar, the fluid frame zeroth angular

moment of intensity J̄ = (4π)−1
∮
ĪdΩ̄, and the effective temperature of the radiation

T̄r = (4πJ̄/ar)
1/4, and the electron rest mass energy expressed as a temperature Te. The

2It turns out that our results are not sensitive to these approximations, as electron scattering domi-
nates over the Rosseland absorption opacity, and Compton scattering dominates over the Planck mean,
producing enough gas-radiation energy exchange that no significant departures from LTE occur.

17



2.2 Numerical Method Chapter 2

gas temperature is Tg = Pg(ρR)
−1, where R is the ideal gas constant assuming solar

abundance. Note that the factor Γ(1−v ·n) outside the square brackets comes from the

frame transformation. The first term in the square brackets refers to the elastic scatter-

ing. The second and third terms represent absorption or emission process. The last term

is an approximation for the gas-radiation heat exchange via Compton scattering (Blaes

& Socrates 2003; Hirose et al. 2009).

In the appendix C of Zhang et al. (2021), we briefly describe how to solve radiation

transport numerically and how we modify it for special relativity based on the work done

by Jiang et al. (2014). Note that we assume isotropic opacities and neglect the angle and

polarization dependence. We use a frequency-averaged treatment of radiation transfer

with an assumed blackbody spectrum and neglect photon chemical potential and Bose-

Einstein effects. We also neglect QED effects and electron-positron pair production, as

we never achieve temperatures here where pair production will be important. This can

be an important effect for high magnetic field strengths and/or higher temperatures in

real accretion columns in ultraluminous X-ray sources, and will likely have a strong effect

on photon bubble dynamics simply by reducing the Eddington limit (Mushtukov et al.

2019). On the other hand, photon bubbles might enhance radiation escape and lower the

temperature inside the accretion column.

2.2.2 Simulation Domain, Initial and Boundary Conditions

We adopt a Cartesian geometry in a plane-parallel atmosphere on the neutron star

surface near a magnetic pole. We initialize the simulation with a vertical magnetic field

and the fluid in vertical hydrostatic equilibrium. Although our simulation uses RMHD,

we neglect this and also assume a constant Newtonian gravitational acceleration for our

initial condition. For the purposes of setting up the initial condition only, we assume
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local thermal equilibrium (LTE) between the gas temperature and radiation effective

temperature Tg = Tr ≡ T , and a standard Eddington closure scheme between the zeroth

and second angular moments of the radiation field. We can then integrate the zeroth and

first moments of the radiative transport equation to obtain the energy and momentum

equations for the radiation. Meanwhile, the equations of conservation of particle number

(2.3a) and energy (2.3c) become trivial because of vi = 0 and LTE. Then hydrostatic

equilibrium can be described by the following equations

∂zPg = −ρ
(
g − κF

Fr,z

c

)
, (2.7a)

∂zFr,z = 0, Er = arT
4 , (2.7b)

∂zPr = −ρκF
Fr,z

c
, (2.7c)

where Er, Fr,z and Pr are the radiation energy density, radiation flux and radiation

pressure respectively. The gravitational acceleration g = 1.86 × 1014 cm s−2 is for the

surface of neutron star. The flux mean opacity κF = κs + κR is the effective opacity for

gas-radiation momentum coupling. In order to close the system in hydrostatic equilibrium

and obtain the smooth transition near the photosphere, we initialize the radiation field

by the two-stream approximation as follows

Er ≡ a+0 I
+ + a−0 I

− , (2.8a)

Fr,z/c ≡ a+1 I
+ + a−1 I

− , (2.8b)

Pr ≡ a+2 I
+ + a−2 I

− , (2.8c)

where I+ refers to the direction nz > 0 and I− refers to the direction nz < 0. Here

nz = cos θr and θr is the polar angle. The coefficients a±0 , a
±
1 and a±2 are constants and
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depend on the numerical setup of the discrete solid angles of the intensity field.

a+0 =
∑

w+ , a−0 =
∑

w− , (2.9a)

a+1 =
∑

w+n+
z , a−1 =

∑
w−n−

z , (2.9b)

a+2 =
∑

w+n+
z n

+
z , a−2 =

∑
w−n−

z n
−
z , (2.9c)

where n+
z and n−

z correspond to the direction with nz > 0 and nz < 0, respectively. The

quantities w± are the weights corresponding to the directions n±
z . Therefore, we can

rewrite the hydrostatic equilibrium for the numerical purpose as follows

∂zρ = −(1− ϵ)ρg

RT
−
(

a−0 a
+
1

a−1 a
+
2 − a+1 a

−
2

+
a+0 a

−
1

a+1 a
−
2 − a−1 a

+
2

)
ϵρg

4arT 4
, (2.10a)

∂zT =

(
a−0 a

+
1

a−1 a
+
2 − a+1 a

−
2

+
a+0 a

−
1

a+1 a
−
2 − a−1 a

+
2

)
ϵρg

4arT 3
, (2.10b)

∂zI
+ =

(
a+1
a−1
a−2 − a+2

)−1

ϵρg , (2.10c)

∂zI
− =

(
a−1
a+1
a+2 − a−2

)−1

ϵρg , (2.10d)

where ϵ is the local Eddington ratio, which indicates the fraction of the gravity supported

by the radiation support. Then the system can be integrated from the top given

ρ|z∞ = 0 , (2.11a)

T |z∞ =

(
a+0
a+1

ϵg

arκF

) 1
4

, (2.11b)

I+|z∞ =
ϵg

a+1 κF
, (2.11c)

I−|z∞ = 0 , (2.11d)

where we adopt z∞ = 0.12R⋆ and ϵ = 0.994, with a neutron star radius R⋆ = 10 km.
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The initial conditions are numerically integrated as shown in Figure 2.1. In order to
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Figure 2.1: The vertical profiles of various quantities in the initial condition of the
atmosphere: (a) density; (b) gas temperature, which equals the radiation effective
temperature as the initial condition is assumed to be in LTE; (c) upward (I+) and
downward (I−) two-stream intensities along with vertical radiation flux divided by the
speed of light (Fr,z/c = a+1 I

++a−1 I
−); (d) vertical Rosseland mean optical depth; (e)

magnetic (Pm), radiation (Pr), and gas (Pg) pressures; and (f) the radiation diffusion
Mach number (A.4). The vertical dotted line in all panels indicates the location where
the vertical Rosseland mean optical depth τ = 0.1. Horizontal dotted lines in panels
(d) and (e) indicate where τ = 1 and M0 = 1, respectively.

resolve the gas pressure in the simulation, we want to keep the ratio of the gas pressure

to the magnetic pressure (Pm = bνb
ν/2) as large as possible. Therefore, we adopt the

magnetic field B = 1010 Gauss and then select the top of the domain to be where the

optical depth is 0.1, which is shown as the vertical dotted line in Figure 2.1. This

selection guarantees that the atmosphere would be well confined by the magnetic field

from z/R⋆ = 0.02 to the top of the domain. Moreover, it covers a range of vertical optical

depths from slow to rapid radiative diffusion.

We use periodic boundary conditions for the gas and radiation at the two sides. At
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the top, we use an outflow boundary condition for the gas, which zeros the gradient of

primitive variables at the top. However, we forbid the gas to flow into the domain from

the top ghost zones:

ρ(kmax+k′) = ρ(kmax) , (2.12a)

vx(kmax+k′) = vx(kmax) , (2.12b)

vz(kmax+k′) =


vz(kmax) , if vz(kmax) ≥ 0

0 , if vz(kmax) < 0

, (2.12c)

Pg(kmax+k′) = Pg(kmax) , (2.12d)

where the subscript (kmax) refers to the index of z that corresponds to the highest grid

cell in the active zone and (k′) starts from the first to the last grid cell in the ghost zone.

We use a vacuum boundary condition for the radiation at the top, which zeros the inward

intensity at the top. This is a decent condition for the optical depths near the top, where

the intensity is mostly outwards:

I(kmax+k′) =


I(kmax) , if nz ≥ 0

0 , if nz < 0

. (2.13)

At the bottom, we use a reflecting boundary condition for the gas.

ρ(kmin−k′) = ρ(kmin+k′−1) , (2.14a)

vx(kmin−k′) = vx(kmin+k′−1) , (2.14b)

vz(kmin−k′) = −vz(kmin+k′−1) , (2.14c)

Pg(kmin−k′) = Pg(kmin+k′−1) , (2.14d)
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where the subscript (kmin) refers to the index of z that corresponds to the lowest grid

cell in the active zone. The radiation boundary condition at the bottom is determined

by enforcing hydrostatic equilibrium there in the two-stream approximation.

I(kmin−k′) = I(kmin−k′+1) +


(
a+2 − a+1

a−1
a−2

)−1

ϵρ(kmin−k′+1)g∆z, if nz ≥ 0(
a−2 − a−1

a+1
a+2

)−1

ϵρ(kmin−k′+1)g∆z, if nz < 0

. (2.15)

In the initial condition, this leads to an upward constant radiation flux, which arises from

the assumed constant Eddington ratio ϵ. Then with the local primitive variables, we can

compute the I± in the bottom ghost zones with first-order accuracy as follows

I+(k−1) = I+(k) +

(
a+2 − a+1

a−1
a−2

)−1

ϵρ(k)g∆z , (2.16)

I−(k−1) = I−(k) +

(
a−2 − a−1

a+1
a+2

)−1

ϵρ(k)g∆z , (2.17)

where subscript (k) refers to the index of z in the active zone.

We set up five simulations with different domain sizes, resolutions and durations as

shown in Table 2.1. All simulations evolve toward collapse of the atmosphere, but we

Version Name Mesh Width Height Resolution Duration
(R⋆) (R⋆) (cm2/grid cell) (tsim)

0 LR 340× 512 0.0500 0.075 147× 146 1000
1 MR 680× 1024 0.0500 0.075 74× 73 1000
2 HR 680× 3072 0.0167 0.075 25× 24 300
3 SHR 1280× 9472 0.0100 0.075 8× 8 200
4 UHR 2560× 18944 0.0100 0.075 4× 4 200

Table 2.1: Domain size, resolution, and duration of all the simulations.

are only able to investigate this in detail in the nonlinear regime in the low-resolution

(LR) and medium-resolution (MR) simulations, which we run for 1000tsim. Here tsim =

2.8 × 10−7 s is the simulation time unit in this chapter, roughly corresponding to the
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2.3 Results Chapter 2

(vacuum) light crossing time across a radiation pressure scale height. The three higher

resolution simulations provide a resolution study. Therefore, we only evolve the instability

within the linear regime and run high-resolution (HR), super-high-resolution (SHR) and

ultra-high-resolution (UHR) simulations for 300tsim, 200tsim and 200tsim, respectively,

given limited computational resources. All simulations are launched by applying cell-to-

cell random perturbations on the initial profile in all variables with a fractional amplitude

10−3.

There are two reasons that we prefer to apply random perturbations rather than excite

one single mode: 1. the simulation is initialized by using the approximate hydrostatic

equilibrium, which deviates from the true solution. Such deviation and the numerical

error from the discretization of simulation grids would both contribute to the actual

initial perturbation. So the linear instability would be dominated by a particular short-

wavelength mode from this systematic perturbation. Therefore, we apply the cell-to-cell

random perturbation to broaden the spectrum of initial perturbations. 2. in the neutron

star column accretion problem, the perturbations are intrinsically random. So studying

the instability in the random perturbation would provide more insight to understand the

multi-mode behavior of in such system.

2.3 Results

In the following sections, we present and evaluate the simulation results. In sec-

tion 2.3.1, we adopt the MR simulation as our fiducial simulation to give an overall de-

scription and explanation of the evolution of photon bubble instability. In section 2.3.2,

we use both the MR and UHR simulations to evaluate the consistency between the sim-

ulation results and the analytical dispersion relation. In section 2.3.3, we compare the

simulations at different resolutions and discuss the discrepancies introduced by finite res-
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olution. Note that the resolution dependence is studied in the linear regime with all five

simulations but in the nonlinear regime with only the LR and MR simulations.

The photon bubble instabilities appear in all five simulations. Animations are avail-

able online3. Note that in section 2.3.1 and section 2.3.2, we only focus on the MR

simulation and use it to study the photon bubble instability for the following reasons: 1.

only the LR and MR simulations are evolved long enough for the atmosphere to collapse

due to the photon bubble instability. 2. compared with the LR simulation, the MR

simulation is less noisy and has better numerical performance. 3. the MR simulation can

resolve shorter wavelengths than the LR simulation, where the photon bubble instability

grows faster.

2.3.1 Overview of Evolution

We track the fluctuations in terms of characteristic variables at each snapshot to study

the evolution of the photon bubble instability. In the simulation, the instability patterns

gradually appear from the top to the bottom because the instability growth rate is

different at each height. The instability grows faster and first becomes nonlinear towards

the top, since the radiation diffuses more rapidly as the gas density decreases. As the

instability grows, gas and radiation are gradually spatially decoupled. Such decoupling

eventually makes the gas lose the radiation support and sink down due to the gravity.

Then the whole atmosphere collapses and the radiation freely leaves the domain at the

top.

Before the nonlinear phase of the instability starts to dominate the system, we select

four different heights (z/R⋆ = 0.02, 0.03, 0.04 and 0.05, where the magnetic field continues

to be strong enough to constrain the gas to move vertically) to study the linear growth of

the instability by monitoring the horizontally averaged perturbations in density, velocity

3https://youtube.com/playlist?list=PLbQOoEY0CFpW276rfp1Wuzc0uoE6726cO
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Figure 2.2: Horizontal average of the absolute value of perturbations with respect to
the unperturbed initial profile in density (top), vertical velocity (middle) and thermal
pressure (bottom) as a function of time and for various altitudes in the simulation as
indicated.

and pressure. Specifically, we use vz and P to denote the velocity in z-direction and

the total pressure of the gas and radiation respectively. Note that P ≃ Pr because the

regime is radiation-dominated. As shown in the Figure 2.2, in the beginning, the initial
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perturbations at each height are relaxed by the system since the initial condition is not in

the perfect hydrostatic equilibrium. After the system is relaxed close to the hydrostatic

equilibrium, the linear instability starts to grow independently at each height, growing

fastest in the highest altitude regions. As the linear instability grows, the fluctuations

at different heights propagate and interfere with each other. During such interference,

one region would be dominated by another. In our case, fluctuations in higher regions

always dominate lower regions because of the higher instability growth rate. Therefore,

we can approximately identify when the interference happens by tracing the time that

growth rates at two adjacent heights start to synchronize (Table 2.2), where we denote

such time as tsyn. As the simulation continues, the photon bubble instability becomes

nonlinear and thus we stop tracking the perturbations.

z/R⋆ 0.05 → 0.04 0.04 → 0.03 0.03 → 0.02
tsyn/tsim ∼ 310 ∼ 330 ∼ 350

Table 2.2: The approximate times when the linear growth rates synchronize between
two adjacent heights in the MR simulation.

We pick three snapshots at t/tsim = 200, 400 and 800 from the MR simulation.

The format of each snapshot is the same, where the upper-left panel refers to the gas

density; lower-left refers to the gas density variation; upper-middle refers to the fluid

velocity; lower-middle refers to the vertical velocity variation; upper-right refers to the

gas-radiation pressure; lower-right refers to the gas-radiation pressure variation. Note

that in the upper-middle panel, the color represents the magnitude of the velocity and

the black arrows indicates the directions of the velocity. As shown in Figure 2.3, the

system is at the early stage of the linear instability at t/tsim = 200 before the first

synchronization time and the instability grows independently at each height. Although

the density profile is rather smooth, the instability patterns are already clear and roughly

consistent in the variation (lower) panels. Moreover, we can find that the tilted angles of
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Figure 2.3: Snapshot at t = 200× (2.8× 10−7 s) in the MR simulation.
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Figure 2.4: Snapshot at t = 400× (2.8× 10−7 s) in the MR simulation.
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Figure 2.5: Snapshot at t = 800× (2.8× 10−7 s) in the MR simulation.

the instability patterns become more vertical towards the bottom. This agrees with our

analytical solution that the maximum growth rate peaks at more vertically tilted angles

as the diffusion regime becomes slower (i.e. M0 → 0) and we will discuss details in the

section 2.3.2. As shown in Figure 2.4, the contrast in density profile at the top is large

enough to see the pattern. Meanwhile, the instability patterns become more irregular

at t/tsim = 400. The instabilities at higher regions clearly step into the nonlinear phase,

which would gradually propagate down and interfere the regions below. Furthermore,

the gas is sinking after losing the radiation support because of the spatial decoupling

between gas and radiation. Eventually, the whole atmosphere collapses at t/tsim = 800

as shown in Figure 2.5. At this stage, the gas and radiation are driven into different

channels by the instabilities, where the gas sinks downwards and the radiation escapes

upwards. Now we can zoom in to these selected snapshots to track the gas-radiation
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Figure 2.6: Zoom-in profiles at t = 200× (2.8× 10−7 s) in the MR simulation. Black
arrows indicate unit vectors in the direction of the local velocity, and red arrows
indicate unit vectors in the direction of the portion of the radiation flux that is not
providing hydrostatic support.

decoupling via gas velocity and heat flow. Figure 2.6 shows the density distribution

(left) and density variation (right) at time t/tsim = 200, when we are still in the linear

regime. Arrows show the directions of velocity (black) and the portion of the radiation

flux (red) that is not providing hydrostatic support. As we discussed in section 2.1, the

vertical component of this portion is what drives the linear photon bubble instability,

and indeed we find that this heat predominantly flows from regions of high perturbed

density to the regions of low perturbed density (see red arrows in Figure 2.6). This is a

clear indication of photon bubble instability in the slow diffusion regime. Since the heat

flow is mostly in the form of radiation, the radiation further evacuates the low perturbed

density regions and eventually causes spatial decoupling from the gas. Meanwhile, the gas

in high perturbed density regions is gradually sinking because of loss of radiation pressure

support (see black arrows in Figure 2.6). This decoupling process becomes more intense

as the instability grows. As shown in Figure 2.7 at t/tsim = 400, the instability in
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Figure 2.7: Zoom-in profiles at t = 400× (2.8× 10−7 s) in the MR simulation.
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Figure 2.8: Zoom-in profiles at t = 800× (2.8× 10−7 s) in the MR simulation.

upper region grows into nonlinear phase and the density contract become more clear.

The gas in high density regions keeps sinking, while the radiation in low density regions

escapes upwards and blows the gas away. Finally, the whole system become nonlinear at

t/tsim = 800 as shown in Figure 2.8, where the gas and radiation are clearly separated
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in different channels by the effects of photon bubble physics. Note that by this time the

fluid velocity is no longer entirely vertical at the base, indicating significant bending of

the magnetic field lines there.

2.3.2 Comparison with Linear Theory

At each wavelength, there is a specific angle θmax between the wave vector direction

and the vertical that maximizes the linear growth rate of the instability (see Figure A.1).

This is essential for understanding the instability pattern. Therefore, we solve for θmax

at each selected height as a function of wavelength, and show the results in Figure 2.9.

The stars indicate the maximum growth rate by numerically solving the dispersion re-
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Figure 2.9: The analytical dependence of the angle corresponding to the maximum
growth rate (θmax) as a function of wavenumber. The stars indicate the theoretical
maximum growth rate at each height. The diamonds and dots with arrows refer to
the minimum resolved wavelength (2 grid zones) in the MR and UHR simulations,
respectively.

lation (A.11) with the constant opacity given the profile at each height. The shortest

wavelengths that can be resolved (2 grid zones for a crest and a trough) are marked

32



2.3 Results Chapter 2

with diamonds for the MR simulation and dots for the UHR simulation, where the arrow

indicates the longer wavelengths that can be resolved. Short wavelengths generally grow

fastest until the viscous length scale is reached (Figure A.1), and therefore tend to dom-

inate the instability pattern. High altitudes have the smallest θmax, and θmax approaches

90◦ as the height decreases. This is consistent with the overall instability patterns becom-

ing less tilted with decreasing height as shown in Figure 2.3. In Figure 2.9, we also notice

the wider range of θmax in higher altitude regions. This suggests the ‘block structure’

along these tilted patterns from the mixing modes because some less dominant modes

tweak the substructure of the tilted pattern to be more vertical, which can also be seen

directly in the variation (lower) panels of Figure 2.3.

To test the analytical expectation of the instability growth rate and the tilted angles,

we first need to measure the wavelength from the fluctuations in the linear growth phase.

Since the modes are mixed, we distinguish the wavelengths in Fourier space. Here, we

briefly describe how we obtain the dominant wavelength from the simulation data. At

each selected height, we first analyze the horizontal profile to obtain the perturbation

with respect to the unperturbed initial condition (e.g. δρ, δvz or δP ) as a function of

horizontal distance x. Next, we project these variables into Fourier space, in order to

identify the dominant mode from the peak in the power spectrum. We then pick the

measured wavelength of the dominant mode and calculate the corresponding θmax. Note

that here the horizontal wavelength λ⊥ = λ/ sin θmax (where ‘⊥’ means perpendicular to

the magnetic field) is the horizontal projection of the real wavelength (λ). Therefore, we

need to correct it with the angle by iterating the value of θmax until it converges within

some tolerance we choose (e.g. 10−8). The results of the measurements based on δvz in

all simulations are listed in Table 2.3. As shown in Figure 2.10, we plot the measured

wavelengths (solid red lines) and the predicted constant phase plane orientations (dashed

red lines) of the dominant mode at each selected height, which are quite consistent with
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z M0 h hg lvis LR (v0) MR (v1) HR (v2) SHR (v3) UHR (v4)
t/tsim = 300 t/tsim = 250 t/tsim = 150 t/tsim = 100 t/tsim = 100
θmax λ θmax λ θmax λ θmax λ θmax λ

(R⋆) (cm) (cm) (cm) (deg) (cm) (deg) (cm) (deg) (cm) (deg) (cm) (deg) (cm)
0.02 0.01 19760 148 433 87.36 7116 87.13 4277 86.44 1661 84.94 622 85.17 644
0.03 0.03 16438 123 506 85.98 8102 85.52 4202 84.13 1505 82.17 660 82.17 660
0.04 0.08 13133 98 568 82.86 6185 82.05 3804 80.31 1739 77.85 873 77.15 777
0.05 0.29 9887 73 843 76.32 6107 74.78 3636 71.90 1673 67.74 712 68.61 861

Table 2.3: Data measurements in linear phase of all simulations
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Figure 2.10: Comparison of the tilt angles of the dominant modes at different heights
in the MR simulation with that expected from linear theory. Dashed lines are oriented
along constant phase surfaces, and solid lines indicate wavelength perpendicular to the
constant phase surfaces.

the instability pattern observed in the simulation. However, we notice that the fastest

growing wavelength at each height is not what we expected earlier as 2 grid zones in

the MR simulation but it is ∼ 50 grid zones instead. This is because of damping effects

arising from numerical diffusion. In all versions of our photon bubble simulations, these

numerical damping effects start to become important at wavelengths below ∼ 50 grid
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zones. This can be contrasted with the ZEUS simulations of Turner et al. (2005) of

photon bubbles in the rapid diffusion regime, where numerical damping was significant

at wavelengths below ∼ 10 grid zones. Thus, the numerical damping at short length

scales makes resolution a challenge.
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Figure 2.11: Comparison of linear growth rates with behavior measured in the MR
simulation.
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With the measurements of the dominant wavelength at each height, we can compute

the analytical growth rates and compare them with the simulation data as illustrated

in Figure 2.11. In the MR simulation, the measured linear growth rates (solid lines)

are fairly consistent with the analytical calculation (dashed lines), where the analytical

calculation is based on the snapshot at t/tsim = 250. Similarly, we also compute the

analytical growth rate in the MR and UHR simulations as a function of wavelength

by selecting the angle θmax corresponding to the maximum growth rate. As shown in

Figure 2.12, each lines represent the analytical solutions at different heights. The solid
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Figure 2.12: The analytical dependence of the growth rate, scaled with the sound
crossing frequency over a scale height N0 = cr/h, at θmax on wavenumber. The
diamonds and dots represent the linear fits to the MR and UHR simulation data,
respectively, given the measured wavelengths of the dominant modes.

diamonds and dots are the measurements of the dominant modes in the MR and UHR

simulations respectively. The linear growth rates are generally larger in higher altitude

regions simply because the radiation diffuses faster. The simulated growth rates of the

dominant modes again are fairly consistent with the analytical solution. Note that the

growth rate reaches a finite maximum and then declines toward shorter wavelengths
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because of radiation viscosity. The length scale of this peak growth rate is small and

requires high resolution in the simulation. Among the five simulations, only the SHR

and UHR simulations roughly reach the analytical maximum growth rate of the photon

bubble instability. Details will be discussed in the next section.

2.3.3 Resolution Dependence

According to the linear theory (see Appendix A for details), we expect that simu-

lations of photon bubble instability will be resolution-dependent because the instability

grows faster at shorter wavelengths until the wavelength reaches the maximum at radia-

tion viscous length scale, which is small and thus requires high resolution. The shortest

wavelength that can be resolved is at least two grid zones in order to resolve a crest and

a trough, but numerical diffusion affects the results at much longer wavelengths than

this. As we just discussed, we find that unstable modes roughly require at least 50 grid

zones to avoid significant numerical damping in our MR resolution simulation. In the

LR simulation, we perform similar measurements at t/tsim = 300 as shown in Table 2.3,

where the fastest growing wavelengths are on average 47 grid zones, comparable to what

we found in the MR simulation. Note that we select a later snapshot compared with the

MR simulation because the dominant modes in the LR simulation have longer wavelength

in general, and therefore grow more slowly. This trend continues as we keep increasing

the resolution, until the simulation starts to resolve the radiation viscous length scale.

The discrepancy of the growth rates at different heights increases when the dominant

modes move toward longer wavelengths as shown in Figure 2.12, which indicates that the

instability in the low altitude regions is suppressed and synchronized faster by the insta-

bility propagating downward from high altitudes. This complicates the mode analysis

at the low altitudes. In short, simulations of photon bubbles need to have high enough
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resolution that the more slowly growing modes at low altitude are at least able to start

their linear growth phase before they are affected by downward propagation of the faster

growing modes at high altitude. On the other hand, we find that the nonlinear outcome

of both the LR and MR simulations are qualitatively similar, and they both collapse.

However, the LR simulation takes longer to collapse, and the photon bubble channels

that form have longer horizontal length scales.
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Figure 2.13: Side-by-side comparison of linear-phase photon bubble instability at
different resolutions, for the same portions of the simulation domains. The length
scales of the dominant modes decrease with increasing resolution, until convergence is
achieved at the viscous length scale for the two highest resolution simulations on the
right.

In order to study the resolution dependence of photon bubble instability, we ran three

extra simulations through the linear growth phase by increasing the grid cell size to 25 cm,

8 cm and 4 cm, respectively. Snapshots of the instability patterns of all five simulations

are shown in Figure 2.13. The dominant wavelength keeps decreasing as the resolution

increases until the SHR simulation at resolution ∼ 8 cm. A further increase in resolution

to ∼ 4 cm in the UHR simulation produces hardly any change in the spatial scale of

the photon bubble. As shown in Figure 2.14, we have roughly reached the convergence

at grid cell size ∼ 8 cm, where the dominant wavelength nearly reaches the radiation

viscous length scale at each selected height.

The evolution in the nonlinear regime is also affected by resolution, as we show in

Figure 2.15. The left panel shows that the mass-weighted height of the atmosphere
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Figure 2.15: Left: Evolution of mass-weighted height of the atmosphere in the
high resolution (black) and low resolution (red dotted) simulations. Snapshots of the
density distribution a times indicated by the points in the left panel (when both sim-
ulations have collapsed to the same height) are shown in the middle (high resolution)
and right (low resolution) panels.

decreases as the system collapses. The MR simulation collapses more rapidly because it

is able to resolve the faster growing shorter wavelength modes of the instability. These

modes persist well into the nonlinear regime, as illustrated in the density snapshots shown

in the middle and right hand panels of Figure 2.15. By simply counting the peaks in

39



2.3 Results Chapter 2

the horizontal density variation at each height in the snapshot, we find that the average

horizontal length scale in the snapshots are 3375 cm for the MR simulation and 6168 cm

for the LR resolution simulation, which is consistent with the horizontal projection of

the photon bubble wavelength in the high altitude regions. The ratio of 1.8 is close to

the factor of two difference in grid resolution.

Figure 2.16 depicts the evolution of the vertical radiation flux in the two simulations.

The left hand panel shows the vertical radiation flux averaged over the simulation domain,
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Figure 2.16: Left: Evolution of volume-averaged (solid) and mass-averaged (dotted)
comoving-frame vertical radiation fluxes in the high resolution (black) and low reso-
lution (red) simulations. Right: Evolution of lab-frame vertical radiation flux leaving
through the top of the simulation domain.

with solid curves showing a volume average and dotted curves showing a mass-weighted

average. The latter is far below the former, illustrating the fact that photons are escaping

preferentially through the low density channels formed by the photon bubble instability,

and therefore the denser regions are no longer supported against gravity by radiation

pressure, causing the collapse. The radiation escape rate is significantly higher for the

MR simulation, which is why it collapses faster. The right panel shows the horizontally-

averaged radiative flux that leaves through the top of the simulation domain. Again,

the rate at which radiation leaves the simulation domain is significantly higher for the
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MR simulation. Note that we did not evolve the HR, SHR and UHR simulations to the

nonlinear regime because of limited computational resources.

The closest simulations to those we have presented here are those of Hsu et al. (1997),

who also simulated the growth of photon bubbles in static atmospheres. Because of better

computational resources available today, we have been able here to run simulations at

much higher resolutions and use a more extended simulation domain. Even our lowest

resolved simulation (LR) has grid cell sizes smaller by factor of ∼ 2.4 than the finest grid

used in Hsu et al. (1997). They also used grids that reduced resolution with altitude,

which would cause slower growth of the photon bubble instability in these regions. Our

simulations cover a broader parameter space of radiation diffusion, withM0 ranging from

∼ 0.005 to ∼ 100. Our simulations also directly solve the full angle-dependent radiative

transfer equation, whereas they used flux-limited diffusion. Therefore, we are able to

reach length scales where photon viscosity is important, and even use grid cell sizes that

are optically thin. The maximum growth rate of our photon bubbles is naturally limited

by the radiation viscosity at high enough resolution. The magnetic field direction in our

simulations is vertical (the same as the gravitational field) and thus our simulations have

a left-right horizontal symmetry in the fastest growing photon bubble modes. Hsu et al.

(1997) adopted a slightly tilted magnetic field instead, which breaks this symmetry of

their photon bubbles, and the dominant modes only propagate in one direction. Finally,

we solve the MHD equations so the gas motion is constrained by a dynamical magnetic

field (B = 1010 Gauss), while Hsu et al. (1997) impose 1D motion of the gas to mock up

the effects of a strong magnetic field.

Despite these differences, the numerical outcomes in both sets of simulations are very

similar. Both we and Hsu et al. (1997) find that photon bubbles align close to the

equilibrium magnetic field in the lower altitudes where diffusion is slowest, and that in

the nonlinear regime, the photon bubble instability drives the collapse of the atmosphere
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starting from high altitudes. Hsu et al. (1997) also find that the density structures

that form in the instability are smaller with higher numerical resolution, as we also

find. However, they suggested that their photon bubbles tend to merge toward longer

length scales in terms of their transport properties. In particular, although the density

fluctuations are on smaller length scales with increasing resolution, they found that the

radiation energy density is spatially smoother because of radiation diffusion. We find

similar results but only at high altitude. As shown in Figure 2.5, the spatial structure

of radiation energy density closely tracks that of density even well into the nonlinear

regime at low altitudes. However, at high altitudes where the atmosphere is collapsing

and radiation is able to diffuse much more quickly, we do see much broader structures in

the radiation energy density, in agreement with Hsu et al. (1997).

2.4 Discussion and Conclusions

All of the numerical experiments we have done in this chapter are in preparation for

a more global simulation of a neutron star accretion column. We have demonstrated here

that we can successfully resolve photon bubbles and capture their nonlinear dynamics in

a static medium. In the next chapter we will present our results on the impact of this

instability on magnetically confined, accreting columns in Cartesian geometry. While the

simulations here had horizontally periodic boundary conditions and therefore lacked a

boundary confined against radiation pressure by magnetic tension, we nevertheless suc-

cessfully managed to constrain the gas motion by the strong magnetic fields in radiative

RMHD simulations. This is critical for a more global simulation in which the magnetic

field will have to provide lateral confinement of the accretion column. There radiation

will likely escape the column mostly from the sides (Basko & Sunyaev 1976), not the top

as in the simulation here. Whether the spatial resolution of the grid is as much of an issue
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in controlling the dynamics in that case, given the vertical shape of the photon bubble

channels, remains to be seen. A global simulation will also require accretion of material

from the top boundary, which we have not yet incorporated here. Such accretion is the

only way that a steady-state column structure might develop against the photon bubble

collapse that we found here.

We summarize our conclusions of this chapter as follows:

1. In the numerical simulation of the radiation-supported and magnetized atmosphere

on neutron star, we resolve the characteristics of the photon bubble instability in

the slow diffusion limit and explore the multi-mode behaviors depending on the

radiative diffusion, propagation direction and wavelength. In particular, modes

grow most quickly at altitude where radiative diffusion is faster, with wave fronts

that are significantly inclined to the vertical. At depth where diffusion is more

slow, the modes grow more slowly with wave fronts that are more aligned with the

vertical magnetic field.

2. We confirm the consistency between the numerical simulation and the linear theory

of photon bubble instability. The simulation results illustrate the robustness of

the current code framework of Athena++ in the linear phase and provide more

insights into the non-linear dynamics caused by the photon bubble instability. The

faster growing, inclined modes at altitude spread downward. However, the slow

diffusion modes at depth eventually grow and result in vertical concentrations of

density on magnetic field lines, separated by more tenuous reasons which allow for

more rapid diffusion of photons. This eventually always results in collapse of the

atmosphere. How this gets modified in the presence of additional mass supply from

the top is the subject of the next chapter.

3. We perform a resolution study and explore the resolution dependence of the photon
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bubble instability in the simulation, which suggests that the dynamical system

involved with the photon bubble instability requires high resolution to capture the

correct dynamical effects. Low resolution simulations, while still collapsing, do so

on longer time scales and with longer wavelengths because they are not able to

resolve faster growing modes. This resolution dependence persists well into the

nonlinear regime, with the size scale of the nonlinear density structures scaling

approximately with the grid cell size. This contrasts with, other instabilities, e.g.

Rayleigh-Taylor, whose linear growth rates increase toward shorter wavelength, but

whose nonlinear structures have large length scale. Here the nonlinear outcome of

the photon bubble instability is dominated by the shortest resolved wavelengths

until the viscous length scale is reached. This represents a numerical challenge for

simulating this instability.

The photon bubble instability causes all our simulations of static atmospheres to collapse,

in agreement with the prediction of Begelman (2006). However, this still leaves open the

question of what happens when fresh mass is supplied to an actual accreting column.

Our work here lays the foundation for numerical simulations of magnetically confined,

accreting columns on neutron stars, which enable us to resolve the photon bubble in-

stability and study whether it affects existing models that assume a spatially smooth,

stationary structure. The results of such simulations are in the following chapters.
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Simulations of Accretion Columns in

Cartesian Geometry

This chapter is adapted from our research work published as Zhang, Blaes & Jiang (2022).

In this chapter, we simulate the dynamics of vertically stratified neutron star accretion

columns in Cartesian geometry. This chapter is organized as follows. In section 3.1,

we review the equations of the conservation laws in gas and radiation, the numerical

setup of the simulation domain, initial conditions, boundary conditions, numerical is-

sues associated with variable inversion, and simulation parameters. In section 3.2, we

discuss the simulation results for different accretion rates and column sizes, compute

their time-averaged spatial structures and compare with the 1D standard model, discuss

the physical origin of the vertical oscillations, and discuss a resolution study and the

presence of photon bubbles in the simulations. In section 3.3, we discuss the validity of

our simulations, compare with previous numerical works, and discuss the observational

significance. We summarize our conclusions in section 3.4.
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3.1 Numerical Method

3.1.1 Equations

Neutron star accretion columns are confined by strong magnetic fields (109−12 G or

even higher). These strong magnetic fields present challenges for numerical simulations,

and all the early work on photon bubble instability adopted equations of motion in which

the fluid was confined to move on infinitely rigid field lines, i.e. MHD was not explicitly

included (Klein & Arons 1989; Klein et al. 1996; Kawashima & Ohsuga 2020). Here we

include the full MHD dynamics. One resulting challenge is that the CFL condition on the

time step in Newtonian MHD can greatly slow down the numerical simulation because the

Newtonian Alfvén speed in low density regions (especially outside the column) can easily

exceed the speed of light. We therefore employ relativistic MHD because the relativistic

Alfvén speed is intrinsically limited by the speed of light.

We apply the numerical framework of radiative relativistic magnetohydrodynamics in

Athena++ (Zhang et al. 2021) to simulate a magnetically confined, accreting column

near the neutron star surface in Cartesian geometry. The governing equations are sum-

marized below in the sequence of particle number conservation, momentum conservation,

energy conservation and radiative transfer

∂0(ρu
0) + ∂j(ρu

j) = Sgr1 , (3.1a)

∂0(wu
0ui − b0bi) + ∂j

(
wuiuj +

(
Pg +

1

2
bνb

ν

)
δij − bibj

)
= Si

gr2 − Si
r2 , (3.1b)

∂0

[
wu0u0 −

(
Pg +

1

2
bνb

ν

)
− b0b0

]
+ ∂j(wu

0uj − b0bj) = Sgr3 − Sr3 , (3.1c)

∂0I + nj∂jI = L−1(S̄r) , (3.1d)

where ρ is the fluid frame gas density and uµ is the fluid four-velocity. Given the fluid
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three-velocity vi, we can calculate (u0, ui) = Γ(1, vi) in special relativity, where Γ =

(1− vjv
j)

−1/2
is the Lorentz factor. The total fluid frame enthalpy w and the magnetic

field four-vector bµ are defined as follows

b0 = ujB
j, bi =

1

Γ
(Bi + b0ui) , (3.2)

w = ρ+
γ

γ − 1
Pg + bνb

ν , (3.3)

where Bi is the magnetic field three-vector and Pg is the fluid frame gas pressure. We

adopt an ideal gas with adiabatic index γ = 5/3. The quantities Sgr1, S
i
gr2 and Sgr3 are

weak field gravitational source terms (see Appendix B for details).

In the radiative transfer equation (3.1d), I is the frequency-integrated, but angle-

dependent intensity, and the unit vector ni is the photon propagation direction. We

adopt 40 radiation angles, which are in the plane of the 2D simulation. This is the

same angular discretization that we used in chapter 2, and the details are described

in Jiang (2021). Note that the radiative transport source term is initially computed

in the fluid frame (S̄r) and then Lorentz transformed back to the lab frame (Sr).
1 The

operator L represents a Lorentz boost from the lab frame to the fluid frame and L−1 is its

inverse. Therefore, Sr = L−1(S̄r) and we have source terms in the lab frame exchanging

momentum and energy between gas and radiation as follows

Si
r2 =

∮
Srn

idΩ , (3.4a)

Sr3 =

∮
SrdΩ , (3.4b)

where dΩ is the infinitesimal solid angle about the photon propagation direction ni. The

1Throughout this chapter, radiation quantities in the fluid rest frame are indicated with a bar.
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radiative transport source term in the fluid frame (Jiang 2021; Zhang et al. 2021) is

S̄r = Γ(1− vjn
j)

[
ρκs(J̄ − Ī)

+ρκR

(
arT

4
g

4π
− Ī

)
+ ρ(κP − κR)

(
arT

4
g

4π
− J̄

)
+ρκs

4(Tg − T̄r)

Te
J̄

]
,

(3.4c)

where Ī = L(I) is the fluid-frame frequency-integrated intensity and J̄ = (4π)−1
∮
ĪdΩ̄

is the fluid-frame zeroth angular moment of intensity. Other quantities are the electron

scattering opacity κs, Rosseland mean absorption opacity κR, Planck mean absorption

opacity κP , radiation density constant ar, effective temperature of the radiation T̄r =

(4πJ̄/ar)
1/4, and electron rest mass energy expressed as a temperature Te ≡ mec

2/kB.

The gas temperature is Tg = Pgm/(ρkB), wherem is the solar abundance mean molecular

mass. In the source term (3.4c), the factor Γ(1−vjnj) outside the square brackets comes

from the frame transformation, the first term in the square brackets refers to elastic

scattering, the second and third terms represent absorption and emission processes, and

the last term is an approximation for the gas-radiation heat exchange via Compton

scattering (Blaes & Socrates 2003; Hirose et al. 2009).

Throughout this chapter we assume that the opacity is nonmagnetic isotropic Thom-

son scattering without polarization dependence. We also adopt a fully grey treatment

of radiation transfer with an assumed blackbody spectrum, neglecting nonzero photon

chemical potential effects. Magnetic scattering opacities in particular are likely to be im-

portant in the dynamics of actual accretion columns with stronger magnetic fields than we

have employed here, and we intend to explore this in the next chapter. The simulations

we present here will provide a physics baseline for these further investigations.

48



3.1 Numerical Method Chapter 3

3.1.2 Simulation Domain

As we discovered earlier in chapter 2, the nonlinear behavior of the photon bubble

instability is resolution-dependent and dominated by the shortest resolved wavelengths

above the radiation viscous scale. Therefore, we prefer to adopt a Cartesian column

initialized with a uniform vertical magnetic field so that the simulation can be configured

on a uniform grid, which avoids the extra complexity introduced by the geometric dilution

in any other kind of geometry. Such geometric dilution (e.g. in spherical or dipolar

geometry) can naturally lead to non-uniform numerical behavior of the photon bubble

instability, in particular by not resolving the short-wavelength faster growing modes at

higher altitudes. However, this Cartesian geometry limits what parameter regimes we

can simulate: the accretion rates in our simulations should be small enough that the

height of the shock front is small compared to the stellar radius.

Our simulations are confined to the 2D x-z plane, and gas only moves in this plane.

However, the radiation intensity propagation directions nj are fully 3D. There are no

spatial gradients in the y-direction perpendicular to the x-z plane, implying that there

is also no y-component of radiation flux. Our 2D simulations can be interpreted as a

vertical slice of a narrow wall-shaped column, e.g. as shown in the Fig.I of Basko &

Sunyaev (1976).

The simulation domain is partitioned as illustrated in Figure 3.1. We define ztop

as the height at the top of the simulation domain and d as the width at the bottom

of the accretion column. (Again, d should be interpreted as the width of a narrow-

walled column which is much shorter than the extent of the column in the y-direction

perpendicular to the x-z plane. We are neglecting all spatial gradients in that y-direction

in our 2D simulations.) Note that we add a gas-supported layer at the base and vacuum

regions at the two sides as effective boundaries of the accreting column for numerical
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Figure 3.1: Partitioning of the simulation domain into different regions with distinct
numerical treatments. The region labelled accretion column is the active, physical
region where material accretes through the top boundary. On either side of this column
is a vacuum region through which no material enters from the top, and in which an
effective boundary condition is maintained by setting the density and gas pressure to
their floor values. Underneath all these regions is a gas-pressure supported base with
an artificially reduced gravitational acceleration in order to provide adequate spatial
resolution, and which provides an effective base boundary condition. (See section 3.1.4
for details of all these effective boundary conditions.)

purposes, which will be discussed below in section 3.1.4.

We parameterize the accretion rate based on the effective luminosity Leff and Edding-

ton flux ratio ϵ respectively, where the effective luminosity is the area-weighted Eddington

luminosity and the Eddington flux ratio is the ratio of the accretion luminosity Lacc to

the effective Eddington luminosity. Given the Eddington luminosity LEdd = 4πGM⋆c/κs

of a neutron star with mass M⋆ = 1.4M⊙ and radius R⋆ = 106 cm, we have

Leff =
A

4πR2
⋆

LEdd , (3.5)

Lacc =
GM⋆ρaccAvff

R⋆

= ϵLeff , (3.6)

where A is the horizontal area of the accretion column on the neutron star surface and
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ρacc is the accreting gas density at the free-fall speed vff =
√
2GM⋆/(R⋆ + ztop) at the

top of the simulation domain. Therefore, we can tune the accretion rate in terms of ρacc

in the simulation by simply adjusting ϵ.

3.1.3 Initial Conditions

In standard models of neutron star accretion columns, which are based on the seminal

work of Basko & Sunyaev (1976), the magnetic fields are strong enough to constrain the

inflow to move along the field lines near the stellar surface. At high accretion rates, the

incoming material free falls onto the neutron star and forms a shock above the stellar

surface, where the region above the shock front is called the free-fall zone and the region

below is called the sinking zone. At the bottom of the free-fall zone, the inflow is halted

by the shock front which converts nearly all its kinetic energy into radiation energy. The

sinking zone is radiation-dominated regardless of the magnetic pressure, where the gas is

in approximate hydrostatic equilibrium between upward radiation force and downward

gravity, with a slow subsonic sinking flow toward the neutron star surface. We follow

this configuration to initialize our 2D numerical simulation.

In the beginning of the simulation, we assume that the vertical magnetic fields are

strong and uniform across the whole domain, where Bx0 = 0 and Bz0 = 8 × 1010 G,

where the subscript 0 refers to the initial condition. While this is somewhat below the

1012 G, or more, magnetic fields that are typical of high mass X-ray binary pulsars, it

is large enough to rigorously confine the material in the accretion column. Higher fields

will not affect the dynamics, and create numerical problems as they have energy densities

which are too large compared to the gas pressure (see section 3.3.1 for details). It is true

that higher fields can reduce the scattering opacity, but again, we are assuming constant

Thomson opacity here (and the Planck and Rosseland mean absorption opacities have
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negligible effects), and intend to explore the magnetic opacity effects in the next chapter.

Although we use radiative relativistic MHD in Athena++ (Beckwith & Stone 2011;

Jiang 2021; Zhang et al. 2021) for the numerical simulation, only the free-fall region

of the column is mildly relativistic (Γ ≃ 1.31) and the initial magnetic field is strong

enough to enforce purely vertical motion of the gas. Therefore, we formulate the initial

condition using Newtonian physics and assuming 1D gas motion along the magnetic fields

for simplicity. The time-independent conservation laws for the initial condition can then

be written as follows:

∂

∂z
(ρ0vz0) = 0 , (3.7a)

ρ0vz0
∂vz0
∂z

= −∂Pg0

∂z
− ρ0

(
g(z)− κ

c
F̄z0

)
, (3.7b)

vz0
∂

∂z

(
1

γ − 1
Pg0 + Ēr0

)
+

(
γ

γ − 1
Pg0 + Ēr0 + P̄r0

)
∂vz0
∂z

= −2
∂F̄x0

∂x
− ∂F̄z0

∂z
, (3.7c)

where the flux mean opacity κ = κs + κR is the effective opacity for gas-radiation

momentum coupling and g(z) = GM⋆(R⋆ + z)−2 is the gravitational acceleration. The

factor of 2 before the ∂F̄x0/∂x term in (3.7c) comes from the radiative cooling on both

sides of the column. We then follow the approximations in Basko & Sunyaev (1976) to

simplify equations (3.7) and compute the 1D solution along the vertical direction (ẑ)

to initialize the sinking zone. We apply the following approximations for the gas and

radiation field:

1. Local thermal equilibrium (LTE) between the gas temperature and radiation effec-

tive temperature Tg0 = T̄r0 ≡ T0.

2. Standard Eddington closure scheme between the zeroth and second angular mo-

ments of the radiation field

P̄r0 =
1

3
Ēr0 . (3.8)
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3. Radiative transport in the diffusion approximation

F̄x0 = − c

ρ0κ

∂P̄r0

∂x
. (3.9)

4. We approximate horizontal gradients with a simple one zone finite difference be-

tween the center and each side of the column, assuming F̄x0 = 0 at the center of

the column and P̄r0 = 0 at the sides. E.g. for the right half:

∂F̄x0

∂x
≃ 2F̄x0

d
and

∂P̄r0

∂x
≃ −2P̄r0

d
. (3.10)

Recall that d is the column width. Therefore, the time-independent conservation laws

(3.7) can be further reduced and rearranged for the convenience of numerical integration

as follows

∂T0
∂z

= − 3ρ0κ

4arT 3
0

F̄z0

c
, (3.11a)

∂ρ0
∂z

=

−ρ0
(
g(z)− κ

c
F̄z0 +

kB
m

∂T0
∂z

)
(kBT0/m)− v2z0

, (3.11b)

∂vz0
∂z

=
s0
ρ20

∂ρ0
∂z

, (3.11c)

∂F̄z0

∂z
=− 4carT

4
0

3ρ0κd2
− vz0

(
3

2

kB
m
ρ0 + 4arT

3
0

)
∂T0
∂z

− 3

2

kB
m
vz0T0

∂ρ0
∂z

−
(
5

2

kB
m
ρ0T0 +

4

3
arT

4
0

)
∂vz0
∂z

,

(3.11d)

where the mass accretion rate per unit area s0 = −ρ0vz0 is a constant. After the simu-

lation domain and accretion parameters are determined, we can obtain the gas density

in the free-fall region via (3.6) and then the free-fall speed vff . Given that the gas is

cold (5 × 106 K, following Klein & Arons 1989) and the radiation flux is negligible at
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the top, we can then continue the free-fall solution down to a specified height zint which

is high enough to be above the accretion shock and sinking region. We then integrate

equations (3.11) downward until the vertical speed at the bottom decreases to a value

∼ 10−3c.

3.1.4 Boundary Conditions

As illustrated in Figure 3.1, besides the accretion column region, we also add a gas-

supported layer at the base and two vacuum regions on both sides. These regions are

artificial but necessary to serve as effective boundary conditions (hereafter soft bound-

aries) for better numerical performance compared with the direct implementation on the

boundaries of the simulation domain (hereafter hard boundaries).

At the lower boundary of the simulation domain, we zero the horizontal components

of the magnetic field while maintaining constant vertical component. We also apply

reflective boundary conditions for both the gas and the radiation. Such a hard reflective

boundary condition for the gas would inevitably lead to gas leakage out of the accreting

column at an unphysically high rate since it simply copies the horizontal components

of the velocity in the ghost zones, which lack magnetic confinement because we enforce

purely vertical magnetic field there. To alleviate this problem, we introduce a thick

gas-supported layer as an effective boundary for the sinking gas in the accretion column.

This gas-supported base mocks up the presence of the neutron star surface within the

simulation domain. We initialize it to be cold (Tg0 = T̄r0 = Tb = 5×106 K) and optically

thick so that radiation pressure is negligible. It is fully supported against gravity by gas

pressure but still constrained by the magnetic field. A realistic gas pressure scale height

in the gravitational field of a neutron star is very small (∼ 3.7 cm), and would require

unnecessarily high resolution merely for an effective boundary. We therefore artificially
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reduce the gravitational acceleration by a factor of 100 in the gas-supported layer to

increase the scale height so that we do not waste too many grid zones. We initialize the

gas-supported base in hydrostatic equilibrium and determine the gas density via ρb ∝

exp(−z/hb), where hb = RTb/gb(∼ 370 cm) is the scale height and gb = GM⋆/(100R
2
⋆)

is the reduced gravitational acceleration at the neutron star surface.

The side boundary conditions also require careful treatment. In contrast to the static

neutron star atmospheres that we simulated in chapter 2, where we used horizontally

periodic boundary conditions, here we must use side boundary conditions that permit the

formation of an accretion column that 1. allows for escape of photons from the side and

2. is horizontally confined by the magnetic field against the resulting sideways radiation

pressure forces. We allow for the escape of photons by zeroing the intensity along all

inward pointing propagation angles at the side boundaries. Barring any instabilities, the

magnetic field we use is strong enough (with energy density at least 100 times larger than

the total thermal pressure) that horizontal confinement is easily achieved. However, we

have conducted numerical experiments with an outflow boundary condition for the gas

on the side boundaries, and these always lead to escape of gas that drags the field along

with it. This is simply because we did not impose an inward force at the boundary to

compensate for the outward thermal pressure forces. Rather than do that, we instead

impose a reflecting boundary condition at the side boundaries. As these boundaries are

displaced from the actual accretion column, this still allows for dynamic confinement of

the column by the magnetic field. In order to allow photons to horizontally escape from

the actual accretion column, we also reset the density and gas temperature in the side

regions to the floor values at each time step to mock up real vacuum conditions. These

effective side boundary conditions have three major advantages:

1. We avoid the artificial accretion associated with an infalling density floor.
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2. We guarantee that the vacuum regions are optically thin so that the radiation can

freely leave the sides of the accretion column.

3. We prevent artificial gas ejection from the gas-supported base (where we have

imposed artificial low gravity) in the side regions caused by irradiation heating

from the accretion column.

In addition to our treatment in these effective side and bottom boundary regions,

we still have to specify the boundary conditions at the actual edges of our simulation

domain. We adopt an upper boundary condition for the magnetic field that zeroes out

the horizontal component (Bx = 0) and maintains constant vertical magnitude (Bz =

8 × 1010 G) in the ghost zones. The simulations are fed with cold (5 × 106 K) and

optically thick material with density ρacc that varies between simulations through the

top boundary. This material free falls at speed vff into the simulation domain through

the upper boundary of the free-fall zone. At both sides of the simulation domain, we adopt

vacuum boundary conditions for the radiation (see section 2.2.2 for details) and reflective

boundary conditions for both the gas and the magnetic field. At the very bottom, as noted

previously, we use reflective boundary conditions for the radiation, where the intensity

is specularly reflected from the boundary. The gas boundary condition is also reflective

but the magnetic field is forced to be constant just like the upper boundary condition.

3.1.5 Issues with Variable Inversion

In addition, although we update the primitive variable inversion algorithm as de-

scribed in chapter 2, it still fails in most low-density regions where the gas density is too

low and the orders of magnitude difference between magnetic pressure and gas pressure

causes difficulty in determining the gas pressure from the conservative total energy den-

sity. Because gas pressure is dynamically unimportant, this would not normally matter.
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Version Name Mesh d zint ztop Resolution ϵ ρacc
(R⋆) (R⋆) (R⋆) (10−3cells/cm) (10−4 g/cm3)

0 HR-Narrow-100 192× 1024 0.015 0.100 0.150 6.5 100 4.60
1 HR-Narrow-150 200× 2400 0.015 0.125 0.350 6.8 150 6.90
2 HR-Wide-25 700× 2048 0.060 0.340 0.350 5.8 25 1.15
3 MR-Wide-25 350× 1024 0.060 0.340 0.350 2.9 25 1.15
4 LR-Wide-25 176× 512 0.060 0.340 0.350 1.5 25 1.15

Table 3.1: Initialization parameters of our five accretion column simulations.

However, in low density regions, the noisily determined gas pressure leads to noise in the

gas temperature and occasional unphysically high gas temperature regions. The radia-

tion field would then be heated by this numerical noise because the gas temperature is

used to compute the gas-radiation energy exchange source term (which is dominated by

Compton scattering). In order to control such artificial heating of the radiation, we apply

a density threshold ρcomp which is selected to be the same as ρacc and only allow Compton

scattering when the local density is greater than ρcomp. However, this ad hoc fix works for

the simulations presented here, but alternative approaches will need to be developed for

strongly magnetized gas for simulations in more extreme regimes (e.g. global simulations

where the accreting gas can be wind-captured, fed from a disk or the magnetar regime

where the magnetic field strength can reach 1013−15 G).

3.1.6 Simulation Parameters

We have run five accretion column simulations with parameters listed in Table 3.1.

We set up the first three versions (v0, v1, v2) by varying the column width and accretion

rate to study how the column dynamics depends on these parameters. We take the

first simulation (v0) as our fiducial simulation. We increase the accretion rate by a

factor of 1.5 while maintaining the same column width in the second simulation (v1).

The third simulation (v2) has the column 4 times wider while maintaining the same

mass accretion rate and thus ϵ is 4 times smaller. These first three simulations all have
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similar resolutions in both the horizontal and vertical directions. We set up the last two

simulations (v3, v4) for a resolution study by decreasing the resolution by factors of 2

and 4, respectively, for the parameters of simulation v2, where the column exhibits a

continually multi-peaked structure in the horizontal direction. Each simulation runs for

7100tsim, where tsim = 2.8× 10−7 s is the simulation time unit in this chapter.

The initial vertical profiles of various quantities in the accretion column are shown in

Figure 3.2. The sharp changes in gas density and velocity clearly indicate the location of
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Figure 3.2: Initial condition in our simulations, computed using the 1D standard
model. The top and middle row of panels correspond to simulations v0 and v1, while
the bottom row corresponds to simulation v2 as well as simulations v3 and v4 used
in our resolution study. From left to right, the panel columns show initial fluid frame
density, various speeds (the vertical fluid speed, the sound speed, and the horizontal
photon diffusion speed), various pressures (magnetic, radiation, and gas), and the
vertical fluid-frame radiation flux (expressed as a local Eddington ratio).

the shock structure at the top of the sinking zone. As illustrated in the pressure plots,

the column is radiation pressure dominated with strong magnetic confinement. Note that
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Pm is the magnetic pressure and cs is the adiabatic sound speed in the radiation and gas

mixture, τx = ρ0κd/2 is the horizontal optical depth of the column (from the center to

the side) and thus c/τx represents the radiative diffusion speed inside the column in the

horizontal direction.

3.2 Results

In the following subsections, we present and analyze the simulation results. In sec-

tion 3.2.1, we summarize the dynamical behavior of the simulations. In section 3.2.2, we

compare the time-averaged structures with the classical accretion column model. In sec-

tion 3.2.3 we present a physical interpretation of the vertical oscillations. In section 3.2.4,

we present evidence that photon bubbles are present in at least our highest resolution

wide column simulation. Animations for all of the simulations are available online2.

3.2.1 Dynamics in Column Accretion Simulations

In this section, we use three high-resolution simulations (v0, v1, v2) to illustrate three

different dynamical behaviors of the accretion column. We first describe the fiducial

simulation (v0) in detail and then discuss the changes that occur at higher accretion rate

(v1) and wider size (v2).

As can be seen in the animations, each simulation first relaxes from the 1D initial

condition which has no horizontal structure. Radiation quickly escapes from the sides

due to the low horizontal optical depth in those regions. Hence the height of the shock

front drops below the starting position along the sides due to less vertical radiation

pressure support. This naturally leads to a curved, mound-shaped shock front enclosing

the sinking region. This is illustrated in Figure 3.3, where we use the time-averaged

2https://youtube.com/playlist?list=PLbQOoEY0CFpX935unYJWB3gfwhDwcKJ6c
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profiles of the fiducial simulation (v0) to compute the horizontal optical depth to the

nearest side of the simulation domain at different altitudes.
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Figure 3.3: Horizontal optical depths at different altitudes based on the time-averaged
profiles of the fiducial simulation v0. The optical depth is calculated from the nearest
side of the simulation domain. The horizontal dashed line indicates optical depth
unity, and demonstrates why the accretion column must adopt a round shape.

Once the relaxation of the initial condition finishes, the system gradually enters into a

state of quasi-periodic vertical oscillation, which persists through the end of all five of our

simulations. As illustrated in Figure 3.4 and in the online animations, these oscillations

result in luminosity variations. Only the horizontal flux is depicted in this figure, as

the flux escaping vertically is smaller by factors of at most 1.3 × 10−3, and is therefore

negligible. We explain the physical origin of these oscillations in section 3.2.3 below.

During these oscillatory epochs, the system continues to be heated by the dissipation

of the kinetic energy of the incoming accretion flow at the shock front. That dissipated

energy is rapidly transferred to the radiation field via the Compton process, which is

then balanced by radiation diffusion, advection, and radiative cooling at the two sides of

the column. The column below the shock is supported against gravity by the radiation

pressure gradient, with the radiation diffusion time being much longer than the sound

crossing time. With the exception of the existence of oscillations, all these properties are
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Figure 3.4: Variations in vertically integrated sideways luminosity about the time-av-
erage over the time interval depicted here (after relaxation from the initial condition)
for our five simulations. The vertical flux leaving the domain is not included in this
plot, but it is negligible. Black stars correspond to the snapshots shown in Figure 3.5,
Figure 3.8, Figure 3.11, and Figure 3.18. Oscillations that have a flat-topped profile
in the light curves of v0, v1, and v2, are associated with the formation of pre-shocks
in the accretion flow. Such pre-shocks are absent during spike-shaped oscillations.

qualitatively consistent with the high-accretion rate static accretion column described

by Basko & Sunyaev (1976). As we discuss in detail in section 3.2.3 below, however,

such a static structure has a much longer vertical heat transport time compared to the

sideways cooling time in the upper regions, and this must produce vertical oscillations in

the column.

For each high-resolution simulation, we select 5 snapshots to illustrate the quasi-

periodic behavior and examine their 2D profiles when the sinking region is most elongated

or compressed to understand the column dynamics.
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Oscillatory behavior in narrow accretion columns

The spatial distribution of fluid-frame density over one period of the quasi-periodic

oscillation (indicated by black stars in Figure 3.4) in the fiducial simulation (v0) is shown

in Figure 3.5. The nonlinear oscillations of the center and two sides of the column are
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Figure 3.5: Selected 2D density snapshots over one full oscillation period
≃ 140tsim = 3.9 × 10−5 s in the fiducial simulation (v0). 2D profiles of other fluid
quantities at the epochs of maximum (6060tsim) and minimum (6150tsim) vertical ex-
tent are shown in Figure 3.6 and Figure 3.7, respectively.

sometimes moving in opposite directions during the course of an oscillation period. This

period (∼ 5 × 10−5 s) is extremely short and the oscillation amplitude decreases from

the center towards the sides. During the oscillation, most of the gas is enclosed by the

shock in the sinking region, which is optically thick and radiation dominated. Accretion

power continues to heat the shock front. Bounded by the shock front, a portion of

newly generated photons directly escapes out of the column into the vacuum regions and

the rest are redistributed through the sinking region, largely through advection by the

oscillating column structure. Because of the difference in vertical oscillation amplitude
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Figure 3.6: 2D profiles at t = 6060tsim in the fiducial simulation (v0). Note that for
the vector variables, the arrows represent the direction and the color bar indicates the
magnitude.
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63



3.2 Results Chapter 3

between the center and the sides, the column transitions between a symmetric single

mound at maximum vertical extent to a triple-peaked structure at minimum vertical

extent. We shall see that the high resolution wide column simulation v2 exhibits more

complex behavior in its oscillations.

Figure 3.6 and Figure 3.7 show the interior structure of the column at the maximum

and minimum heights of the oscillation, respectively. The fact that the sides and the

center are not always moving in the same direction through the course of the oscillation

is caused by the sides having greater cooling efficiency when the entire column is at

its maximum height. They therefore lose vertical pressure support first and collapse

faster, thereby exposing more central regions which can then cool more efficiently and

collapse. The sides also rebound first after reaching minimum height, covering up the

still collapsing center and irradiating it with more photons (second and fourth panels

of Figure 3.7). This ultimately provides extra pressure support to the center causing it

to expand vertically again so that the entire column reforms a single-peaked mound at

maximum height.

When we increase the accretion rate (v1) in the narrow accretion column, the overall

oscillation in the light curve remains very similar (second row of Figure 3.4). Figure 3.8

shows the density structure at different representative epochs during the oscillation.

Figure 3.9 and Figure 3.10 show various quantities at the epoch of maximum and min-

imum height, respectively. The vertical oscillation amplitude increases with the increased

accretion rate, although the overall oscillatory structure remains roughly the same. Note

that in the first and second panels of Figure 3.8, a pre-shock is quite prominent. This

happens on occasions when there is enhanced vertical escape of radiation which can in-

teract with the infalling material to form a shock above the main body of the sinking

region. Indeed, we find that the radiation energy density and comoving frame radiation

flux at altitude during these epochs are always larger than during epochs that lack a
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Figure 3.8: Selected 2D density snapshots over one full oscillation period
≃ 170tsim = 4.8 × 10−5 s in the narrow column simulation at higher accretion rate
(v1) that are associated with the pre-shock accreting pattern. 2D profiles of other
fluid quantities at the epochs of maximum (5530tsim) and minimum (5630tsim) verti-
cal extent are shown in Figure 3.9 and Figure 3.10, respectively.

pre-shock. The pre-shock formation often happens at the peak of the radiative emission

and thus prevents the accretion flow from reaching low altitude. Since the new shock

forms at high altitude, the incoming energy can be dissipated in advance, causing a delay

of the energy supply to the low altitude region, which results in weaker oscillations in

the next few periods that recharges the sinking region. This effect happens in both sim-

ulations v0 and v1, as shown in the top two panels of Figure 3.4, where the light curves

exhibit a flat-topped shaped oscillation which are sometimes followed by several narrower

peaks, or even quiescence. We have confirmed that all flat-topped oscillations in both

simulations are associated with a pre-shock accreting pattern (as in the first and second

65



3.2 Results Chapter 3

-5 0 5
x (106 cm)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
z 

(1
06  

cm
)

×1e-3

pre-shock

4 3 2 1 0 1

log10( )
(g cm 3)

-5 0 5
x (106 cm)

×1e-3

-1 -1e-2 0 1e-2 1

vz
(c)

-5 0 5
x (106 cm)

×1e-3

16 17 18 19 20

log10(Er)
(erg cm 3)

-5 0 5
x (106 cm)

×1e-3

23 24 25 26 27

log10(F)
(erg cm 2 s 1)

-5 0 5
x (106 cm)

×1e-3

-1e2 -1 0 1 1e2

Fz
cg 1

2D Profiles (HR-Narrow-150, v1) at t = 5530tsim

Figure 3.9: 2D profiles at t = 5530tsim in the narrow column simulation at higher
accretion rate (v1). Note that for the vector variables, the arrows represent the
direction and the color bar indicates the magnitude.
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Figure 3.10: 2D profiles at t = 5630tsim in the narrow column simulation at higher
accretion rate (v1). Note that for the vector variables, the arrows represent the
direction and the color bar indicates the magnitude.

66



3.2 Results Chapter 3

panels of Figure 3.8), and peak-shaped oscillations which lack this pre-shock structure

(as in the first panel of Figure 3.5). Flat-topped oscillation epochs with pre-shocks are

more common in the higher accretion rate simulation v1.

Oscillatory behavior in wide accretion column

In simulation v2, we increase the column width with respect to the fiducial simulation

v0, maintaining the same total accretion rate and therefore reducing the local Edding-

ton ratio. Figure 3.11 shows the density structure at representative epochs during the

oscillation. Figure 3.12 and Figure 3.13 show quantities at the epochs of maximum and
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Figure 3.11: Selected 2D density snapshots over one full oscillation period
≃ 300tsim = 8.4 × 10−5 s in the high-resolution wide column simulation (v2). In
contrast to the narrow column simulations v0 (Figure 3.5) and v1 (Figure 3.8), this
simulation shows complex multiple peaks at all phases of the oscillation. 2D profiles of
other fluid quantities at the epochs of maximum (3950tsim) and minimum (4150tsim)
vertical extent are shown in Figure 3.12 and Figure 3.13, respectively.

minimum height, respectively. In contrast to the transition between a single-peaked

maximum vertical extent and a triple-peaked minimum vertical extent exhibited in the

narrow column simulations v0 and v1, Figure 3.11 shows that the wide column simulation

v2 exhibits a more complex multi-peaked horizontal structure throughout the oscillation.
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Figure 3.12: 2D profiles at t = 3950tsim in the high-resolution wide column simulation
(v2). Note that for the vector variables, the arrows represent the direction and the
color bar indicates the magnitude.
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Figure 3.13: 2D profiles at t = 4150tsim in the high-resolution wide column simulation
(v2). Note that for the vector variables, the arrows represent the direction and the
color bar indicates the magnitude.
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The vertical channels in this multi-peaked structure allow more radiation to propagate

upward and interact with the incoming accretion flow. (The vast majority of the radia-

tion still leaves from the sides of the domain, in agreement with the 1D standard model.)

This again causes the formation of a pre-shock near the maximum vertical extent of the

oscillation (first and second panels of Figure 3.11). As in the narrow column simulations,

this results in flat-topped shaped oscillations in the light curve which, however, are more

prominent in v2 because the horizontal structure maintains the pre-shock over much of

the oscillation time interval. There are intervals in v1 where the light curve stays close

to its quiescent value (∼ 3100 and 4100 × 2.8 × 10−7 s), and this also happens in v2 at

∼ 2900×2.8×10−7 s. This appears to be happening because the pre-shock dissipates and

radiates much of the accretion power, which then is not stored in the column structure

itself. The amplitude of the oscillation in the wide column simulation v2 is larger than

in the narrow column simulation, substantially in height and slightly in the luminosity

variation. Recall that simulations v0 and v2 have the same total accretion rate, but the

wider column in v2 has a longer horizontal radiation diffusion time. This ultimately re-

sults in a taller, more massive column that accumulates a greater total radiation energy,

and this in turn increases the oscillation time scale and the oscillation amplitude.

Inside the sinking region in v2, there is a curved density inversion at lower altitudes

(z ∼ 0.04 × 106 cm at the column center), which oscillates at much smaller amplitude

compared to the shock front itself. This nearly stationary structure differs from that

usually assumed in 1D standard models of neutron star accretion columns in being a

vertical density inversion within the sinking zone. Such density inversions can exist in

the radiation dominant magnetized medium as long as the vertical radiation flux can

fully provide the support by adjusting the radiation energy density gradient to scale

proportionately to the gas density (see section A.3 for details). These density inversion

structures are (nearly) hydrostatic entropy modes.
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Porosity

Neutron star accretion columns can in principle emit super-Eddington fluxes through

their sides because of the confinement by strong magnetic fields, and this is also happen-

ing here in our simulations. In addition to this, density inhomogeneities can create an

effectively porous medium that permits an overall vertical super-Eddington flux without

creating an overall radiation pressure force that exceeds gravity, simply because the flux

will tend to be larger in the lower density regions (e.g. Shaviv 1998; Begelman 2001). Our

accretion column simulations clearly exhibit substantial density inhomogeneities, and we

have attempted to quantify this by defining

P(z, t) ≡
⟨ρκ⟩

〈
|F̄z|

〉〈
ρκ|F̄z|

〉 , (3.12)

as a height and time-dependent porosity factor with respect to vertical radiation trans-

port, where the angle brackets refer to a horizontal average. Porosity factors greater than

unity indicate that the average fluid-frame vertical flux F̄z is producing less horizontally-

averaged vertical radiation pressure than would be the case for a horizontally homoge-

neous medium. Depending on the epoch, we sometimes measure porosity factors as high

as ten at certain heights, but this is generally due to the shape of the surface of the

accretion column, e.g. significant vertical flux exists in the low density side regions of

the mound-shaped column, or we get a notch of low density at the top of the center of

the column as in the middle panels of Figure 3.5 and Figure 3.8. More relevant to the

support of the column itself is that we find that the somewhat static low density region

below z ∼ 0.025 × 106 cm in the wide column simulation v2 (see Figure 3.11) has a

porosity of ≃ 3 at all epochs.
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Figure 3.14: 2D time-averaged profiles of the fiducial simulation (v0) after the simula-
tion finishes its relaxation roughly at t = 2000tsim. Note that for the vector variables,
the arrows just represent the direction. The horizontal red dotted lines delineate the
region affected by the vertically oscillating accretion shock, and are also shown in the
1D profiles in Figure 3.16. The lower panels show the regions indicated by the red
dashed boxes in the upper panels, but with different color bar scales to show more
detail.

3.2.2 Time-averaged profiles

The high-frequency oscillation is challenging to observe with existing X-ray facilities

because it requires the instrument to have enough signal to noise over these short time

scales ∼ 10 µs of oscillations that are not perfectly coherent. Partly for this reason,

and partly to compare with the 1D standard model, we now discuss the time-averaged

structure of our simulated accretion columns. This is shown in Figure 3.14 for the narrow

column simulation v0 and in Figure 3.15 for the wide column simulation v2.

More detail of the time-averaged structure of all three of our high resolution simu-

lations is shown in Figure 3.16. This depicts the vertical profiles of various quantities

all measured at the x = 0 center of the column, as well as the horizontal radiation flux
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Figure 3.15: Same as Figure 3.14, but for the high-resolution wide column simulation (v2).

averaged over the two sides of the column and the horizontally averaged vertical radi-

ation flux. Also plotted in this figure are the initial conditions (dashed lines) for each

of the three simulations, which represent the structure predicted by the 1D standard

model. The major differences between this model and the time-averaged profiles of the

simulations come from the nonlinear oscillatory behaviors in the accretion column. The

discontinuity of the 1D profile calculated from the 1D standard model is the location

of the static accretion shock front. These discontinuities are smoothed out in the time-

averaged profiles of our simulations because of the time-averaging over the oscillations.

The vertical extent of the region affected by the oscillating shock in the time-averaged

profile is indicated by vertical dotted lines in Figure 3.16. The top and bottom of this

region roughly correspond to the following locations in the time-averaged vertical velocity

profile:

1. The base of the shock oscillation region roughly corresponds to where the vertical

flow velocity transitions from being dynamical in magnitude to the much smaller
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settling speeds within the low altitude regions of the column. Below this height, the

vertical velocity is always the small settling speed, but above this height, the time-

averaged velocity is much larger because it averages the free-fall speed of material

above the shock when it is low to the settling speed below the shock when it is

high.

2. The top of the shock oscillation region corresponds to the point where the velocity

of vertical flow first deviates from (the radiatively decelerated) free-fall speed. It

also corresponds to where the time-averaged density first starts to rise inward,

although there is no sharp density discontinuity as it has been smeared out in the

time-average.

Most of the radiation escapes from the sides of our oscillating columns, and this of

course remains true in the time-average. The second to last row of Figure 3.16 shows the

vertical profile of this sideways emission in each of our three high resolution simulations,

and it is apparent that the sideways emission is dominated by the regions below the

maximum height of the shock. All of this is consistent with the 1D standard model.

However, the time-averaged vertical radiation fluxes in the lab frame are mostly negative

as shown in the bottom row of Figure 3.16. Note that the vertical radiation flux in the

fluid frame must remain positive to support the column structure so the accretion power

must be injected into the sinking region via advection associated with the oscillatory

motion.

As highlighted by the red dashed box in the first column of Figure 3.15, the 2D

time-averaged density profile of the wide column simulation still exhibits a density inver-

sion below the shock oscillation region. (This is also evident in the upper right panel of

Figure 3.16.) In other words, the smaller amplitude oscillating density inversion below

the instantaneous shock location in version 2 (discussed in the last paragraph of sub-
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Figure 3.16: Time-averaged vertical profiles of density (top row), various speeds (sec-
ond row), pressures (third row) at the x = 0 center of the column from our three high
resolution simulations as labelled in the column titles. Also shown are the horizontal
radiation flux averaged over both sides (fourth row) and the vertical radiation flux
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the initial condition, which also represents the expectations from the 1D standard
model. Vertical dotted lines indicate the vertical spatial extent of the center of the
column (x = 0) over which the oscillating shock moves.
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section ‘Oscillatory behavior in wide accretion column’ in section 3.2.1) has not been

time-averaged out. This confirms that it is relatively steady even in the oscillatory col-

umn. In the 2D time-averaged velocity profiles (second columns of both Figure 3.14 and

Figure 3.15), significant small-scale horizontal structure only exists in the wide column

simulation, and this structure is also visible in all the other profiles (density, radiation

energy density, and co-moving radiation flux). These structures all have a characteristic

horizontal length scale, and this is the same scale that is apparent in the instantaneous

oscillatory behavior. The fact that this has not been smoothed out in the time average

suggests that this is a robust scale due to some underlying physics. In section 3.2.4, we

suggest that this is due to photon bubble instability.

3.2.3 Physical Origin of Accretion Column Oscillations

The oscillation periods in the light curves shown in Figure 3.4 are (≃ 4− 8× 10−5 s),

which is comparable but longer than the free-fall timescale (∼ 10−5 s). We contend that

the physical origin of these oscillations is not dynamical, but thermal. It is fundamentally

due to the inability of vertical advection in the settling flow and radiative diffusion to

spread the accretion power liberated mostly below the accretion shock to the base of

the column on a time scale short enough to balance the radiative cooling from the sides

of the column. We demonstrate this quantitatively here with an approximate analysis

of the heat transport and cooling time scales. Along the way, we find that we can also

perform a good quantitative estimate of the oscillation period.

We begin by considering epochs in the oscillations when the columns have reached

their maximum vertical extent: t = 6060tsim for v0, t = 5530tsim for v1, and t = 3950tsim

for v2. Because the oscillation period is longer than the free fall time, the column at these

epochs is still in approximate vertical hydrostatic equilibrium. We can then estimate how
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long it takes heat to be transported from the accretion shock at height zsh in the middle

(x = 0) of the column down to a given height z:

theat(z) =
zsh − z

vheat
. (3.13)

Here vheat,z is the heat transport speed at height z, given by

vheat =
−Fz

Ēr

∣∣∣∣∣
x=0

, (3.14)

where Fz is the lab frame radiative flux and Ēr is the fluid frame radiation energy density.

To estimate the cooling time, it is important to account for the mound shape of the

accretion shock which bounds the mound. We use the shock front gas density at x = 0

to roughly contour the mound shape, as shown by the red dashed contours in the 2D

density profiles of Figure 3.17. We can then compute the timescale of horizontal radiation

diffusion (tcool) as

tcool(z) =
(xr − xl)/2

c/τx
, (3.15)

where xl and xr refer to the left and right boundary of the contoured sinking region,

respectively. The horizontal optical depth within the sinking region is defined by

τx =
1

2

∫ xr

xl

ρκdx . (3.16)

As shown in Figure 3.17, tcool < theat in the upper regions, indicating that heat

transport from the accretion shock cannot balance the cooling from the sides. The

accretion shock must therefore collapse, quasi-hydrostatically, down to the depth where

tcool ≃ theat. The vertical dotted line shows the location where the two time scales are

equal, and below this line tcool > theat so that heat from the shock will exceed cooling.
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Figure 3.17: Comparison of different time scales at particular epochs corresponding
to the maximum vertical extent of the column oscillation in simulations v0, v1, and
v2 from left to right as indicated. The 2D colour plots show the instantaneous density
distribution at these epochs, with the red dashed contour indicating a density corre-
sponding to the post-accretion shock density in the middle of the column (x = 0).
The black dot-dashed curve in each plot indicates the horizontal cooling time through
radiative diffusion at each height. The orange solid curve is the time it takes heat to
diffuse or advect vertically from the top of the column down to the height indicated.
The vertical dotted lines indicate the location where these two time scales are equal,
and are consistent with the location of the accretion shock at epochs of minimum ver-
tical extent in the oscillation in the simulations. The red dot-dot-dashed lines show
our estimate of the oscillation period from equation (3.17e), which agrees well with
the measured oscillation periods in the simulations (blue dashed lines).

The column will therefore become over-pressured, and drive the shock back upward.

We therefore expect the shock to oscillate up and down, with its lowest height being

approximately the location of the vertical dotted line in Figure 3.17 where these two

time scales are in balance (hereafter zbot): 0.021R⋆ for v0, 0.033R⋆ for v1, and 0.059R⋆

for v2. In fact, these heights are in excellent agreement with the lowest shock heights

that we measure from the simulations (see t = 6150tsim for v0 in Figure 3.5, t = 5630tsim

for v1 in Figure 3.8, and t = 4150tsim for v2 in Figure 3.11).

The physics of this quasi-hydrostatic oscillation is therefore fundamentally related

to heat transport and cooling, and we can further demonstrate this by estimating its

period from a measure of the global cooling time of the upper portion of the column
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that is participating in the oscillation. We do this by computing the enclosed radiation

energy (∆Er) and comparing it to the radiative heating (Fheat) from the top (zsh) and

the bottom (zbot). (The bottom heating amounts to at most 28% of the total.) Since the

radiative cooling mainly depends on the side area, which varies considerably during the

course of the oscillation, we adopt the sideways time-averaged radiation flux to compute

the radiative cooling (Fcool). Our estimate of the oscillation period (Test) then proceeds

as

∆Er =

∫ zsh

zbot

∫ xr

xl

Er(tpeak, x, z)dxdz , (3.17a)

W =

∫ zsh

zbot

∫ xr

xl

P̄r(tpeak, x, z)
∂vz(tpeak, x, z)

∂z
dxdz , (3.17b)

Fheat =

∫ xr

xl

[Fz(tpeak, x, zbot) + Fz(tpeak, x, zsh)] dx , (3.17c)

Fcool =

∫ zsh

zbot

[⟨Fx(t, xl, z)⟩t + ⟨Fx(t, xr, z)⟩t] dz , (3.17d)

Test =
2∆Er

Fcool − (Fheat +W )
, (3.17e)

where P̄r is the fluid-frame radiation pressure and vz is the gas vertical velocity, and

tpeak refers to when the oscillating column is at its maximum extent. The pdV work

W is volume-integrated within the contoured sinking region. The factor of 2 in (3.17e)

is based on the approximation that the same amount of time is spent in the collapse

and expansion phases, which is definitely not true due to the nonlinear nature of this

oscillation. Nevertheless, as shown in Figure 3.17, Test is in excellent agreement with the

direct measurements (Tsim) of the oscillation period from the simulations, particularly in

v1 and v2. Note that among v0, v1, and v2, the pdV work W is only ∼1% of Fheat. The

distributed adiabatic compression is therefore negligible and cannot support the column.
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3.2.4 Photon Bubbles and Resolution Dependence

Brief Review of Photon Bubble Instability

Ever since the pioneering linear instability analysis by Arons (1992), it has been

expected that “photon bubbles” would be present in neutron star accretion columns.

The term “photon bubbles” suggests buoyant, bubble-like structures, but in fact this

is not what this phenomenon represents, and the term is therefore highly misleading.

On length scales where photons diffuse rapidly, the “photon bubble” really amounts to a

radiatively amplified acoustic wave that evolves to form a train of shocks (Begelman 2001;

Turner et al. 2005). This rapid diffusion regime might manifest in the outer, low optical

depth regions of neutron star accretion columns, but the cores of these columns are in the

slow-diffusion regime. There the instability is due to radiative amplification of entropy

fluctuations, which is best understood in terms of phase lags between pressure and density

perturbations caused by finite gas inertia, in response to radiative forcing. We refer the

reader to section 2.1 and Appendix A for a full description. For a vertical magnetic

field, the nonlinear outcome of the instability in this regime consists of nearly vertical

wavefronts of density, with photons diffusing vertically more rapidly in the low density

regions. In a static atmosphere with no resupply of fresh material through accretion, this

instability causes the atmosphere to collapse (see chapter 2 for details). The instability

always grows fastest at shorter wavelengths, until either the radiation viscous length scale

is reached (see section A.2), or the scale height associated with gas pressure (Blaes &

Socrates 2003), whichever is larger.

If the slow-diffusion version of this instability manifests itself in our simulations, we

would expect nearly vertical wave fronts of density, i.e. vertical columnar patterns that

move horizontally. All three of our high resolution simulations v0, v1, and v2 manifest

such structure, and the photon bubble instability is a likely candidate. Unfortunately,
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demonstrating this in the narrow column simulations is difficult because the distinct

columns only manifest during certain phases of the overall vertical oscillation, and more-

over occur across a length scale that spans both the rapid and slow-diffusion regimes. On

the other hand, the wide column simulation has many high and low columnar structures

in density, that are present at all times through the oscillation. They also exhibit a

distinct inward horizontal pattern speed that is evident in the animations. We provide

further evidence here that these structures are indeed an outcome of the photon bubble

instability.

Resolution Dependence

In section 2.3.3, we performed a resolution study on photon bubbles in static atmo-

spheres that confirmed the behavior of increasing growth rate toward shorter wavelengths.

Here we conduct a similar resolution study of the wide column accretion simulation: if the

multi-peaked structure is due to photon bubble instability, the number of peaks should

scale with spatial resolution.

We ran an additional two simulations v3 and v4 with factors of 2 and 4 lower res-

olution, respectively, compared to the high-resolution wide column simulation (v2). In

Figure 3.18 we show snapshots of the density profile of these three wide column simu-

lations at t = 4060tsim. The dependence of horizontal structure with resolution is clear.

In the high-resolution simulation (v2), there are seven peaks in the shock fronts. In

the medium-resolution simulation (v3) where the resolution is decreased by a factor of

2, there are only three shock front peaks. In the low-resolution simulation (v4) where

the resolution is decreased by another factor of 2, the shock structure is single-peaked.

The decreasing number of shock front peaks therefore tracks the decreasing factor of

resolution. This resolution dependence is indicative of modes that grow fastest at the

smallest resolvable length scales. This resolution dependence is consistent with unstable
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Figure 3.18: Snapshots of the density structure at t = 4060tsim in our wide column
simulations at different resolutions: high (left), medium (middle), and low (right).

modes that grow faster at shorter length scales, and is precisely the behavior of the linear

photon bubble instability and its nonlinear outcome (see chapter 2).

None of the high resolution simulations here, including the wide column simulation v2,

resolve the viscous length scale, which is approximately 10 cm, about a factor of 15 smaller

than the grid scale in each simulation. Resolving such small scales is very expensive

and may not even be possible for more global simulations of neutron star accretion

columns with existing computational resources. However, at least for the simulations

here, these horizontal structures only modify the column dynamics by increasing the

oscillation amplitude without changing its period (see Figure 3.4 which shows light curves

for all our simulations). Hence we have reached convergence in terms of characteristic

time scales present in the light curves and the nonlinear dynamics.

Note that the light curve of the medium resolution simulation (v3) exhibits more

noisy behavior than either the low resolution (v4) or high resolution (v2) simulations.
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This is because v3 is at just high enough resolution to start exhibiting multi-peaked

horizontal structure. The light curve becomes better behaved with the addition of more

multiple peaks at higher resolution. That the multi-peaked structure in v2 produces

enhanced vertical radiation transport can be seen by comparing this simulation to the

lower resolution simulations v3 and v4. Note that these latter simulations do not form

a pre-shock (cf. Figure 3.18). As can be seen in the animations of v2, v3, and v4, both

the radiation energy density and the flux at altitude are much higher in v2 compared to

v3 and v4. In fact, the vertical flux above z = 0.15× 106 cm is at least ten times higher

in v2 at all epochs.

Although we believe that we have reached numerical convergence in terms of the light

curve behavior, the presence of increasing horizontal structure with increased resolution

implies that the time-averaged structures are not converged. This may be an issue when

comparing predictions of spectra and polarization from these time-averaged profiles with

observations integrated over time scales longer than the very short oscillation period. On

the other hand, the additional density inversion that forms below the accretion shock

oscillating region appears to be robust, and is therefore likely to be independent of

further increase in resolution. Unfortunately, increasing resolution appears to exacerbate

the variable inversion problem in our numerical algorithm and results in more noise in

the gas temperature. Clearly more work is needed to address this numerical problem.

Linear Phase of Photon Bubbles

To further demonstrate that these horizontal structures are in fact related to photon

bubbles, we searched for the linear phase of photon bubble growth and compared that

behavior to the analytic linear theory (see Appendix A). Although the linear theory

applies to static atmospheres with infinite horizontal extent, not oscillating accretion

columns, the radiation sound speed is still much greater than both the fluid velocity and
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radiation diffusion speed in the sinking region, so we are in the slow-diffusion regime with

instantaneous near-hydrostatic equilibrium. The photon bubble instability mechanism

should therefore still operate, and because the photon bubble growth times are fast

(∼ 10 µs), we should be able to observe their linear growth phase.
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Figure 3.19: Linear growth of photon bubble instability in the relaxation epoch in the
high-resolution and medium-resolution wide column simulations (v2 and v3). The left
column shows the evolution of the fluid-frame radiation flux averaged over the two
sides and the right column refers to the evolution of the density variation, where the
linear growth phase is indicated by the grey shaded area.

Since the horizontal multi-peak structure only appears in the high-resolution (v2)

and medium-resolution (v3) simulations, and not in the low resolution simulation (v4),

we analyze just the first two. As shown in the left column of Figure 3.19, immediately

after launching the simulation, radiation leaves the column through the sides. This flux

declines until photon bubbles start to grow. The linear phase is indicated by the grey

shading and indicates approximately exponential growth, except perhaps at z/R⋆ =

0.025 (the orange curve) in density. The dashed lines indicate the predicted local WKB

maximum growth rates from the linear dispersion relation for photon bubbles in a static,

non-accreting atmosphere (for details see section A.2), which are in rough agreement
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with what we observe in the simulations. In particular, two facts are worth noting that

are consistent with identification with photon bubbles: the growth rates increase with

height, and they increase with numerical resolution (v2 grows faster than v3).

3.3 Discussion

3.3.1 Validity of the Parameter Regime in Simulations

The typical magnetic fields inferred for accretion columns are ≳ 1012 G. However,

in our simulations, we cannot adopt such high field strengths because they exceed the

tolerance of the variable inversion algorithm for resolving the gas pressure, which is crucial

at the step of computing the radiative transport source term (3.4c). Therefore we have

to maintain the ratio of gas pressure to magnetic pressure as large as possible in order to

obtain sufficient precision in the numerical value of gas pressure. Fortunately, the main

effect of the strong magnetic fields is to horizontally confine the gas, and there is very

little effect on the vertical dynamics. This allows us to adopt a magnetic field that is

strong enough for gas confinement (8×1010 G in our case) and keep the correct dynamics

of the accretion column.

One way in which the choice of magnetic field could be more significant is its effect

on the electron scattering opacity. We assume isotropic Thomson scattering, which is

valid for the low field strength and high temperatures in our simulations here, and would

continue to be valid up to field strengths approaching ∼ 1012 G. Magnetic scattering

opacities are likely to affect the nonlinear dynamics above these field strengths.
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3.3.2 Comparison with Previous Works

The 1D models of accretion columns at high accretion rate by Basko & Sunyaev

(1976) and, more recently, West et al. (2017a) neglect horizontal gradients in the column

structure. As such, these columns have a top-hat shape, i.e. they neglect the actual two-

dimensional mound shape that must exist in reality. Because of this assumed geometry,

they necessarily under-estimate the horizontal radiation diffusion speed, and therefore

over-estimate the column height. This explains in part why the time-averaged shock

height from our simulations, is lower than the 1D model prediction of Basko & Sunyaev

(1976), as shown in Figure 3.16. The other important difference between these 1D models

and our simulations is that the simulations have dynamical, nonlinear oscillations. In the

stationary 1D standard model, accretion power can only be released in the region below

the shock by the loss of gravitational potential energy by the slowly sinking material. This

suggests two problems: 1. when the sinking region has a small height, the gravitational

energy liberated by the sinking gas is insufficient to support the column structure. 2.

when the sinking region is high, the hydrostatic equilibrium can be hardly maintained

by a process (vertical advection) that is necessarily much longer than the dynamical

time. In fact, these columns are not stationary, but undergo considerable dynamical

motion up and down. It is this dynamical motion that then redistributes accretion

power vertically as the material radiates. This dynamical mechanism of redistributing

the accretion power liberated at the shock front is fundamentally why the oscillations

exist and, indeed, persist. The photon bubble instability itself is not the cause of the

oscillations. However, photon bubbles enhance vertical diffusive transport and appear

to enhance the coherence of the light curve oscillation by aiding in the formation of

pre-shocks that result in flat-topped luminosity variations in the light curve.

The pioneering numerical simulations of accretion columns by Klein & Arons (1989)
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and Klein et al. (1996) also exhibited oscillatory behavior with time scales between 0.1

and 1 ms. This is qualitatively consistent with our simulations, although their oscillation

period is slightly longer than ours (∼ 0.05 ms), likely due to the fact that our columns

simulated here are smaller in height. The most recent numerical work on accretion

columns prior to our work was done by Kawashima & Ohsuga (2020), who also discovered

the development of similar finger-shaped density structures.

Note that the simulations of Klein & Arons (1989) and Kawashima & Ohsuga (2020)

found that the multiple-bubble structure disappeared for lower accretion rates. However,

this may have been a resolution effect. As the accretion rate decreases, the local Edding-

ton ratio in the sinking zone also decreases, which leads to larger gas density because

more gas pressure gradient is required to support the column. Therefore, the radiation

diffuses more slowly in the low luminosity case. This directly shifts the peak of the

photon bubble growth rate to shorter wavelengths (see section A.2 for details) making

it harder to resolve the instability. Moreover, the geometric dilution introduced by any

non-Cartesian geometry, e.g. spherical (Kawashima & Ohsuga 2020) and dipolar (Klein

& Arons 1989) coordinate systems, naturally decreases the resolution at higher altitude.

This loss of resolution will prevent the development of photon bubble behavior at short

wavelengths.

3.3.3 Observational Significance

Our long-term plan is to quantify the dynamics and observables of neutron star ac-

cretion columns for X-ray pulsars above the critical luminosity (Basko & Sunyaev 1976;

Becker et al. 2012) through the use of numerical simulations. Because of our use of

Cartesian geometry in this chapter, we are forced to restrict consideration to modest

accretion rates and X-ray luminosities so that the column height is much less than the
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radius of the star. We intend to pursue more global simulations of higher accretion rate,

larger columns in future.

There are in fact some X-ray sources that pass through the accretion rate regime of our

Cartesian simulations: high enough that the sinking zone is developed but also low enough

that the height of the accretion shock front does not exceed ∼ R⋆, in particular transient

X-ray pulsars such as EXO2030+375, 4U0015+63, KS1947+300, and V0332+53 (Terrell

& Priedhorsky 1984; Parmar et al. 1989; Whitlock et al. 1989; Borozdin et al. 1990; Reig

& Nespoli 2013). It is noteworthy that the emission patterns of these sources transition

between pencil beam and fan beam, and this is usually interpreted in terms of the critical

luminosity when an optically thick accretion column is thought to form, according to the

Basko & Sunyaev (1976) theory. The existence of nonlinear oscillations and photon

bubble dynamics, which we have shown here to result in a lower time-averaged height of

the accretion column compared to 1D models, probably does not affect this conclusion

as an optically thick column is still required to host this dynamics. Moreover, we have

found here that photon bubble dynamics does not alter the overall fact that an accretion

column tends to produce fan beam emission: both the instantaneous and time-averaged

cooling of the column is dominated by sideways emission from the column.

The main observable difference is the presence of high frequency variability (∼ 20 kHz),

as also pointed out in the pioneering work of Klein et al. (1996) who predicted significant

variability power at frequencies ∼1-10 kHz. Indeed, this has been invoked to explain

putative high frequency variability in the X-ray pulsar Cen X-3 (e.g. Jernigan et al.

2000). However this observed noise component may actually have been an artifact of the

splitting up of photon counts in RXTE/PCA sub-bands (Revnivtsev et al. 2015). An

attempt to analyze lightcurve data of the bright X-ray pulsar V0332+53 that avoided

this problem was attempted by Revnivtsev et al. (2015), who found no extra high fre-

quency noise component to the level of 0.5 percent. It would be worthwhile searching for
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high frequency features in the light curves of other X-ray pulsars given how robust are

the oscillations that we have found here. It is likely that the oscillation frequencies will

depend on the column height and accretion geometry, and more global simulations that

take into account the diverging magnetic field geometry will be necessary to quantify

this.

3.4 Conclusions

We summarize our conclusions of this chapter as follows:

1. Our simulations more or less agree with standard 1D models of supercritical ac-

cretion, in that an optically thick accretion column forms with an accretion shock

at the top of the column. The column is supported against gravity by radiation

pressure gradients, and most of the cooling takes place through the sides of the

column (fan-beam radiation), as in the original models of Inoue (1975) and Basko

& Sunyaev (1976). However, in order to establish thermal equilibrium, the sinking

material must be supplied with heat at all altitudes to balance the local sideways

cooling. Because the PdV work on the sinking material is small, and the time scale

of vertical heat transport from the accretion shock is very much longer than the

local cooling in the upper regions of the mound-shaped column, the column must

cool and collapse. This then produces a shorter, denser column with a longer side-

ways cooling time, which then overheats and re-expands. This is the origin of the

oscillations that we observe. Oscillations were also reported by Klein et al. (1996)

and attributed to photon bubbles, but we suspect that they may have been due to

the same mechanism that we have found here.

2. The shock fronts in our simulations in general have lower altitudes, both instanta-
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neously and in the time-average, than those in the standard 1D model. The basic

reason for this is that the finite horizontal one-zone approximation of the 1D mod-

els under-estimates the efficiency of cooling from the sides due to the fact that the

accretion column actually has more of a 2D mound shape.

3. Photon bubbles do not appear to be directly responsible for either the vertical

oscillations or the enhanced cooling compared to 1D models. Instead, they are

a further complication that produces a complex multi-peaked horizontal structure

when the instability is spatially well-resolved. We have demonstrated that this is

so by showing that these structures have similar linear growth rates and resolution

dependencies to the linear photon bubble instability. While we have not achieved

numerical convergence on the photon bubble structures, the overall oscillation pe-

riod of the column is not affected by spatial resolution, though the light curve has

a smoother oscillatory shape at high spatial resolution.

4. Both the high-frequency oscillation and photon bubble dynamics facilitate the ver-

tical redistribution of energy dissipated at the shock front to various altitudes so

that the column structure can be maintained. Whether this continues to be the

case for more global accretion columns in spherical/dipolar geometry is the subject

of our work in chapter 5.
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Chapter 4

Simulations of Cartesian Accretion

Columns with Magnetic Opacity

This chapter is adapted from our research work published as Sheng, Zhang, Blaes &

Jiang (2023). In this chapter, we explore the dynamical effects of magnetic opacity in

Cartesian accretion columns. This chapter is organized as follows. In section 4.1, we

describe the numerical methods that we employ in the simulations. In section 4.2, we

present our simulation results, discuss the physics that drives their behavior, and discuss

the properties of the emergent radiation. In section 4.3, we discuss some of the numerical

caveats and also mention some observationally testable predictions. We then summarize

our results in section 4.4.

4.1 Numerical Method

4.1.1 Equations

We follow the numerical treatments in chapter 3 to solve the fluid conservation laws

together with radiative transfer incorporating magnetic opacity. The governing equations
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are summarized as follows:

∂0(ρu
0) + ∂j(ρu

j) = Sgr1 , (4.1a)

∂0(wu
0ui − b0bi) + ∂j

(
wuiuj +

(
Pg +

1

2
bνb

ν

)
δij − bibj

)
= Si

gr2 − Si
r2 , (4.1b)

∂0

[
wu0u0 −

(
Pg +

1

2
bνb

ν

)
− b0b0

]
+ ∂j(wu

0uj − b0bj) = Sgr3 − Sr3 , (4.1c)

∂0I + nj∂jI = L−1(S̄r) , (4.1d)

where the gas density ρ and gas pressure Pg are defined in the fluid rest frame. The

four-velocity is defined as (u0, ui) = Γ(1, vi), where Γ = (1 − vjv
j)−1/2 is the Lorentz

factor and the three-velocity vi is in units of the speed of light. The quantity I is

the frequency-integrated radiation intensity and is a function of position and photon

propagation direction ni. Note that Latin indices indicate the spatial components of a

three-vector (i.e. here i = 1, 2, 3 refer to x, y, z, respectively), and Greek indices refer to

the time-spatial components of a four-vector. Given the three-vector magnetic field Bi,

its four-vector form bµ = (b0, bi) and total enthalpy w are given by:

b0 = ujB
j, bi =

1

u0
(Bi + b0ui) , (4.2a)

w = ρ+
γ

γ − 1
Pg + bνb

ν . (4.2b)

Here the adiabatic index γ = 5/3 is assumed for the ideal gas. The gravitational source

terms Sgr1, S
i
gr2, and Sgr3 are derived from general relativity in the weak field limit,

and can be found in section B.2. In equation (4.1d), L−1 is the Lorentz boost operator

from the comoving frame to the lab frame. The source term of the radiative transport

S̄r is intrinsically defined in the comoving frame, while the radiation source terms Si
r2

and Sr3 that exchange momentum and energy between gas and radiation are defined in
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the lab frame. Both of their formulations can be found in (3.4), except here we adopt

the magnetic opacity κm for photon-electron scattering. The details of the magnetic

opacity we use in our simulations can be found in section E.3. In the previous chapter,

we assumed for simplicity that the scattering opacity was isotropic and constant and

given by the Thomson value κT. However, this can significantly overestimate the photon-

electron interaction when the magnetic field is strong at low gas temperatures. Moreover,

magnetic electron scattering is anisotropic and polarization dependent. Nevertheless,

a Rosseland and polarization-averaged opacity can be derived which is approximately

isotropic (Arons et al. 1987; section E.3). It is this magnetic opacity κm that we use to

replace the Thomson opacity that we adopted in our previous simulations. Figure 4.1

shows the temperature dependence of this magnetic opacity for different magnetic field

strengths. The magnetic opacity significantly increases with gas temperature T until it

reaches a peak value of 1.95κT at kT = 0.385 times the electron cyclotron energy ℏωce.

It then returns to Thomson at higher temperatures.

Figure 4.1: Temperature-dependence of the magnetic opacities that we use in our
simulations, in units of the Thomson opacity. Each curve represents the different
magnetic fields that we adopt for our simulations. The vertical dashed lines indicate
the approximate maximum temperatures achieved at the base of the column in our
simulations: ∼ 2.5 × 108 K for the low accretion rate (Lowacc) simulations, and
∼ 4× 108 K in the high accretion rate (Highacc) simulations.
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4.1.2 Simulation Setup

Simulation Parameters

For our simulations, we select version 2 (HR-Wide-25) in chapter 3 as the prototype,

and vary its magnetic field strength and accretion rate to explore the dynamical changes

of the accretion column with magnetic opacity. For all of our simulations, the mesh

grids are set to be 700× 2048 in the horizontal and vertical directions, respectively. The

domain height is 0.35R⋆, and the width of the accretion column region is 0.06R⋆, where

we adopt a neutron star radius R⋆ = 106 cm.

Version Name Magnetic field ϵ ρacc
(1012 G) (10−4 g/cm3)

1 Lowacc01 0.1 25 1.15
2 Lowacc1 1 25 1.15
3 Lowacc2 2 25 1.15
4 Lowacc4 4 25 1.15
5 Lowacc6 6 25 1.15
6 Highacc4 4 375 17.25
7 Highacc6 6 500 23.00

Table 4.1: Names and global parameters of all the simulations. The magnetic fields
listed are only used for the computation of the magnetic opacity. The actual magnetic
field used in the MHD was initialized to be 8× 1010 G for all the simulations.

The global parameters that we vary in our seven simulations are listed in Table 4.1.

For the first five simulations, we vary the magnetic fields that we use to compute the

magnetic opacities, from 1011 G (Lowacc01) to 6×1012 G (Lowacc6). Simulations Lowacc1

(1012 G) to Lowacc6 span the range of magnetic fields inferred from electron cyclotron

line observations in X-ray pulsars (Staubert et al. 2019), but we include Lowacc01 to

compare with our previous Thomson scattering simulations. For simulations Highacc4

and Highacc6, we increase the accretion rates for the simulations with the two strongest

magnetic fields, in order to build up higher accretion columns. The parameter ϵ is

the accretion rate expressed as a local Eddington ratio and ρacc is the density of the
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incoming accretion flow at the top boundary. Both of their definitions can be found in

equation (3.6) in chapter 3.

Boundary and Initial Conditions

The numerical setup of the simulation domain is identical to that of chapter 3, where

the actual accretion column region is at the center with two vacuum regions on both

sides and a gas-supported base at the bottom as effective boundaries. The boundary

conditions of the simulation domain are also the same as what we used in chapter 3,

and we summarize them as follows. The bottom boundary is reflective for both gas and

radiation, and the magnetic fields are set to be constant and vertical. The side boundaries

are reflective for both gas and magnetic fields, but allow the radiation to escape freely

(i.e. a radiation vacuum boundary condition, see section 2.2.2). Although the boundary

conditions at the sides of the simulation domain are reflective for the magnetic field, the

field at the edge of the actual accretion column inside the two vacuum regions is not so

constrained. The magnetic fields at the top boundary are set to be constant and vertical.

A cold accretion flow is injected from the top boundary within the accretion column

region, where the comoving radiation fields are set to be isotropic and in local thermal

equilibrium. Outside the accretion column region, the top boundary is outflow for the

gas and vacuum for the radiation so they are free to escape.

For the five simulated accretion columns at the low accretion rate (ϵ = 25), we adopt

as initial condition the 1D solution of the one-zone stationary model with Thomson

opacity (for details, see section 3.1.3). For the high accretion rate simulations, we start

from the the corresponding low accretion rate simulation that uses the same magnetic

field, select a snapshot when the accretion column is in the quasi-steady state, and restart

it using the higher accretion rate. To prevent numerical failures associated with a sudden

accretion rate change, we slowly and linearly increase the accretion rate from t = 3000tsim
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to t = 4000tsim, where the selected simulation time unit is tsim = 2.8 × 10−7 s in this

chapter.

4.1.3 Additional Numerical Treatments

The magnetic pressure in neutron star accretion columns is larger than the ther-

mal pressure by orders of magnitude. As a result, the variable inversion algorithm in

Athena++ in going from conservative to primitive variables (including gas pressure)

can fail to numerically resolve the small gas pressure. This introduces numerical noise

in determining the gas temperature which is used to define opacities and emissivities.

We therefore adopt an initial vertical magnetic field of 8 × 1010 G for the actual mag-

netohydrodynamics (MHD) in all of the simulations presented in this chapter. This is

sufficiently strong to confine the column against horizontal radiation pressure forces, and

to constrain the matter to move vertically. It is also low enough to avoid excessive nu-

merical noise from the variable inversion in the sinking zone of the accretion column.

Hence, the magnetic fields listed in Table 4.1 are purely used for the computation of the

magnetic opacity, and not in the MHD itself.

However, the variable inversion algorithm can still fail in the low-density, free-fall

region, which introduces substantial numerical noise into the gas temperature there. Be-

cause the magnetic opacity depends on temperature, the opacity can also be noisy, and in

fact sometimes achieves artificially high values when the temperature noise is substantial.

This can result in a strong interaction between the gas and radiation above the shock

front. In some of our early numerical experiments, this effect gradually destabilized the

accretion column and eventually led to ejection of the incoming accretion flow above the

shock front. In reality, the matter in the free-fall zone has low temperature and so low

magnetic opacity. Therefore, in our simulations, we adopt a small, but nonzero, fixed

95



4.2 Results Chapter 4

value of the magnetic opacity (κm = 0.06κT) in the free-fall zone in order to eliminate

this artificial noise and smoothly handle the transition between the free-fall zone and

sinking zone.

4.2 Results

As noted above, our simulations with low accretion rates started from a 1D, Thomson

scattering initial condition. This always overestimates the column height because of (1)

the underestimated cooling efficiency from the oversimplified top-hat column shape and

(2) the altered radiation-gas interaction from magnetic opacity. (We discuss the effects of

this in detail in section 4.2.2.) Therefore, the sinking zone quickly collapses and reaches

a new equilibrium state where gravity is roughly balanced by the adjusted radiation

pressure support. After the accretion column has relaxed from the initial condition, the

system gradually enters into a quasi-steady state with high-frequency oscillations that

persist to the end of the simulation, similar to what we found in chapter 3. For the

simulations with high accretion rates, the column also reaches a quasi-steady state with

oscillations. However, at late times both the column height and the oscillation amplitude

dramatically increase due to an instability associated with the fact that the opacity

increases with temperature at these high magnetic fields (see section 4.2.6).

4.2.1 Behavior at Weak Magnetic Fields and Low Accretion

Rate

In Figure 4.2, we present the density distribution over one full oscillation period of

Lowacc01 as an illustration of the oscillatory behavior. As discussed in chapter 3, the

oscillation originates from the instantaneous mismatch between replenishment of internal
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energy and sideways radiative cooling. When the accretion column is most vertically

extended, the sideways radiative cooling is maximized, while the heat that is mostly

generated at the shock front cannot be transported to the bottom fast enough to balance

this cooling. Hence, the column structure begins to collapse due to insufficient radiation

pressure support. When the accretion column is compressed to its lowest height, the

sideways cooling is minimized and the low altitude shock front over-heats the column,

resulting in vertical expansion.

Figure 4.2: Snapshots of the density distribution in simulation Lowacc01, covering
approximately one oscillation period of the shock at the center of the column. (The
times indicated in the panels correspond to the same origin as the time axis used to
plot light curves in Figure 4.9.)

Figure 4.3 also shows the presence of vertical finger-like structures that propagate

horizontally inward toward the center of the column. These are a manifestation of the

entropy waves that are associated with the photon bubble instability in the slow radiation

diffusion regime (see chapter 3 and chapter 5). These entropy waves are present in all of

our simulations, but have little effect on the fundamental oscillatory dynamics, nor do

they alter the oscillation frequency.
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Figure 4.3: Snapshots of the density distribution in simulation Lowacc1, covering
approximately one oscillation period.

Compared with the analogous simulation using Thomson opacity (see HR-Wide-25 in

chapter 3), all the simulations using magnetic opacity lack the long-lived, coherent pre-

shock structures because of the weak gas-radiation interaction when the gas temperature

is far below the cyclotron energy in the free-fall zone. Nevertheless, as is evident from

Figure 4.2, density fluctuations do occur in the free-fall zone, particularly in the weaker
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magnetic field low accretion rate simulations. As we discuss more extensively below in

section 4.2.4, these simulations exhibit the strongest variability, and that variability is

responsible for these fluctuations due to the interaction of the upward radiation field

from the column. The less variable simulations show significantly reduced fluctuations

in the free-fall zone. We also found that the pre-shock structure disappeared when the

magnetic field decreased with height in the split monopole geometry of chapter 5, simply

because of the reduced ram pressure at higher altitudes.

Lowacc01 has such a weak magnetic field that the temperature width of the opacity

peak is easily surmounted in the shock and much of the sinking zone is supported by

Thomson opacity. (See the 1011 G curve in Figure 4.1: almost all of the temperature

range toward the base of the column is in the Thomson regime). It is therefore closest in

its behavior to the simulations in chapter 3 and chapter 5 that assumed pure Thomson

opacity. Figure 4.3 depicts both the density and opacity in the stronger magnetic field

simulation Lowacc1. As illustrated by the 1012 G magnetic field curve in Figure 4.1,

the stronger magnetic field produces a wider opacity peak in temperature space. This is

evident in the lower panel of Figure 4.3. As material crosses the shock, the temperature

climbs over the opacity peak and results in a high opacity in the post-shock plasma.

Going downward into the sinking zone, the opacity declines as we are past the opacity

peak, eventually approaching the Thomson opacity in the deep interior. Lowacc1 still

shows substantial vertical shock oscillations and inward propagating entropy waves that

were evident in Lowacc01. As we will see in the next section, the effects of the opacity on

the dynamics and structure of the column become much more important as we increase

the magnetic field still further.
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4.2.2 Effects Arising from Changing Magnetic Field

In this section, we use the five low accretion rate simulations (Versions 1 to 5,

Lowacc01 - Lowacc6) to study how the dynamical behavior of the accretion column varies

with changes in opacity caused by changes in magnetic field strength, at fixed accretion

rate. Naively, one might expect that increasing the magnetic field would tend to decrease

the overall opacity, so the radiation pressure force on the plasma would decrease, and

the time-averaged height of the accretion column would therefore decrease. The time-

averaged density profiles for the low accretion rate simulations are shown in Figure 4.4,

and do in fact show a decrease in column height with increasing field strength. However,

for this accretion rate, Figure 4.5 shows that the opacity actually generally increases,

not decreases, in the time-averaged column structure as the magnetic field increases from

Lowacc01 to Lowacc4. Only in going from Lowacc4 to Lowacc6 does the opacity decrease,

and the column then almost becomes a surface hot spot.

Once again, Figure 4.1 provides the explanation for this behavior. Although the

shapes of the opacity curves are all very similar in this logarithmic plot, the actual

linear temperature width is very small at low magnetic field strengths and increases

toward higher field. For the lowest magnetic field (Lowacc01 in the left-most panel of

Figure 4.5), the opacity across the shock jumps right through the peak into the Thomson

regime. The low values of the opacity at the surface, indicated by the cyan color in

Figure 4.5, are simply due to the time-averaging over the vertical oscillation of the shock,

so that at those locations one is averaging over the near-zero opacity in the free-fall zone

and the Thomson opacity in the sinking zone. As we discussed in the previous section,

Lowacc1 transitions through the opacity peak to almost reach Thomson in the interior,

but the time-averaged opacity structure (second panel from the left in Figure 4.5) does

not exhibit the actual peak opacity because of the averaging over lower opacities in the
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Figure 4.4: Time-averaged density profiles of simulations Lowacc01 to Lowacc6 from
t = 6000tsim to t = 13000tsim. The accretion rate is the same in all these simulations,
and the only thing that changes is the magnetic field used to determine the opacity,
increasing from 1011 G on the left to 6× 1012 G on the right.

Figure 4.5: Time-averaged opacity profiles of simulations Lowacc01 to Lowacc6 from
t = 6000tsim to t = 13000tsim.

vertically oscillating shock. As one moves to the simulations with still higher magnetic

field, the wider and wider opacity peak becomes better and better resolved in the time-

average, and the opacity in the deep interior never declines back down to Thomson. In

Lowacc4, the opacity is close to the peak value everywhere in the sinking zone, and finally

in Lowacc6 the temperature jump across the shock and down to the base of the column is
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too small for the opacity to quite reach the peak. (Note the location of the intersection of

the base temperature indicated by the left vertical line in Figure 4.1 with the 6× 1012 G

magnetic opacity curve.) The opacity therefore increases as one moves downward toward

higher temperatures in what is left of the sinking zone. Further increase of the magnetic

field would evidently result in too little post-shock opacity to support a column, and we

would be left with a hot spot.

We are still left with the question as to why the column height decreases with increas-

ing magnetic field in going from Lowacc1 to Lowacc4, even while the opacity is increasing

inside the column. Let us begin by comparing Lowacc1 and Lowacc2. Lowacc2 has sig-

nificantly increased opacity just below the shock compared to Lowacc1, simply because

it has a wider opacity peak. This appears to provide a further barrier to vertically

distributing the accretion power liberated in the shock to the rest of the column. In-

stead, more of the accretion power is radiated outward from the shock. This results in a

shorter column, and a column that does not oscillate vertically as much as in the weaker

magnetic field case. As we discussed above, these vertical oscillations are also a direct

way of redistributing the accretion power vertically, but this also is now failing in the

shorter column. As we continue to increase the magnetic field from Lowacc2 to Lowacc4

the post-shock opacity is even larger, and the column height again decreases, becoming

almost a hot spot configuration. A concomitant feature of our simulations is that the

vertical displacement amplitude of the oscillation declines with increasing magnetic field

strength at fixed accretion rate. As we discuss in more detail in section 4.2.4 below, this,

in turn, results in a smaller luminosity variability amplitude.

The postshock opacity declines in moving from Lowacc4 to Lowacc6, because the

opacity peak is now so wide that the peak is not reached in Lowacc6. And yet the

column height still decreases. This is due to a second important contribution to the de-

crease in column height which is evident from Table 4.2. Despite the fact that simulations
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Lowacc01-Lowacc6 have the same accretion rate, they do not have the same emitted lu-

minosity. In fact, the luminosities of the simulated columns show a decreasing trend with

stronger magnetic field, except in going from Lowacc1 to Lowacc2, where the luminosity

slightly increases. The reason for this is that as the column height declines (driven by

the postshock opacity variation), the sideways emitting area declines and, at the same

time, the shock-liberated accretion power is brought closer to the stellar surface. This

means that more of the accretion power is able to advect through the sinking zone and

into the relatively cold neutron star base layer, and this is also a contributing factor to

the decrease of the column height. It is this effect that dominates the decrease in going

from Lowacc4 to Lowacc6. In going from Lowacc1 to Lowacc2, the post-shock opacity

reaches its maximum possible value, and this is what causes Lowacc2 to have a slightly

higher fraction of radiated accretion power.

4.2.3 Effects Arising from Changing Accretion Rate

Our highest field strength simulations at low accretion rate (Lowacc4 and Lowacc6)

resulted in very short accretion columns. One would expect that increasing the accretion

rate in these two magnetic field regimes would produce more luminosity and radiation

pressure support, resulting in taller columns. We did this in simulations Highacc4 and

Highacc6, and we present the resulting time-averaged density and opacity in Figure 4.6

and Figure 4.7, respectively. Highacc4 has the same magnetic field (4 × 1012 G) as

Lowacc4, but an accretion rate that is 15 times larger. Highacc6 has the same magnetic

field (6× 1012 G) as Lowacc6, but an accretion rate that is 20 times larger. As expected,

the increased accretion rates in these two simulations result in taller structures, and in

fact taller than the weak magnetic field, low accretion rate simulation Lowacc01. As

indicated in Table 4.2, no more than ten percent of the accretion power is transferred to
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the neutron star base, compared to ≃ 40 percent in the low accretion rate simulations

Lowacc4 and Lowacc6. A taller column with its much larger surface area (and higher

postshock opacity in these two cases) is better able to release the accretion power in

emergent radiation.

Figure 4.6: Comparison of the time-averaged density profiles of simulations with
the same magnetic field strength but different accretion rates, from t = 6000tsim
to t = 13000tsim. The two panels at the left are for 4 × 1012 G magnetic fields, and
the two on the right are for 6× 1012 G.

Figure 4.7: Time-averaged magnetic opacity profiles of simulations with the same
magnetic field strength but different accretion rates, from t = 6000tsim to t = 13000tsim
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Figure 4.8 shows the time-dependent behavior of both the density and the opacity

over a time interval of 1.4× 10−4 s in simulation Highacc6. As we discuss in more detail

in the next subsection, this corresponds to one oscillation period in the peak frequency

of the power spectrum of the light curve of this simulation. Comparing Figure 4.8 to

Figure 4.2 and Figure 4.3, it is apparent that the structure of the column is varying

much more dramatically in the latter, weaker magnetic field simulation. This is true

even though these simulations produce columns with comparable time-averaged heights.

We discuss why this is in the next subsection.

Figure 4.8: Snapshots of the density distribution and opacity distribution in simulation
Highacc6 over an interval of 1.4 × 10−4 s. This corresponds to approximately one
oscillation period in the light curve for this simulation.
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4.2.4 Variability

Figure 4.9 depicts the luminosity light curves of all the simulations. We compute these

light curves by simply summing the horizontal and vertical lab-frame fluxes times cell

face areas for cells near the photosphere. Because the velocity of the flow is restricted by

the magnetic field to be almost exactly vertical, there is almost no difference between the

lab frame and fluid frame horizontal radiation fluxes. However, for simulations Highacc4

and Highacc6, which ran for a much longer time than the Lowacc simulations, some

horizontal motion began to occur as the effective boundary at the base overheats and

we start to lose magnetic confinement. This produces artificial high frequency, Alfvénic

oscillations in the lab frame flux and we have removed these from the light curves in

Figure 4.9 by using the fluid frame horizontal flux.

Name ⟨L⟩ /Lacc σ(L)/ ⟨L⟩ ⟨Lx⟩ / ⟨L⟩ ⟨Lx/L⟩
Lowacc01 0.875 0.271 0.843 0.858
Lowacc1 0.659 0.139 0.890 0.892
Lowacc2 0.666 0.056 0.966 0.965
Lowacc4 0.577 0.054 0.375 0.373
Lowacc6 0.548 0.036 0.138 0.137
Highacc4 0.909 0.044 0.956 0.956
Highacc6 0.961 0.042 0.986 0.987

Table 4.2: Time-averaged radiated luminosity as fraction of accretion power, standard
deviation of light curve variability, and two methods of to determine the fan beam
fraction: the ratio of mean horizontal luminosity to mean luminosity, and mean of the
horizontal luminosity fraction.

All the light curves in Figure 4.9 show significant high frequency variability, including

quasi-periodic oscillations (QPOs) with varying degrees of coherence. Power spectra of

these light curves are shown in Figure 4.10, and the relative amplitude of the most

significant QPOs are listed in Table 4.2. In our Thomson scattering simulations in

chapter 3 and chapter 5, we showed that the origin of these oscillations is due to a

breakdown in thermal equilibrium caused by the fact that advection of heat in the settling
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Figure 4.9: Light curve variation of all simulations, starting from times when the sim-
ulations achieved an approximate steady state with persistent oscillations (6000 tsim
for the low accretion rate simulations Lowacc01-Lowacc6, 11000 tsim for the Highacc4
and Highacc6 simulations.
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Figure 4.10: Power spectrum of each simulation computed using Welch’s method.
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flow and PdV work are generally unable to balance the sideways radiative cooling when

the column is at maximal vertical extent. The column therefore overcools and the shock

height falls, resulting then in overheating which causes the shock to rise again. This

can vary with horizontal position within the column as separate vertical fingers oscillate

up and down. That this is happening here in these magnetic opacity simulations is

shown in Figure 4.11, which compares the power spectrum of shock height variations at

different horizontal locations in Highacc4 with the luminosity power spectrum. Clearly

the three most significant QPOs in the latter match the shock height oscillations at

different horizontal locations. Note that more light curve power is in the middle frequency

QPO, while the most shock height power is in the lowest frequency QPO. These two

QPOs are in a 2 : 1 frequency ratio, and the relationship between shock height and

emitted light is not likely to have the same proportionality at different harmonics in

these non-sinusoidal oscillations.

Consistent with their physical origin, the frequencies of these oscillations are related

(inversely) with the local cooling time at that horizontal section of the column. For

example, for taller accretion columns, the shock front generally needs to oscillate with a

sufficiently large vertical amplitude to replenish the heat to support the bottom region,

and this also leads to a longer oscillation time and lower oscillation frequency. This

is exactly what we see in Table 4.2 and Figure 4.10 as the stronger magnetic field in

simulations Lowacc01 to Lowacc6 results in shorter accretion columns. In particular,

when the magnetic field is sufficiently strong (e.g. Lowacc4 and Lowacc6), the accretion

column almost collapses into a hot spot and then oscillates fast with a small amplitude.

Since the sideways cooling area is small, the variations in the light curve are very small.

However, when we restore taller column heights by increasing the accretion rates in these

high magnetic field cases (Highacc4 and Highacc6), oscillations with lower frequencies

occur.
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Figure 4.11: Power spectrum of shock height as a function of horizontal position for
simulation Highacc4.

However, the oscillation amplitude in the high accretion rate simulations is substan-

tially less than that in the low accretion rate simulations of comparable height, particu-

larly Lowacc01. This is true both in luminosity, and in the overall shock height variation.

In fact, the main body of the sinking zone away from the oscillating shock has an al-

most static structure apart from the presence of horizontally-propagating entropy waves.

The high accretion rate simulations have higher horizontal optical depth (by one to two

orders of magnitude throughout most of the column in the case of Highacc6) than in

Lowacc01, both because the density is higher and because the opacity is larger. Hence

the cooling time is longer and the column is better able to establish a balance between

heating from accretion power and radiative cooling. It is only in the upper part of the

column where thermal equilibrium is unable to be established because of the more rapid
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diffusive cooling, and this is the region that oscillates. While the increased opacity in the

lower, high temperature regions enables these regions to achieve thermal balance, but it

turns out that this temperature dependence also leads to a new unstable behavior at late

times, and we discuss this further below in section 4.2.6.

4.2.5 Angular Distribution of Emergent Radiation

When the neutron star accretion forms a hot spot at a relatively low accretion rate or

in a strong surface magnetic field, the accreting material is halted at the stellar surface

and releases mechanical energy into radiation. Since the incoming flow is cold and has

low opacity, it is transparent and radiation can directly leave the system upwards (i.e.

pencil beam). However, when the accretion rate is sufficiently high, the accretion flow

is shocked above the stellar surface and forms a radiation pressure supported, optically

thick region below which radiation emerges from the sides (i.e. fan beam).

The fact that classical models of accretion columns produce fan beam radiation pat-

terns is simply due to the fact that most of the emission area is on the sides, even though

the accretion shock itself is at the top of the column. In our 2D, more mound-shaped

columns, the sides still have more emitting area, and the shock itself covers this mound-

shape, so that significant direct dissipation of the accretion power is also happening along

the sides of the column.

The angular distribution of the emitted radiation is therefore of course determined by

both the geometry and surface brightness distribution of the photosphere of the column.

In Figure 4.12, we compare the instananeous fraction of emergent radiation that is in a

fan-beam across all the simulations, computed from the integral of horizontal flux leaving

the photosphere divided by total luminosity. We also list the time-averaged fan beam

ratio in Table 4.2, computed in two different ways: the ratio of time-averaged horizontal
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luminosity to time-averaged total luminosity, and the time-average of the ratio. Despite

the strong variability exhibited in Figure 4.12, particularly in Lowacc01 and Lowacc1,

these two methods of averaging produce very consistent results.

Figure 4.12: Ratio of the side luminosity to the total luminosity as a function of
time in all seven simulations. The time here corresponds to epochs 12-18×10−4 s in
Figure 4.9.

For simulations Lowacc4 and Lowacc6 with short, flat columns (almost hot-spots), the

fan-beam fraction is significantly below 0.5 (e.g. Lowacc4 and Lowacc6) and the emergent

radiation is therefore more like the classical pencil-beam of 1D models. In all the other

simulations, the system develops a columnar structure, where most radiation escapes

sideways in a fan-beam pattern (i.e. fan-beam fraction above 0.5). However, the low-

accretion columns in relatively low magnetic fields (Lowacc01 and Lowacc1) exhibit large

variations of radiation beaming patterns, which result from the large shock oscillation

amplitude. In particular, when the accretion column is mostly compressed (e.g. middle

panel in Figure 4.2), the sideways cooling is minimized and the system is over-heated with

quite a large fraction of radiation leaving from the top. For similar heights of columnar
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structure, the variation of the fan-beam fraction in the case of high accretion rates and

strong magnetic fields (Highacc4 and Highacc6) is in general smaller because the shock

front oscillates with much smaller amplitude.

4.2.6 Opacity-Driven Instability in the High Accretion Rate

Simulations

Figure 4.13 shows the temporal behavior of the shock height at the middle of the col-

umn for simulation Highacc4, extending well beyond the time range shown in Figure 4.9.

Both the shock oscillation amplitude and the average height of the shock increase dramat-

ically beyond t = 40× 10−4 s. Simulation Highacc6 also shows evidence of this behavior,

though we were unable to track it for as long as Highacc4. We never observed such

behavior in any of our pure Thomson scattering simulations in chapter 3 and chapter 5.

This suggests the presence of an additional unstable mechanism in the column dynamics

that is directly related to the temperature-dependence of the magnetic scattering opacity.

Figure 4.13: Height of the accretion shock at the x = 0 middle of the column as a
function of time for simulation Highacc4. The time axis is the same as in Figure 3.4,
but extended for much longer.
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Under conditions of pure Thomson scattering and a vertical magnetic field, the maxi-

mum growth rate of the photon bubble instability occurs for near horizontal propagation

directions in the slow diffusion regime (for details see Appendix A) and propagation

directions at 45 degrees in the rapid diffusion regime (Gammie 1998). As we show in

section A.4, a magnetic opacity that increases with temperature modifies the photon

bubble dispersion relation such that unstable growth can occur for vertical propagation

in the slow diffusion regime. The physics of this unstable growth differs from the pure

photon bubble instability, and while it is slower than the photon bubble instability, we

suggest that it is the cause of the growth that takes place at late times in Figure 4.13.

Because of the broad temperature width of the magnetic opacity peak in both High-

acc4 and Highacc6, the postshock material does not reach the opacity peak and the

opacity therefore increases further with temperature and depth in the column (see Fig-

ure 4.7 and Figure 4.8). The time-averaged opacity structure in simulation Lowacc1

shown in Figure 4.5 also appears to show a region of opacity increasing with tempera-

ture, but this is an artifact of the time-averaging. The instantaneous opacity structure

shown in Figure 4.3 shows no such behavior. Hence only Highacc4 and Highacc6 have

extended regions in which the opacity is below the peak and therefore increases with

temperature, and it is only these simulations that exhibit this unstable behavior.

We have solved the full dispersion relation (A.7) for conditions along the x = 0 midline

for a snapshot of Highacc4 at t = 25.46× 10−4 s, shortly before the unstable behavior in

Figure 4.13 becomes evident. The results are shown in Figure 4.14 as a function of height

in the column, for two different wavelengths and for vertical wave vectors (angle between

wave vector and magnetic field θ = 0). We also solved the approximate dispersion

relation (A.24) for this instability, which is wavelength-independent, and the result is

very similar. The unstable region in the center of the column covers exactly the range

of heights where the opacity increases with depth and temperature. Growth rates near
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Figure 4.14: Predicted growth rate of the instability driven by the temperature-depen-
dent magnetic opacity from linear instability theory in a static medium (section A.4).
The solution is consistent with the rough growth time scale of the oscillation ampli-
tude that is evident in Figure 4.13, indicated by the horizontal dotted line.

the top of the column are ∼ 100 s−1, and this is consistent with the growth time scale

∼ 10−2 s in Figure 4.13.

All of this is based on short wavelength WKB theory and so is difficult to apply

to our actual column structure. Moreover, the central shock of the accretion column

is already highly dynamic due to the basic thermal oscillation driven by the mismatch

between heating and cooling, so linear perturbation theory on a static structure cannot be

applied. Nevertheless, the predicted growth rates are comparable to what we see in these

simulations, and it is suggestive that only Highacc4 and Highacc6 exhibit this behavior,

and only Highacc4 and Highacc6 have vertically extended regions at lower temperatures

than where the peak opacity occurs. It is important to note that our opacities depend

only on temperature, and not density. More accurate opacities (Suleimanov et al. 2022)

will have some density dependence, and these can also excite instability, even in the rapid

diffusion regime (section A.4).
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4.3 Discussion

4.3.1 Numerical Caveats

We remind the reader that we treat the neutron star as a classical gas pressure

dominated region and only allow heat transport by advection and radiation transport

(for details see chapter 3). This effective boundary condition is designed to minimize

the boundary effects on the overall column dynamics. However, the fact that advection

of heat into the neutron star is a contributing factor to the overall height of the shorter

column simulations Lowacc4 and Lowacc6 suggests that this boundary condition might

affect the overall scaling between accretion rate and column height. Our treatment of

the neutron star surface neglects degeneracy pressure, which affects the heat capacity,

and also neglects thermal conduction by electrons. It would be worthwhile in future to

incorporate a more accurate treatment of the interface between the accretion column

and the neutron star when the columns are approaching the hot spot regime, in order to

more accurately determine how the column height varies with accretion rate. However,

we suspect that the overall dynamics of the column will not be affected significantly.

At very late times, both Highacc4 and Highacc6 exhibit sudden flares of radiation

from one side of the base of the column, and this rapidly causes the simulation to crash.

This is an unphysical behavior that arises from the effective lower boundary condition,

where the neutron star surface has heated sufficiently that radiation pressure starts to

bend the magnetic field. As we mentioned in section 4.1.3, the field we use in the MHD

is lower than the field used to determine the opacities in order to avoid errors in the

conservative to primitive variable inversion. Further work is needed to implement a

variable inversion that would allow us to run at higher magnetic fields, in addition to

improving the physics of the bottom boundary condition. This would better enable us

to determine the long-term outcome of the opacity driven instability that manifested in
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these simulations at late times.

4.3.2 Opacity Due to Pair Production

We have shown in section 4.2.6 that instabilities can be present in accretion columns

where the magnetic opacity is below the peak and therefore increases with temperature.

After we completed our simulations, new opacity calculations by Suleimanov et al. (2022)

were published. These demonstrate that there is an even sharper increase of opacity with

temperature when the medium is hot enough that pair production becomes significant

(Figure 4.15). If this regime can exist within the column, we suspect that it will be a
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Figure 4.15: Comparison between our magnetic opacity (solid line) and the perpen-
dicular (dotted line) and parallel (dashed line) opacities of Suleimanov et al. (2022),
assuming B = 1 × 1012 G and ρ = 1 g cm−3. The very sharp increase in opacity at
temperatures above 4×108 K is due to the onset of electron-positron pair production.

site of strong instability. However, it may be that this opacity feature acts as a wall that

cannot be reached in a real accretion column, because it may limit the temperature at

the base of the column. Once the accretion rate becomes high enough and the bottom of

the accretion column starts to enter into the pair production regime, the strong opacity

boost may provide additional radiation support and cause the column to expand. This
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expansion can then cool the accretion column and bring the base temperature below

the pair production value via the extra sideways emission. However, similar to what we

have found in the column oscillation, this expansion might then overcool the bottom of

the column, contracting the column structure and heating the base back towards pair

production. This again suggests a strong destabilizing mechanism at high accretion rates

and strong magnetic fields, in which a steady-state column simply cannot exist. It would

be interesting to simulate this in future, and we are currently working on an algorithm

for angle and polarization-dependent opacities for use in Athena++. It would also be

worthwhile to search for observational evidence of enhanced variability in this regime.

4.3.3 Observational Significance

One dimensional model fits to the observed pulse profiles of X-ray pulsars often require

a mixture of fan and pencil-beam emission geometries, particularly at intermediate lumi-

nosities (e.g. Klochkov et al. 2008; Becker et al. 2012). As shown in Figure 4.12, our high

accretion rate simulations Highacc4 and Highacc6 both show almost pure (> 90 percent)

fan-beam emission. However, in our lower accretion rate simulations, only Lowacc2 ex-

hibits an almost pure fan beam emission pattern. Lower magnetic field strengths instead

produce a strongly oscillating column with an emission pattern that can vary between

approximately half fan and pencil-beam and full fan-beam. The time-average of these

oscillations still result in > 80 percent fan-beam, but this may be a contributing factor

to the need for some pencil-beam emission for intermediate luminosities. At the highest

magnetic field strengths (Lowacc4 and Lowacc6), the beam patterns are fairly steady

in time, with roughly 40 percent fan-beam in the case of Lowacc4, due largely to the

fact that the vertical and horizontal projections of the photosphere are comparable in

size. Lowacc6 is almost a hot spot, and emits only only 14 percent of its luminosity in a
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fan-beam. It would therefore be interesting to explore observationally how the emission

geometry depends not only on luminosity but also on magnetic field strength inferred

from cyclotron lines. That geometry can be strongly dependent on observed photon en-

ergy (Iwakiri et al. 2019), so post-processing of simulations such as ours would also be a

useful way of confronting the observational constraints.

Accretion columns are observed to exhibit an inverse correlation between the lu-

minosity and the magnetic field strength as measured by the energy of cyclotron lines

(Tsygankov et al. 2010; Doroshenko et al. 2017; Staubert et al. 2019; Mushtukov & Tsy-

gankov 2022). One possible explanation for this is that higher luminosities correspond

to taller columns which then sample weaker magnetic fields in a diverging field geometry

(but see Poutanen et al. 2013 for an alternative explanation). In simulations Lowacc4

and Highacc4, we increase the accretion rate of the column in the same magnetic field,

and the column is taller. Although we use a uniform, vertical magnetic field in the sim-

ulations, we can crudely estimate the corresponding decrease in field strength in a more

realistic dipole geometry. The luminosity increases by a factor of ∼ 23.59, while the mag-

netic field strength at half the height of the column would decrease by a factor of ∼ 0.82.

Similarly, when comparing simulations Lowacc6 and Highacc6, the luminosity increases

by a factor of ∼ 35.07 and the magnetic field would decrease by a factor of ∼ 0.81. These

numbers are actually very close to the observed behavior of V 0332+53 (Tsygankov et al.

2010; Doroshenko et al. 2017), where the luminosity increases by a factor of ∼ 20 and the

observed magnetic field strength decreases by a factor of ∼ 0.8. However, this source is

inferred to have a surface field strength that is slightly weaker (2.6× 1012 G) than these

two pairs of simulations. Moreover, as we have a uniform magnetic field in our simula-

tions, the magnetic opacities may differ at higher altitudes. However, this difference is

unlikely to significantly impact our results since the post-shock gas temperature should

be sufficiently high so that the opacity is near the Thomson regime. In addition, as our
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accretion columns are relatively short (∼ 0.1 neutron star radius), this crude estimation

might still be reasonable. Nevertheless, future simulations must incorporate the variation

of magnetic field with height for a more accurate evaluation of this inverse correlation.

The QPOs that arise from the vertically shock oscillations are at frequencies in excess

of ≃ 5 kHz for the simulations we have presented in this chapter, and this may prove

challenging to observe directly with existing X-ray facilities. However, the opacity-driven

instability at high magnetic field strengths grows on much longer time scales ≃ 0.01 s.

It is unclear how this will saturate and manifest in the lightcurve, as we were unable

to run our simulations for long enough before the effective bottom boundary condition

failed. Even so, it suggests the possibility of longer time-scale variability that may be

more easily observable for high magnetic field X-ray pulsars, whose fields are observed

to extend up to as high as 6.6 × 1012 G (Yamamoto et al. 2014; Staubert et al. 2019).

Further investigation of this instability with future simulations is therefore warranted.

4.4 Conclusions

1. We have extended our Cartesian simulations in chapter 3 to incorporate polarization-

averaged, temperature-dependent magnetic scattering opacities. These can dramat-

ically affect both the dynamics and the time-averaged structure of the accretion

column. For weak magnetic fields (≃ 1011 G, simulation Lowacc01), the opacities

inside the sinking zone are close to Thomson, and the column dynamics is very

similar to what we found in chapter 3, the main difference being that coherent

pre-shocks in the free-fall zone are largely absent because the opacity in that cold

infalling material is much less than Thomson. For higher magnetic field strengths,

magnetic opacities produce much more significant differences, a result that is per-

haps not surprising given that neutron star columns are supported against gravity
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by radiation pressure.

2. Increasing the magnetic field strength increases the temperature at which the opac-

ity peaks, and also increases the width of that peak in temperature space, both

effects scaling directly with the magnetic field strength. At fixed accretion rate,

increasing the magnetic field strength generally increases the post-shock opacity as

an approximately fixed temperature jump across the shock is less and less able to

climb over the opacity peak. Despite the fact that the opacity in the interior of

the column is on average larger, the time-averaged column height is reduced. This

is partly because a larger fraction of the immediate post-shock accretion power is

radiated away rather than advecting into the higher opacity post-shock regions,

and partly because more accretion power flows into the neutron star at the base of

the column.

3. Again at fixed accretion rate, the taller columns at weaker magnetic field strengths

1011−1012 G exhibit strong vertical oscillations. While entropy waves (slow diffusion

photon bubbles) are clearly present as horizontally-inward propagating waves, these

oscillations are actually a result of global thermal imbalance, with over-cooling at

maximum vertical extension and over-heating at minimum vertical extension. This

is the same mechanism that produced oscillations in our previous Thomson scat-

tering simulations, both in Cartesian geometry (see chapter 3) and split monopole

geometry (see chapter 5). The amplitude of these oscillations is large enough to

cause the angular distribution of emitted radiation to oscillate from 50−80 percent

fan beam at minimum vertical extent to 100 percent fan beam. This might be a

contributing factor to the need for 1D models to sometimes require a mixture of

pencil beam and fan beam to explain observed light curves (e.g. Klochkov et al.

2008; Becker et al. 2012; Iwakiri et al. 2019). The amplitude of these oscillations is
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reduced and the frequency is increased as the field strength increases at fixed accre-

tion rate. The angular distribution of emitted radiation is almost entirely fan beam

until the field strength gets high enough that the column height is short enough to

transition into almost a pure (∼ 85 percent) pencil beam emitting hot spot (this

happens at 6 × 1012 G at the low accretion rates considered here). Increasing the

accretion rate at these higher magnetic field strengths restores the height of the

column and the nearly 100 percent fan beam emission, but the oscillation ampli-

tude remains quite low. The mere fact that higher accretion rate results in taller

columns may contribute to explaining the observed inverse correlation of cyclotron

line energy with accretion rate during supercritical phases of accretion (Tsygankov

et al. 2006; Jaisawal & Naik 2016; Staubert et al. 2019). But our simulations would

also predict that the critical accretion rate separating hot spots (pencil beam emis-

sion, positive correlation between cyclotron energy and accretion rate) and columns

(fan beam emission, negative correlation between cyclotron energy and accretion

rate) should itself be a function of magnetic field strength across difference sources.

4. We have identified a new instability in the column that exists when the field strength

is high enough that the opacity within the column increases inward with increasing

temperature. In the two high accretion rate simulations here, this instability grows

on a time scale of ∼ 0.01 s. While we were not able to fully investigate the nonlinear

outcome of this instability due to numerical issues, it may contribute to enhanced

variability on this time scale for high magnetic field neutron stars.
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Chapter 5

Simulations of Accretion Columns in

Split-Monopole Magnetic Fields

This chapter is adapted from our research work published as Zhang, Blaes & Jiang

(2023). In this chapter, we conduct more global simulations of accretion columns in

split-monopole fields at higher accretion rates.1 The chapter is organized as follows. In

section 5.1, we summarize the numerical technique and simulation setup. In section 5.2,

we describe our simulation results, including the build-up of the column, its oscilla-

tory behavior, the emergent light curves, comparison with the 1D stationary model, the

energetics of the column, and the characterization and behavior of entropy waves. In

section 5.3, we discuss several numerical caveats that might influence the simulation out-

comes, how entropy waves affect the dynamics, compare our work to previous work in the

literature, and discuss the observational significance of our simulations. In section 5.4,

we summarize our conclusions.

1We choose a split-monopole field rather than a more strongly converging dipole or quadrupole field
because it enables us to adopt field lines that are nearly along the spherical polar grid. This helps avoid
numerical issues associated with inversion of conservative to primitive variables in strong magnetic fields.
A split-monopole field still captures the essential geometric effect of an inward converging field, more
and more strongly confining the accretion flow in the lateral direction.
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5.1 Numerical Method

5.1.1 Equations

Neutron star accretion columns are transversally confined against radiation pressure

forces by strong magnetic fields. These fields lead to Newtonian Alfvén speeds that exceed

the speed of light in the low density, free-fall region. A Newtonian MHD simulation

would therefore be forced to use very small time steps to achieve numerical accuracy and

stability. We avoid this problem by using the radiative relativistic MHD techniques that

we developed in our previous work (Zhang et al. 2021), but now adapted to spherical

polar coordinates (Stone et al. 2020; Jiang 2021). The conservation laws are summarized

below in the sequence of mass, momentum, and energy conservation in the gas, and

radiative transfer:

∂0(ρu
0) +∇j(ρu

j) = Sgr1 , (5.1a)

∂0(wu
0ui − b0bi) +∇j

(
wuiuj + (Pg + Pm) δ

ij − bibj
)
= Si

gr2 − Si
r2 , (5.1b)

∂0
[
wu0u0 − (Pg + Pm)− b0b0

]
+∇j(wu

0uj − b0bj) = Sgr3 − Sr3 , (5.1c)

∂0I + nj∇jI = L−1(S̄r) . (5.1d)

Here ρ is the gas density in the fluid rest frame and δij is the Kronecker delta. Using

velocity in units of the speed of light (c = 1), the gas four-velocity is defined as (u0, ui) =

Γ(1, vi), where vi is the gas three-velocity and Γ = (1 − vjv
j)−1/2 is the Lorentz factor.

Given the three-vector of magnetic field Bi and fluid-frame gas pressure Pg, we can then

define the four-vector of magnetic field bµ, magnetic pressure Pm, gas enthalpy wg, and
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the total enthalpy w as follows:

b0 = ujB
j, bi =

1

Γ
(Bi + b0ui) , (5.2a)

Pm =
1

2
bνb

ν , (5.2b)

wg = ρ+
γ

γ − 1
Pg , (5.2c)

w = wg + bνb
ν , (5.2d)

where the adiabatic index of idea gas γ = 5/3 is adopted in our computation. Note

that we use Latin and Greek indices to denote the three-vector (e.g. i = 1, 2, 3) and the

four-vector (e.g. µ = 0, 1, 2, 3) components, respectively. The radiation intensity field I is

defined in the lab frame, as well as the unit vector of the photon propagation direction ni.

Since ∇i is expressed in spherical polar coordinates (r, θ, ϕ), extra geometric terms are

introduced by the advection terms in both the relativistic MHD equations and radiative

transfer equations, which can be found in Stone et al. (2020) and Davis & Gammie (2020),

respectively. The quantities Sgr1, S
i
gr2, Sgr3 are gravitational source terms derived by

reducing the full general relativistic conservation laws to the weak field limit (for details

see Appendix B). Similarly, Si
r2 and Sr3 are radiation source terms for momentum and

energy, respectively, computed from the lab-frame moments of the radiation intensity

(Jiang 2021). Finally, S̄r consists of the fluid-frame emissivity, absorption and scattering

source terms (3.4c), with L−1 being the Lorentz boost operator from the comoving to lab

frame. Here, we denote the radiation quantities in the comoving frame with overbars.

For simplicity, our study of the column dynamics in the split-monopole field config-

uration assumes that electron scattering is Thomson, i.e. isotropic with no dependence

on magnetic field and polarization. Our computation of radiative transfer is frequency-

integrated, assuming a blackbody spectrum and neglecting non-zero photon chemical
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potential effects. In our future work, we will further investigate the dynamical effects

caused by magnetic opacity in more global column structure. This chapter aims instead

to obtain insight on the dynamical effects introduced by geometric dilution (e.g. r2 for

the spherical polar geometry used here) and high accretion rates.

5.1.2 Simulation Setup

As shown in chapter 2, the slow-diffusion photon bubble instability is highly resolution-

dependent. We therefore first studied accretion column dynamics using a Cartesian grid

where numerical resolution was spatially constant (see chapter 3). However, we found

there that the global characteristics of the accretion column (e.g. shock height and oscil-

lation frequency) are almost independent of resolution and therefore photon bubbles do

not alter the more global dynamics of the column. This at least partially alleviates any

concern related to numerical convergence of the column dynamics introduced by changes

in spatial resolution in curvilinear coordinate grids. For this reason, we adopt an ax-

isymmetric, 2D spherical polar geometry in this chapter, with a radial (split-monopole)

magnetic field in the initial condition. This enables us to explore accretion column dy-

namics at higher accretion rates, but we still limit the column height to be comparable

to or less than the stellar radius in order to be qualitatively valid compared with a more

realistic dipolar geometry. The accretion column in the simulations in this chapter are

axisymmetric mounds at the magnetic pole. Unlike the 2D Cartesian column simula-

tions in chapter 3, where the simulated column was a slice through a long, thin wall of

accreting material, here with this axisymmetric 2D structure of the accretion column we

compute the entire escaping radiation field.
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Global Parameters and Simulation Domain

The grid cells are uniformly sampled in the θ̂-direction with a constant polar angle

interval ∆θ. We maintain the same aspect ratio for all cells, so the radial width ∆r

increases by a fixed factor (1 + ∆θ) between radially adjacent cells. Although the gas

properties are defined in the 2D r-θ plane in axisymmetry, the radiation intensity field is

configured in 3D angular grids with 64 angle directions.

We adopt a neutron star mass M⋆ = 1.4M⊙ and radius R⋆ = 106 cm for our cal-

culations. The global geometry of the column is specified by the polar angle column

width θc and maximum radius rc, which needs to be set sufficiently large to cover both

the free-fall and sinking zones. The accretion rate of the column can be parameterized

by the local Eddington ratio ϵ, which is the ratio of area-weighted effective Eddington

luminosity (Leff) and accretion luminosity on the surface of neutron star (Lacc):

Leff =
A

4πR2
⋆

LEdd , (5.3a)

Lacc =
GM⋆ρaccAvff

R⋆

, (5.3b)

ϵ = Lacc/Leff . (5.3c)

Here A = 4πR2
⋆ sin

2(θc/2) is the transverse area of the column on the neutron star surface

and LEdd = 4πGM⋆c/κs refers to the Eddington luminosity of the entire neutron star,

where we adopt κs = 0.34 g cm−2 as the electron scattering opacity. Both the free-fall

speed vff =
√

2GM⋆/R⋆ and accreting inflow density ρacc are defined on the neutron star

surface for convenience and they can be further re-scaled to set up the top boundary

condition given different column heights by multiplying by factors of (R⋆/rc)
1/2 and

(R⋆/rc)
3/2, respectively. Therefore, the value of ϵ determines the local accretion rate and

density at the top of the column.
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Figure 5.1: Geometry of the simulation domain, together with the effective boundary
condition regions: the vacuum region on the outside of the column and the gas-pres-
sure supported surface of the neutron star. The red loop is a reminder that the 2D
simulation is axisymmetric.

Similar to our previous study of columns in Cartesian geometry (see chapter 3), the

simulation domain is partitioned into 3 different regions for distinct numerical treat-

ments. As illustrated in Figure 5.1, the central region (denoted by ‘Accretion Column’)

is the main simulation region on which we focus our analyses in this chapter. The lower

region (denoted by ‘G-S Base’) and side region (denoted by ‘Vacuum Region’) are the

effective boundaries that mock up the gas pressure-supported base and vacuum region,

respectively. Our treatment of these regions will be described in detail in next section.

Initial and Boundary Conditions

Our previous work in chapter 3 used an initial condition of a stationary accretion

column in thermal and hydrostatic equilibrium with only vertical gradients. Here we

instead build up the accretion column using an initial condition of pure cold free-fall

inflow. The gas in the actively simulated region (‘Accretion Column’ in Figure 5.1)
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is initialized using the free-fall gas profile assigned with gas density (R⋆/r)
3/2ρacc and

downward radial velocity −(R⋆/r)
1/2vff given a fixed accretion rate. The gas is assumed

to be cold (Tfloor = 5 × 106 K, following Klein & Arons 1989) in the beginning, so the

initial gas pressure is (R⋆/r)
3/2ρacckBTfloor/m. The initial magnetic field is entirely radial

(split-monopole) and therefore decreases with radius as r−2. We adopt a surface magnetic

field B⋆ = 1011 G, adequate to laterally confine the resulting column against radiation

pressure. This is below the typical field strength of high-mass X-ray binary pulsars

(≳ 1012 G). However, such strong magnetic fields will not affect the column dynamics,

and they exacerbate the problem of variable inversion from conservative variables to

primitive variables, in particular in resolving the small gas internal energy (see detailed

discussion in section 3.3.1). The radiation field of the initial inflow is assumed to be

isotropic and in local thermal equilibrium (LTE) with the cold gas in the fluid rest

frame.

We adopt a similar strategy of setting boundary conditions as in section 3.1.4: effective

boundaries (hereafter, soft boundaries) are designed to mock up the neutron star surface

(‘G-S Base’ in Figure 5.1) at the bottom and the side vacuum region outside the accretion

column (‘Vacuum Region’ in Figure 5.1). The actual boundaries of the simulation domain

(hereafter, hard boundaries) are applied directly at the top and polar axis boundaries of

the active accretion column (‘Accretion Column’ in Figure 5.1) and at the exterior edges

of the soft boundary regions. Detailed justification for the soft boundary arrangements

can be found in section 3.1.4, but we briefly review them here.

The gas-supported base is the layer below the active region of the accretion column

and is initialized in hydrostatic equilibrium with an isothermal non-degenerate cold gas

(Tb = 5× 106 K). We adopt a neutron star surface density ρ⋆ = 106 g cm−3 to calculate

the gas density profile at the base ρb = ρ⋆ exp (−r/hb), where hb = R⋆Tb/gb is the scale

height. We set the effective gravitational acceleration gb to be smaller than the surface
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gravitational acceleration g⋆ = GM⋆/R
2
⋆ by at least a factor of 500 in our simulations so

that a scale height can be resolved by at least 5 grid cells to numerically maintain the

hydrostatic equilibrium. The initial magnetic and radiation intensity fields are set to be

the same as the active accretion column region. The height of the gas-supported base is

set to 6 scale heights for each simulation.

The advantage of using this effective boundary is that the magnetic confinement at

the bottom of the accretion column can be automatically achieved without directly im-

plementing any cumbersome boundary condition that invokes artificial magnetic tension

and pressure forces. However, as the accretion column evolves, the gas-supported base

will be continuously heated, causing radiation diffusion, and radiation pressure forces,

towards the side. Although the tendency to laterally bend magnetic field is small because

of the huge gas inertia, this tendency is finite and can keep accumulating. As long as the

simulation runs sufficiently long, this will eventually tilt the magnetic field away from the

radial direction which will then fail to confine the accretion column above. To alleviate

this numerical issue, we adopt an exponential damping of the lateral velocity in the base

on a sound crossing time across a grid cell (ts) using d ln vθ = −dt/ts, where vθ refers to

the instantaneous lateral speed.

The vacuum effective boundary at the side is an optically thin region where the density

and gas pressure are both set to the floor values at all times but the velocity and magnetic

fields are allowed to evolve. This soft side boundary is necessary to simultaneously achieve

both the transverse magnetic confinement and the free escape of photons at the side. The

width of the vacuum region is set to be 10% of the domain size. The initial velocity in

this region is set to be 0. The magnetic and radiation intensity fields are initially set the

same as in the active accretion column region. More details about this effective boundary

condition can be found in section 3.1.4.

The hard boundary conditions of the simulation domain are similar to the Cartesian
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columns (see chapter 3) except the central boundary, where the polar wedge boundary

condition (Stone et al. 2020) is adopted for both gas and radiation. This enforces the

axisymmetric constraint of no velocity, magnetic field, or radiation flow through the pole.

Note that the computation in spherical polar coordinates can have numerical problems

from the geometric terms when the polar region is highly resolved. For example, the

problem can arise from the subtraction of similar numbers in the geometric terms if the

interval between adjacent polar angles is too small. This can lead to inaccurate outcomes

when computing the surface flux from the variable reconstruction at the cell face near the

polar region. Therefore, we lower the order of the reconstruction near the polar region

to avoid this numerical effect.

The bottom hard boundary condition of the simulation domain is reflective for both

gas and radiation, and enforces the same magnetic field as the initial condition. The

outer side boundary conditions of the gas and magnetic field are set to be reflective

as well but the radiation uses a vacuum boundary condition so that it can escape (see

section 2.2.2). At the top, the cold gas (5× 106 K) is set to free fall from the boundary

within the active accretion column region with its density (R⋆/rc)
3/2ρacc at downward

radial velocity −(R⋆/rc)
1/2vff , while the radiation intensity field is set to be isotropic and

in LTE with the gas in the comoving frame. Outside the accretion column region, the

top boundary condition above the vacuum region is simply set to be outflow for the gas

(see section 2.2.2) and vacuum for the radiation. The magnetic field at the top of the

domain is fixed as in the initial condition.

Simulation Parameters

We simulated four accretion columns in a split-monopole magnetic field with various

widths and accretion rates, plus an extra two for a resolution study. Parameters for

these simulations are listed in Table 5.1. We take Version 0 as our fiducial simulation
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Version Name Mesh rc θc R⋆∆θ ϵ ρacc Accretion Rate Total Time
(R⋆) (cm) (10−4 g cm−3) (1016 g s−1) (tsim)

0 (Fiducial) Narrow-500 7040× 256 2.5 0.03 130 500 23.00 12.54 2651
1 Narrow-50 4544× 256 1.8 0.03 130 50 2.30 1.25 2651
2 Wide-50 5504× 512 6.0 0.15 326 50 2.30 31.28 3535
3 Wide-20 4224× 512 4.0 0.15 326 20 0.92 12.51 1768
4 Narrow-500-MR 3520× 128 2.5 0.03 260 500 23.00 12.54 884
5 Narrow-500-LR 1728× 64 2.5 0.03 521 500 23.00 12.54 884

Table 5.1: Global parameters used to set up our six accretion column simulations.
The first four simulations aim to explore the dynamical dependence on the global
parameters (i.e. accretion rates and column widths), and the last two simulations
are a resolution study of the fiducial simulation. Note that what we are calling wide
column simulations still have a small opening angle (0.15 radians, much less than
unity).

and set up Version 1 by decreasing the accretion rate by a factor of 10. We also set up

two accretion column simulations 3× wider than the fiducial column, where the first one

(Version 2) has the same ϵ and the second one (Version 3) decreases the accretion rate

by a factor of 2.5. We lower the resolution by a factor of 2.5 for the two wide column

simulations due to the high computational cost. Besides these four simulations exploring

the parameter space of column width and accretion rate, we also conduct a resolution

study by decreasing the resolution by factor of 2 and 4 with respect to the fiducial version.

In this chapter, we perform our analysis of the simulation output data dumps with the

time resolution tsim = 2.8× 10−6 s.

5.2 Results

We focus our discussion here on the results of our fiducial simulation, which shares

many properties with the other simulations. We comment where necessary how the global

parameters of column width and accretion rate affect the results of our other simulations.

In section 5.2.1, we describe how the accretion column is built up by forming a sinking

zone under the accretion shock. In section 5.2.2, we discuss the oscillatory behavior

of the accretion column in detail. In section 5.2.3, we present the light curves of all
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the simulations and discuss how the shock oscillation affects the emergent radiation by

showing their variability power spectra. In section 5.2.4, we compare the time-averaged

profiles with the 1D stationary model incorporating different shapes of the sinking zone.

In section 5.2.5, we examine the energetics of the accretion column, and show how radial

advection competes with pdV work in providing thermal pressure support of the accretion

column. In section 5.2.6, we identify the entropy wave existing in the sinking zone and

conduct a resolution study of the fiducial simulation. A set of movies of various quantities

in our four high-resolution simulations is available online at this YouTube link2.

5.2.1 Build-up of Column

All the simulations are initialized with only the cold gas free-falling onto the neutron

star, where the gas can reach speeds at the stellar surface of up to ∼ 0.64c (Γ = 1.31).

This gas is immediately halted by the rigid neutron star surface and forms a shock that

releases much of its kinetic energy into radiation. A portion of the radiation directly

escapes sideways, and the rest propagates upward and interacts with the incoming ac-

cretion flow. Note that radiation diffusion into the neutron star is negligible because

the diffusion time scale below the stellar surface is much longer than the cooling time

scale of the column itself. At the high accretion rates we adopt here, the radiation pres-

sure support exceeds the ram pressure and the gravity of the downward gas flow and

therefore pushes the shock away from the stellar surface as shown in the left four pan-

els of Figure 5.2. The shock front keeps rising until an equilibrium is roughly achieved

among radiation pressure support, ram pressure, and gravity. Hence, a radiation pres-

sure dominated region below the shock front is naturally formed as Basko & Sunyaev

(1976) predicted, which we call the ‘sinking zone’. This region is thoroughly confined by

the magnetic field, with the highest plasma beta (thermal pressure/magnetic pressure)

2https://youtube.com/playlist?list=PLbQOoEY0CFpWubAItXtHIIRdGhlBuftch
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Figure 5.2: 2D density profiles during the column build-up epoch of the fiducial sim-
ulation. These five snapshots illustrate how the column is built up from the cold
accretion flow. After the column structure is established at ≃ 70tsim, the accretion
column soon enters into a long-lived, oscillatory phase.

occurring at the base of the sinking zone, and ranging from 0.03 to 0.08 for the different

simulations.

While the shock is elevating and the sinking zone is being established, a wave is

generated at the outer part of the column and then propagates towards the center as

shown beginning at t = 35tsim (the second panel in Figure 5.2). As we discuss below in

section 5.2.6, this is the entropy wave associated with the slow-diffusion photon bubble

instability (Arons 1992; Appendix A). This entropy wave is periodically excited as shown

in the snapshot at t = 55tsim (the third panel in Figure 5.2), and a lateral structure

consisting of radial fingers forms that resembles what we observed in the Cartesian column

simulations (see version 2 in section 3.2.1). The height of each ‘finger’ increases towards

the center of the column and these ‘fingers’ build up a mound-shaped column structure.

The generation of these entropy waves persists through all our simulations, propagating

from the outermost parts of the column inward to the polar axis. Recall that the gas is

magnetically constrained to move only radially along the field lines as the finger-shaped

structures oscillate up and down. Therefore, the wave pattern that propagates inwards is

entirely driven by the phase differences of the oscillations at different transverse locations.
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As the waves reach the polar axis, they merge with the finger-shaped structure there that

oscillates up and down (see t = 70tsim and t = 120tsim in Figure 5.2).

5.2.2 High-Frequency Oscillatory Behavior

After the accretion column finishes the build-up of the sinking zone, it starts to os-

cillate at high frequency (≳kHz) and this oscillation persists through the end of the

simulation. The physical origin of this oscillation is similar to what we found in our pre-

vious Cartesian simulations: it is caused by the instantaneous imbalance between global

heating and cooling due to inefficient radial energy transport. Indeed, if we estimate

twice the cooling time using the same method as in section 3.2.3 (i.e. assuming that the

contraction and expansion of the accretion column take approximately the same amount

of time), we find a value of ∼ 0.5 µs, comparable to the period measured from the sim-

ulation (∼ 0.2 µs). Note that we do not see any evidence of the formation of pre-shocks

in our split monopole simulations, in contrast to the Cartesian simulations of chapter 3

where pre-shocks formed in the free-fall region and then fell onto the sinking zone.

Both the oscillation amplitude and frequency show considerable variation with trans-

verse location in the column. This is evident from Figure 5.3, which shows the shock

height (rsh) at different transverse positions as a function of time. Note that the shock

oscillations are quite coherent at any particular transverse location. The oscillation am-

plitude is highest, and the frequency is lowest, at the center (polar axis) of the column.

In Figure 5.4, we present 2D density profiles over a time span equal to the oscillation

period at the center of the column in the fiducial simulation. The physical reason for the

transverse variation in oscillation frequency is that the closer one is to the polar axis, the

longer it takes for radiation to diffuse outward in the transverse direction. This implies a

longer time scale for the system to respond to heating or cooling closer to the polar axis.

135



5.2 Results Chapter 5

0 500 1000 1500 2000 2500
t (2.83 × 10 6 s)

1.0

1.1

1.2

1.3

1.4

r s
h

(1
06

cm
)

= 0.000 = 0.013 = 0.021 = 0.030

Radial Oscillation of Shock Front

Figure 5.3: Oscillation of the shock fronts at different transverse positions in the
fiducial simulation. The shock oscillation amplitude increases, and the frequency
decreases, towards the polar axis of the column. The shaded region indicates the
range of the shock oscillation amplitude from the polar axis to the outer edge of the
accretion column. The five black dots refer to the snapshots in Figure 5.2 and the five
black stars represent the snapshots in Figure 5.4.

Figure 5.4: 2D density profiles over one polar axis oscillation period of the accretion
column for the fiducial simulation.

In Figure 5.5 and Figure 5.6, we present 2D profiles of other quantities at the max-

imum (t = 1887tsim) and minimum (t = 1913tsim) heights of the oscillation at the polar

axis. The finger-shaped pattern is prominent in the radial velocity (vr, see the upper

left panels in Figure 5.5 and Figure 5.6), with the gas in adjacent finger-shaped regions

136



5.2 Results Chapter 5

Figure 5.5: 2D profiles of six quantities in the fiducial simulation when the accretion
column is mostly extended at t = 1887tsim (see the first panel of Figure 5.4).

Figure 5.6: 2D profiles of six quantities in the fiducial simulation when the accretion
column is mostly compressed at t = 1913tsim (see the middle panel of Figure 5.4).
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moving in opposite directions. As we discuss in detail in section 5.2.6, this propagating

wave pattern toward the polar axis is a manifestation of the entropy modes that are

associated with the slow-diffusion photon bubble instability.

The sound speed (cs) is dominated by radiation pressure and is mildly relativistic

(∼ 0.1c, see upper second panels in Figure 5.5 and Figure 5.6) in the sinking zone during

the oscillation. This is in general faster than the magnitude of the gas velocity (∼ 0.01c),

so that the oscillations are nearly hydrostatic, except during outward moving phases

along the polar axis where the radial speed can slightly exceed the sound speed. This

agrees with the fact that the net radial acceleration is only tens of percents of the local

gravitational acceleration throughout most of the sinking zone (see the lower right panels

in Figure 5.5 and Figure 5.6). The radiation diffusion Mach number (M0) refers to the

ratio of the radiation diffusion speed c/τ (where τ is the optical depth over a pressure

scale height) to the sound speed (A.4). As shown in the upper third panels in Figure 5.5

and Figure 5.6, M0 is small everywhere in the sinking zone, indicating that the radiation

diffuses much more slowly (∼ 10−4c) compared with the sound speed (as well as the

gas velocity). Hence, the sinking zone is always in the slow-diffusion regime during the

oscillation.

During the oscillation, the radial component of lab-frame radiation flux (Fr) is dom-

inated by the advection and therefore its direction is the same as the gas radial velocity,

while the transverse component indicates the sideways cooling process (see the lower

middle panels in Figure 5.5 and Figure 5.6). When the finger-shaped structure is most

elongated, cooling of the accretion column becomes most efficient due to the maximum

sideways cooling area. Global cooling exceeds heating at this time, and the column

therefore loses radiation pressure support against gravity and thus collapses. When the

column is at its minimum height, the sideways cooling area of the sinking zone is the

smallest, and heating then exceeds the sideways cooling, leading to the column structure
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expanding radially outward again. Because the over-cooling of the innermost region is

usually stronger at maximum radial extent than the over-heating at minimum radial ex-

tent, the innermost finger structure of the accretion column always collapses faster than

its expansion.

5.2.3 Luminosity Variation

The oscillatory behavior of the accretion column produces variability in the emergent

radiation in all our simulations, as illustrated in Figure 5.7. Various parameters measured
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Figure 5.7: Light curves of all six accretion column simulations which have different
accretion rates, different column widths, and/or different resolution.

from these light curves are listed in Table 5.2. These include the time-averaged luminosity

⟨L⟩ as well as the time-averaged apparent luminosity ⟨Liso⟩ that an observer might infer

from seeing only one accretion column at one magnetic pole. For the latter we measured

the side area of the cone enclosing the edge of the accretion column, up to a height that

captures 99 percent of the emitted luminosity in the time-average. We then enhanced

⟨L⟩ by the ratio of the surface area of the neutron star to this area. Table 5.2 also lists

the standard deviation of the luminosity σ(L) scaled with that mean, which is positively
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Version Name ⟨L⟩ ⟨Liso⟩ σ(L)/ ⟨L⟩ fpeak fbreak
(1037 erg s−1) (1039 erg s−1) (%) (kHz) (kHz)

0 (Fiducial) Narrow-500 1.31 3.27 6.28 5.86 9.66
1 Narrow-50 0.19 0.57 19.28 10.35 15.87
2 Wide-50 3.02 0.30 12.67 2.00 6.19
3 Wide-20 1.85 0.11 19.74 3.45 6.55
4 Narrow-500-MR 1.32 4.09 3.90 6.08 11.05
5 Narrow-500-LR 1.31 4.41 2.92 6.89 22.06

Table 5.2: Parameters of the light curves for all six simulations.

correlated across our simulations with the oscillation amplitude of the accretion shock

on the polar axis.

All of our light curves exhibit quasi-periodic oscillations (QPOs), and we include their

frequencies fpeak in Table 5.2. These frequencies range from ∼2 to 10 kHz, depending on

the simulation parameters. Increasing the accretion rate at fixed column width generally

results in smaller fractional variability and lower QPO frequencies (compare versions 0

to 1, and versions 2 to 3). As we discussed in section 3.2.3, the oscillations are driven by

a mismatch between the ability to distribute accretion energy radially in the column and

the cooling at each height. Higher accretion rate generally results in a taller column so

that it takes longer for radial advection in the sinking flow to distribute energy from the

shock downward, resulting in lower frequencies in the oscillation. As we discuss in more

detail below in section 5.2.5, pdV work by the sinking flow also becomes more important

and provides a local source of energy to balance the cooling, so that the oscillation

amplitude is reduced. Increasing the column width at fixed effective Eddington ratio

reduces the fractional variability and decreases the QPO frequency (compare versions 1

and 2). Because the transverse diffusion time is longer in a wider column, cooling is less

efficient, partially alleviating the mismatch and reducing the amplitude of the oscillation.

The longer cooling time also results in a longer oscillation period.

Figure 5.8 shows a power spectrum of the light curve of the fiducial simulation, as
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Figure 5.8: Power spectra of the light curve and shock oscillation height at various
transverse locations in the fiducial simulation. The power spectra are calculated using
Welch’s method with a Hann window function, a segment length of 2.9 ms, and a
sampling interval of tsim. These two plots suggest that the light variation arises from
the shock oscillations, where the light curve is dominated by the shock oscillation in
the innermost region.

well as a power spectrum of the shock height at various transverse locations. The QPO in

the luminosity power spectrum consists of a peak together with an asymmetric shoulder

extending to a higher frequency fbreak. All our simulations exhibit this characteristic

QPO shape, and we also list the values of fbreak in Table 5.2. The reason for this

breadth in frequency space is that the shock height oscillates with different amplitudes

and frequencies depending on the transverse location within the accretion column (recall

Figure 5.3). The shock height at the polar axis center of the column oscillates with the

highest amplitude and lowest frequency, and this produces the main peak fpeak in the light
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curve power spectrum, particularly as the high amplitude results in a large oscillating

sideways emitting area. The higher frequency, smaller amplitude shock oscillations away

from the polar axis contribute to the high frequency shoulder in the light curve power

spectrum, with fbreak corresponding to the shock oscillation frequency at the outer edge of

the column. As is evident from Table 5.2, wider columns show larger values of fbreak/fpeak,

and therefore broader high frequency shoulders in log frequency space.

5.2.4 Time-averaged Profiles

The accretion column is highly dynamical, but its short oscillation time scale (≲1 ms)

may make it challenging to detect with existing observational facilities. Virtually all

observational studies of accreting neutron stars average over longer time scales. Here we

therefore time-average our simulations in order to make contact with such observations.

Figure 5.9 shows 2D time-averaged profiles of various quantities in the fiducial simulation.

Figure 5.9: Time-averaged 2D profiles of density, mass-weighted radial velocity, co-
moving energy density, lab frame radiation flux, and mass-weighted radial acceleration
in the fiducial simulation. The shock structure and entropy wave are smeared out by
the time average.

The jump in density and other quantities associated with the oscillating shock front

has been smoothed out, as has radial finger structures associated with the propagating

entropy waves. The latter is in contrast to what we found in the time-averaged profiles

of the Cartesian simulations (see Figure 3.15, where the pre-shock disturbed the entropy
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wave in the sinking zone, causing it to leave residual vertical striations in the time average.

As shown in the first and third panels of Figure 5.9, the gas density and the radia-

tion internal energy in the sinking zone increase exponentially inward towards the stellar

surface. Despite the fact that the gas below the shock front oscillates along the magnetic

field lines, the second panel of Figure 5.9 shows that the time-averaged, mass-weighted

velocity away from the polar axis is small and downward, consistent with the physical

picture of Basko & Sunyaev (1976) and with the overall sinking flow of accreting mat-

ter. Note, however, that gas in the lower part of the central polar axis region is moving

outward in the time average, because the collapse is faster than the expansion of the in-

nermost finger structure. The sinking zone achieves approximate hydrostatic equilibrium

in its time average, as indicated by the nearly zero mass-weighted radial acceleration in

the last panel of Figure 5.9. Even though the comoving radiation flux must be upward

in the sinking zone to provide support against gravity, the lab-frame radiation flux away

from the polar axis is still downward, as shown in the second to last panel of Figure 5.9.

Hence, the downward advection must be dominant over the upward radial diffusion and

this transports the heat from the shock front to the bottom of the column.

In chapter 3, we found that the time-averaged mound shape of the shock front has

a higher cooling efficiency compared to the assumed top-hat geometry in the one-zone

model of Basko & Sunyaev (1976). Here, we attempt a comparison of our 2D simulation

results with the approximate 1D stationary solution. We do this by numerically inte-

grating the column profiles at the polar axis θ = 0 starting above the shock and going

inward to the stellar surface by using the 1D stationary model equations. We adopt

the time-averaged radial profile from the simulation in the free-fall zone, and then inte-

grate the 1D equations inward starting from r = 1.5R⋆ (the point at which the density

starts to increase because of the smoothed-out, oscillating shock). In order to explore

how the mound shape geometry influences the trend of the profiles, we also introduce
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a shape function that approximately accounts for the mound shape of the shock front.

The details of the formulation can be found in appendix A of Zhang et al. (2023).

We adopt four different shape functions, which are shown on top of the time-averaged

density in the fiducial simulation in Figure 5.10. The cyan dot-dot-dashed line refers to

Figure 5.10: Comparison between the time-averaged density profile and the 1D sta-
tionary model using different shapes of the sinking zone. In the left panel, the curves
in various line styles and colors represent different assumed shapes for the sinking–
zone integration. In the right panel, the black solid curve is the simulation data, while
other curves represent the integrated results from the 1D stationary model using the
corresponding shape functions as shown in the left panel. The α = 0.40 shape function
is closest to the simulated 2D shape in the left panel, consistent with the fact that the
corresponding 1D stationary solution is closest to the radial profile of the simulation
data along the polar axis in the right panel.

the top-hat shape. Green dot-dashed, orange dashed, and red dotted lines corresponds to

different values of the geometric index parameter α in equation A2 of Zhang et al. (2023):

α = 0.8, 0.4, 0.25, respectively, where larger α values approach the top-hat shape. In the

right panel of Figure 5.10, we present the integrated results using these different shape

functions, and compare them to the time-averaged simulated radial density profile at

θ = 0 (black solid line). The more top-hat shapes at high values of α have more laterally

distributed density, which tends to result in slower transverse radiative diffusion. Thermal

equilibrium therefore forces them to have lower densities in the column compared to the

shapes with small values of α. A value of α = 0.40 (orange dashed line) produces a mound
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shape that closely resembles that of the time-averaged simulated density profile, and the

1D radial profile is reasonably consistent with that of the simulation along the polar axis.

A top-hat geometry always overestimates the shock height because it underestimates the

cooling efficiency.

Note that the net radial acceleration in the sinking zone is nearly zero in the time

average (see the last panel of Figure 5.9), while the instantaneous radiation pressure

support can exceed the local Eddington limit in certain locations (see e.g. the last panels

of Figure 5.5 or Figure 5.6). This super-Eddington comoving radial flux is enabled by the

density inhomogeneities within the accretion column, where the flux is larger in the lower

density finger-shaped channels (Begelman 2001; Shaviv 1998). To properly measure this

effect, we define the porosity as:

P(r, t) ≡
⟨ρκ⟩

〈
|F̄r,r|

〉〈
ρκ|F̄r,r|

〉 , (5.4)

where F̄r,r is the radial comoving radiation flux, and κ is the flux mean opacity, which

in our simulations is dominated by Thomson opacity. The angle bracket represents a

spatial average in the polar direction, which we do in two ways: from the polar axis to

the accretion shock or last confining field line, whichever comes first (i.e. just from the

actual sinking zone), or from the polar axis to the last confining field line, even if this

includes the free-fall region. The latter would be appropriate for 1D models that assume

a top hat geometry rather than the actual mound shape of the time-averaged column

structure. In Figure 5.11, we display the time-averaged porosities computed in both

ways as a function of radial position, for all four of our high-resolution simulations. We

generally find the porosity to be greater than unity in the sinking zone, consistent with

super-Eddington radial fluxes. Note, however, for the fiducial simulation, the porosity as

computed just from the sinking zone is near unity at almost all radii, which explains why
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Figure 5.11: Time-averaged porosity as a function of radial position measured in our
two narrow column simulations (left) and our two wide column simulations (right).
Solid curves show averages of the porosity below the instantaneous position of the
shock, i.e. the transverse average at a particular radius and time extends from the
polar axis to the portion of the shock which has that radius, or to the edge of the
column. Dashed curves show the porosity calculated from transverse averages from the
polar axis to the edge of the outermost confining field line. This can include portions
of the free-fall region, but is the appropriate measure to use for 1D models with top
hat column shapes. The porosity is greater than unity throughout the sinking zone in
all cases, indicating super-Eddington radial fluxes. Note that for Wide-20, we smooth
the curve to remove the artificial discontinuities arising from finite time sampling over
a relatively large amplitude oscillation.

a simple hydrostatic model with the correct time-averaged mound shape produces a radial

density profile that agrees with the simulation data (the α = 0.4 case in Figure 5.10).

These porosity profiles could in principle be used to improve 1D models of accretion

columns.

5.2.5 Energetics of Accretion Columns

The structure of the accretion column is very sensitive to the balance between its

heating and cooling processes, and we analyze these in detail here, focusing on the sinking

zone. Recall that the gas in the sinking zone moves much more slowly than the speed

of light, so we can examine the rate of change of energy terms in the Newtonian regime.

These are, respectively, advection, pdV work, transverse radiation diffusion, and radial
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radiation diffusion, and are defined as follows:

Ėadvc = −
∮ (

Pg

γ − 1
+ Ēr

)
vrdAr , (5.5a)

ĖpdV = −
∫ (

Pg + P̄r

) ∂
∂r

(
r2vr

)
dV , (5.5b)

Ėdiff,θ = −
∮
F̄r,θdAθ , (5.5c)

Ėdiff,r = −
∮
F̄r,rdAr . (5.5d)

Here P̄r is the comoving radiation pressure and F̄r,θ refers to the transverse comoving

radiation flux. dAr and dAθ refer to the differential area elements in the radial and

polar directions, respectively. The quantity dV is the volume element in spherical polar

coordinates. More detail on how we compute these quantities can be found in appendix B

of Zhang et al. (2023).

In Figure 5.12, we analyze the energetics inside the sinking zone of the fiducial sim-

ulation as a function of time. As shown in the upper panel of Figure 5.12, both the

advection process and the pdV work contribute to increasing the internal energy of the

system. Sideways diffusion of radiation is the dominant cooling process, and the emer-

gent radiation is therefore in the fan-beam pattern. As shown in the lower panel of

Figure 5.12, the overall heating and cooling roughly reaches thermal equilibrium.

In our Cartesian simulations in chapter 3, the accretion rates were moderate and the

shock heights were much lower than here. We found in those cases that the advection

process always dominated over the pdV work in increasing the internal energy. Our

simulations in this chapter develop taller column structures in spherical polar geometry

at higher accretion rates. The convergence of the magnetic confinement over a larger

radial range results in a pdV work that is now comparable and sometimes larger than

the advection, which is more consistent with the physical picture described in the 1D

147



5.2 Results Chapter 5

0 500 1000 1500 2000 2500

t (2.83 × 10 6 s)

1.0

1.5

2.0

2.5

E
ne

rg
y 

Te
rm

s 
(1

e3
7 

er
g

s
1 )

(EpdV + Eadvc) (Ediff, + Ediff, r)
0.0

0.5

1.0

1.5

Eadvc EpdV Ediff, Ediff, r

Energetics of Fiducial Simulation

Figure 5.12: Energetics of the sinking zone in the fiducial simulation. In the upper
panel, the major cooling mechanism of the accretion column is the sideways radiation
emission (blue curve), which completely dominates the emission in the radial direction
(cyan curve). Internal energy input comes from both advection (gold curve) and pdV
work (red curve). The lower panel shows that all the heating and cooling terms achieve
an approximate thermal equilibrium. Note that we have smoothed the curves by box
car time-averaging the data over 4tsim (∼ 10−5 s) in order to remove variability on
time scales much shorter than the oscillation time scale of the column.

stationary model by Basko & Sunyaev (1976). The ratio of time-averaged pdV work to

advection
〈
ĖpdV

〉
t
/
〈
Ėadvc

〉
t
is 1.17 in the fiducial simulation. Version 1 has the same

column width, but ten times less accretion rate and therefore a shorter column, so this

ratio is reduced to 0.64. For the wider column simulation Version 2, which has the same

area-weighted accretion rate, this ratio increases to 3.84. Reduction of the accretion rate

of this wide column (Version 3) again decreases the ratio, in this case to 1.66.

The competition between radiative advection and pdV work in supplying internal

energy to balance cooling is important because it relates to the mechanism that drives

the overall radial oscillations of the column structure. In the short column, Cartesian
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simulations we presented in chapter 3, pdV work was negligible and radiation advection

brought energy inward from the shock front to balance cooling. However, this balance

was not achievable in a time-steady configuration, resulting in oscillations between phases

where the column was tall and cooling exceeded heating, to phases where the column

was short and heating exceeded cooling. The presence of significant pdV work in the

simulations of this chapter can provide a more local mechanism to balance cooling, just

as in the original 1D stationary model of Basko & Sunyaev (1976). Figure 5.13 shows

Figure 5.13: 2D distribution of the rate of change of internal energy due to radial
advection (left) and pdV work (middle left), and their ratio (middle right). The
right-most panel shows the fraction of time a given point likes below the radially
oscillating shock front.

the time-averaged 2D structure of advection and pdV work, as well as their ratio. In the

time average, the pdV work dominates the radiation advection except at the top, on the

polar axis, and near the neutron star surface.

The advection dominated region near the shock originates from the shock oscillation,

which is proved generating most of the light variation in section 5.2.3. The right-most

panel of Figure 5.13 shows the fraction of time during the shock oscillation that a par-

ticular point in space is below the accretion shock (i.e. 1 implies that the point is always

below the shock front and 0 implies that the region is always radially outside the shock

front). It is particularly noteworthy that radiation advection dominates the rate of in-

crease of internal energy precisely in the region where the shock is oscillating. This
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strongly suggests that the oscillation that is responsible for the variations in the light

curve in section 5.2.3 originates from exactly the same mechanism that we identified in

section 3.2.3.

In the bottom region, the pdV work does not produce sufficient heat to support the

base of the column and the advection must then be driven to transport the extra heat to

the bottom, which is also indicated by the downward time-averaged lab-frame radiation

flux (see the fourth panel of Figure 5.9).

Note from the first and second panels of Figure 5.13 that both the pdV work and the

radiation advection along the polar axis below the shock oscillation region are cooling,

not heating, in the time-average. This is again related to the fact that the time-averaged,

mass-weighted velocity near the lower polar region is outward, not inward (see second

panel of Figure 5.9). This also exacerbates the inability of the column to achieve a balance

between heating and cooling, and may be a contributing factor to why the central finger

structure along the polar axis has the largest oscillation amplitude.

5.2.6 Entropy Wave and Resolution Study

As we noted above in section 5.2.1, the wave pattern that propagates inward toward

the polar axis strongly resembles a similar wave pattern that developed in our Cartesian

simulations in chapter 3. Because those simulations started with an initial condition

consisting of an accretion column, we were able to show that the wave pattern resulted

from the growth of the slow diffusion photon bubble instability (an unstable entropy

mode). Here, since the accretion column is built up dynamically from a free-fall flow in

our new simulations, there is no steady background state in which to identify the growth

of the unstable entropy mode.

However, deep in the column, the wave amplitude is relatively small and arguably
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t/tsim 400 890 1500 2160 2510
→520 →1010 →1620 →2270 →2630

vp,sim/c 1.88e-3 2.14e-3 2.21e-3 2.30e-3 2.22e-3
vp,exp/c 1.91e-3 1.98e-3 2.07e-3 2.03e-3 2.14e-3

Table 5.3: Comparison between the measured phase velocity and the theoretically
expected phase velocity of the entropy wave in five different epochs of the fiducial
simulation. The simulation measurements are highly consistent with the expectation
from the linear theory.

in the linear regime, and in the fiducial simulation it has short enough wavelengths to

be in the WKB regime. We can therefore measure its phase velocity in the simulation

vp,sim, and compare it to the expected value vp,exp from the linear dispersion relation for

the slow diffusion photon bubble instability (Arons 1992; A.11). We measure the phase

velocity in multiple epochs of the fiducial simulation by tracking a selected wave front

propagating inward from the side toward the polar axis. For the expected phase velocity,

we solve the dispersion relation by first adopting a background state corresponding to

the time average of the epochs over which we measure the simulated phase velocity.

We did this by selecting the mode that had the maximum linear growth rate at the

measured wavelength. More detail about the measurement and calculation can be found

in appendix C of Zhang et al. (2023). The results are summarized in the Table 5.3,

where the simulation measurements and the theoretical expectations are very consistent.

This result is robust because there is no other characteristic speed near this regime. The

sound speed is ∼ 0.1c and the radiation diffusion speed is ∼ 10−4c. Therefore, the wave

patterns that we observe in the simulation are indeed the entropy mode.

Note that the local entropy wave dispersion relation that we use to calculate the phase

velocity assumes a background with no transverse spatial variation, and therefore does

not distinguish inward from outward transverse propagation. We only observe inward

transverse propagation from the sides to the center, and this is due to the fact that the

sinking zone is mound-shaped, i.e. it is shorter on the sides than at the center. Consider
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an outward radial motion of the side of the column. This provides more shielding of

the material immediately on the inside, reducing its sideways cooling, and causing it to

expand radially in response as it overheats. This in turn shields material further inward,

causing it to expand radially. Similarly, an inward radial oscillation at the sides provides

less shielding of material on the inside, enhancing the sideways cooling and causing that

material to contract radially. All of this leads to inward propagation of the entropy wave.

Outward propagation does not occur because a radial expansion or contraction of the

taller inner material has negligible effect on the shielding of the shorter material further

out.

Another characteristic of the entropy wave is its resolution dependence, as a higher

resolution can result in a faster growing mode at the shorter resolved wavelength until

the radiation viscous length scale is reached (see section 2.3.3 and section A.2). We have

performed a resolution study on the fiducial simulation by running two additional simula-

tions with decreased resolution by factors of 2 (Version 4) and 4 (Version 5). The results

resemble what we found in a similar resolution study in chapter 3 (see section 3.2.4). As

shown in Figure 5.14, the number of fingers decreases by the same factor as the decrease

in resolution, and the shape of the column becomes less peaked toward the polar axis.

Despite these changes with resolution, the global oscillation frequency remains roughly

the same, only slightly increasing with decreasing resolution (Table 5.2). This robustness

of the frequency with resolution is similar to what we found in the Cartesian simulations

in chapter 3. What increase in frequency is present appears to be due to a smaller os-

cillating region after losing the finger-shaped structure, and the fact that the presence

of fingers decreases the overall cooling efficiency of the column. In chapter 3, the de-

pendence of the cooling on the horizontal shape of the Cartesian column is less sensitive

than in an axisymmetric column. Having more resolved fingers in the Cartesian geom-

etry therefore does not affect the cooling as much as it does here in the axisymmetric
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Figure 5.14: Snapshots of the density structure at t = 884tsim in our narrow column
simulations at different resolutions from high (left) to low (right).

geometry. Even with this increased sensitivity, the oscillation frequency depends only

weakly on resolution.

5.3 Discussion

5.3.1 Numerical Caveats

There exist some numerical caveats in our simulations. We discuss them in detail

here.

Geometric Dilution and Resolution

The spherical polar coordinate grid that we use here has decreasing resolution with

radius, and this might affect the growth and propagation of the entropy waves at different

altitudes. As shown in chapter 2, the slow-diffusion photon bubble instability that arises

from the entropy wave grows faster at shorter wavelengths, until the radiation viscous

length scale is resolved. The viscous length scale in the sinking zone of the fiducial
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simulation ranges from ∼ 400 cm at the stellar surface to ∼ 2000 cm at r = 1.2R⋆, and

requires at least ∼ 50 grid cells to resolve. So in fact our grid is closest to the viscous

length scale at larger radii.

Bottom Boundary Condition

Recall that we adopt an effective bottom boundary that mocks up the neutron star

surface layer. In our simulations, the neutron star surface is heated via Compton scatter-

ing by energetic photons generated inside the sinking zone. In reality, such heat should

flow into the neutron star and establish a thermal equilibrium with the accretion column.

However, since we adopt a reflective boundary condition below the neutron star surface

layer, the heat accumulates and can eventually lead to an increased temperature of the

bottom layer, which might overheat the simulated accretion column. Thus, we set up

a very thick effective bottom boundary in our simulations so that the heat capacity is

large enough that the temperature increases only very slowly after the sinking zone is

built up. Note that we assume a nondegenerate ideal gas equation of state (EOS) for

the effective bottom boundary, which overestimates the heat capacity and, as we already

stated, underestimates the heat conduction into the neutron star. This can obviously be

further improved by properly treating the thermal properties of the neutron star surface

with the correct EOS (e.g. Negele & Vautherin 1973).

Dependence on the Magnetic Field

As in chapter 3, we adopt a surface magnetic field strength of 1011 G in our sim-

ulations, which is lower than the typical high-mass X-ray binary pulsars (≳ 1012 G).

However, as long as the magnetic field is strong enough to confine the transverse motion

of the gas, it does not alter the dynamics of the accretion column. However, this would

not be true if we accounted for the dependence of opacity on magnetic field strength,
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rather than the simple Thomson opacity that we have assumed here. The photon energy

and polarization-averaged flux-mean opacity can be significantly reduced below Thomson

for temperatures below the cyclotron energy (e.g. Arons 1992). Incorporation of mag-

netic opacity effects can therefore reduce the height of the column, and may significantly

effect its dynamics. These effects will be explored in our future work.

5.3.2 Relationship of Oscillations to the Entropy Waves

In section 5.2.6 we demonstrated that the entropy waves that are present in the

fiducial simulation have phase speeds that are consistent with the linear, slow diffusion

photon bubble instability dispersion relation. However, this does not explain the fre-

quencies of the entropy waves that are actually present. In particular, the frequency of

arrival of successive wave fronts of the entropy wave can at times be remarkably close

to the oscillation frequency of the central finger-shaped structure along the polar axis.

Nevertheless, as we showed in our Cartesian simulations in chapter 3, that oscillation

frequency is determined simply by the overall net cooling time of the column.

In fact, recall from our resolution study in section 5.2.6 that the dominant frequency

of the light curve is only weakly affected by the entropy waves, the small dependence

being due to the effect of these waves on the overall shape of the column, which slightly

alters its cooling rate. At the same time, the different oscillating fingers themselves have

higher frequencies as one moves outward from the center, because they have individual

cooling times that are shorter. A close examination of the arrival frequencies of successive

entropy wave fronts toward the center in the fiducial simulation show that they arrive

with frequencies ranging from 5.76 to 8.46 kHz, close to the QPO frequency: the peak at

fpeak = 5.86 kHz and the edge of the extended plateau fbreak = 9.66 kHz. We therefore

suggest that the entropy waves that are present in the saturated state are in frequency
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resonance with the radial oscillation frequencies of the individual fingers. This is also

consistent with the behavior of the wider column simulations, which have broader QPO

plateaus, and appear to have multiple entropy wave modes that are excited.

5.3.3 Comparison with Previous Works

Our accretion column simulations develop finger-shaped structures (which might be

called ’photon bubbles’) introduced by the unstable entropy waves, which appear to

resemble what Klein & Arons (1989) and Klein et al. (1996), found in their 2D simu-

lations. In particular, they share similar high-frequency oscillatory behavior. Klein &

Arons (1989) and Klein et al. (1996) attributed these oscillations to photon bubbles,

but our resolution studies (section 3.2.4 and section 5.2.6) suggest that the oscillatory

behaviors arise instead from the inability of the column to maintain a stationary balance

between accretion power heating and radiative cooling (see section 3.2.3 in chapter 3

and section 5.2.5). Note that Klein & Arons (1989) observed mergers of their photon

bubbles toward larger spatial structures. We see similar behavior in our wide column

simulations, in that the accretion shock forms wide localized mound shapes, inside of

which the shorter wavelength entropy waves still propagate. We remind the reader that

the spatial scales of the entropy wave are in fact resolution-dependent. However, this has

only a small effect on the QPO frequency.

Kawashima & Ohsuga (2020) have also done simulations of neutron star accretion

columns in monopole geometry. Their initial and boundary conditions differ from ours,

as they start with an extended, uniform mass distribution out of hydrostatic equilibrium

that then free-falls onto the neutron star surface. In their simulations, the flow breaks

up into narrow, dense channels that accrete and surround broad, underdense regions

that undergo radiation pressure-driven outflow. They do not find evidence of a quasi-
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stationary, oscillating structure such as we find. This could be due to the fact that their

accretion luminosity exceeds the global Eddington luminosity of the entire neutron star

by large factors, much larger than the sub-Eddington luminosities of our simulations

here.

Abolmasov & Lipunova (2022) recently reported time-dependent, one-dimensional

simulations of accretion columns in a dipolar magnetic geometry. Intriguingly, they

found that their accretion shocks at the top of the optically thick columns exhibited

radial high frequency oscillations, though in contrast to what we find here, their shock

oscillations were damped with time. Their oscillation period is close to the radial sound

propagation time through the column, whereas our oscillations are nearly hydrostatic.

Hence it appears that they have found a damped acoustic oscillation. The reason why

they did not find the longer time scale thermal oscillation that we have found here may

be due to their 1D approximation. Our column has a changing shape which is overheated

at its most compressed state, then overcooled at its most expanded state because it has

a larger sideways cooling area. This effect of changing shape would not be accounted for

in their 1D model.

In our previous Cartesian simulations (see chapter 3), we purposely limited the ac-

cretion rate so that the column height never became a significant fraction of the neutron

star radius. Here the split monopole magnetic geometry has allowed us to break this

constraint and move to higher luminosities with some realism, although the field does

not diverge as quickly as, say, a more realistic dipole or higher order multipole field.

There are two main physical differences between our previous short-column, Cartesian

simulations and the current, taller and geometrically diluted simulations. First, we find

no prominent pre-shock behavior in the fiducial simulation here, even though pre-shocks

were prominent in the Cartesian simulations. This may be because the density in the

free-fall region decreases more rapidly with radius in the diverging magnetic field, so that
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there is less ram pressure in the free-fall region. On the other hand, simulation Wide-

20 (Version 3) does show occasional shock structures near the polar axis in the free-fall

region.

Second, pdV work was a negligible contribution to increasing internal energy in the

sinking zone of the short Cartesian simulations. Instead, radiation advection was the

dominant source of increasing internal energy, but this transport mechanism downward

from the accretion shock was unable to balance radiative cooling in a stationary fashion,

and this is what drove the oscillations. In the taller simulations here, pdV work plays an

increasingly important role, both with increasing accretion rate and column height. This

is because of the sideways compression that is present in the split monopole geometry,

compared to Cartesian simulations at comparable local Eddington ratios. The latter

fact suggests that it would be even more important in dipole and quadrupole magnetic

field geometries. It is possible that tall accretion columns in more diverging magnetic

field geometries might achieve an equilibrium between pdV work and radiative cooling,

akin to the physical picture in the 1D model of Basko & Sunyaev (1976). However, that

column would still be unstable to the slow-diffusion photon bubble instability. Moreover,

accounting for magnetic opacities will result in shorter columns, and we will explore this

effect in our future work.

Finally, we emphasize again that that the 2D shape of the column determines the

cooling efficiency, and radial profiles of various quantities within the sinking zone depend

sensitively on this. The column also has significant porosity. We have demonstrated in

section 5.2.4 how these effects can in principle be accounted for in 1D models.
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5.3.4 Observational Significance and Future Work

Compared to the Cartesian simulations in chapter 3, we are now in the accretion

regime of many X-ray pulsars and even the low luminosity end of ULXs. These new

simulations are therefore more useful for comparing with observations. In agreement with

the pioneering work of Klein et al. (1996), our new simulations strongly suggest that high

luminosity X-ray pulsars should exhibit high frequency oscillations (2-10 kHz, depending

on parameters). Detection of such high frequencies will likely be challenging with existing

X-ray timing facilities, and indeed has a somewhat checkered history (Jernigan et al. 2000;

Revnivtsev et al. 2015), but we still feel that attempts are worthwhile given how robust

is this physics.

An additional observable effect might be the effects of the changed time-averaged

structure of the column, compared to 1D models, on predicted spectra and polarization.

Our simulations can be post-processed to make such predictions. Note that the bulk

velocities in the column are less than the electron thermal speed by factors of two to one

hundred, with a median value of around ten. We therefore expect thermal Comptoniza-

tion to dominate over bulk Comptonization, and this will enhance the thermalization of

the emergent radiation with the gas temperature.

Finally, there is currently a debate in the ULX community concerning how their

apparent super-Eddington luminosities can be achieved. One way is to have a strong

magnetic field in the neutron star leading to a significant magnetic reduction of opacity.

Such low magnetic opacity can largely reduce the gas-radiation interaction and permit a

much higher accretion rate within the accretion column (Mushtukov et al. 2015). Another

way is to have strong geometric beaming from the surrounding optically thick accretion

flow (Abarca et al. 2021), though this might result in the smearing out of the observed

neutron star spin pulsations (Mushtukov et al. 2021). It will be important to test this
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claim with future numerical simulations that include the more global structure of the

accretion flow.

5.4 Conclusions

We summarize our conclusions as follows:

1. The light curves in all of our simulations display high-frequency (2−10 kHz) QPOs.

These QPOs are dominated in the power spectrum by a peak frequency originat-

ing from the oscillating polar axis region of the accretion column, but include

an extended plateau toward higher frequencies due to the higher frequency shock

oscillations further out from the polar axis. The peak frequency and fractional

amplitude depend on the global parameters of the accretion column, being lower

for higher accretion rates or wider columns.

2. We have confirmed that when the accretion rate is supercritical, a radiation-pressure

dominated sinking zone is formed as predicted by Basko & Sunyaev (1976). In our

simulations, the sinking zone appears to be mound-shaped, which can significantly

affect the cooling efficiency and thus modify the radial structure of the accretion

column. We demonstrate the consistency between the time-averaged profile of the

fiducial simulation and the 1D stationary model provided it accounts for the correct

shape function. Accounting for porosity (which is not that different from unity in

the fiducial simulation) should also improve 1D models. One final effect is that

the oscillations smooth out the shock structure in the time-average, an effect which

cannot be accounted for in 1D models that assume shock jump conditions.

3. In our simulations, the accretion column is mainly cooled by sideways emission of

radiation. This cooling is balanced by increases of internal energy due to pdV work
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and radial radiation advection. The pdV work arises in part from the sideways

compression of the converging magnetic field toward the neutron star surface. Ra-

diation advection originates mostly from the radial oscillations within the column.

When the accretion column is wider or has higher accretion rate, pdV work be-

comes more important compared to advection. We expect that pdV work will be

even more important for dipolar or quadrupolar field geometries.

4. We observe the entropy wave that is associated with the slow-diffusion photon

bubble instability in our simulations. While the properties of this wave depends on

numerical resolution, we confirm that the dominant oscillation frequency depends

only weakly on these properties. This is consistent with what we found in chapter 3.

What effects the entropy wave has on the oscillation are due to the altered mound

shape of the column and resulting change in cooling efficiency.
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Future Plan

Unveiling the nature of radiation pressure dominated accretion is a problem of wide

interest in the physics of luminous accretion-powered sources, such as quasars. The most

extreme examples are ULXs, which are the most super-Eddington of accretion-powered

X-ray sources (> 1039 erg/s). ULXs were generally thought to be powered by accretion

onto an intermediate-mass black hole or a stellar-mass black hole with strongly beamed

radiation. However, the recent discovery of pulsating ULXs (e.g. Bachetti et al. 2014) has

shown that some of ULXs are actually accreting neutron stars. Other sources powered

by accreting neutron stars are X-ray pulsars, which typically accrete at sub-Eddington

rates.

In neutron star accretion, a strong magnetic field anchored in the neutron star trun-

cates the inner accretion disk near the Alfvèn radius (i.e. Region 3 in Figure 6.1). Within

this truncation region, the accreting matter is magnetically constrained and then forms

a curtain-shaped structure on the magnetosphere (i.e. Region 2 in Figure 6.1). Near the

stellar surface, the accretion flow is shocked and radiates the accretion power in the form

of either a hotspot or an accretion column (i.e. Region 1 in Figure 6.1). However, how

a neutron star can accrete in the super-Eddington regime is still not well understood.
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There is a debate about this. One hypothesis is to permit a very high accretion rate by

significantly reducing the opacity in a strong magnetic field up to the magnetar regime

(Mushtukov et al. 2015). An alternative is to produce a strong beaming effect from the

funnel-like accretion flow (Abarca et al. 2021).

Near the neutron star surface, the interaction between the radiation and strongly

magnetized plasma is anisotropic and polarization-dependent. This has been explored

in many 1D stationary models of accretion columns. But our simulation results dis-

cussed above demonstrate that the accretion column is not stationary but oscillates

quasi-periodically. Hence, the 1D stationary models cannot correctly resolve the dynam-

ics or even the time-averaged structure. All of this will affect theoretical expectations

of the variability, spectrum, and polarization that are measured with current or upcom-

ing X-ray space missions. In fact, IXPE have found that the observed polarizations of

two strongly magnetized X-ray pulsars, Her X-1 and Cen X-3 (Doroshenko et al. 2022;

Tsygankov et al. 2022), are far below the predictions of the classical theoretical model.

In order to disclose the underlying physics of the existing observations and further

explore the dynamics of a super-Eddington accretion onto a neutron star, our long-term

plan is to extend our simulations of neutron star accretion to a more global regime. We

plan to conduct a series of simulations for each labeled region in Figure 6.1 to explore

whether or how steady accretion can be achieved. Using one global simulation is nearly

impossible because the dynamics in each region requires different time and length scales

to be resolved. These regions are causally connected inwards by the mass accretion

and the magnetic field, but outwards by radiation feedback. It is therefore preferable to

simulate from inside to outside so that the inner boundary condition can be correctly and

accurately specified from one region to another. We have successfully simulated the most

inner region (i.e. Region 1; see previous chapters for details), but resolving and updating

some technical issues are necessary to begin the simulations of more outwards regions. In
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the following sections, we provide our proposed solutions in detail to the following issues:

1. resolving the gas temperature with the variable inversion scheme using entropy in the

strong magnetic field regime. 2. numerically implementing the dipole coordinates system

for global neutron star accretion. 3. employing a novel numerical approach to solve the

polarized radiative transfer and predict related observables.

Figure 6.1: Schematic diagram that suggests a series of simulations to study super-Ed-
dington accretion onto a neutron star (figure credit: Matthew Middleton). All four
regions with labeled numbers are causally related at different time/length scales. Re-
gion 1 represents the strongly magnetized, radiation pressure dominated column of
plasma, which has already been simulated in pervious chapters. Region 2 refers to the
magnetically confined accretion flow that forms in a curtain-shaped structure along
the magnetosphere. Region 3 is near the Alfvén radius, where the magnetic pressure
is comparable to the ram pressure. Region 4 can be either the wind from the super-
critical disk or the geometrically thin disk further out.

6.1 Variable Inversion with Entropy

The inability to accurately resolve the gas temperature is a common issue in regions

with low density and strong magnetic fields across all of our accretion column simula-

tions. In particular, the unresolved gas temperature can be unphysically high and enter
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into the radiation source term, leading to spurious emission of radiation. In our previous

simulations, we employed multiple ad hoc fixes to ensure the numerical stability. For ex-

ample, we applied a density cut to limit the Compton scattering process, which alleviates

the noise introduced by artificially high temperature of the gas. However, none of those

temporary remedies can robustly and fundamentally solve the problem.

In Appendix C, we demonstrate that the selection of the conservative variables can

significantly alter the performance of the variable inversion in the regime of neutron star

column accretion. The failure of resolving the gas temperature is essentially caused by

the inaccurate conservative variables. In our numerical tests (for details see section C.3),

the variable inversion algorithm in most unphysical regions are actually numerically con-

verged. It turns out that in strong magnetic field regime, any numerical noise in con-

servative density, energy, and magnetic fields can be amplified in the gas pressure by a

large factor (approximately from 106 to 108 in the numerical tests in section C.3). Such

numerical noise can be easily produced by e.g. the truncation errors of the cell-centered

magnetic field, the discretization of the radiation angles, etc.

To address this issue, we propose a direct evaluation of the gas temperature from the

first law of thermodynamics, which naturally avoid the coupling of the gas thermal energy

and the magnetic energy. Therefore, we need to update the total entropy separately using

the entropy equation in addition to the original conservative laws. The detail reasoning

can be found in section C.1. The variable inversion algorithm with the total entropy is

summarized in section C.2, which corrects some typos in Beckwith & Stone (2011). Note

that our approach is not to replace the total energy equation with the entropy equation.

This is because the numerical performance of the total energy equation near the shock

is expected to be inherently better than using the total entropy equation, mainly due

to the jump condition. Instead, we only use the total entropy to fix the unphysical gas

temperature at each time step.
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6.2 Dipole Coordinate System

The gas near a strongly magnetized neutron star is confined to only move along the

field lines. Hence, a dipole coordinate system is more intrinsic in terms of simulating

the gas motion in a strong dipole magnetic field. In dipolar grids, we can guarantee

the high accuracy of the variable inversion to resolve the gas temperature, which is

essential in the neutron star column accretion that is radiation pressure dominated and

has strong magnetic field. Another advantage of the dipole coordinates is to avoid the

numerical truncation errors from the reconstruction of the magnetic field at the cell

center. When the magnetic field lines are not aligned with the grids, such truncation

errors can be significant in the strong magnetic field regime, which can artificially heat

the gas. Therefore, we plan to adopt the dipole coordinate system in the future for more

global simulations. A typical dipole coordinate system (p, q, ϕ) can be summarized in the

spherical coordinates (r, θ, ϕ) as follows

p = −r−2n cosn θ , (6.1a)

q = r−
m
2 sinm θ , (6.1b)

ϕ = ϕ , (6.1c)

where the indices n and m are free parameters to choose. A more general dipole coor-

dinate system can be expressed as

p̃ = Op(p) , (6.2a)

q̃ = Oq(q) , (6.2b)

ϕ = ϕ , (6.2c)
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where the operators Op(p) and Oq(q) require to be invertible and differentiable. The

detail derivation of above dipole coordinate systems (6.1) and (6.2) can be found in

Appendix D. In section 6.2.1, we summarize the operations in dipolar geometry for the

numerical implementation. In section 6.2.2, we briefly discuss how to select a proper

dipole coordinate system for different objectives.

6.2.1 Numerical Implementation of Dipole Coordinate System

In this section, we present a summary of the necessary definitions and operations in

the dipole coordinate system for the numerical implementation. The detail derivations

can be found in section D.3. Since the inverse of dipolar coordinates to spherical coordi-

nates is non-trivial, it is more convenient to express the dipolar operations in spherical

coordinates. However, it is important to note that the actual numerical computation still

updates the conservative quantities in the dipolar basis.

We start with the scale factors of the given dipolar coordinate system (6.1).

hp =
1

|n|
√
1 + 3 cos2 θ

r2n+1

| cos θ|n−1
, (6.3a)

hq =
2

|m|
√
1 + 3 cos2 θ

r
m+2

2

(sin θ)m−1
, (6.3b)

hϕ = r sin θ . (6.3c)

where r(p, q) and θ(p, q) can be solved via a quartic equation (D.15). The analytical

expression for its root that is required for the coordinate transformation is given by Swis-

dak (2006), which has been numerically tested to be stable and accurate in section D.2.
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Here, we summarize the dipole coordinates as a function of spherical coordinates below:

if q ̸= 0 if q = 0

r = uq−
2
m

θ =


arcsinu

1
2 , if p < 0

π − arcsinu
1
2 , if p > 0

ϕ = ϕ



r = |p|−
1
2n

θ =


0 , if p < 0

π , if p > 0

ϕ = ϕ
,

(6.4)

where

u(p, q) =
4U

(1 + U)(1 +
√
2U− 1)

, U =
1

2

(
A2 + AB+ B2

B

) 3
2

,

A =

(
256

27
C
) 1

3

, B =

(
1 +

√
1 +

256

27
C

) 2
3

, (6.5)

C = p
2
n q−

8
m .

The differential area and volume in dipole geometry are

dσpq = hphq dpdq , (6.6a)

dσpϕ = hphϕ dpdϕ , (6.6b)

dσqϕ = hqhϕ dqdϕ , (6.6c)

dτ = hphqhϕ dpdqdϕ . (6.6d)

The area and volume of dipolar grids can then be numerically integrated to specify area-

weighted and volume-weighted variables. To solve the conservation laws, we also need to

specify the geometric source terms, which can be obtained from the explicit form of the
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tensor divergence in the dipole coordinates.

(∇ ·T)p = ∇ · (Tppp̂+ Tqpq̂ + Tϕpϕ̂) + CT1Tpq − CT2Tqq − CT3Tϕϕ , (6.7a)

(∇ ·T)q = ∇ · (Tpqp̂+ Tqqq̂ + Tϕqϕ̂) + CT2Tqp − CT1Tpp − CT4Tϕϕ , (6.7b)

(∇ ·T)ϕ = ∇ · (Tpϕp̂+ Tqϕq̂ + Tϕϕϕ̂) + CT3Tϕp + CT4Tϕq , (6.7c)

where



CT1 =

[
2n

(
cos θ

| cos θ|
− 1

)
−
(
2
cos θ

| cos θ|
+ 1

)
+

6 cos2 θ

1 + 3 cos2 θ

]
|m|
m

sin θ

(1 + 3 cos2 θ)
1
2

1

r

CT2 = 6
|n|
n

cos θ(1 + cos2 θ)

(1 + 3 cos2 θ)
3
2

(
| cos θ|
cos θ

)n−1
1

r

CT3 = 3
|n|
n

(
| cos θ|
cos θ

)n−1
cos θ

(1 + 3 cos2 θ)
1
2

1

r

CT4 =
|m|
m

3 cos2 θ − 1

sin θ(1 + 3 cos2 θ)
1
2

1

r
.

(6.7d)

For the generalized dipolar coordinates (6.2), we just need to replace the scale factors

with

hp̃ = hp/|O′
p| , (6.8a)

hq̃ = hq/|O′
q| . (6.8b)

The divergence of the tensor can be then adjusted as

(∇ ·T)p̃ = ∇ · (Tp̃p̃p̂+ Tq̃p̃q̂ + Tϕp̃ϕ̂) + CqCT1Tp̃q̃ − CpCT2Tq̃q̃ − CpCT3Tϕϕ (6.9a)

(∇ ·T)q̃ = ∇ · (Tp̃q̃p̂+ Tq̃q̃q̂ + Tϕq̃ϕ̂) + CpCT2Tq̃p̃ − CqCT1Tp̃p̃ − CqCT4Tϕϕ (6.9b)

(∇ ·T)ϕ = ∇ · (Tp̃ϕp̂+ Tq̃ϕq̂ + Tϕϕϕ̂) + CT3Tϕp̃ + CT4Tϕq̃ (6.9c)

where Cp = |O′
p|/O′

p and Cq = |O′
q|/O′

q.
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6.2.2 How to Select an Appropriate Dipole Coordinate System

There are many choices of orthogonal dipolar basis (e.g. Kageyama et al. 2006;

Swisdak 2006). All of them can be recovered by our generalized dipolar coordinates (6.2)

given the specific selections of n, m, Op and Oq. In Kageyama et al. (2006), their three

dipole coordinate systems can be recovered by taking

(n,m,Op, Oq) = (1, 2, p, q) =⇒ (µ, χ, ϕ)

(n,m,Op, Oq) =

(
1

2
, 2, p, q

)
=⇒ (µ′, χ, ϕ)

(n,m,Op, Oq) =

(
1, 2,

arcsinh(app)

arcsinh(ap)
, q

)
=⇒ (ψ, χ, ϕ)

,

(6.10)

where ap is a tuning parameter to redistribute the grid spacing of p. The coordinate

systems (µ, χ, ϕ), (µ′, χ, ϕ) and (ψ, χ, ϕ) here are consistent with the definitions used in

Kageyama et al. (2006). The coordinate system used in Swisdak (2006) can be recovered

by taking n = 1, m = −2, Op = −p and Oq = q in our generalized coordinates.

There are many ways to construct orthogonal dipolar basis for different purpose by

selecting suitable n, m, Op and Oq. The principle of tuning these free parameters is to

find a proper grid distribution for the simulation domain. Therefore, we first need to

understand how these parameters and operators change the grid spacing. Given (6.1)

and (6.3), we know where is the singularity and how the grid scale changes as functions

of r and θ, which can be summarized as below:

1. To have a complete domain of 0 < θ < π, (6.1) and (6.3) requires an odd positive

integer n ≤ 1, which forces n = 1. However, there is no such restriction for a

hemisphere, e.g. θ ∈ (0, π/2) or (π/2, π).

2. If θ ∈ {0, π} is included, (6.1) and (6.3) would require 0 < m ≤ 1 and problem has

to be 2D without ϕ because the geometric source terms associated with Tϕϕ would
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blow up according to (6.7).

3. The grid spacing is more concentrated near the pole given larger n and smaller m,

and vice versa.

4. According to (6.2) and (6.8), operators Op and Oq need to be bijective (invertible)

and differentiable. Note that Op and Oq do not need to be smooth everywhere since

they are only required to be differentiable at cell center and faces.

5. Operators Op and Oq serve as the redistribution functions of p and q, respectively.

Since the dipolar grids in general are diluted far from the poles, we usually want Op

and Oq to be steeper near 0 and flatter towards ±∞, such as the ArcSinh function

used in Kageyama et al. (2006).

Here, we provide two examples to illustrate how to select appropriate dipole coordi-

nate systems. Note that we uniformly sample the value of p̃ and q̃ in all the examples.

The first example is a typical accretion column on the northern hemisphere of a neutron

star, where the length unit is in neutron star radius R⋆. The domain of the column is

set via z|θ=0 ∈ [R⋆, 2.5R⋆] and θ|z=R⋆ ∈ [0, 0.25]. We adopt (n,m,Op, Oq) = (1, 2, p, q) as

our fiducial version. We first keep the same n and m and use

Op =
arcsinh(app)

arcsinh(ap)
and Oq =

arcsinh(aqq)

arcsinh(aq)

in sequence, where the tuning parameters are selected as ap = 5× 104 and aq = 5× 102.

As shown in the first row of Figure 6.2, p is redistributed away from the pole by Op and

q is redistributed towards the pole by Oq. Similar grid redistribution can be achieved by

decreasing n and m as illustrated in the second row of Figure 6.2. To understand the

grid distribution, we can check the corresponding scale factors as functions of z|θ=0 and

θ|z=R⋆ as shown in Figure 6.3. To construct more uniform distributed grids, we prefer to
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Figure 6.2: The dipolar grid configurations of the neutron star accretion column using
different selections of (n,m,Op, Oq).

have the curve of the scale factor as flat as possible, which explain why the selections of

(n,m,Op, Oq) =

(
1, 1,

arcsinh(app)

arcsinh(ap)
, q

)
and (n,m,Op, Oq) = (0.25, 1, p, q)

as shown in the last two panels in the third column of Figure 6.2 have more uniform grid

spacing.

The second example is for more global problems, such as a neutron star accretion

curtain. Similar example are also illustrated in Kageyama et al. (2006). The grids are

set by θ ∈ [20◦, 40◦] on the surface of northern hemisphere, follow the dipolar field lines

172



6.2 Dipole Coordinate System Chapter 6

1.00 1.25 1.50 1.75 2.00 2.25 2.50
z| = 0 (R )

100

N
or

m
al

iz
ed

 h
p

n = 1.00, Op = p
n = 0.25, Op = p

n = 1.00, Op =
arcsinh(app)
arcsinh(ap)

0.00 0.05 0.10 0.15 0.20 0.25
|z = R

100

N
or

m
al

iz
ed

 h
q

m = 2, Oq = q
m = 1, Oq = q

m = 2, Oq =
arcsinh(aqq)
arcsinh(aq)

Figure 6.3: The grid scale distribution of the neutron star accretion column. More
flat curve corresponds to more uniform grid distribution along the direction of the
corresponding coordinate.

and end up on the surface of southern hemisphere. Recall that the domain can only be

extended to θ ∈ (0, π/2) when n < 1. If n < 0, p diverges to the negative infinity and

thus we only expand the domain to p = −50 in such case. Similar as the first example,

we adopt (n,m,Op, Oq) = (1, 2, p, q) as our fiducial version. As shown in the first row

of Figure 6.4, when we decrease n to 0.5 while keep others the same, p becomes less

concentrated near the pole. When n is decreased to −0.5, p becomes more concentrated

near the equator (i.e. θ = π/2). In the second row of Figure 6.4, the grid spacing of

q becomes more uniform when we decrease m as expected. However, in this setup, the

main issue of the grid distribution is not in q but p. In the last row of Figure 6.4, we

apply the ArcSinh operators to dilute the grids near the pole as in the first example but

with the tuning parameters ap = aq = 100. Although the redistribution of ArcSinh in q

resembles directly decreasing m, the redistribution of ArcSinh in p behaves much better

than directly decreasing n. Therefore, the selection of

(n,m,Op, Oq) =

(
1,−2,

arcsinh(app)

arcsinh(ap)
, q

)
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Figure 6.4: The dipolar grid configurations of a more global structure with different
selections of (n,m,Op, Oq).

for our second example is the best pick.
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6.3 Solving the Polarized Radiation Transfer

In this section, we describe how the polarized radiation transfer can be solved numer-

ically, which will be implemented as an extension of the current Athena++ radiation

module in our future plan. The detail derivation of the polarized radiative transfer

equation is in Appendix E. Here, we briefly summarize the polarized radiative transfer

equation (also see E.32) and how we plan to adopt the operator splitting approach to

solve it. Given the Stokes parameter vector Sν = (Iν , Qν , Uν , Vν)
T as the basis of the

radiation field, the polarized radiative transfer equation can be expressed in form of

1

c

∂Sν

∂t
+ n̂ · ∇Sν = jν − χν,aSν +Λscat,em +Λscat,ab , (6.11)

where n̂ is the unit vector of the radiation propagation direction and jν = (jν , 0, 0, 0)
T

represents the unpolarized thermal emission. With gas density ρ and thermal absorption

opacity κν,a, the thermal absorption coefficient is defined as χν,a = ρκν,a. The emission

and absorption terms due to the magnetic Thomson scattering are

Λscat,em =
3

4
neσT



∮
dΩ′

4π

[
M11Iν(n̂

′) +M12Qν(n̂
′) +M13Uν(n̂

′) +M14Vν(n̂
′)
]

∮
dΩ′

4π

[
M21Iν(n̂

′) +M22Qν(n̂
′) +M23Uν(n̂

′) +M24Vν(n̂
′)
]

∮
dΩ′

4π

[
M31Iν(n̂

′) +M32Qν(n̂
′) +M33Uν(n̂

′) +M34Vν(n̂
′)
]

∮
dΩ′

4π

[
M41Iν(n̂

′) +M42Qν(n̂
′) +M43Uν(n̂

′) +M44Vν(n̂
′)
]


, (6.12a)

Λscat,ab = −ne



σ11 σ12 0 σ14

σ12 σ11 0 0

0 0 σ11 0

σ14 0 0 σ11





Iν

Qν

Uν

Vν


, (6.12b)

where ne is the electron number density and σT is the Thomson scattering cross section. The

primed quantities Ω′ and n̂′ refer to the solid angle and propagation direction of the incident
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radiation, respectively. The Muller matrix element Mij can be found in either (E.24) or (E.35),

where indices i, j ∈ {1, 2, 3, 4}. The cross section σij is angle integrated from the Mueller matrix

element (see E.27 for explicit expressions).

We adopt the operator splitting approach to solve above polarized radiative transfer equa-

tion, following the numerical framework of Athena++ radiation module (Jiang et al. 2014;

Jiang 2021). In this framework, the advection and source term are solved separately, which al-

lows us to construct an implicit method to update the Stokes parameters. In order to solve the

source term, it is necessary to further divide the emission and absorption processes of magnetic

Thomson scattering. This is because the angle dependency in the scattering attenuation can

cause a large matrix to be inverted. Therefore, the operator splitting can be summarized into

three steps. Here, we construct these three parts for our future numerical implementation. For

the advection step, we simply follow the original design in Athena++ and solve

1

c

∂Sν

∂t
+ n̂ · ∇Sν = 0 . (6.13a)

For the operator splitting of the source terms, we intentionally construct the following equations

1

c

∂Sν

∂t
= −χν,a(Sν − Jν) +Λscat,ab +F(J,H,K) , (6.13b)

1

c

∂Sν

∂t
= jν − χν,aJν +Λscat,em −F(J,H,K) , (6.13c)

where F = (FI ,FQ,FU ,FV )
T is the complementary term that only depends on the angular

moments of Stokes parameters. This is artificially designed to enforce satisfying the first mo-

ment equation (i.e. momentum conservation) when solving equation (6.13b) and the zeroth

moment equation (i.e. energy conservation) when solving equation (6.13c). Both source terms

are designed to be solved implicitly and the detail numerical treatments are discussed in the

following sections.

176



6.3 Solving the Polarized Radiation Transfer Chapter 6

6.3.1 Solving Attenuation Part

The source term equation that includes the attenuation part is

1

c

∂

∂t



Iν

Qν

Uν

Vν


= −χν,a



Iν − JI,ν

Qν − JQ,ν

Uν − JU,ν

Vν − JV,ν


− ne



σ11 σ12 0 σ14

σ12 σ11 0 0

0 0 σ11 0

σ14 0 0 σ11





Iν

Qν

Uν

Vν


+



FI

FQ

FU

FV


, (6.14a)

where 

FI

FQ

FU

FV


=

ne

4π

∫
dΩ



σ11 σ12 0 σ14

σ12 σ11 0 0

0 0 σ11 0

σ14 0 0 σ11





Iν

Qν

Uν

Vν


. (6.14b)

The complementary term F can be explicitly expressed in terms of the zeroth (J), first (H),

and second (K) angular moments of Stokes parameters Iν , Qν , Uν , and Vν .

FI =neσT

{[
1

2

1 + η2

(1− η2)2
+

1

2

]
JI,ν +

[
1

2

1 + η2

(1− η2)2
− 1

2

]
Kzz

I,ν

+

[
−1

2

1 + η2

(1− η2)2
+

1

2

]
JQ,ν +

[
1

2

1 + η2

(1− η2)2
− 1

2

]
Kzz

Q,ν +

[
2η

(1− η2)2

]
Hz

V,ν

}
,

(6.15a)

FQ = neσT

{[
−1

2

1 + η2

(1− η2)2
+

1

2

]
JI,ν +

[
1

2

1 + η2

(1− η2)2
− 1

2

]
Kzz

I,ν

+

[
1

2

1 + η2

(1− η2)2
+

1

2

]
JQ,ν +

[
1

2

1 + η2

(1− η2)2
− 1

2

]
Kzz

Q,ν

}
,

(6.15b)

FU = neσT

{[
1

2

1 + η2

(1− η2)2
+

1

2

]
JU,ν +

[
1

2

1 + η2

(1− η2)2
− 1

2

]
Kzz

U,ν

}
, (6.15c)

FV = neσT

{[
2η

(1− η2)2

]
Hz

I,ν +

[
1

2

1 + η2

(1− η2)2
+

1

2

]
JV,ν +

[
1

2

1 + η2

(1− η2)2
− 1

2

]
Kzz

V,ν

}
,

(6.15d)

where η ≡ ωce/ω is the ratio between the electron cyclotron frequency ωce = eB0/(mec)

and radiation angular frequency ω. Here, B0 is the magnitude of the strong external
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radiation field.

Note that Uν can be directly updated implicitly because it has no off-diagonal com-

ponent and therefore is intrinsically decoupled from other Stokes parameters. For Iν , Qν ,

and Vν , we need to construct a matrix to implicitly update them together. The equa-

tion (6.13b) can then be discretized in the following manner:

(I(N) + c∆tA1)U
n+1
ν = Un

ν , (6.16a)I(3N) + c∆t


A1 A2 A3

A2 A1 O

A3 O A1





In+1
ν

Qn+1
ν

V n+1
ν

 =


In
ν

Qn
ν

V n
ν

 , (6.16b)

where I refers to the identity matrix and N is the total number of the discrete solid

angles of radiation. The superscripts n and n + 1 refer to the current and future time

step, respectively. The matrices in above equation are defined as

A1 =



(1− w1)χI,1 −w2χI,2 . . . −wNχI,N

−w1χI,1 (1− w2)χI,2 . . . −wNχI,N

...
...

. . .
...

−w1χI,1 −w2χI,2 . . . (1− wN)χI,N


, (6.17a)

A2 =



(1− w1)χQ,1 −w2χQ,2 . . . −wNχQ,N

−w1χQ,1 (1− w2)χQ,2 . . . −wNχQ,N

...
...

. . .
...

−w1χQ,1 −w2χQ,2 . . . (1− wN)χQ,N


, (6.17b)
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A3 =



(1− w1)χV,1 −w2χV,2 . . . −wNχV,N

−w1χV,1 (1− w2)χV,2 . . . −wNχV,N

...
...

. . .
...

−w1χV,1 −w2χV,2 . . . (1− wN)χV,N


, (6.17c)

where

χI,i = neσ11,i + χν,a = neσT

[
1

2
(f + 1) +

1

2
(f − 1)n̂2

z,i

]
+ χν,a , (6.18a)

χQ,i = neσ12,i = neσT

[
1

2
(1− f) +

1

2
(f − 1)n̂2

z,i

]
, (6.18b)

χV,i = neσ14,i = 2neσTgn̂z,i . (6.18c)

Here we define the following auxiliary quantities for convenience:

f ≡ 1 + η2

(1− η2)2
g ≡ η

(1− η2)2
. (6.19)

Since the determinant of A1, A2, and A3 are all zero, these block matrices are not

invertible. However, I + c∆tA1 is guaranteed to be invertible because it has full rank,

where the analytical form can be expressed as

[
(I+ c∆tA1)

−1]ij = CΠ
|I+ c∆tA1|(1 + c∆tχI,i)

[
(1− CΣ)δij +

wjc∆tχI,j

1 + c∆tχI,j

]
, (6.20)

where |I+ c∆tA1| is the determinant and the two auxiliary coefficients are defined as

CΠ =
N∏
k=1

(1 + c∆tχI,k) , CΣ =
N∑
k=1

wkc∆tχI,k

1 + c∆tχI,k

. (6.21)
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The full matrix can be inverted iteratively as follows


I+ c∆tA1 O O

O I+ c∆tA1 O

O O I+ c∆tA1

Vn = I−


O A2 A3

A2 O O

A3 O O

Vn−1 , (6.22)

where the initial guess of V can simply be

V0 =


(I+ c∆tA1)

−1 O O

O (I+ c∆tA1)
−1 O

O O (I+ c∆tA1)
−1

 . (6.23)

This iterating method can converge quickly when the diagonal components are much

larger than the off-diagonal components, which are mostly the cases for the actual sim-

ulation where most of the sampled radiation frequency is away from the cyclotron peak.

6.3.2 Solving Emission Part

The source term equation that includes the emission part (see 6.13c) does not contain

any Stokes parameters explicitly. Hence, we can integrate it for each angular moment to

close the system. Recall the equation (6.13c)) in explicit form

1

c

∂

∂t



Iν

Qν

Uν

Vν


= jν



1

0

0

0


− χν,a



JI,ν

JQ,ν

JU,ν

JV,ν


−



FI

FQ

FU

FV


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+
3

4
neσT



∮
dΩ′

4π

[
M11Iν(n̂

′) +M12Qν(n̂
′) +M13Uν(n̂

′) +M14Vν(n̂
′)
]

∮
dΩ′

4π

[
M21Iν(n̂

′) +M22Qν(n̂
′) +M23Uν(n̂

′) +M24Vν(n̂
′)
]

∮
dΩ′

4π

[
M31Iν(n̂

′) +M32Qν(n̂
′) +M33Uν(n̂

′) +M34Vν(n̂
′)
]

∮
dΩ′

4π

[
M41Iν(n̂

′) +M42Qν(n̂
′) +M43Uν(n̂

′) +M44Vν(n̂
′)
]


. (6.24)

We can further express each equation in a more specific form:

1

c

∂Iν
∂t

= jν − χν,aJI,ν + neσT

{[
−1

4
(2f − 1) +

3

4
(f − 1)n̂2

z

]
JI,ν +

[
−1

4
(f − 1)− 3

4
n̂2
z

]
JQ,ν

+

[
1

4
(f − 1) +

3

4
n̂2
z

] (
Kzz

I,ν +Kzz
Q,ν

)
+

[
3

4

n̂2
x + n̂2

yη
2

(1− η2)2

] (
Kxx

I,ν +Kxx
Q,ν

)
+

[
3

4

n̂2
y + n̂2

xη
2

(1− η2)2

](
Kyy

I,ν +Kyy
Q,ν

)
+

[
1

2
g
(
3n̂2

z − 1
)]

Hz
V,ν

+

[
3

4(1− η2)

] [
2n̂xn̂y

(
Kxy

I,ν +Kxy
Q,ν − P s

Q,ν − P zc
U,ν

)
+ 2n̂xn̂z

(
Kxz

I,ν +Kxz
Q,ν −Hy

U,ν + ηHx
V,ν

)
+ 2n̂yn̂z

(
Kyz

I,ν +Kyz
Q,ν +Hx

U,ν + ηHy
V,ν

)
+
(
n̂2
x − n̂2

y

) (
−P c

Q,ν + P zs
U,ν

) ]}
,

(6.25a)

1

c

∂Qν

∂t
= −χν,aJQ,ν + neσT

{[
1

4

(
3n̂2

z − 1
)
(f − 1)

]
JI,ν +

[
−1

2
(f + 1) +

3

4

(
1− n̂2

z

)]
JQ,ν

+

[
−1

2
(f − 1)− 3

4

(
1− n̂2

z

)] (
Kzz

I,ν +Kzz
Q,ν

)
+

[
3

4

n̂2
x + n̂2

yη
2

(1− η2)2

] (
Kxx

I,ν +Kxx
Q,ν

)
+

[
3

4

n̂2
y + n̂2

xη
2

(1− η2)2

](
Kyy

I,ν +Kyy
Q,ν

)
+

[
−3

2
g
(
1− n̂2

z

)]
Hz

V,ν

+

[
3

4(1− η2)

] [
2n̂xn̂y

(
Kxy

I,ν +Kxy
Q,ν − P s

Q,ν − P zc
U,ν

)
+ 2n̂xn̂z

(
Kxz

I,ν +Kxz
Q,ν −Hy

U,ν + ηHx
V,ν

)
+ 2n̂yn̂z

(
Kyz

I,ν +Kyz
Q,ν +Hx

U,ν + ηHy
V,ν

)
+
(
n̂2
x − n̂2

y

) (
−P c

Q,ν + P zs
U,ν

)
+ cos 2ϕ

(
−Kxx

I,ν +Kyy
I,ν −Kxx

Q,ν +Kyy
Q,ν + 2P c

Q,ν − 2P zs
U,ν

)
+ sin 2ϕ

(
−2Kxy

I,ν − 2Kxy
Q,ν + 2P s

Q,ν + 2P zc
U,ν

)]}
,

(6.25b)
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1

c

∂Uν

∂t
= −χν,aJU,ν + neσT

{[
−1

2
(f + 1)

]
JU,ν +

[
−1

2
(f − 1)

]
Kzz

U,ν

+

[
3

4(1− η2)

] [
2n̂x

(
Kyz

I,ν +Kyz
Q,ν +Hx

U,ν + ηHy
V,ν

)
+ 2n̂y

(
−Kxz

I,ν −Kxz
Q,ν +Hy

U,ν − ηHx
V,ν

)
+ n̂z sin 2ϕ

(
Kxx

I,ν −Kyy
I,ν +Kxx

Q,ν −Kyy
Q,ν − 2P c

Q,ν + 2P zs
U,ν

)
+ n̂z cos 2ϕ

(
−2Kxy

I,ν − 2Kxy
Q,ν + 2P s

Q,ν + 2P zc
U,ν

)]}
,

(6.25c)

1

c

∂Vν

∂t
= −χν,aJV,ν + neσT

{[
3

2
g

]
n̂z

(
JI,ν +Kzz

I,ν − JQ,ν +Kzz
Q,ν

)
+ [−2g]Hz

I,ν +

[
−1

2
(f + 1)

]
JV,ν +

[
3

2
f

]
n̂zH

z
V,ν +

[
−1

2
(f − 1)

]
Kzz

V,ν

+

[
3

4(1− η2)

] [
2n̂x

(
ηKxz

I,ν + ηKxz
Q,ν − ηHy

U,ν +Hx
V,ν

)
+ 2n̂y

(
ηKyz

I,ν + ηKyz
Q,ν + ηHx

U,ν +Hy
V,ν

)]}
.

(6.25d)

Since there are 28 moments to be solved, we have 29 equations in total to complete the

closure, where 28 are the moment equations and one is the energy equation that exchange

the heat between gas radiation. Here, we list all the moments that needs to be solved,

which contain 8 for Iν :

JI,ν , H
z
I,ν , K

zz
I,ν , K

yy
I,ν , K

xx
I,ν , K

xy
I,ν , K

xz
I,ν , K

yz
I,ν , (6.26a)

9 for Qν :

JQ,ν , K
zz
Q,ν , K

yy
Q,ν , K

xx
Q,ν , K

xy
Q,ν , K

xz
Q,ν , K

yz
Q,ν , P

c
Q,ν , P

s
Q,ν , (6.26b)

6 for Uν :

JU,ν , K
zz
U,ν , H

x
U,ν , H

y
U,ν , P

zc
U,ν , P

zs
U,ν , (6.26c)

and 5 for Vν :

JV,ν , K
zz
V,ν , H

z
V,ν , H

y
V,ν , H

x
V,ν , (6.26d)
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where the angular moments of Iν are defined as

JI,ν =
1

4π

∮
IνdΩ H i

I,ν =
1

4π

∮
n̂iIνdΩ Kij

I,ν =
1

4π

∮
n̂in̂jIνdΩ , (6.27a)

P c
I,ν =

1

4π

∮
cos 2ϕIνdΩ P zc

I,ν =
1

4π

∮
n̂z cos 2ϕIνdΩ , (6.27b)

P s
I,ν =

1

4π

∮
sin 2ϕIνdΩ P zs

I,ν =
1

4π

∮
n̂z sin 2ϕIνdΩ . (6.27c)

The angular moments for Qν , Uν , and Vν are defined similarly, where we simply replace

the subscript ‘I’ with ‘Q’, ‘U ’, and ‘V ’, respectively, to annotate their corresponding

moments. Note that we can use J = Kxx+Kyy+Kzz to eliminate two moment equations.

Therefore, we only need to integrate 26 moment equations at each frequency at most to

update the emission source terms. After these moments are implicitly updated, we can

then use them to update the Stokes parameters. The 7 moment equations for Iν are

1

c

∂JI,ν
∂t

= jν − χν,aJI,ν , (6.28)

1

c

∂Hz
I,ν

∂t
= 0 , (6.29)

1

c

∂Kzz
I,ν

∂t
=
1

3
jν −

[
1

3
χν,a −

1

30
(f − 2)neσT

]
JI,ν

−
[
1

30
(f + 2)neσT

] (
JQ,ν −Kzz

I,ν −Kzz
Q,ν

)
−
[
−2g

15
neσT

]
Hz

V,ν ,

(6.30)

1

c

∂Kxx
I,ν

∂t
=
1

3
jν −

[
1

3
χν,a +

1

30
(2f − 3ηg − 1)neσT

]
JI,ν

−
[
1

30
(f − 3ηg − 1)neσT

] (
JQ,ν −Kzz

I,ν −Kzz
Q,ν

)
−
[

1

10(1− η2)
neσT

] (
−Kxx

I,ν −Kxx
Q,ν + P c

Q,ν − P zs
U,ν

)
−
[ g

15
neσT

]
Hz

V,ν ,

(6.31)

1

c

∂Kxy
I,ν

∂t
= − neσT

10(1− η2)

(
−Kxy

I,ν −Kxy
Q,ν + P s

Q,ν + P zc
U,ν

)
, (6.32)

1

c

∂Kxz
I,ν

∂t
= − neσT

10(1− η2)

(
−Kxz

I,ν −Kxz
Q,ν +Hy

U,ν − ηHx
V,ν

)
, (6.33)

1

c

∂Kyz
I,ν

∂t
= − neσT

10(1− η2)

(
−Kyz

I,ν −Kyz
Q,ν −Hx

U,ν − ηHy
V,ν

)
. (6.34)
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The 8 moment equations for Qν are

1

c

∂JQ,ν

∂t
=−

[
χν,a +

f

4
neσT

]
JQ,ν −

[
f

4
neσT

] (
−JI,ν + 3Kzz

I,ν + 3Kzz
Q,ν

)
−
[
gneσT

]
Hz

V,ν ,

(6.35)

1

c

∂Kzz
Q,ν

∂t
=−

[
1

60
(−7f + 4)neσT

]
JI,ν −

[
1

3
χν,a +

1

60
(7f + 4)neσT

]
JQ,ν

−
[
1

60
(13f − 4)neσT

] (
Kzz

I,ν +Kzz
Q,ν

)
−
[g
5
neσT

]
Hz

V,ν ,

(6.36)

1

c

∂Kxx
Q,ν

∂t
=−

[
1

60
(−f − 6ηg − 2)neσT

]
JI,ν −

[
1

3
χν,a +

1

60
(7f − 6ηg − 2)neσT

]
JQ,ν

−
[
1

60
(13f + 6ηg + 2)neσT

] (
Kzz

I,ν +Kzz
Q,ν

)
−
[2g
5
neσT

]
Hz

V,ν

−
[

neσT
10(1− η2)

] (
−Kxx

I,ν −Kxx
Q,ν + P c

Q,ν − P zs
U,ν

)
,

(6.37)

1

c

∂Kxy
Q,ν

∂t
= − 3neσT

20(1− η2)

(
Kxy

I,ν +Kxy
Q,ν − P s

Q,ν − P zc
U,ν

)
, (6.38)

1

c

∂Kxz
Q,ν

∂t
= − neσT

10(1− η2)

(
−Kxz

I,ν −Kxz
Q,ν +Hy

U,ν − ηHx
V,ν

)
, (6.39)

1

c

∂Kyz
Q,ν

∂t
= − neσT

10(1− η2)

(
−Kyz

I,ν −Kyz
Q,ν −Hx

U,ν − ηHy
V,ν

)
, (6.40)

1

c

∂P c
Q,ν

∂t
= − neσT

4(1− η2)

(
−JI,ν + 2Kxx

I,ν +Kzz
I,ν − JQ,ν + 2Kxx

Q,ν +Kzz
Q,ν − 2P c

Q,ν

+2P zs
U,ν

)
,

(6.41)

1

c

∂P s
Q,ν

∂t
= − neσT

2(1− η2)

(
Kxy

I,ν +Kxy
Q,ν − P s

Q,ν − P zc
U,ν

)
. (6.42)

The 6 moment equations for Uν are

1

c

∂JU,ν
∂t

= −
[
χν,a +

1

2
(f + 1)neσT

]
JU,ν −

[
1

2
(f − 1)neσT

]
Kzz

U,ν , (6.43)

1

c

∂Hx
U,ν

∂t
= − neσT

2(1− η2)

(
−Kyz

I,ν −Kyz
Q,ν −Hx

U,ν − ηHy
V,ν

)
, (6.44)

1

c

∂Hy
U,ν

∂t
= − neσT

2(1− η2)

(
Kxz

I,ν +Kxz
Q,ν −Hy

U,ν + ηHx
V,ν

)
, (6.45)

1

c

∂Kzz
U,ν

∂t
= −

[
1

3
χν,a +

1

6
(f + 1)neσT

]
JU,ν −

[
1

6
(f − 1)neσT

]
Kzz

U,ν , (6.46)
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1

c

∂P zc
U,ν

∂t
= − neσT

4(1− η2)

(
Kxy

I,ν +Kxy
Q,ν − P s

Q,ν − P zc
U,ν

)
, (6.47)

1

c

∂P zs
U,ν

∂t
= − neσT

8(1− η2)

(
JI,ν − 2Kxx

I,ν −Kzz
I,ν + JQ,ν − 2Kxx

Q,ν −Kzz
Q,ν + 2P c

Q,ν

−2P zs
U,ν

)
,

(6.48)

The 5 moment equations for Vν are

1

c

∂JV,ν
∂t

= −
[
χν,a +

1

2
(f + 1)neσT

]
JV,ν − [2gneσT ]H

z
I,ν −

[
1

2
(f − 1)neσT

]
Kzz

V,ν , (6.49)

1

c

∂Hz
V,ν

∂t
= −

[g
2
neσT

]
(−JI,ν −Kzz

I,ν + JQ,ν −Kzz
Q,ν)−

[
f

2
neσT

]
(−Hz

V,ν) , (6.50)

1

c

∂Hy
V,ν

∂t
= − neσT

2(1− η2)
(−ηKyz

I,ν − ηKyz
Q,ν − ηHx

U,ν −Hy
V,ν) , (6.51)

1

c

∂Hx
V,ν

∂t
= − neσT

2(1− η2)
(−ηKxz

I,ν − ηKxz
Q,ν + ηHy

U,ν −Hx
V,ν) , (6.52)

1

c

∂Kzz
V,ν

∂t
= −

[
1

3
χν,a +

1

6
(f + 1)neσT

]
JV,ν −

[
2g

3
neσT

]
Hz

I,ν −
[
1

6
(f − 1)neσT

]
Kzz

V,ν . (6.53)

The last energy equation is

ρkB
(γ − 1)µmp

dTg
dt

= −
∫

(jν − χν,aJI,ν) dνdΩ , (6.54)

where ρ is gas density and Tg is gas temperature. Constants kB and mp refer to Boltz-

mann constant and proton mass, respectively. The parameter µ is mean molecular weight

and γ is the adiabatic index of the gas. Note that for frequency-integrated or single-

frequency intensity, we can simply solve a 27 × 27 matrix for the scattering emission

source term to update the radiation intensity. However, for a multi-frequency group, we

need to construct a matrix that includes all the moments in the whole frequency range.

For example, if we sample N frequencies, we need to solve a (26N + 1) × (26N + 1)

matrix. In a practical manner, we can solve each block matrix in the following se-

quence: (jν , JI,ν), (K
zz
I,ν , JQ,ν , K

zz
Q,ν , H

z
V,ν), (K

xx
I,ν , K

xx
Q,ν , P

c
Q,ν , P

zs
U,ν), (K

xy
I,ν , K

xy
Q,ν , P

s
Q,ν , P

zc
U,ν),
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(Kxz
I,ν , K

xz
Q,ν , H

y
U,ν , H

x
V,ν), (K

yz
I,ν , K

yz
Q,ν , H

x
U,ν , H

y
V,ν), (JU,ν , K

zz
U,ν), (JV,ν , H

z
I,ν , K

zz
V,ν), where the

largest matrix we need to invert is merely 4× 4.
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Appendix A

Derivation of Photon Bubble

Instability

A.1 Conservation Laws in the Newtonian Limit

A radiation-supported and magnetized plasma is unstable in a gravitational field

(Arons 1992; Gammie 1998). Here we rederive the dispersion relation for the linear

instability, incorporating the effects of radiation viscosity. The numerical simulations

presented in this thesis use special relativistic magnetohydrodynamics and a kinetic

treatment of the radiation transfer. However, for the linear instability analysis here,

it is sufficient to use Newtonian equations with fluid restricted to move along the vertical

(ẑ) magnetic field direction, and to treat the radiation transport within the diffusion

approximation. The system is then governed by the following equations:

∂ρ

∂t
+

∂

∂z
(ρv) = 0 , (A.1a)

ρ
∂v

∂t
+ ρv

∂v

∂z
= −∂P

∂z
− ρg +

∂

∂x

(
η
∂v

∂x

)
+

∂

∂z

[(
4η

3
+ ζ

)
∂v

∂z

]
, (A.1b)
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∂P

∂t
+ v

∂P

∂z
+

4

3
P
∂v

∂z
= −1

3

∂Fr,x

∂x
− 1

3

∂Fr,z

∂z
, (A.1c)

Fr,x = − c

ρκ

∂P

∂x
, (A.1d)

Fr,z = − c

ρκ

∂P

∂z
. (A.1e)

We approximate the total thermal pressure P ≃ Pr as being entirely due to radiation.

The horizontal radiation flux Fr,x is perpendicular to the magnetic field and the verti-

cal radiation flux Fr,z is along the magnetic field. We also assume a constant vertical

gravitational acceleration g, and assume an isotropic opacity κ that only depends on

density and gas pressure. We have included shear (η) and bulk (ζ) viscosity effects in the

momentum equation (A.1b), but have neglected viscous dissipation terms in the energy

equation (A.1c) as these would be nonlinear (second order) in the velocity. Arons (1992)

also considered viscosity in their original analysis of the photon bubble instability, but

only included the 4η/3 term (cf. equation (4) from that paper). They neglected the shear

term arising from horizontal (x̂) gradients in the vertical velocity v. We find that these

prove to be very important in the slow diffusion regime, where the most unstable modes

have much larger horizontal gradients than vertical gradients.

In the static, plane-parallel equilibrium, mass conservation (A.1a) and energy conser-

vation (A.1c) become trivial, leaving us with

∂P0

∂z
= −ρ0g , (A.2a)

Fr,x0 = 0 , (A.2b)

Fr,z0 =
cg

κ0
, (A.2c)

where the subscript ‘0’ refers to the equilibrium state. Linear perturbations about this
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equilibrium then evolve according to

∂δρ

∂t
+
∂ρ0
∂z

δv + ρ0
∂δv

∂z
= 0 , (A.3a)

ρ0
∂δv

∂t
= −∂δP

∂z
− δρg +

∂

∂x

(
η0
∂δv

∂x

)
+

∂

∂z

[(
4η0
3

+ ζ0

)
∂δv

∂z

]
, (A.3b)

∂δP

∂t
+ δv

∂P0

∂z
+

4

3
P0
∂δv

∂z
= −1

3

∂δFr,x

∂x
− 1

3

∂δFr,z

∂z
, (A.3c)

δFr,x = − c

ρ0κ0

∂δP

∂x
, (A.3d)

δFr,z = − c

ρ0κ0

∂δP

∂z
− cg

κ0

[
(1 + Θρ)

δρ

ρ0
+

1

4
ΘT

δP

P0

]
, (A.3e)

where ‘δ’ in front of the variables refers to an Eulerian perturbation, and we define the

two logarithmic derivatives of opacity as

Θρ =
∂ lnκ0
∂ ln ρ0

and ΘT =
∂ lnκ0
∂ lnT0

. (A.3f)

In what follows, we define some auxiliary parameters, most of which are consistent with

the definitions used in Arons (1992) and Gammie (1998).

c2r =
4P0

3ρ0
, h =

c2r
g

,

N0 =
cr
h

, M0 =
c

ρ0κ0hcr
, (A.4)

k2 = k2x + k2z , µ =
kz
k

,

where cr is the radiation sound speed and h is the corresponding scale height. N0 is the

radiation sound crossing frequency, where N−1
0 represents the time it takes to cross the

scale height h with the radiation sound speed cr. M0 is the Mach number of radiation

diffusion, where c/(ρ0κ0h) is the radiation diffusion speed. We are in the slow diffusion

regime if M0 ≪ 1. After the system is perturbed, we have the total wavenumber k, the
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horizontal wavenumber kx and the vertical wavenumber kz, where µ is the cosine of the

angle θ between the directions of wave propagation (k̂) and magnetic field (ẑ).

A.2 Dispersion Relation

Because the equilibrium is static and homogeneous in the horizontal direction, we

can, without loss of generality, assume that all perturbations depend on x and time t

according to ∝ exp[i(kxx− ωt)]. Equations (A.3a)-(A.3e) can then be combined to form

two coupled ordinary differential equations in z:

− ω2δv =
iω

ρ0

dδP

dz
+

g

ρ0

d

dz
(ρ0δv)−

iω

ρ0

d

dz

[(
4η0
3

+ ζ0

)
dδv

dz

]
+
iωη0
ρ0

k2xδv , (A.5a)

−iωδP = ρ0gδv − ρ0c
2
r

dδv

dz
− k2xc

3ρ0κ0
δP

− i
c

3ω

d

dz

[
iω

ρ0κ0

dδP

dz
+

g

ρ0κ0
(1 + Θρ)

d

dz
(ρ0δv) +

iωg

4κ0
ΘT

δP

P0

]
.

(A.5b)

Apart from the neglect of nonlinearities, these equations are exact. In the limit of in-

finite opacity, where radiative diffusion is negligible, they can be further combined to

give an equation for vertical adiabatic sound waves in a viscous, strongly magnetized

inhomogeneous medium:

d

dz

(
ρ0c

2
r

dδv

dz

)
+ ρ0ω

2δv = iω
d

dz

[(
4η0
3

+ ζ0

)
dδv

dz

]
− iωη0k

2
xδv . (A.6)

Note that the (g/ρ0)d(ρ0δv)/dz term on the right hand side of (A.5a) completely cancels

when this is done.

For finite opacity, equations (A.5a)-(A.5b) cannot be combined directly, and we are

forced to employ a short-wavelength vertical WKB approximation with perturbations

having a z-dependence of the form exp
(
i
∫ z
kz(z

′)dz′
)
. We then directly replace all z-
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derivatives in equations (A.5a)-(A.5b) with ikz. In so doing, we continue to maintain

the cancellation of the (g/ρ0)d(ρ0δv)/dz terms that led to (A.6). This treatment of the

WKB approximation results in the following cubic dispersion relation

ω3 +

[
ik2
(

c

3ρ0κ0
+ V

)
+
µkcgΘT

9ρ0κ0c2r

]
ω2 −

[
µ2k2c2r +

k3cV

3ρ0κ0

(
k − iµgΘT

3c2r

)]
ω

− cg

3ρ0κ0

[
µ(1− µ2)k3 − i

3
µ2k2

g

c2r
ΘT − µ3k3Θρ

]
= 0 ,

(A.7)

where the viscous effects are in the quantity V defined as

V ≡ 1

ρ0

[
µ2

(
4η0
3

+ ζ0

)
+ (1− µ2)η0

]
. (A.8)

If we assume a constant opacity (i.e. Θρ = ΘT = 0) and neglect viscosity, this is almost

the same as the cubic dispersion relation found by Arons (1992), the small differences

arising from the difference in our WKB treatment. It also recovers the slow diffusion

dispersion relation (36) of Gammie (1998) if we neglect the ω3 term. In the rapid diffusion

regime as M0 → ∞ (small κ0), (A.7) also recovers equation (34) of Gammie (1998).

As noted above, Arons (1992) did actually consider radiation viscosity effects on

vertical gradients in vertical velocity, and concluded that they would be unimportant

for optically thick wavelengths. For isotropic Thomson scattering, the radiation shear

viscosity is

η0 =
8P0

9κ0ρ0c
(A.9)

(Masaki 1971). If we assume comparable bulk viscosity, then V ∼ c2r/(κ0ρ0c), in which

case the viscous terms in the dispersion relation (A.7) are all negligible for optically thick

wavelengths, in agreement with the assertion of Arons (1992). However, this ignores the

angle factor µ. In particular, the horizontal velocity gradients that were neglected in the

viscous treatment of Arons (1992) are important in the slow diffusion limit. If we neglect
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the ω3 term and solve the resulting quadratic equation in the slow diffusion limit, we find

that the instability growth rate peaks at wavenumber k = 2π/lvis, where

lvis =
4π

3κ0ρ0

kx
kz

=
4π

3κ0ρ0

√
1− µ2

µ
. (A.10)

This can be much larger than the wavelength of unit optical depth (κ0ρ0)
−1 if kx ≫ kz,

i.e. µ is small, and this is precisely the orientation of fastest growing slow diffusion modes.

For the convenience of numerical calculation, we can normalize (A.7) by the radiation

sound crossing frequency N0 as

(
ω

N0

)3

+

[
i(kh)2

(
1

3
M0 +

V

hcr

)
+

1

9
µ(kh)M0ΘT

](
ω

N0

)2

−
[
µ2(kh)2 +

1

3
(kh)3M0

(
V

hcr

)(
kh− i

3
µΘT

)](
ω

N0

)
− 1

3
M0

[
µ(1− µ2)(kh)3 − i

3
µ2(kh)2ΘT − µ3(kh)3Θρ

]
= 0 .

(A.11)

The dispersion relation (A.11) can be numerically solved in different diffusion regimes

as a function of wavenumber and angle. To demonstrate its numerical solution, we

adopt a constant opacity for the sake of simplicity. The resulting instability growth

rate Γ = Im{ω} is depicted in Figure A.1 for various values of the diffusion parameter

M0. The peak of the instability growth rate shifts towards 90◦ as radiation diffusion

becomes slower (smaller M0) and the instability grows faster as the wavelength becomes

shorter, until the viscous scale lvis is reached. All of these characteristics can be found

in our numerical simulations of slow-diffusion photon bubble instability (see chapter 2 in

detail), which shows the consistency between the linear theory and the simulation. We

stress that our simulation algorithm has no explicit radiation viscosity at all. Instead, this

comes for free because we are solving the angle-dependent radiative transfer equation.

Hence the agreement between the simulations and the analytic theory we have presented
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Figure A.1: Analytical solution of the instability growth rate based on the dispersion
relation (A.11), for cr/c = 0.05.

is a nontrivial success.

A.3 Origin of Photon Bubble Instability

We briefly discuss here the physical origin of the photon bubble instability in the

slow-diffusion regime, assuming a constant opacity for simplicity and neglecting radia-

tion viscosity whose effect is simply to damp the instability at small scales. A radiation

pressure supported medium in a strong vertical magnetic field is subject to the sponta-

neous development of arbitrary fluctuations in the vertical distribution of density, while

still maintaining hydrostatic equilibrium. This is simply because the equilibrium equa-

tions (A.2a)-(A.2c) admit any arbitrary vertical density distribution, which then sets the
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distribution of vertical radiation pressure gradient. As a result, the linearized equations

of motion (A.3a)-(A.3e) admit an exact, zero-frequency static (δv = 0) mode provided

there are no horizontal variations in the perturbations (kx = 0). However, any horizontal

variation in the perturbations, as much be present in a neutron star accretion column

with finite horizontal width, will introduce a horizontal diffusive flux. This in turn will

cause some time-dependence, but if the diffusion is slow, vertical hydrostatic equilibrium

can be maintained because the inertia term in the momentum equation will be small.

Let us first consider this case.

Neglecting the radiation viscosity and inertia term in the momentum equation so that

hydrostatic equilibrium is maintained in the perturbations, adopting a constant opacity

in the energy equation, and applying the WKB approximation, the linearized equations

(A.3a), (A.3b), (A.3c), (A.3d) and (A.3e) become

− iωδρ+
∂ρ0
∂z

δv + ρ0
∂δv

∂z
= 0 , (A.12a)

− iωρ0δv ≃ 0 = −∂δP
∂z

− δρg , (A.12b)

− iωδP + δv
∂P0

∂z
+

4

3
P0
∂δv

∂z
= − i

3
kxδFx −

1

3

∂δFz

∂z
, (A.12c)

δFx = − c

ρ0κ0
ikxδP , (A.12d)

δFz = − c

ρ0κ0

(
∂δP

∂z
+ δρg

)
= −i c

κ0
ωδv ≃ 0 . (A.12e)

Note that the perturbed vertical flux naturally vanishes after neglecting the inertia term.

We can also eliminate the perturbation in radiation pressure using (A.12a) and (A.12b)

−iωδP + δv
∂P0

∂z
= 0 , (A.13a)
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So the energy equation (A.12c) becomes

4

3
P0
∂δv

∂z
= − i

3
kxδFx , (A.13b)

indicating an equilibrium between adiabatic work and horizontal heat flow. We can then

obtain a dispersion relation using equations (A.2a), (A.12d), (A.13a) and (A.13b)

4i
P0

g

∂

∂z

(
δP

ρ0

)
ω =

c

ρ0κ0
δPk2x . (A.14)

This dispersion relation indicates that the time-dependence, which is entirely oscillatory,

is determined by horizontal diffusion. To summarize, spontaneous density fluctuations

can apparently be maintained in vertical hydrostatic equilibrium with slow oscillatory

time-dependence driven by horizontal diffusion, provided fluid inertia is negligible.

However, including that small inertia actually drives this mode unstable. If we include

the inertia term and apply the WKB approximation in the z-direction, the perturbed

quantities can be solved via equations (A.12a), (A.12b), (A.12c), (A.12d) and (A.12e)

δρ = −1

g

∂δP

∂z
+

(
1− i

ω2

gkz
− i

1

kz

∂ ln ρ0
∂z

)−1
ω2

g2
δP , (A.15a)

δv = −
(
1− i

1

kz

∂ ln ρ0
∂z

)−1
ω

ρ0gkz

∂δP

∂z

+

[(
1− i

1

kz

∂ ln ρ0
∂z

)(
1− i

ω2

gkz
− i

1

kz

∂ ln ρ0
∂z

)]−1
ω3

ρ0g2kz
δP ,

(A.15b)

δFx = − c

ρ0κ0

kx
kz

∂δP

∂z
, (A.15c)

δFz = − c

ρ0κ0

(
∂δP

∂z
+ δρg

)
= −i c

κ0
ωδv . (A.15d)

We already know that the frequency without the inertia term is real (see (A.14)). To

explore the instability caused by the inertia term, we first need to define the frequency
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and perturbations of the mode without the inertia term

ω(0) = −
(
1 + i

1

kz

∂ ln ρ0
∂z

)−1
cg

4κ0P0

k2x
kz

, (A.16a)

δρ(0) = −1

g

∂δP

∂z
, (A.16b)

δv(0) = −
(
1− i

1

kz

∂ ln ρ0
∂z

)−1
ω(0)

ρ0gkz

∂δP

∂z
, (A.16c)

δF (0)
x = − c

ρ0κ0

kx
kz

∂δP

∂z
, (A.16d)

δF (0)
z = − c

ρ0κ0

(
∂δP

∂z
+ δρ(0)g

)
, (A.16e)

where the superscript (0) refers to the mode without the inertia term. Next, we need to

separate this mode from the full dispersion relation. Let us denote the superscript (1)

for the modifications introduced by the inertia term, where f (1) = f − f (0). To simplify

the calculation, we apply the following assumptions in advance: 1. the short-wavelength

approximation, which allows us to treat ω2/(gkz) and ∂ ln ρ0/(kz∂z) as small quantities.

2. small frequency introduced by the inertia term (i.e. ω(1) ≪ ω(0)).

Thus, we can express the perturbed quantities in terms of δP and keep the lead-

ing terms in equations (A.15a)-(A.16b), (A.15b)-(A.16c), (A.15c)-(A.16d) and (A.15d)-

(A.16e) as follows

δρ(1) ≃
(
ω(0)

)2
g2

δP , (A.17a)

δv(1) ≃ ω(0)

ρ0g

[(
ω(0)

)2
gkz

− i
ω(1)

ω(0)

]
δP , (A.17b)

δF (1)
x = 0 , (A.17c)

δF (1)
z ≃ − c

ρ0κ0g

(
ω(0)

)2
δP . (A.17d)

Specifically, we neglect orders higher thanO(ω2/(gkz)), O(∂ ln ρ0/(kz∂z)) andO(ω
(1)/ω(0))
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for δρ(1) and δF
(1)
z , but keeping the leading terms of order O(ω2/(gkz)) and O(ω

(1)/ω(0))

for δv(1). The dispersion relation for ω(1) can be determined by the corresponding lin-

earized heat equation by subtracting the mode without the inertia term from (A.12c)

−iω(1)δP − ρ0gδv
(1) + i

4

3
kzP0δv

(1) = −1

3

∂δF
(1)
z

∂z
. (A.18)

We can eliminate v(1) and δF
(1)
z by using (A.17b) and (A.17d) to obtain the complex

frequency introduced by the inertia term

ω(1) =
3ρ0
4P0

1

k2z

(
ω(0)

)3
+ i

(
c

4κ0P0

− ω(0)

gkz

)(
ω(0)

)2
. (A.19)

This can also be written in dimensionless form as

ω(1)

N0

≃ − 1

27
M3

0

(kxh)
6

(kzh)5
+ i

1

27
M3

0

(kh)2(kxh)
4

(kzh)4
(A.20a)

= − 1

27
M3

0 (kh)
(1− µ2)3

µ5
+ i

1

27
M3

0 (kh)
2 (1− µ2)2

µ4
. (A.20b)

The growth rate of instability comes from the imaginary part of ω(1), which is consistent

with the approximation done by Arons (1992) in his equation (41). The physical reasoning

is well explained by Arons (1992). We follow his logic and first compare the phase

differences of the perturbed quantities. By applying the short-wavelength approximation,

we obtain the phase relation from (A.15a) and (A.15c)

δρ ∝ −iδP , (A.21)

δFz ∝ −δP , (A.22)

which is shown in Figure A.2. Note that for spatially sinusoidal perturbations, δρ and
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Figure A.2: Phase differences of perturbations.

δP are 90◦ out of phase. This is not an adiabatic perturbation, for which δρ and δP

would be in phase. Hence this mode is associated with nonzero entropy perturbations,

and is in fact called an entropy mode. In this entropy mode, the perturbed radiation

energy density and perturbed horizontal flux are dominated by the negligible inertia

terms with the real frequency ω(0). And the perturbed density is simply determined

by the hydrostatic equilibrium. However, the inertia term is small but finite, which is

sufficient to destabilize this mode. As shown in the Figure A.2, the perturbed vertical

flux transfers photons from high-density regions to the low-density regions due to the 90◦

phase delay. This tendency slowly evacuates the low-density regions with the radiation

and leads to the increasing amplitude of perturbed density. Similar analysis can also be

found in Arons (1992), where his figure 1 illustrates the same phase relation between the

perturbed radiation flux and gas density that leads to the photon bubble instability.

A.4 Instability Driven by Variable Magnetic Opacity

The dispersion relation (A.7) can be affected by incorporating variable Rosseland

mean opacities κ(ρ, T ). The viscous (V ) terms generally set the short wavelength cutoff

scale when finite gas pressure effects are negligible. Neglecting these terms and taking
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the short wavelength k → ∞ limit, we find that there is a mode given by

ω2 = −igkµ
[
1− (1 + Θρ)µ

2
]

. (A.23)

This agrees exactly with equation (98) of Blaes & Socrates (2003) for a vertical magnetic

field, and generalizes the dispersion relation of Gammie (1998) to incorporate the effects

of a variable opacity. Temperature fluctuations are smoothed out by rapid diffusion at

short wavelengths, which is why ΘT does not appear in this limit. Indeed, note that in

the last three terms of (A.7), the ΘT term is at one order of k lower than the other two

terms.

In chapter 4, the magnetic opacities that we have considered have no density-dependence:

Θρ = 0. In addition, the photon bubble instability requires kx ̸= 0. If we eliminate pho-

ton bubbles by considering purely vertically propagating modes, and adopt Θρ = 0, we

find a short wavelength mode with frequency given by

ω2 + i
3κ0ρ0c

2
r

c
ω +

g2

3c2r
ΘT = 0 . (A.24)

One of the roots of this equation is always unstable if ΘT > 0. Because it is entirely

vertical, the magnetic field plays no role here except in determining the temperature

dependence of the opacity, and the instability is fundamentally hydrodynamic in nature.
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Appendix B

Derivation of Gravitation in Weak

Field Limit

B.1 Conservation Laws in General Relativity

The primary relativistic effect in our simulations of neutron star accretion columns

is that the Newtonian Alfvén speed in low density regions can exceed the speed of light,

which would then require unreasonably small time steps in the simulation. Even the

free-fall speeds in the incoming accretion flow outside the accretion shock are only mildly

relativistic.

However, gravity is important in the structure of the accretion column, as well as the

dynamics of photon bubbles, and gravity is not defined in special relativity. One could in

principle compute using full general relativity, but to do that with radiation would require

incorporating the curved trajectories of photon geodesics in our transfer equation, and

these effects are tiny over the short mean free paths within the optically thick portions of

the column. We therefore need only include weak field gravitational effects in our special

relativistic hydrodynamics at lowest, essentially Newtonian, order. We proceed here to
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reduce the full general relativistic conservation laws to the weak field limit and neglect

all terms that are second order or higher in the corresponding Newtonian potential.

In isotropic coordinates, the weak field spacetime metric can be written as

gµν = diag(−A,B,B,B) , (B.1)

where A = A(xj) and B = B(xj) only vary in space. The corresponding Christoffel

symbols are

Γ0
00 = 0 Γ0

0j = Γ0
j0 =

1

2A
∂jA Γ0

ij = 0 ,

Γj
00 =

1

2B
∂jA Γj

ij = Γj
ji =

1

2B
∂iB Γj

0i = Γj
i0 = 0 , (B.2)

Γj
ii

∣∣
i ̸=j

= − 1

2B
∂jB Γj

ik

∣∣
i ̸=j ̸=k

= 0 .

The normalization of the four-velocity implies

u0u0 =
1

A− Bv2
. (B.3)

We now consider the conservation laws of particle number, momentum and energy:

∇µ(ρu
µ) = 0 , (B.4a)

∇µT
µν = 0 , (B.4b)

where the stress-energy tensor Tµν = wgu
µuν + Pgg

µν , gas enthalpy wg = ρ +
γ

γ − 1
Pg

and γ is the gas adiabatic index. For simplicity, we neglect radiation and magnetic fields

as that is all that is necessary to derive the form of the gravitational source terms.
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Expanding (B.4a) and (B.4b) in the metric (B.1)

∂0(ρu
0) + ∂j(ρu

j) = −1

2

(
1

A
∂jA+

3

B
∂jB
)
ρuj , (B.5a)

∂0T
0i + ∂jT

ij = −
(

1

2A
∂jA+

2

B
∂jB
)
Tij

− 1

2B

(
T00∂iA+ Tik∂kB

∣∣∣∣
k ̸=i

− Tjj∂iB
∣∣∣∣
j ̸=i

)
,

(B.5b)

∂0T
00 + ∂jT

j0 = −
(
1

A
∂jA+

3

2B
∂jB
)
Tj0 − 1

2A
T0j∂jA . (B.5c)

B.2 Gravitational Source Terms in Weak Field Limit

In the weak field limit, the metric (B.1) can be specified as


A = 1 + 2ϕ

B = 1− 2ϕ

, where the potential ϕ = −GM
c2r

is a small quantity. (B.6)

Then, we expand equations (B.5a), (B.5b) and (B.5c) to first order of ϕ

∂0(ρΓ) + ∂j(ρΓv
j) = Sgr1 , (B.7a)

∂0(wgΓ
2vi) + ∂j(wgΓ

2vivj + Pgδ
ij) = Si

gr2 , (B.7b)

∂0
(
wgΓ

2 − Pg

)
+ ∂j(wgΓ

2vj) = Sgr3 , (B.7c)

where the terms related to the gravitational field are

Sgr1 = 4Γ2(∂0Γ + vj∂jΓ)ρϕ+ Γ(2Γ2 + 1)ρvj∂jϕ , (B.8a)

Si
gr2 = 8wgΓ

3ϕvi(∂0Γ + vj∂jΓ)− 4ϕΓ2∂iPg + 2Γ2(2Γ2 + 1)wgv
ivj∂jϕ

− (2Γ2 − 1)wg∂iϕ ,

(B.8b)
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Sgr3 = 8wgΓ
3ϕ(∂0Γ + vj∂jΓ) + 4(Γ2 − 1)ϕ∂0Pg + 2Γ2(2Γ2 − 1)wgv

j∂jϕ . (B.8c)

We can check the consistency with the Newtonian limit by applying approximations on

(B.7a), (B.7b) and (B.7c) in different orders of small quantities. Keeping the first order

of v and ϕ, we recover the Newtonian continuity equation

∂0ρ+ ∂j(ρv
j) = 0 . (B.9a)

Define the isothermal sound speed as c20 = Pg/ρ. Neglecting the orders higher than O(c
2
0),

O(v2) and O(ϕ), we recover the Newtonian momentum conservation

∂0(ρv
i) + ∂j(ρv

ivj) = −∂iPg − ρ∂iϕ . (B.9b)

Neglecting the orders higher than O(s3), where c0 ∼ v ∼ O(s) and ϕ ∼ O(s2), we recover

the Newtonian energy conservation

∂0

(
1

γ − 1
Pg +

1

2
ρv2 + ρϕ

)
+ ∂j

[(
γ

γ − 1
Pg +

1

2
ρv2 + ρϕ

)
vj
]
= 0 . (B.9c)

Therefore, in order to capture gravitational effects to lowest (Newtonian) order, we can

apply the following source terms in the framework of Athena++ relativistic MHD

module (Beckwith & Stone 2011) to mock up the gravitational effect near the neutron

star surface.

Sgr1 ≃ Γ(2Γ2 + 1)ρvj∂jϕ , (B.10a)

Si
gr2 ≃ 2Γ2(2Γ2 + 1)wgv

ivj∂jϕ− (2Γ2 − 1)wg∂iϕ , (B.10b)

Sgr3 ≃ 2Γ2(2Γ2 − 1)wgv
j∂jϕ . (B.10c)
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Appendix C

Variable Inversion Algorithm with

Entropy Equation

C.1 First Law of Thermodynamics in Relativity

In this section, we give a overview of the first law of thermodynamics in general

relativity. The governing equations can be concluded as follows in the sequence of gas

particle number conservation, gas stress-energy conservation, magnetic induction, and

radiative transfer

∇α(ρu
α) = 0 , (C.1a)

∇αT
αβ = −Gβ , (C.1b)

∇αF
αβ = 0 , (C.1c)

∇αR
αβ = Gβ , (C.1d)

where ρ is the gas density and uα is the fluid four-velocity. The vector Gα is the coupling

term of gas and radiation. The stress-energy tensors of gas, magnetic field, and radiation
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are defined as

Tαβ = (w + bλb
λ)uαuβ + (P +

1

2
bλb

λ)gαβ − bαbβ , (C.2a)

Fαβ = bαuβ − bβuα , (C.2b)

Rαβ =

∮
dΩ̄

∫ ∞

0

Īνn
αnβdν̄ , (C.2c)

where gαβ is the space-time metric and w = ρ+ ρe+ P is the total enthalpy of the gas.

Note that we adopt velocity unit with c = 1 here. The quantities e and P refer to the

specific internal energy density and pressure of the gas, respectively. The magnetic field

four-vector bα are defined as

b0 = Bjuj , (C.3a)

bi =
1

u0
(Bi + b0ui) , (C.3b)

where Bi is the three-vector magnetic field. The radiation stress-energy tensor is defined

in the fluid frame with the quantities denoted by overbars, where Ω̄ is the solid angle of

the radiation field, Īν is the radiation intensity field, nα is the direction of the intensity,

and ν̄ is the radiation frequency.

In principle, the energy equation should be equivalent to the first law of thermodynam-

ics. Here, we conduct the sanity check of it. With the gas particle number conservation

and the identities of the four-velocity and magnetic field four-vector (i.e. uµuµ = −1 and

bµuµ = 0), we can reduce and express the gas stress-energy equation by taking the dot

product with the four-velocity as uβ∇αT
αβ = −uβGβ:

[(ρe+ P )∇µu
µ + uµ∇µ(ρe)] +

[
bλb

λ∇µu
µ + bλu

µ∇µb
λ + uλb

µ∇µb
λ
]
= uµG

µ , (C.4)
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where the second square bracket contains all the magnetic terms and can be proved to

be zero using the induction equation as follows:

∇µ(b
µuλ − bλuµ) = 0

=⇒ uµ∇µb
λ = uλ∇µb

µ + bµ∇µu
λ − bλ∇µu

µ

=⇒ bλu
µ∇µb

λ = ������:0
bλu

λ∇µb
µ +�������:0

bµ∇µ(bλu
λ) − gλσuσb

µ∇µbλ − bλb
λ∇µu

µ

=⇒ bλb
λ∇µu

µ + bλu
µ∇µb

λ + uλb
µ∇µb

λ = 0 . (C.5)

This indicates that the projection of the magnetic tensor onto the gas four-velocity must

be zero because the induction equation is sourced by it (i.e. the magnetic field does

no work onto the gas). Hence, the first law of thermodynamics can be recovered by

substituting the mass conservation as follows:

uµ∇µe+ Puµ∇µ

(
1

ρ

)
=
uµG

µ

ρ
, (C.6)

where the RHS is the radiative source term. Alternatively, if we assume the ideal gas,

i.e. P = (γ − 1)ρe, the first law of thermodynamics can be expressed in the conservative

form as:

uµ∇µs = (γ − 1)
uµG

µ

ργ
or ∇µ(ρsu

µ) = (γ − 1)
uµG

µ

ργ−1
, (C.7)

where s = P/ργ is the specific entropy (i.e. entropy per unit mass). This can be very

useful as a backup approach to compute the gas temperature if the gas pressure updated

by the total energy conservation fails to be resolved in the strong magnetic field regime.

206



C.2 Variable Inversion Algorithm Appendix C

C.2 Variable Inversion Algorithm

The inversion from conservative variables to primitive variables in relativity is non-

trivial and usually involved with solving a nonlinear equation set. In this section, we

summarize two schemes of the variable inversion in special relativity. In general relativity,

the conservative variables can be transformed into the normal observer frame, where the

special relativistic inversion algorithm can be easily generalized.

Given the primitive variable set (ρ, vi, P, Bi), the conservative variables can be defined

as either (D,M i, E,Bi) or (D,M i, S, Bi), depending on whether we use the gas energy

conservation or the first law of thermodynamics to close the system and update the gas

pressure. The conservative gas density D, momentum M i, energy E and entropy S are

defined as follows

D = ρu0 , (C.8a)

M i = (w + bλb
λ)u0ui − b0bi , (C.8b)

E = (w + bλb
λ)u0u0 − (P +

1

2
bλb

λ)− b0b0 , (C.8c)

S = ρsu0 . (C.8d)

For convenience for the variable inversion, we also define the following auxiliary quantities

following the notations in Newman & Hamlin (2014):

T =MiB
i = wu0b0 , (C.9)

M2 =MiM
i = L2v2 + (B2 + 2L2)

[
B2v2 −

(
b0

u0

)2
]

, (C.10)

L = w(u0)2 . (C.11)

With above auxiliary quantities, the gas velocity can be solved iteratively by the following
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equation

v2 =
M2L2 + T 2(2L+B2)

L2(L+B2)2
, (C.12)

The details of the variable inversion algorithm with the total gas energy is described in

Newman & Hamlin (2014).

For the variable inversion algorithm with the entropy, we can follow Mignone &

McKinney (2007) and modify the algorithm by finding the root of the following equation:

f(L) = D
P

ργ
− S , (C.13)

To invoke a Newton-Raphson iteration scheme, we analytically compute the below deriva-

tives for the implementation.

df

dL
=
D

ργ
dP

dL
− γ

DP

ργ+1

dρ

dL
, (C.14a)

dP

dL
=
γ − 1

γ

[
(1− v2) + (

1

2
Du0 − L)dv

2

dL

]
=
γ − 1

γ

{
(1− v2)− u0 [D + 2(L −Du0)(1− v2)u0]

2

}
, (C.14b)

dρ

dL
= −Du

0

2

dv2

dL
, (C.14c)

dv2

dL
= − 2

L3(L+B2)3
{T 2[3L(L+B2) +B4] +M2L3} . (C.14d)

These are also described in Beckwith & Stone (2011) but with typos in their equations.

C.3 Numerical Tests

In this section, we conduct the numerical tests on the variable inversion algorithm

described above in the strong magnetic field regime of neutron star column accretion. We

adopt the primitive variables specified as shown in Figure C.1, with the corresponding
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conservative variables as shown in Figure C.2. In Figure C.1 and Figure C.2, we label

Figure C.1: Profiles in primitive variables for variable inversion test.

Figure C.2: Profiles in conservative variables for variable inversion test.

three different regions (red dashed box 1, 2, and 3) to quantify how the numerical noise

affects the inversion results.
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C.3.1 Newman-Hamllin (N-H) - Energy Scheme

We first test the N-H variable inversion in the total energy scheme, which is used in

all of our current neutron star column accretion simulations. Direct N-H inversion results

are shown in Despite the unbiased non-convergence issue in few regions (i.e. where the

Lipshitz parameter greater than 1), the overall results are highly agree with the initial

primitive variables, which indicates the robustness of the N-H algorithm. Figure C.3.

Figure C.3: Variable inversion results in the total energy scheme using N-H method
with no random perturbation.

Figure C.4: Variable inversion results in the total energy scheme using N-H method
with 10−8 random perturbation.
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However, if we add a random noise by a factor of 10−8 to all the conservative variables

(i.e. mocking up the numerical noises, which can come from all sorts of discretization

in the simulation), the inversion results change dramatically as shown in Figure C.4,

especially the failure in the low-density region. In those failed regions, the Lipshitz

parameters are in general less than 1, which suggests that the solutions are actually

converged numerically but apparently not the physical solutions. This is intrinsically

caused by the high sensitivity of one-to-one mapping from the conservative variables to

the primitive variables. That is to say, a small perturbation in a conservative variable

can lead to a dramatically different inversion result. We can further quantify this effect

by varing each conservative variable (i.e. D, M i, E, and Bi) in region 1, 2, and 3

as indicated by the red dashed boxes in Figure C.1 and Figure C.2. In Figure C.5,

Figure C.5: Quantification of the numerical noise propagation for each conservative
variable in region 1, indicated by the red dashed box in Figure C.1 and Figure C.2.
The variable inversion is conducted in the total energy scheme using N-H method with
10−8 random perturbation.

Figure C.6, and Figure C.7, we measure the factional change of the inversion result

caused by the conservative variable perturbation. When the magnetic energy is large
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Figure C.6: Quantification of the numerical noise propagation for each conservative
variable in region 2, indicated by the red dashed box in Figure C.1 and Figure C.2.
The variable inversion is conducted in the total energy scheme using N-H method with
10−8 random perturbation.

Figure C.7: Quantification of the numerical noise propagation for each conservative
variable in region 3, indicated by the red dashed box in Figure C.1 and Figure C.2.
The variable inversion is conducted in the total energy scheme using N-H method with
10−8 random perturbation.
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compared with the rest mass energy and gas internal energy (i.e. strong magentic field

regime), the numerical noise from the gas density, total energy or magnetic fields can be

easily amplified by a huge factor into the resulting gas pressure, except few cases (last

two panels of the first row in Figure C.7).

C.3.2 Mignone-McKinney (M-M) - Entropy Scheme

Figure C.8: Variable inversion results in the entropy scheme using M-M method with
no random perturbation.

Figure C.9: Variable inversion results in the entropy scheme using M-M method with
1% random perturbation.
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We conduct the same numerical tests on the M-M variable inversion in the entropy

scheme. The N-H algorithm is numerically more robust than the M-M in terms of the

stability and accuracy as shown in Figure C.8. The M-M algorithm relies on a relatively

accurate initial guess in the first place. Any wrongly estimated initial guess would lead to

the failure of the convergence. However, in the strong magnetic field regime, the variable

inversion with total energy is intrinsically troublesome due to the strong coupling between

magnetic and gas terms. The similar tests have been done for the entropy scheme. Since

the entropy is not coupled with the magnetic field, the variable inversion behaves much

better than using the total energy as shown in Figure C.9. The propagated noise in

the gas pressure is reduced by a factor of at least 10−2. Note that here the error is not

Figure C.10: Quantification of the numerical noise propagation for each conservative
variable in region 1, indicated by the red dashed box in Figure C.1 and Figure C.2.
The variable inversion is conducted in the entropy scheme using M-M method with
1% random perturbation.

scaled by the input noise as shown in Figure C.10, Figure C.11 and Figure C.12. This

indicates the systematic noise of the M-M method is dominated over the noise from the

perturbed conservative variables. However, the systematic noise is still small enough and

214



C.3 Numerical Tests Appendix C

the physical solution of primitive variables can be obtained by the entropy scheme.

Figure C.11: Quantification of the numerical noise propagation for each conservative
variable in region 2, indicated by the red dashed box in Figure C.1 and Figure C.2.
The variable inversion is conducted in the entropy scheme using M-M method with
1% random perturbation.

Figure C.12: Quantification of the numerical noise propagation for each conservative
variable in region 3, indicated by the red dashed box in Figure C.1 and Figure C.2.
The variable inversion is conducted in the entropy scheme using M-M method with
1% random perturbation.
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Appendix D

Derivation of Dipole Coordinate

System

D.1 Dipole Coordinates

D.1.1 Dipole Magnetic Field

In the vicinity of a neutron star with a strong magnetic field, the gas becomes mag-

netically confined and therefore only move along the field lines. Thus, it is preferable to

employ an intrinsic coordinate system that traces the trajectory of the gas as it follows

these field lines. Assume a dipole magnetic field

B(r) =
m

r3
[3(m̂ · r̂)r̂ − m̂] , (D.1)

where r and r̂ refer to the radial coordinate and direction, respectively, in the spherical

geometry. The quantity m = mm̂ is the magnetic dipole moment. We can establish an

orthonormal basis in dipole geometry by following the field lines and equipotential lines.

Selecting the direction of the dipole moment to be m̂ = ẑ = cos θr̂−sin θθ̂ and assuming
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the surface magnetic field at magnetic pole to be B0 = B0ẑ, the magnetic dipole moment

can then be expressed as

m =
1

2
B0R

3
⋆ẑ , (D.2)

where R⋆ represents the neutron star radius. The dipolar field can also be rewritten in

the spherical coordinates as

B(r) =
m

r3
(2 cos θr̂ + sin θθ̂) . (D.3)

At any position r = (x, y, z) = (r, θ, ϕ) above the neutron star surface, the magnetic field

can be expressed in the following forms



Bx =
3mxz

r5
=

3

2
B0

(
r

R⋆

)−3

nxnz

By =
3myz

r5
=

3

2
B0

(
r

R⋆

)−3

nynz

Bz =
m(3z2 − r2)

r5
=

3

2
B0

(
r

R⋆

)−3(
n2
z −

1

3

)
,

(D.4a)



Br = B0

(
r

R⋆

)−3

cos θ

Bθ =
1

2
B0

(
r

R⋆

)−3

sin θ

Bϕ = 0
,

(D.4b)

where the unit vector in Cartesian coordinates is defined as (nx, ny, nz) = (x/r, y/r, z/r)

and r =
√
x2 + y2 + z2.
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D.1.2 Constructing Dipole Coordinates

In this section, we construct the dipole coordinates system. Define the unit vectors

along and perpendicular to the magnetic field, respectively

p̂ ≡ n̂∥ = p̂rr̂ + p̂θθ̂ , (D.5a)

q̂ ≡ n̂⊥ = q̂rr̂ + q̂θθ̂ , (D.5b)

where


p̂r =

2 cos θ√
3 cos2 θ + 1

p̂θ =
sin θ√

3 cos2 θ + 1

and


q̂r =

sin θ√
3 cos2 θ + 1

q̂θ =
−2 cos θ√
3 cos2 θ + 1

(D.5c)

Here, we use ‘∥’ and ‘⊥’, respectively, to denote the directions parallel and perpendicular

to the dipole field. We can then construct the orthogonal basis based on these two

directions (D.5). When we differentiate perpendicular to the dipolar field, we preserve a

scalar potential µ, where the corresponding vector field U = ∇µ is parallel to the field

direction. When we differentiate along the dipolar field, we preserve a scalar potential ν,

where the corresponding vector field V = ∇ν is perpendicular to the field (i.e. U ·V = 0).

The scalar potentials µ and ν can then be employed as an orthogonal coordinate system

for the dipolar geometry. To obtain the expressions of µ and ν, we first assume

U = kµ(r, θ)(2 cos θr̂ + sin θθ̂) , (D.6a)

V = kν(r, θ)(sin θr̂ − 2 cos θθ̂) . (D.6b)

Since µ = µ(r, θ) and ν = ν(r, θ), we have


∂µ

∂r
= 2kµ cos θ

∂µ

∂θ
= rkµ sin θ

and


∂ν

∂r
= kν sin θ

∂ν

∂θ
= −2rkν cos θ

.

(D.7)
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Then µ and ν can be solved via the following equations

∂2µ

∂r∂θ
= 2

(
∂kµ
∂θ

cos θ − kµ sin θ

)
= sin θ

(
kµ + r

∂kµ
∂r

)
, (D.8a)

∂2ν

∂r∂θ
=
∂kν
∂θ

sin θ + kν cos θ = −2 cos θ

(
kν + r

∂kν
∂r

)
. (D.8b)

Here, we further assume that kµ(r, θ) = kµr(r)kµθ(θ) and kν(r, θ) = kνr(r)kνθ(θ) are

separable. Hence, above equation sets can be reduced to

d ln kµθ
dθ

2 cos θ

sin θ
= 3 + r

d ln kµr
dr

= cµ0 , (D.9a)

−d ln kνθ
dθ

sin θ

cos θ
= 3 + 2r

d ln kνr
dr

= cν0 , (D.9b)

where cµ0 and cν0 are constants. Solving above equation sets, we obtain

kµ = cµ1r
cµ0−3(cos θ)−

cµ0
2 , (D.10a)

kν = cν1r
cν0−3

2 (sin θ)−cν0 , (D.10b)

where cµ1 and cν1 are also constants. Therefore, the analytical expressions of µ and ν are

µ =


2cµ1 ln r , if cµ0 = 2

2cµ1
cµ0 − 2

rcµ0−2(cos θ)
2−cµ0

2 , if cµ0 ̸= 2
,

(D.11a)

ν =


2cν1 ln r , if cν0 = 1

2cν1
cν0 − 1

r
cν0−1

2 (sin θ)1−cν0 , if cν0 ̸= 1
.

(D.11b)

Apparently, µ and ν are only physical to us when cµ0 ̸= 2 and cν0 ̸= 1. Note that the

selection of (µ, ν) is not unique. We can select cµ0 and cν0 according to different purposes.
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Hereafter, we denote the dipolar coordinates as


p = −r−2n cosn θ

q = r−
m
2 sinm θ

ϕ = ϕ
,

(D.12)

where n ̸= 0, m ̸= 0 and the value of p is selected to increase along +p̂ direction. Note

that the selection of n > 0 and m > 0 avoids the singularity at θ = 0, while the selection

of n < 0 and m < 0 avoids the singularity at r = 0. Since 0 < θ < π, we always have

q as a real number regardless of the selection of m. However, n needs to be an integer

to avoid the complex value of p, unless the domain is constrained above the equator (i.e.

0 < θ < π/2).

When necessary (e.g. more uniform grid spacing of p or q), the standard dipole

coordinates (D.12) can be further generalized as below


p̃ = Op(p)

q̃ = Oq(q)

ϕ = ϕ
,

(D.13)

where the orthogonality is still maintained since

∇p̃ ·∇q̃ =

(
∂Op

∂p
∇p

)
·
(
∂Oq

∂q
∇q

)
= O′

pO
′
q(∇p ·∇q) = 0 . (D.14)

Therefore the operators Op and Oq merely redistribute the spacing of the coordinates.
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D.2 Inverse Transformation

The inverse of dipolar coordinates to spherical coordinates is not trivial. Given (D.12),

the coordinate inversion requires solving the quartic equation as follows

p
2
n r4 + q

2
m r − 1 = 0 . (D.15)

When θ ∈ {0, π}, we have r = |p|− 1
2n . Otherwise, (D.15) can be rearranged as

Cu4 + u− 1 = 0 , (D.16a)

where


C = p

2
n q−

8
m =

cos2 θ

sin8 θ
≥ 0

u = q
2
m r = sin2 θ > 0

.

(D.16b)

This quartic equation has an unique real solution. Note that C can be very small near

the equator (i.e. θ = π/2) and very large near the poles (i.e. θ ∈ {0, π}). Hence, we

need to carefully solve this quartic equation (D.16). Here, we test the solutions using

the standard Numpy routine and both analytical expressions in Kageyama et al. (2006)

and Swisdak (2006). In Figure D.1, both the numerical root solver and the analytical

expression in Swisdak (2006) have stable numerical behavior near very small and large

C. Hence, we summarize the analytical expression in Swisdak (2006) here for the future

use

u(p, q) =
4U

(1 + U)(1 +
√
2U− 1)

, (D.17a)

where


U =

1

2

(
A2 + AB+ B2

B

) 3
2

A =

(
256

27
C
) 1

3

, B =

(
1 +

√
1 +

256

27
C

) 2
3

.

(D.17b)

221



D.2 Inverse Transformation Appendix D
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Figure D.1: The solution of quartic equation for the inverse of dipolar coordinates
transformation (D.16). Note that the form of analytical expression in Kageyama
et al. (2006) fails numerically to resolve the solution when C is very small or large.

The transformation from the dipole coordinates to the spherical coordinates is then



r = uq−
2
m

θ =


arcsinu

1
2 , if p < 0

π − arcsinu
1
2 , if p > 0

ϕ = ϕ

, if q ̸= 0 (D.18a)


r = |p|−

1
2n

θ ∈ {0, π}

ϕ = ϕ

, if q = 0 (D.18b)

For the generalized dipole coordinates (D.13), we need to specify the inverse of Op and

Oq to complete the transformation as


p = O−1

p (p̃)

q = O−1
q (q̃)

,

(D.19)
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where O−1
p and O−1

q are inverse operators of Op and Oq.

D.3 Vector and Tensor Operations

Because the inverse of the dipolar coordinates to spherical coordinates is non-trivial,

it is more convenient for us to express the geometric factors in its vector and tensor

operations in spherical coordinates. Given the dipolar coordinates (D.12), the scale

factors can be calculated as

hp =
1

|n|
√
1 + 3 cos2 θ

r2n+1

| cos θ|n−1

hq =
2

|m|
√
1 + 3 cos2 θ

r
m+2

2

(sin θ)m−1

hϕ = r sin θ
.

(D.20)

Hence, the grid spacing in dipolar geometry can be tuned via tweaking indices n and

m. We can also adopt the appropriate Op and Oq in the generalized dipolar coordinates

(D.13) to adjust the grid spacing (e.g. see section 6.2.2). The scale factors in the

generalized dipolar coordinates are

hp̃ =
1

|O′
p|
hp and hq̃ =

1

|O′
q|

. (D.21)

The generalized version can be easily adjusted by replacing hp and hq with hp̃ and hq̃,

respectively. With above scale factors (D.20), we can compute the differential area and

volume

dσpq = hphq dpdq , dσpϕ = hphϕ dpdϕ , dσqϕ = hqhϕ dqdϕ , (D.22a)

dτ = hphqhϕ dpdqdϕ , (D.22b)
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gradient of a scalar f

∇f =
1

hp

∂f

∂p
p̂+

1

hq

∂f

∂q
q̂ +

1

hϕ

∂f

∂ϕ
ϕ̂ , (D.23)

Laplacian of a scalar f

∇2f =
1

hphqhϕ

[
∂

∂p

(
hqhϕ
hp

∂f

∂p

)
+

∂

∂q

(
hphϕ
hq

∂f

∂q

)
+

∂

∂ϕ

(
hphq
hϕ

∂f

∂ϕ

)]
, (D.24)

divergence of a vector A

∇ ·A =
1

hphqhϕ

[
∂

∂p
(hqhϕAp) +

∂

∂q
(hphϕAq) +

∂

∂ϕ
(hphqAϕ)

]
, (D.25)

curl of a vector A

∇×A =
1

hqhϕ

[
∂

∂q
(hϕAϕ)−

∂

∂ϕ
(hqAq)

]
p̂+

1

hphϕ

[
∂

∂ϕ
(hpAp)−

∂

∂p
(hϕAϕ)

]
q̂

+
1

hphq

[
∂

∂p
(hqAq)−

∂

∂q
(hpAp)

]
ϕ̂ ,

(D.26)

and divergence of a tensor T

∇ ·T =



1

hphqhϕ

[
∂

∂p
(hqhϕTpp) +

∂

∂q
(hphϕTqp) +

∂

∂ϕ
(hphqTϕp)

]

+
Tpq

hphq

∂hp
∂q

+
Tϕp

hphϕ

∂hp
∂ϕ

− Tqq

hphq

∂hq
∂p

−
Tϕϕ

hphϕ

∂hϕ
∂p


p̂

+



1

hphqhϕ

[
∂

∂p
(hqhϕTpq) +

∂

∂q
(hphϕTqq) +

∂

∂ϕ
(hphqTϕq)

]

+
Tqp

hphq

∂hq
∂p

+
Tqϕ

hqhϕ

∂hq
∂ϕ

− Tpp

hphq

∂hp
∂q

−
Tϕϕ

hqhϕ

∂hϕ
∂q


q̂ (D.27)

+



1

hphqhϕ

[
∂

∂p
(hqhϕTpϕ) +

∂

∂q
(hphϕTqϕ) +

∂

∂ϕ
(hphqTϕϕ)

]

+
Tϕp

hphϕ

∂hϕ
∂p

+
Tϕq

hqhϕ

∂hϕ
∂q

− Tpp

hphϕ

∂hp
∂ϕ

− Tqq

hqhϕ

∂hq
∂ϕ


ϕ̂ ,
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where the non-derivative terms of tensor T in each brace are known as the geometric

source terms.

To compute above operations, we first need to prepare some auxiliary derivatives of

the dipolar coordinates with respect to the spherical coordinates.

∂p

∂r
=

(
cosn θ

r2n

)
(2n)

1

r
,

∂p

∂θ
=

(
cosn θ

r2n

)
(n)

sin θ

cos θ
,

∂q

∂r
=

(
sinm θ

r
m
2

)(
−m

2

) 1

r
,

∂q

∂θ
=

(
sinm θ

r
m
2

)
(m)

cos θ

sin θ
.

(D.28)

So the Jacobian can be calculated as follows

∂(r, θ)

∂(p, q)
=


∂r

∂p

∂r

∂q

∂θ

∂p

∂θ

∂q

 =

(
∂(p, q)

∂(r, θ)

)−1

=


∂p

∂r

∂p

∂θ

∂q

∂r

∂q

∂θ


−1

=
1

det

(
∂(p, q)

∂(r, θ)

)


∂q

∂θ
−∂p
∂θ

−∂q
∂r

∂p

∂r

 , (D.29a)

where det

(
∂(p, q)

∂(r, θ)

)
=
nm

2
r−2n−m

2
−1(cos θ)n−1(sin θ)m−1(3 cos2 θ + 1) ̸= 0 .

Thus, following conditions needs to be satisfied to guarantee a reversible Jacobian

θ ̸= π

2
, when n ̸= 1 , (D.30a)

θ ̸∈ {0, π} , when m ̸= 1 . (D.30b)

Note that there is a possibility that the singularity may be eliminated during these calcu-

lations. Therefore, we must conduct a sanity check to ensure its continued existence. But
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first, we can temporarily ignore the singularity and proceed with the derivations. Fol-

lowing the inverse of the Jacobian (D.29a), we can obtain the derivatives of the spherical

coordinates with respect to the dipolar coordinates

∂r

∂p
=

(
r2n

cosn θ

)(
2

n

)
r cos2 θ

1 + 3 cos2 θ

∂r

∂q
=

(
r

m
2

sinm θ

)(
− 2

m

)
r sin2 θ

1 + 3 cos2 θ

∂θ

∂p
=

(
r2n

cosn θ

)(
1

n

)
sin θ cos θ

1 + 3 cos2 θ

∂θ

∂q
=

(
r

m
2

sinm θ

)(
4

m

)
sin θ cos θ

1 + 3 cos2 θ .

(D.31)

Given the scale factors (D.20), the derivatives of them with respect to the spherical

coordinates are

∂hp
∂r

= hp
2n+ 1

r

∂hp
∂θ

= hp

[
3 sin θ cos θ

1 + 3 cos2 θ
+ (n− 1)

sin θ

| cos θ|

]
∂hp
∂ϕ

= 0

∂hq
∂r

= hq
m+ 2

2r

∂hq
∂θ

= hq

[
3 sin θ cos θ

1 + 3 cos2 θ
− (m− 1)

cos θ

sin θ

]
∂hq
∂ϕ

= 0

∂hϕ
∂r

= sin θ
∂hϕ
∂θ

= r cos θ
∂hϕ
∂ϕ

= 0
.

(D.32)

Applying the chain rules, we can calculate the derivatives of the scale factors with respect

to the dipolar coordinates

∂hp
∂p

= hp

[(
4 +

2

n

)
cos2 θ +

(
1− 1

n

)
cos θ

| cos θ|
sin2 θ

+

(
3

n

)
sin2 θ cos2 θ

1 + 3 cos2 θ

]
1

1 + 3 cos2 θ

r2n

cosn θ
, (D.33a)

∂hp
∂q

= hp

[
4n

m

(
cos θ

| cos θ|
− 1

)
− 4

m

(
1

2
+

cos θ

| cos θ|

)
+

(
12

m

)
cos2 θ

1 + 3 cos2 θ

]
sin2 θ

1 + 3 cos2 θ

r
m
2

sinm θ
, (D.33b)

∂hp
∂ϕ

= 0 , (D.33c)

∂hq
∂p

= hq

(
6

n

)
cos2 θ(1 + cos2 θ)

(1 + 3 cos2 θ)2
r2n

cosn θ
, (D.33d)

∂hq
∂q

= hq

{
−1 +

[
2

m
(1 + cos2 θ) +

(
12

m

)
sin2 θ cos2 θ

1 + 3 cos2 θ

]
1

1 + 3 cos2 θ

}
r

m
2

sinm θ
, (D.33e)
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∂hq
∂ϕ

= 0 , (D.33f)

∂hϕ
∂p

= hϕ

(
3

n

)
cos2 θ

1 + 3 cos2 θ

r2n

cosn θ
, (D.33g)

∂hϕ
∂q

= hϕ

(
2

m

)
3 cos2 θ − 1

1 + 3 cos2 θ

r
m
2

sinm θ
, (D.33h)

∂hϕ
∂ϕ

= 0 . (D.33i)

With the above auxiliary quantities, we can compute the all the vector and tensor oper-

ations in the given dipole coordinate system.
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Appendix E

Derivation of Polarized Radiative

Transfer in Magnetic Field

E.1 Classical Thomson Scattering in Magnetic Field

E.1.1 Equation of Motion

Consider a planar electromagnetic wave encountering a moving electron with charge

−e and mass me in the presence of a strong external magnetic field B0 = B0ẑ. The wave

vector and the angular frequency of the incident electromagnetic wave are ki and ω,

respectively. Its corresponding electric field is Ei = êiEi exp[i(ki · r − ωt)] and magnetic

field isBi = k̂i×Ei, where êi is the unit vector of the incident electric field. The equation

of motion in the classical regime is set up by the Newton’s second law and Lorentz force

as follows:

mer̈e = −e
[
Ei +

1

c
ṙe × (Bi +B0)

]
, (E.1a)

where re(t) refers to the electron trajectory. In the non-relativistic regime (i.e. ṙe ≪ c),

the magnetic Lorentz force introduced by Bi is negligible. For convenience, we choose
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the local frame (i.e. r = 0 for the electric field of the incident radiation) for further

evaluation. The equation of motion can be reduced to


r̈e,x

r̈e,y

r̈e,z

+ ωce


ṙe,y

−ṙe,x

0

 = − e

me

Eie
−iωt


êi · x̂

êi · ŷ

êi · ẑ

 , (E.1b)

where ωce = eB0/(mec) is the electron cyclotron frequency. The equation (E.1b) can be

solved analytically as follows:

re = − e

me

Ei


−(êi · x̂) + i(ωce/ω)(êi · ŷ)

ω2 − ω2
ce

−(êi · ŷ)− i(ωce/ω)(êi · x̂)
ω2 − ω2

ce
−(êi · ẑ)

ω2

 e−iωt+


cx1

cy1

0

 cos(ωcet)+


cx2

cy2

0

 sin(ωcet) ,

(E.2)

where cx1, cx2, cy1, and cy2 are constants that can be determined by the initial condition.

The solution in z-direction introduces the time-harmonic current density and simply

leads to the Thomson scattering cross section, which is expected because the electron

can freely move along the magnetic field B0. The solution in x-y plane have three basic

modes: exp(−iωt), cos(ωcet), and sin(ωcet). Obviously, we are not interested in the latter

two because it merely refers to the helix motion of the electron around the magnetic field.

Hence, we only keep the first mode, i.e. exp(−iωt), for the further evaluation.

re = − e

meω2
Eie

−iωtr̂e , (E.3a)

where the direction of the electron trajectory is

r̂e = −
[
(êi · x̂)− iη(êi · ŷ)

1− η2
x̂+

(êi · ŷ) + iη(êi · x̂)
1− η2

ŷ + (êi · ẑ)ẑ
]

, (E.3b)
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and η ≡ ωce/ω.

E.1.2 Scattering Cross Section

To describe the scattered radiation, we similarly define the outgoing electromagnetic

wave with the wave vector ko, electric field Eo = êoEo exp[i(ko · r − ωt)], and magnetic

field Bo = k̂o ×Eo. For convenience, we adopt the outgoing wave propagation direction

as k̂o = r̂ in the local frame. The cross section for scattering is scaled by the ratio of

the scattered radiation power to the incident radiation power, e.g. see equation (21.2) of

Zangwill (2012).

dσ =
E2

o

E2
i

r2dΩ , (E.4)

where r2dΩ refers to the spherical surface element. The outgoing radiation is essentially

sourced by the current density of the moving electron and the electromagnetic wave

in vacuum can be entirely determined by the radiation vector potential. The key is

to eliminate the charge density using the charge continuity equation (for details see

chapter (20.5.3) of Zangwill 2012). Therefore, we can rewrite the electric field of the

outgoing radiation as

Eo(r, t) = r̂ ×
(
r̂ × 1

c

∂Ao(r, t)

∂t

)
, (E.5a)

Ao(r, t) =
1

c

∫
d3r′

j(r′, t− |r − r′|/c)
|r − r′|

, (E.5b)

where Ao is the retarded vector potential and j refers to the current density. For conve-

nience of calculation, we can adopt the following expansion:

|r − r′| = r

[
1− (r′/r)(r̂′ · r̂) + 1

2
(r′/r)2[1− (r̂′ · r̂)2] +O

(
(r′/r)3

)]
, (E.6)
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where we retain the leading term for the denominator and the first two terms for the

current density in the numerator of (E.5b). The general idea of this approximation is

to keep the overall variance of 1/r while resolve the angular dependence in the current

density. The detail reasoning can be found in chapter (20.5.3) of Zangwill (2012). Hence,

we can further multipole expand the current density as follows:

j(r′, t− |r − r′|
c

) ≃ j(r′, t− r

c
+

r′ · r̂
c

) = j(r′, t− r

c
) +

(
r′ · r̂
c

)
∂

∂t
j(r′, t− r

c
)

+
1

2

(
r′ · r̂
c

)2
∂2

∂t2
j(r′, t− r

c
) +O

((
r′ · r̂
c

)3
)

, (E.7)

where the first term sources the electric dipole radiation, the second term sources the

magnetic dipole radiation, and the third term sources the electric quadrupole radiation.

The detail proof can be found in chapter (20.7) of Zangwill (2012). In our case of non-

relativistic regime, we consider the long radiation wavelength and the small electron

oscillation (in terms of amplitude and frequency). Since the oscillating electron produces

electric dipole moment, we can only retain and evaluate the electric dipole term of equa-

tion (E.7). Given the current density of the moving electron j(r, t) = −eṙeδ(r−re), the

magnetic vector potential for the outgoing radiation can be approximated as:

Ao(r, t) ≃
1

cr

∫
j(r′, t− r

c
)d3r′ =

−e
cr

d

dt
re(t−

r

c
) . (E.8)

Therefore, the electric field of the scattered radiation is reduced to

Eo ≃
1

c2r
r̂ ×

[
r̂ × d2

dt2
(−ere)

]
. (E.9)

Here, re = re(t − r/c) is retarded. But this does not bother in the cross section cal-

culation, as the power is time averaged. With (E.9), (E.3), and (E.4), we can obtain a
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general expression for the scattered electric field and the differential cross section of the

magnetic Thomson scattering:

Eo ≃ −re
r
Eie

−iωt [r̂ × (r̂ × r̂e)] , (E.10)

dσ

dΩ
≃ r2e |r̂ × (r̂ × r̂e)|2 , (E.11)

where re = e2/(mec
2) is the classical electron radius. Given the radial direction r̂ =

x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ in Cartesian coordinates, we can prepare the following

auxiliary expression for convenience of the further calculation:

r̂ × (r̂ × r̂e) = (r̂ · r̂e)r̂ − r̂e

=


−(1− sin2 θ cos2 ϕ) sin2 θ sinϕ cosϕ sin θ cos θ cosϕ

sin2 θ sinϕ cosϕ −(1− sin2 θ sin2 ϕ) sin θ cos θ sinϕ

sin θ cos θ cosϕ sin θ cos θ sinϕ − sin2 θ

 r̂e . (E.12)

Let us now confirm above derivations with some previous works. In Chou (1986) and

Caiazzo & Heyl (2021), the incident radiation is initialized in the x-z plane (i.e. azimuthal

angle β = 0) and have the polar angle α (see the geometric configuration in Fig. 1 of

Chou 1986 or Fig. 2 of Caiazzo & Heyl 2021). In this case, the direction of the incident

radiation is simply k̂i = x̂ sinα+ ẑ cosα. There are two independent linear polarization

modes, where the extraordinary mode (X-mode) is polarized along the y-direction (i.e.

êi,⊥ = ŷ) and the ordinary mode (O-mode) is perpendicular to the radiation propagation

direction in the x-z plane (i.e. êi,∥ = x̂ cosα − ẑ sinα). We can further compute the

cross section of these two polarization modes by substituting the corresponding radiation

propagation direction in (E.3) and (E.11). Then the differential scattering cross sections
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of X-modes and O- are

dσX
dΩ

=
r2e

(1− η2)2
[
(1− sin2 θ sin2 ϕ) + η2(1− sin2 θ cos2 ϕ)

]
, (E.13a)

dσO
dΩ

= r2e

{
cos2 α

(1− η2)2
(1− sin2 θ cos2 ϕ) +

η2 cos2 α

(1− η2)2
(1− sin2 θ sin2 ϕ)

+
2 sinα cosα

1− η2
sin θ cos θ cosϕ+ sin2 α sin2 θ

}
,

(E.13b)

which can be further integrated to obtain the total cross sections as

σO = σT

[
sin2 α +

1 + η2

(1− η2)2
cos2 α

]
, (E.14a)

σX = σT
1 + η2

(1− η2)2
. (E.14b)

Here, the constant σT = 8πr2e/3 is the Thomson cross section. Our results recover the

equations (18a)-(18b) of Caiazzo & Heyl (2021) and the average is consistent with the

equations (36) of Chou (1986).

E.1.3 Mueller Matrix

In this section, we will construct the Stokes parameters to describe the polarization

state and establish the Mueller matrix for the polarized radiation transfer of magnetic

Thomson scattering. Consider the incident radiation with arbitrary direction k̂i and the

unit vectors of linearly polarized basis êi,∥ and êi,⊥, where

k̂i = x̂ sinα cos β + ŷ sinα sin β + ẑ cosα , (E.15a)

êi,∥ = x̂ cosα cos β + ŷ cosα sin β − ẑ sinα , (E.15b)

êi,⊥ = −x̂ sin β + ŷ cos β . (E.15c)
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Similarly, for the scattered radiation,

k̂o = x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ , (E.16a)

êo,∥ = x̂ cos θ cosϕ+ ŷ cos θ sinϕ− ẑ sin θ , (E.16b)

êo,⊥ = −x̂ sinϕ+ ŷ cosϕ . (E.16c)

Recall that α and β are polar and azimuthal angles of the incident radiation, respectively.

The X-mode is polarized perpendicular to both external magnetic field and the radiation

propagation direction, i.e. k̂ · ê⊥=0 and ẑ · ê⊥=0. The O-mode is polarized perpendicular

to the radiation propagation direction, i.e. k̂ · ê∥=0, and in the plane formed by k̂ and

ẑ, i.e. (k̂ × ẑ) · ê∥ = 0. The equation (E.10) then gives the direction of the electric field

for the scattered radiation êo as a function of êi.

êo = −Eire
Eor

[
(k̂o · r̂e)k̂o − r̂e

]
, (E.17)

where r̂e depends on êi given by (E.3). This essentially allows us to express the scattered

radiation in terms of the incident radiation. Let us start with the Stokes parameters

(I,Q, U, V ), where

I ∝ E∥E
∗
∥ + E⊥E

∗
⊥ , (E.18a)

Q ∝ E∥E
∗
∥ − E⊥E

∗
⊥ , (E.18b)

U ∝ E∥E
∗
⊥ + E∗

∥E⊥ , (E.18c)

V ∝ i(E∥E
∗
⊥ − E∗

∥E⊥) . (E.18d)

The scattered radiation can be then given by the Mueller matrix multiplying with the

Stokes intensity vector of the incident radiation as
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

Io

Qo

Uo

Vo


∝ r2e

2r2



M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44





Ii

Qi

Ui

Vi


. (E.19)

Apparently, in order to obtain the Mueller matrix, it is necessary to express the system

using the orthogonal basis (k̂i, êi,∥, êi,⊥). For any given vector n, we have the coordinates

transformation as follows:
n · x̂

n · ŷ

n · ẑ

 =


sinα cos β cosα cos β − sin β

sinα sin β cosα sin β cos β

cosα − sinα 0



n · k̂i

n · êi,∥

n · êi,⊥

 . (E.20)

Following (E.17), we first calculate the parallel and perpendicular components of the

scattered electric field as

Eo,∥ = Ei
re
r
(r̂e · êo,∥) = Ei

re
r
[(r̂e · x̂) cos θ cosϕ+ (r̂e · ŷ) cos θ sinϕ− (r̂e · ẑ) sin θ] , (E.21a)

Eo,⊥ = Ei
re
r
(r̂e · êo,⊥) = Ei

re
r
[−(r̂e · x̂) sinϕ+ (r̂e · ŷ) cosϕ] . (E.21b)

Given the electron trajectory in Cartesian coordinates (E.3) and êi · k̂i = 0, we can

use the coordinate transformation (E.20) to obtain the electron position in terms of the

components under the basis of (k̂i, êi,∥, êi,⊥):

r̂e · x̂ =
1

1− η2
[
(− cosα cos β + iη cosα sin β) (êi · êi,∥) + (sin β + iη cos β)(êi · êi,⊥)

]
,

r̂e · ŷ =
1

1− η2
[
(− cosα sin β − iη cosα cos β) (êi · êi,∥)− (cos β − iη sin β)(êi · êi,⊥)

]
,

r̂e · ẑ = (sinα)(êi · êi,∥) .
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Plug above into (E.21), we can obtain expressions for the scattered electric field in terms

of the components under the basis of (k̂i, êi,∥, êi,⊥):

Eo,∥ = Ei
re
r

[
A1(êi · êi,∥) +A2(êi · êi,⊥)

]
,

Eo,⊥ = Ei
re
r

[
A3(êi · êi,∥) +A4(êi · êi,⊥)

]
.

The complex coefficients A1, A2, A3, and A4 are

A1 = A1R + iA1I =

(
−1

1− η2
cosα cos θ cos ϕ̃− sinα sin θ

)
+ i

(
−η

1− η2
cosα cos θ sin ϕ̃

)
,

A2 = A2R + iA2I =

(
−1

1− η2
cos θ sin ϕ̃

)
+ i

(
η

1− η2
cos θ cos ϕ̃

)
,

A3 = A3R + iA3I =

(
1

1− η2
cosα sin ϕ̃

)
+ i

(
−η

1− η2
cosα cos ϕ̃

)
,

A4 = A4R + iA4I =

(
−1

1− η2
cos ϕ̃

)
+ i

(
−η

1− η2
sin ϕ̃

)
,

where ϕ̃ ≡ ϕ − β is the azimuthal angle difference between the incident and scattered

radiation. The subscripts ‘R’ and ‘I’ refer to the real and imaginary parts of the complex

coefficients, respectively. Recall that equations (E.18) allow us to express the incident

electric field in terms of the Stokes parameters:

Ei,∥E
∗
i,∥ = E2

i (êi · êi,∥)(êi · êi,∥)
∗ ∝ 1

2
(Ii +Qi) , (E.22a)

Ei,⊥E
∗
i,⊥ = E2

i (êi · êi,⊥)(êi · êi,⊥)
∗ ∝ 1

2
(Ii −Qi) , (E.22b)

Ei,∥E
∗
i,⊥ = E2

i (êi · êi,∥)(êi · êi,⊥)
∗ ∝ 1

2
(Ui − iVi) , (E.22c)

E∗
i,∥Ei,⊥ = E2

i (êi · êi,∥)
∗(êi · êi,⊥) ∝

1

2
(Ui + iVi) . (E.22d)
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Therefore, we can construct the Mueller matrix as follows:

M11 = A1A∗
1 +A2A∗

2 +A3A∗
3 +A4A∗

4 ,

M12 = A1A∗
1 −A2A∗

2 +A3A∗
3 −A4A∗

4 ,

M13 = A1A∗
2 +A∗

1A2 +A3A∗
4 +A∗

3A4 = 2(A1RA2R +A1IA2I +A3RA4R +A3IA4I) ,

M14 = −i(A1A∗
2 −A∗

1A2 +A3A∗
4 −A∗

3A4) = 2(−A1RA2I +A1IA2R −A3RA4I +A3IA4R) ,

M21 = A1A∗
1 +A2A∗

2 −A3A∗
3 −A4A∗

4 ,

M22 = A1A∗
1 −A2A∗

2 −A3A∗
3 +A4A∗

4 ,

M23 = A1A∗
2 +A∗

1A2 −A3A∗
4 −A∗

3A4 = 2(A1RA2R +A1IA2I −A3RA4R −A3IA4I) ,

M24 = −i(A1A∗
2 −A∗

1A2 −A3A∗
4 +A∗

3A4) = 2(−A1RA2I +A1IA2R +A3RA4I −A3IA4R) ,

M31 = A1A∗
3 +A∗

1A3 +A2A∗
4 +A∗

2A4 = 2(A1RA3R +A1IA3I +A2RA4R +A2IA4I) ,

M32 = A1A∗
3 +A∗

1A3 −A2A∗
4 −A∗

2A4 = 2(A1RA3R +A1IA3I −A2RA4R −A2IA4I) ,

M33 = A1A∗
4 +A∗

1A4 +A2A∗
3 +A∗

2A3 = 2(A1RA4R +A1IA4I +A2RA3R +A2IA3I) ,

M34 = −i (A1A∗
4 −A∗

1A4 −A2A∗
3 +A∗

2A3) = 2(−A1RA4I +A1IA4R +A2RA3I −A2IA3R) ,

M41 = i(A1A∗
3 −A∗

1A3 +A2A∗
4 −A∗

2A4) = 2(A1RA3I −A1IA3R +A2RA4I −A2IA4R) ,

M42 = i(A1A∗
3 −A∗

1A3 −A2A∗
4 +A∗

2A4) = 2(A1RA3I −A1IA3R −A2RA4I +A2IA4R) ,

M43 = i(A1A∗
4 −A∗

1A4 +A2A∗
3 −A∗

2A3) = 2(A1RA4I −A1IA4R +A2RA3I −A2IA3R) ,

M44 = A1A∗
4 +A∗

1A4 −A2A∗
3 −A∗

2A3 = 2(A1RA4R +A1IA4I −A2RA3R −A2IA3I) .

Here, we summarize all the Mueller matrix elements explicitly as follows:

M11 =
1

(1− η2)2
(g1 cos

2 α + g2) +
η2

(1− η2)2
(g2 cos

2 α + g1) + Λ , (E.24a)

M12 =
1

(1− η2)2
(g1 cos

2 α− g2) +
η2

(1− η2)2
(g2 cos

2 α− g1) + Λ , (E.24b)

M13 =
1

1− η2

(
sinα sin 2θ sin ϕ̃− cosα sin2 θ sin 2ϕ̃

)
, (E.24c)
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M14 =
η

1− η2

[
2

1− η2
cosα(1 + cos2 θ) + sinα sin 2θ cos ϕ̃

]
, (E.24d)

M21 =
1

(1− η2)2
(f1 cos

2 α + f2) +
η2

(1− η2)2
(f2 cos

2 α + f1) + Λ , (E.24e)

M22 =
1

(1− η2)2
(f1 cos

2 α− f2) +
η2

(1− η2)2
(f2 cos

2 α− f1) + Λ , (E.24f)

M23 =
1

1− η2

[
cosα(1 + cos2 θ) sin 2ϕ̃+ sinα sin 2θ sin ϕ̃

]
, (E.24g)

M24 =
η

1− η2

(
sinα sin 2θ cos ϕ̃− 2

1− η2
cosα sin2 θ

)
, (E.24h)

M31 =
1

1− η2

(
sin2 α cos θ sin 2ϕ̃− sin 2α sin θ sin ϕ̃

)
, (E.24i)

M32 =
−1

1− η2

[
(1 + cos2 α) cos θ sin 2ϕ̃+ sin 2α sin θ sin ϕ̃

]
, (E.24j)

M33 =
2

1− η2

(
cosα cos θ cos 2ϕ̃+ sinα sin θ cos ϕ̃

)
, (E.24k)

M34 =
−2η

1− η2
sinα sin θ sin ϕ̃ , (E.24l)

M41 =
η

1− η2

[
2

1− η2
(1 + cos2 α) cos θ + sin 2α sin θ cos ϕ̃

]
, (E.24m)

M42 =
η

1− η2

(
−2

1− η2
sin2 α cos θ + sin 2α sin θ cos ϕ̃

)
, (E.24n)

M43 =
2η

1− η2
sinα sin θ sin ϕ̃ , (E.24o)

M44 =
2

1− η2

(
1 + η2

1− η2
cosα cos θ + sinα sin θ cos ϕ̃

)
, (E.24p)

where we define the auxiliary quantities following Chou (1986):

g1 ≡ cos2 θ cos2 ϕ̃+ sin2 ϕ̃ , g2 ≡ cos2 θ sin2 ϕ̃+ cos2 ϕ̃ ,

f1 ≡ cos2 θ cos2 ϕ̃− sin2 ϕ̃ , f2 ≡ cos2 θ sin2 ϕ̃− cos2 ϕ̃ , (E.24q)

Λ ≡ sin2 α sin2 θ +
1

2(1− η2)
sin 2α sin 2θ cos ϕ̃ .
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E.2 Radiative Transfer Equation in Mueller-Matrix

Formalism

In this section, we construct the polarized radiative transfer equation with the Stokes

parameters. The radiative transfer can be summarized in form of

1

c

∂Sν

∂t
+ n̂ · ∇Sν = jν



1

0

0

0


− χν,aSν + ne

∮
Sν,scat(n̂

′, n̂)r2dΩ′ − neSscat,aSν , (E.25)

where Sν = (Iν , Qν , Uν , Vν)
T is the Stokes parameter vector, n̂ is the unit vector of the

radiation propagation direction, jν represents the unpolarized thermal emission, χν,a =

ρκν,a is the thermal absorption coefficient, ne is the electron number density, Sν,scat

refers to the emission of the incident radiation due to the Thomson scattering, n̂′ is the

direction unit vector for the incident radiation, and Sscat,a is the matrix of the absorption

coefficients due to the scattering process.

It would be convenient to integrate the first row of Mueller matrix over the outgoing

radiation direction in advance. Define the cross section component corresponding to each

Mueller matrix element as

σij =
1

2
r2e

∮
MijdΩ . (E.26)

Although we only use the first row, we still conclude all the non-zero elements here for

the completeness:

σ11 =
1

2
σT

[
1 + η2

(1− η2)2
(cos2 α + 1) + sin2 α

]
=

1

2
(σO + σX) , (E.27a)

239



E.2 Radiative Transfer Equation in Mueller-Matrix Formalism Appendix E

σ12 =
1

2
σT

[
1 + η2

(1− η2)2
(cos2 α− 1) + sin2 α

]
=

1

2
(σO − σX) , (E.27b)

σ14 = σT
2η

(1− η2)2
cosα , (E.27c)

σ21 =
1

2
σT

[
−1

2

1 + η2

(1− η2)2
(cos2 α + 1) + sin2 α

]
, (E.27d)

σ22 =
1

2
σT sin2 α

[
1

2

1 + η2

(1− η2)2
+ 1

]
, (E.27e)

σ24 = σT
−η

(1− η2)2
cosα , (E.27f)

The rest of integrated elements are all equal to zero (i.e. σ13 = σ23 = σ31 = σ32 = σ33 =

σ34 = σ41 = σ42 = σ43 = σ44 = 0). Note that the integration over ϕ and ϕ̃ are essentially

the same because the integration covers the whole the azimuthal plane.

E.2.1 Absorption Term of Thomson Scattering

We can evaluate the absorption term of Thomson scattering by calculating the atten-

uation for each pure polarization mode. The cross section can be obtained by integrating

equation (E.4) and then expressed in terms of the angle-integrated Mueller matrix ele-

ments as

σ =
1

2
r2e

∮
Iν,o
Iν
dΩ = σ11 +

Qν

Iν
σ12 +

Uν

Iν
σ13 +

Vν
Iν
σ14 . (E.28)

Therefore, the unpolarized radiation Sν = (Iν , 0, 0, 0)
T has the cross section σI = σ11.

The pure O-mode Sν = (Iν , Iν , 0, 0)
T (i.e. Qν = Iν , E⊥ = 0) has the cross section σQ+ =

σ11 + σ12. The pure X-mode Sν = (Iν ,−Iν , 0, 0)T (i.e. Qν = −Iν , E∥ = 0) has the cross

section σQ− = σ11−σ12. For the linear polarized radiation with the electric field halfway

between parallel and perpendicular Sν = (Iν , 0,±Iν , 0)T (i.e. Uν = ±Iν , E⊥ = ±E∥),

the cross section is σU± = σ11 ± σ13. The pure circular mode Sν = (Iν , 0, 0,±Iν)T (i.e.

Vν = ±Iν , E⊥ = ±iE∥) has the cross section σV± = σ11 ± σ14. Therefore, the Thomson
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scattering absorption matrix can be constructed as

Sscat,a =



σ11 σ12 σ13 σ14

σ12 σ11 0 0

σ13 0 σ11 0

σ14 0 0 σ11


, (E.29)

where all above results are guaranteed to be satisfied.

E.2.2 Emission Term of Thomson Scattering

The emission term due to the Thomson scattering can be easily evaluated given the

already constructed Mueller matrix M.

Sν,scat(n̂
′, n̂) =

r2e
2r2

M(n̂′ → n̂)Sν(n̂
′) , (E.30)

where the Mueller matrix element can be found in equation (E.24). Therefore, we have

the emission source term due to the Thomson scattering as

∮
Sν,scat(n̂

′, n̂)r2dΩ′ =
3

4
σT

[
1

4π

∮
M(n̂′ → n̂)Sν(n̂

′)dΩ′
]

. (E.31)

With these scattering source terms, the polarized radiative transfer can be rewritten as

follows:

1

c

∂Sν

∂t
+ n̂ · ∇Sν = jν



1

0

0

0


− χν,aSν
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+
3

4
neσT

[
1

4π

∮
M(n̂′ → n̂)Sν(n̂

′)dΩ′
]
− ne



σ11Iν + σ12Qν + σ14Vν

σ12Iν + σ11Qν

σ11Uν

σ14Iν + σ11Vν


. (E.32)

E.2.3 Moment Equations of Polarized Radiation

Mueller Matrix in Terms of Propagation Vectors

In order to obtain the moment equations via integrating the radiative transfer equa-

tion (E.32), we prefer to express the Mueller matrix elements in Cartesian unit vectors.

Let us adopt the following notations, where the propagation vectors with prime refer to

the incident radiation direction and the scattered radiation is denoted without prime:

n̂x = sin θ cosϕ , n̂′
x = sinα cos β , (E.33a)

n̂y = sin θ sinϕ , n̂′
y = sinα sin β , (E.33b)

n̂z = cos θ , n̂′
z = cosα . (E.33c)

Here, we also prepare some auxiliary quantities for convenience:

sinα sin θ cos ϕ̃ = n̂xn̂
′
x + n̂yn̂

′
y , (E.34a)

sinα sin θ sin ϕ̃ = n̂yn̂
′
x − n̂xn̂

′
y , (E.34b)

(g1 cos
2 α + g2) = cos2 θ + cos2 α + sin2 α sin2 θ cos2 ϕ̃ , (E.34c)

(g2 cos
2 α + g1) = cos2 θ + cos2 α + sin2 α sin2 θ sin2 ϕ̃ , (E.34d)

(g1 cos
2 α− g2) = sin2 α sin2 θ cos2 ϕ̃− sin2 α− sin2 θ cos 2ϕ̃ , (E.34e)

(g2 cos
2 α− g1) = sin2 α sin2 θ sin2 ϕ̃− sin2 α + sin2 θ cos 2ϕ̃ , (E.34f)
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(f1 cos
2 α + f2) = sin2 α sin2 θ cos2 ϕ̃− sin2 θ − sin2 α cos 2ϕ̃ , (E.34g)

(f2 cos
2 α + f1) = sin2 α sin2 θ sin2 ϕ̃− sin2 θ + sin2 α cos 2ϕ̃ , (E.34h)

(f1 cos
2 α− f2) = sin2 α sin2 θ cos2 ϕ̃+ (cos2 α + cos2 θ) cos 2ϕ̃ , (E.34i)

(f2 cos
2 α− f1) = sin2 α sin2 θ sin2 ϕ̃− (cos2 α + cos2 θ) cos 2ϕ̃ , (E.34j)

Λ = 1− n̂2
z − (n̂′

z)
2 + n̂2

z(n̂
′
z)

2 +
2

1− η2
n̂xn̂zn̂

′
xn̂

′
z +

2

1− η2
n̂yn̂zn̂

′
yn̂

′
z , (E.34k)

Following our previous calculated Mueller matrix elements (E.24), we have

M11 = 1 +

[
1 + η2

(1− η2)2
− 1

]
n̂2
z +

[
1 + η2

(1− η2)2
− 1

]
(n̂′

z)
2 +

[
1

(1− η2)2

]
n̂2
x(n̂

′
x)

2

+

[
1

(1− η2)2

]
n̂2
y(n̂

′
y)

2 + n̂2
z(n̂

′
z)

2 +

[
η2

(1− η2)2

]
n̂2
y(n̂

′
x)

2 +

[
η2

(1− η2)2

]
n̂2
x(n̂

′
y)

2

+

[
2

1− η2

]
n̂xn̂yn̂

′
xn̂

′
y +

[
2

1− η2

]
n̂xn̂zn̂

′
xn̂

′
z +

[
2

1− η2

]
n̂yn̂zn̂

′
yn̂

′
z ,

(E.35a)

M12 =

[
1− 1 + η2

(1− η2)2

]
− n̂2

z +

[
1 + η2

(1− η2)2
− 1

]
(n̂′

z)
2 +

[
1

(1− η2)2

]
n̂2
x(n̂

′
x)

2

+

[
1

(1− η2)2

]
n̂2
y(n̂

′
y)

2 + n̂2
z(n̂

′
z)

2 +

[
η2

(1− η2)2

]
n̂2
y(n̂

′
x)

2 +

[
η2

(1− η2)2

]
n̂2
x(n̂

′
y)

2

+

[
2

1− η2

]
n̂xn̂yn̂

′
xn̂

′
y +

[
2

1− η2

]
n̂xn̂zn̂

′
xn̂

′
z +

[
2

1− η2

]
n̂yn̂zn̂

′
yn̂

′
z

+

[
−1

1− η2

]
(n̂2

x − n̂2
y) cos 2β +

[
−1

1− η2

]
(2n̂xn̂y) sin 2β ,

(E.35b)

M13 =

[
2

1− η2

]
n̂yn̂zn̂

′
x +

[
−2

1− η2

]
n̂xn̂zn̂

′
y +

[
−1

1− η2

]
(2n̂xn̂y)(n̂

′
z cos 2β)

+

[
1

1− η2

]
(n̂2

x − n̂2
y)(n̂

′
z sin 2β) ,

(E.35c)

M14 =

[
2η

(1− η2)2

]
n̂′
z +

[
2η

(1− η2)2

]
n̂2
zn̂

′
z +

[
2η

1− η2

]
n̂xn̂zn̂

′
x +

[
2η

1− η2

]
n̂yn̂zn̂

′
y , (E.35d)

M21 =

[
1− 1 + η2

(1− η2)2

]
+

[
1 + η2

(1− η2)2
− 1

]
n̂2
z − (n̂′

z)
2 + n̂2

z(n̂
′
z)

2 +

[
1

(1− η2)2

]
n̂2
x(n̂

′
x)

2

+

[
1

(1− η2)2

]
n̂2
y(n̂

′
y)

2 +

[
η2

(1− η2)2

]
n̂2
y(n̂

′
x)

2 +

[
η2

(1− η2)2

]
n̂2
x(n̂

′
y)

2

+

[
2

1− η2

]
n̂xn̂yn̂

′
xn̂

′
y +

[
2

1− η2

]
n̂xn̂zn̂

′
xn̂

′
z +

[
2

1− η2

]
n̂yn̂zn̂

′
yn̂

′
z

+

[
−1

1− η2

]
cos 2ϕ

(
n̂′2
x − n̂′2

y

)
+

[
−1

1− η2

]
sin 2ϕ(2n̂′

xn̂
′
y) ,

(E.35e)

243



E.2 Radiative Transfer Equation in Mueller-Matrix Formalism Appendix E

M22 =1− n̂2
z − (n̂′

z)
2 + n̂2

z(n̂
′
z)

2 +

[
1

(1− η2)2

]
n̂2
x(n̂

′
x)

2

+

[
1

(1− η2)2

]
n̂2
y(n̂

′
y)

2 +

[
η2

(1− η2)2

]
n̂2
y(n̂

′
x)

2 +

[
η2

(1− η2)2

]
n̂2
x(n̂

′
y)

2

+

[
2

1− η2

]
n̂xn̂yn̂

′
xn̂

′
y +

[
2

1− η2

]
n̂xn̂zn̂

′
xn̂

′
z +

[
2

1− η2

]
n̂yn̂zn̂

′
yn̂

′
z

+

[
1

1− η2

] [
2 cos 2ϕ cos 2β − (n̂2

x − n̂2
y) cos 2β − cos 2ϕ

(
(n̂′

x)
2 − (n̂′

y)
2
)]

+

[
1

1− η2

] [
2 sin 2ϕ sin 2β − (2n̂xn̂y) sin 2β − sin 2ϕ(2n̂′

xn̂
′
y)
]
,

(E.35f)

M23 =

[
2

1− η2

]
n̂yn̂zn̂

′
x +

[
−2

1− η2

]
n̂xn̂zn̂

′
y +

[
1

1− η2

]
(2 sin 2ϕ− 2n̂xn̂y)(n̂

′
z cos 2β)

+

[
−1

1− η2

] [
2 cos 2ϕ− (n̂2

x − n̂2
y)
]
(n̂′

z sin 2β) ,

(E.35g)

M24 =

[
−2η

(1− η2)2

]
n̂′
z +

[
2η

(1− η2)2

]
n̂2
zn̂

′
z +

[
2η

1− η2

]
n̂xn̂zn̂

′
x +

[
2η

1− η2

]
n̂yn̂zn̂

′
y , (E.35h)

M31 =

[
−2

1− η2

]
n̂yn̂

′
xn̂

′
z +

[
2

1− η2

]
n̂xn̂

′
yn̂

′
z +

[
1

1− η2

]
(n̂z sin 2ϕ)

(
(n̂′

x)
2 − (n̂′

y)
2
)

+

[
−1

1− η2

]
(n̂z cos 2ϕ)

(
2n̂′

xn̂
′
y

)
,

(E.35i)

M32 =

[
−2

1− η2

]
n̂yn̂

′
xn̂

′
z +

[
2

1− η2

]
n̂xn̂

′
yn̂

′
z +

[
1

1− η2

]
(n̂z cos 2ϕ)

(
2 sin 2β − 2n̂′

xn̂
′
y

)
+

[
−1

1− η2

]
(n̂z sin 2ϕ)

[
2 cos 2β −

(
(n̂′

x)
2 − (n̂′

y)
2
)]

,

(E.35j)

M33 =

[
2

1− η2

]
n̂xn̂

′
x +

[
2

1− η2

]
n̂yn̂

′
y +

[
2

1− η2

]
(n̂z cos 2ϕ)(n̂

′
z cos 2β)

+

[
2

1− η2

]
(n̂z sin 2ϕ)(n̂

′
z sin 2β) ,

(E.35k)

M34 =

[
2η

1− η2

]
n̂xn̂

′
y +

[
−2η

1− η2

]
n̂yn̂

′
x , (E.35l)

M41 =

[
2η

(1− η2)2

]
n̂z +

[
2η

(1− η2)2

]
n̂z(n̂

′
z)

2 +

[
2η

1− η2

]
n̂xn̂

′
xn̂

′
z +

[
2η

1− η2

]
n̂yn̂

′
yn̂

′
z , (E.35m)

M42 =

[
−2η

(1− η2)2

]
n̂z +

[
2η

(1− η2)2

]
n̂z(n̂

′
z)

2 +

[
2η

1− η2

]
n̂xn̂

′
xn̂

′
z +

[
2η

1− η2

]
n̂yn̂

′
yn̂

′
z , (E.35n)

M43 =

[
2η

1− η2

]
n̂yn̂

′
x +

[
−2η

1− η2

]
n̂xn̂

′
y , (E.35o)

M44 =

[
2(1 + η2)

(1− η2)2

]
n̂zn̂

′
z +

[
2

1− η2

]
n̂xn̂

′
x +

[
2

1− η2

]
n̂yn̂

′
y , (E.35p)
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Note that those azimuthal angular terms as listed below suggest that we might need to

integrate the extra types of the angular moments for the numerical closure.

cos 2ϕ =
n̂2
x − n̂2

y

n̂2
x + n̂2

y

, sin 2ϕ =
2n̂xn̂y

n̂2
x + n̂2

y

,

cos 2β =
(n̂′

x)
2 − (n̂′

y)
2

(n̂′
x)

2 + (n̂′
y)

2
, sin 2β =

2n̂′
xn̂

′
y

(n̂′
x)

2 + (n̂′
y)

2
.

(E.36)

With above expressions, we can easily integrate the radiative transfer moment equations,

where we define the following angular moments for the Stokes intensity parameters:

JI,ν =
1

4π

∮
IνdΩ H i

I,ν =
1

4π

∮
n̂iIνdΩ Kij

I,ν =
1

4π

∮
n̂in̂jIνdΩ , (E.37a)

P c
I,ν =

1

4π

∮
cos 2ϕIνdΩ P zc

I,ν =
1

4π

∮
n̂z cos 2ϕIνdΩ , (E.37b)

P s
I,ν =

1

4π

∮
sin 2ϕIνdΩ P zs

I,ν =
1

4π

∮
n̂z sin 2ϕIνdΩ . (E.37c)

The rest of angular moments for Qν , Uν , and Vν are defined similarly, where we simply

replace the subscript ‘I’ with ‘Q’, ‘U ’, and ‘V ’, respectively, to annotate their corre-

sponding moments. Also, it would be convenient to express the polarized cross section

components (E.27) in terms of the propagation vectors as follows:

σ11(Ω)

σT
=

1

2

[
1 + η2

(1− η2)2
+ 1

]
+

1

2

[
1 + η2

(1− η2)2
− 1

]
n̂2
z , (E.38a)

σ12(Ω)

σT
=

1

2

[
1− 1 + η2

(1− η2)2

]
+

1

2

[
1 + η2

(1− η2)2
− 1

]
n̂2
z , (E.38b)

σ14(Ω)

σT
=

[
2η

(1− η2)2

]
n̂z , (E.38c)

σ21(Ω)

σT
=

[
1

2
− 1

4

1 + η2

(1− η2)2

]
+

[
−1

2
− 1

4

1 + η2

(1− η2)2

]
n̂2
z , (E.38d)

σ22(Ω)

σT
=

[
1

2
+

1

4

1 + η2

(1− η2)2

]
+

[
−1

2
− 1

4

1 + η2

(1− η2)2

]
n̂2
z , (E.38e)

σ24(Ω)

σT
=

[
−η

(1− η2)2

]
n̂z , (E.38f)
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Let us also prepare the auxiliary angular integration as follows:

1

4π

∮
n̂2
xdΩ =

1

4π

∮
n̂2
ydΩ =

1

4π

∮
n̂2
zdΩ =

1

3
, (E.39)

1

4π

∮
n̂2
xn̂

2
ydΩ =

1

4π

∮
n̂2
xn̂

2
zdΩ =

1

4π

∮
n̂2
yn̂

2
zdΩ =

1

15
, (E.40)

1

4π

∮
n̂4
xdΩ =

1

4π

∮
n̂4
ydΩ =

1

4π

∮
n̂4
zdΩ =

1

5
, (E.41)

∮
n̂xdΩ =

∮
n̂ydΩ =

∮
n̂zdΩ =

∮
n̂xn̂ydΩ =

∮
n̂xn̂zdΩ =

∮
n̂yn̂zdΩ = 0 , (E.42)

∮
n̂xn̂

3
ydΩ =

∮
n̂3
xn̂ydΩ =

∮
n̂xn̂

3
zdΩ =

∮
n̂3
xn̂zdΩ =

∮
n̂yn̂

3
zdΩ =

∮
n̂3
yn̂zdΩ = 0 , (E.43)

∮
n̂2
xn̂yn̂zdΩ =

∮
n̂xn̂

2
yn̂zdΩ =

∮
n̂xn̂yn̂

2
zdΩ = 0 , (E.44)

∮
sin 2ϕdΩ =

∮
n̂x sin 2ϕdΩ =

∮
n̂y sin 2ϕdΩ =

∮
n̂2
x sin 2ϕdΩ =

∮
n̂2
y sin 2ϕdΩ = 0 ,

(E.45)

1

4π

∮
n̂xn̂y sin 2ϕdΩ =

1

6
, (E.46)

∮
cos 2ϕdΩ =

∮
n̂x cos 2ϕdΩ =

∮
n̂y cos 2ϕdΩ =

∮
n̂xn̂y cos 2ϕdΩ = 0 , (E.47)

1

4π

∮
n̂2
x cos 2ϕdΩ =

(
− 1

4π

)∮
n̂2
y cos 2ϕdΩ =

1

6
, (E.48)

∮
sin 2ϕ cos 2ϕdΩ = 0 , (E.49)

1

4π

∮
(sin 2ϕ)2dΩ =

1

4π

∮
(cos 2ϕ)2dΩ =

1

2
, (E.50)

1

4π

∮
n̂2
z(sin 2ϕ)

2dΩ =
1

4π

∮
n̂2
z(cos 2ϕ)

2dΩ =
1

6
, (E.51)

Zeroth Moment Equations

Since the Thomson scattering is frequency independent, the emission term should not

alter the energy. Therefore, the scattering source terms should disappear in the zeroth
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moment equation of total radiation intensity Iν , which turns out to be a good sanity

check. Integrating the radiative transfer equation of Iν , we can then obtain the zeroth

moment equation as follows

1

c

∂JI,ν
∂t

+∇jH
j
I,ν = jν − χν,aJI,ν + neσT

1 + η2

4(1− η2)2

(
Kxx

I,ν +Kyy
I,ν +Kzz

I,ν − JI,ν

)
+ neσT

1 + η2

4(1− η2)2

(
Kxx

Q,ν +Kyy
Q,ν +Kzz

Q,ν − JQ,ν

)
+ neσT

2η

(1− η2)2
(
Hz

V,ν −Hz
V,ν

)
. (E.52)

Recall that

JI,ν = Kxx
I,ν +Kyy

I,ν +Kzz
I,ν , (E.53a)

JQ,ν = Kxx
Q,ν +Kyy

Q,ν +Kzz
Q,ν . (E.53b)

Therefore, we recover the zeroth moment equation without any scattering term

1

c

∂JI,ν
∂t

+∇jH
j
I,ν = jν − χν,aJI,ν . (E.54a)

The rest of zeroth moment equations for Qν , Uν , and Vν are integrated as follows:

1

c

∂JQ,ν

∂t
+∇jH

j
Q,ν = −χν,aJQ,ν

− neσT

{
1 + η2

4(1− η2)2
[(
JQ,ν + 3Kzz

Q,ν

)
−
(
JI,ν − 3Kzz

I,ν

)]
+

η

(1− η2)2
Hz

V,ν

}
,
(E.54b)

1

c

∂JU,ν
∂t

+∇jH
j
U,ν = −χν,aJU,ν

− neσT

{[
1

2

1 + η2

(1− η2)2
+

1

2

]
JU,ν +

[
1

2

1 + η2

(1− η2)2
− 1

2

]
Kzz

U,ν

}
,

(E.54c)

1

c

∂JV,ν
∂t

+∇jH
j
V,ν = −χν,aJV,ν

− neσT

{
2η

(1− η2)2
Hz

I,ν +

[
1

2

1 + η2

(1− η2)2
+

1

2

]
JV,ν +

[
1

2

1 + η2

(1− η2)2
− 1

2

]
Kzz

V,ν

}
.

(E.54d)
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By taking η = 0, we can recover the moments equations for non-magnetic Thomson

scattering. If we neglect the magnetic effect (i.e. η = 0) and assuming the isotropic

radiation field, we get negative scattering source terms for Qν , Uν , and Vν , which suggests

the scattering process depolarizes the incident light.

First Moment Equations

The scattering emission terms entails the angular integration of the Muller matrix,

where the isotropic terms of angular moments vanish in the first moment equations (recall∫
nidΩ = 0). The attenuation terms of the Thomson scattering mostly contribute to the

first moment equations.

1

c

∂Hi
I,ν

∂t
+∇jK

ij
I,ν = −χν,aH

i
I,ν − neσT

{
1

2

[
1 + η2

(1− η2)2
+ 1

]
Hi

I,ν

+
1

2

[
1 + η2

(1− η2)2
− 1

]
(Lizz

I,ν −Hi
Q,ν + Lizz

Q,ν) +

[
2η

(1− η2)2

]
Kiz

V,ν

}
,

(E.55a)

1

c

∂Hi
Q,ν

∂t
+∇jK

ij
Q,ν = −χν,aH

i
Q,ν − neσT

{
1

2

[
1 + η2

(1− η2)2
+ 1

]
Hi

Q,ν

+
1

2

[
1 + η2

(1− η2)2
− 1

]
(−Hi

I,ν + Lizz
I,ν + Lizz

Q,ν)

}
,

(E.55b)

1

c

∂Hi
U,ν

∂t
+∇jK

ij
U,ν = −χν,aH

i
U,ν − neσT

{
1

2

[
1 + η2

(1− η2)2
+ 1

]
Hi

U,ν

+
1

2

[
1 + η2

(1− η2)2
− 1

]
Lizz
U,ν

}
+

neσT

2(1− η2)

[
− δiyKxz

I,ν + δixKyz
I,ν

− δiyKxz
Q,ν + δixKyz

Q,ν + δixHx
U,ν + δiyHy

U,ν + η(δixHy
V,ν − δiyHx

V,ν)

]
,

(E.55c)

1

c

∂Hi
V,ν

∂t
+∇jK

ij
V,ν = −χν,aH

i
V,ν − neσT

{[
2η

(1− η2)2

]
Kiz

I,ν +
1

2

[
1 + η2

(1− η2)2
+ 1

]
Hi

V,ν

+
1

2

[
1 + η2

(1− η2)2
− 1

]
Lizz
V,ν

}
+

1

2
neσT

{
ηδiz

(1− η2)2
(JI,ν +Kzz

I,ν)

+
η

1− η2
(δixKxz

I,ν + δiyKyz
I,ν) +

ηδiz

(1− η2)2
(Kzz

Q,ν − JQ,ν)

+
η

1− η2
(δixKxz

Q,ν + δiyKyz
Q,ν) +

η

1− η2
(δiyHx

U − δixHy
U )

+
(1 + η2)δiz

(1− η2)2
Hz

V +
1

1− η2
(δixHx

V + δiyHy
V )

}
,

(E.55d)
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where Lizz = (1/4π)
∮
nin

2
zdΩ refers to the third moments. In the weak magnetic field

regime (i.e. η = 0), the first moment equations reduce to the usual momentum equations,

i.e. with radiation forces that arise from both the thermal absorption of gas (χν,a) and

the attenuation from Thomson scattering (neσT ).

E.3 Angle- and Polarization-Averaged Magnetic Scat-

tering Opacities

The scattering opacities in a neutron star accretion column depend strongly on both

photon frequency, propagation angle with respect to the magnetic field, and polariza-

tion. A multifrequency group method for isotropic absorption and emission has now

been implemented in Athena++ (Jiang 2022), and generalizing this to include angle-

dependence and polarization would be worthwhile in our future work. In the meantime,

the simulations in chapter 4 use the implementation of frequency-integrated radiation

transfer in Athena++ (Jiang et al. 2014; Jiang 2021). Here we describe the frequency-

integrated, angle-, and polarization-averaged scattering opacities that we use in chapter 4.

Recall that we neglect quantum effects and treat photon-electron scattering classi-

cally, assuming a cold electron-ion plasma with infinite ion inertia and negligible plasma

frequencies so that dispersive effects are negligible. The full Mueller matrix for electron

scattering in a uniform magnetic field under these conditions has been derived above

(for details see section E.1.3), and maps the Stokes parameters of the incoming to the

outgoing radiation field. We simplify the problem here by azimuthally averaging around

the direction of the magnetic field (Caiazzo & Heyl 2021) and neglecting circular po-

larization. Switching from Stokes parameters Iν and Qν to O and X mode intensities

defined by IOν = (Iν + Qν)/2 and IXν = (Iν − Qν)/2, respectively, we can then derive
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the following scattering coefficients for X-modes

χXν = neσT
ω2(ω2 + ω2

ce)

(ω2 − ω2
ce)

2
≡ fneσT , (E.56)

O-mode radiation propagating perpendicular to the magnetic field

χ⊥
Oν = neσT

(
4 + f

5

)
, (E.57a)

and O-mode radiation propagating parallel to the magnetic field

χ
∥
Oν = neσT

(
2 + 3f

5

)
. (E.57b)

Here ω = 2πν is the angular photon frequency, and ωce = eB/(mec) is the electron

cyclotron angular frequency. These expressions are identical to those in equation (45) of

Arons et al. (1987), except that they used an approximation where f is unity for ω > ωce

and ω2/ω2
ce for ω < ωce. The exact (albeit classical) expression that we use here retains

the enhancement of scattering near the cyclotron resonance.

Provided mode exchange is relatively efficient, the angle-averaged mean intensities in

both polarization modes will be approximately equal (Arons et al. 1987). The polarization-

averaged opacities for diffusion are then

χ⊥
ν =

2χ⊥
OνχXν

χ⊥
Oν + χXν

=
f(4 + f)

2 + 3f
neσT , (E.58a)

and

χ∥
ν =

2χ
∥
OνχXν

χ
∥
Oν + χXν

=
f(2 + 3f)

1 + 4f
neσT , (E.58b)

in agreement with equation (50) of Arons et al. (1987).

We neglect finite photon chemical potential effects, and compute blackbody Rosseland
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means:

χR⊥ = neσT

∫ ∞

0

dx
x4ex

(ex − 1)2∫ ∞

0

dx
x4ex(2 + 3f)

f(4 + f)(ex − 1)2

= neσT ×


1 for xce → 0

8π2

5x2ce
for xce → ∞

,

(E.59a)

and

χR∥ = neσT

∫ ∞

0

dx
x4ex

(ex − 1)2∫ ∞

0

dx
x4ex(1 + 4f)

f(2 + 3f)(ex − 1)2

= neσT ×


1 for xce → 0

8π2

5x2ce
for xce → ∞

,

(E.59b)

where x ≡ hν/(kT ) and xce = ℏωce/(kT ).

To see how to implement these opacities, consider for simplicity a static medium.

The Rosseland mean opacities can then be incorporated into a frequency-integrated,

polarization-averaged transfer equation as follows (cf. equation (6) of Jiang 2021):

1

c

∂I

∂t
+ n̂ · ∇I = χPa

(
acT 4

4π
− J

)
+ χRa(J − I)

+

[
1

2
(3χR⊥ − χR∥) +

5

2
(χR∥ − χR⊥) cos

2 θ

]
(J − I) . (E.60)

Here χPa and χRa are the Planck and Rosseland mean absorption coefficients for true

absorption processes. This equation automatically gives the correct zeroth and first

moment equations for radiation energy density and flux, provided we assume nearly

isotropic radiation closures on the second and third angular moments: Kzz = J/3 and

Qizz = (Hi + 2δizHz)/5, where J and Hi are the zeroth and first angular moments,

respectively. The resulting moment equations are then

1

c

∂J

∂t
+∇ ·H = χPa

(
acT 4

4π
− J

)
, (E.61a)
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1

c

∂Hi

∂t
+

1

3
∇iJ = −(χRa + χR⊥)Hi − (χR∥ − χR⊥)δizHz , (E.61b)

exactly as required. While we have worked in a static medium here, this is sufficient for

the numerical radiation MHD scheme used in Athena++, which computes the source

terms of the transfer equation in the local fluid rest frame and then Lorentz transforms

them into the lab frame (see Jiang 2021 for details).

The behaviors of the perpendicular and parallel Rosseland opacities (κs = χR/ρ)

from equations (E.59a) and (E.59b) are the same except near xce = 1, and we therefore

simplify our transfer equation still further by neglecting the angle dependence in equation

(E.60). We do this by simply replacing cos2 θ with unity, as that produces the largest

opacity near xce = 1, in order to partly account for cyclotron resonance which we have

neglected in chapter 4. Figure 4.15 compares our prescription with the Rosseland mean

opacities computed by Suleimanov et al. (2022), and the agreement is reasonably good

below the temperature 3× 108 K where pair production becomes significant. (We do not

reach such temperatures in any of the simulations presented in chapter 4.)

To summarize, in chapter 4, the frequency-integrated, angle- and polarization-averaged

magnetic scattering absorption coefficient that we actually use in the fluid rest frame is

2χR∥−χR⊥, where χR⊥ and χR∥ are given by equations (E.59a) and (E.59b), respectively.
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