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Abstract

Sleep disordered breathing (SDB)-related overnight hypoxemia is associated with cardio-

metabolic disease and other comorbidities. Understanding the genetic bases for variations

in nocturnal hypoxemia may help understand mechanisms influencing oxygenation and

SDB-related mortality. We conducted genome-wide association tests across 10 cohorts and

4 populations to identify genetic variants associated with three correlated measures of over-

night oxyhemoglobin saturation: average and minimum oxyhemoglobin saturation during

sleep and the percent of sleep with oxyhemoglobin saturation under 90%. The discovery

sample consisted of 8,326 individuals. Variants with p < 1 × 10−6 were analyzed in a replica-

tion group of 14,410 individuals. We identified 3 significantly associated regions, including 2

regions in multi-ethnic analyses (2q12, 10q22). SNPs in the 2q12 region associated with

minimum SpO2 (rs78136548 p = 2.70 × 10−10). SNPs at 10q22 were associated with all

three traits including average SpO2 (rs72805692 p = 4.58 × 10−8). SNPs in both regions

were associated in over 20,000 individuals and are supported by prior associations or func-

tional evidence. Four additional significant regions were detected in secondary sex-stratified

and combined discovery and replication analyses, including a region overlapping Reelin, a

known marker of respiratory complex neurons.These are the first genome-wide significant

findings reported for oxyhemoglobin saturation during sleep, a phenotype of high clinical

interest. Our replicated associations with HK1 and IL18R1 suggest that variants in inflam-

matory pathways, such as the biologically-plausible NLRP3 inflammasome, may contribute

to nocturnal hypoxemia.

Author summary

Variation in oxyhemoglobin saturation, the proportion of oxygen-saturated to total

hemoglobin in the blood, is associated with numerous disorders and is a predictor of

health outcomes including mortality, incident heart failure, and dementia. Despite the

fundamental role of oxygen saturation in normal and abnormal physiology, there are few

large-scale genetic studies of oxygen saturation performed across populations. Overnight

measurements provide more variability than daytime levels due to the “stresses” associ-

ated with normal and disordered breathing, and also provide an important measure of

sleep apnea severity, a common disorder in the population that is associated with consid-

erable morbidity. In this study, for the first time, we identified multiple replicated

genome-significant associations based on up to 22,736 individuals from 10 cohort studies.

Our findings suggest a contribution of inflammatory genes such as the Interleukin 18

receptor subunit genes to the genetic architecture of sleep-disordered breathing. These

GWAS of oxyhemoglobin saturation during sleep
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results extend our understanding of the genetics of oxyhemoglobin saturation and sleep-

disordered breathing and may provide further insight into the biology of associated

diseases.

Introduction

Arterial oxyhemoglobin saturation is a fundamental physiological trait that is tightly regulated

at cellular and systemic levels to optimize tissue oxygen delivery. Reduced values, or hypox-

emia, occurs secondary to acute and chronic respiratory or cardiovascular diseases, and rarely

due to hemoglobin protein mutations. Chronically, low oxygen saturation predicts cognitive

deficits in patients with chronic obstructive pulmonary disease (COPD) and in sleep apnea

(SA) [1,2].

Oxyhemoglobin saturation (SpO2), the proportion of oxygen-saturated to total hemoglobin

in the blood, is most commonly measured using non-invasive equipment (oximeters). Oxime-

try is used to screen and monitor a wide range of health conditions. Normal SpO2 values range

from 95% to 100% during wakefulness and normally fall by 2 to 4% during sleep. Oxygen satu-

ration is reduced in individuals living at high altitude and in patients with cardiopulmonary

diseases. However, even within specific disease groups, there is variation in SpO2 that is not

explained by factors such as age, obesity, lung function or tobacco exposure [3]. Twin studies

indicate that as much as 26% of the variation in waking SpO2 can be explained by genetic fac-

tors [4]. Population studies also indicate that genetic effects contribute to variation in waking

SpO2 among Tibetan highlanders and in COPD [3,5].

Sleep disordered breathing (SDB) is a common disorder characterized by recurrent falls of

SpO2 during sleep due to repetitive episodes of apneas (no airflow) or partial airflow (hypop-

neas), most often due to recurrent collapse of the upper airway. Our prior family-based studies

have indicated that average SpO2 during sleep is significantly heritable [6]. Sleep-related hyp-

oxemia is a key component of the pathophysiology of the disorder and variations in SpO2 dur-

ing sleep in patients with SDB are predictive of incident atrial fibrillation [7], certain types of

cancer [8–10], and death [7]. Minimum nocturnal SpO2 predicted future carotid plaque bur-

den in the Wisconsin sleep cohort, even after adjusting for traditional risk factors [11]. In

cohorts of patients with both heart failure and SDB, overnight hypoxemia is a stronger risk fac-

tor for incident cardiovascular events and death than is the apnea hypopnea index (AHI, a

count of the number of breathing pauses per sleep hour) [12–14]. Mean oxygen saturation and

acute hypoxemia during sleep have more significant associations with liver steatosis than the

AHI [15]. Sleep-related hypoxemia also may significantly influence prognosis of patients with

COPD, asthma, and interstitial lung disease [16–19]. Adverse effects of sleep-related hypox-

emia include those directly related to tissue ischemia as well as to the effects related to activa-

tion of hypoxia-inducible factor-1 (HIF1A) mediated and NF-kB pathways, that then activate

the sympathetic nervous system, stimulate release of angiogenic and inflammatory factors,

cause oxidative stress, reduce insulin sensitivity, and cause endothelial dysfunction. Therefore,

understanding variation in nocturnal SpO2 is important for improving our understanding of

variation in risk of a wide range of chronic health outcomes.

In this study, we conducted the first multi-ethnic genome-wide association study (GWAS)

of 3 nocturnal oxygen hemoglobin saturation (SpO2) traits: average and minimum SpO2, and

the percent of sleep time under 90% SpO2 (Per90). (Lower values of Per90 are better while

higher values are better for the other two measures.) These measures provide complementary

GWAS of oxyhemoglobin saturation during sleep
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information on hypoxemic burden across the sleep episode and can be derived from oximetry,

which is potentially scalable for large-scale studies.

We analyzed data from 10 cohort studies and four ethnic groups and focused on identifying

obesity-independent loci by adjusting for body mass index (BMI). We also considered sex dif-

ferences in associations given the growing interest in sexual dimorphism in genetic analyses

[20]. Furthermore, SDB prevalence varies by sex [21,22]), as do SDB risk factors such as the

ventilatory response to arousal and regional fat distributions [23,24], and sex differences have

also been reported for the relationship between chronic hypoxemia and cardiovascular events

[12]. These analyses extend our prior report of results for SDB in Hispanic/Latino-Americans

[25].

Results

Study sample and cross-phenotype correlations

Descriptive characteristics of the discovery and replication study samples are provided in

Tables 1 and 2. Collectively, we studied 22,736 individuals. The discovery sample consisted of

8,326 individuals across 6 studies and 4 populations (1,209 African-Americans [AA]; 228

Asian-Americans [AsA]; 5,649 European-Americans [EA]; 1,240 Hispanic/Latino-Americans

[HA]). Replication cohorts included 14,410 individuals (681 AAs, 2,378 EAs and European-

Australians, and 11,351 HA) from 4 cohorts. Across cohorts, mean age ranged from 37.8 (CFS

African-Americans) to 77.7 years (CHS European-Americans). Female participation ranged

from 0% (MrOS) to 72% (Starr). The mean BMI ranged from 24.1 kg/m2 (MESA Asian-Amer-

icans) to 32.3 (JHS). Waking SpO2 values, which were typically measured prior to the sleep epi-

sode on the same equipment, ranged from 94.96% (in the older MrOS cohort) to 97.78%

(among relatively young CFS African-Americans). Average SpO2 during sleep ranged from

93.74% (CFS European-Americans) to 96.45% (HCHS/SOL). The median Apnea Hypopnea

Index ranged from 1.97 (HCHS/SOL, a relatively young cohort) to 24.60 (WASHS, a sleep

clinic-derived cohort). Average forced vital capacity (FVC; percent predicted value) exceeded

90% in cohorts in which these data were available. The prevalence of chronic lung diseases

(asthma, COPD) and diabetes varied across cohorts, likely reflecting differences in age, ascer-

tainment and possible disease definitions.

Pairwise correlations among phenotypes and selective demographic variables are shown in

S1 Table. As expected, the three overnight oxyhemoglobin saturation traits are strongly corre-

lated (average SpO2 –minimal SpO2 ρ = 0.61; average SpO2 –Per90 ρ = -0.73; minimal SpO2 –

Per90 ρ = -0.86). Waking oxyhemoglobin saturation correlates with average nocturnal SpO2 (ρ
= 0.59), minimal nocturnal SpO2 (ρ = 0.35) and Per90 (ρ = -0.40). The AHI was also correlated

with minimal SpO2 (ρ = -0.71), Per90 (ρ = 0.70), and average SpO2 (ρ = -0.55). Lung function

(percent predicted FEV1 and FVC [26]) correlated modestly with each of the overnight oxygen

saturation measures (ρ = -0.20 –+0.23).

Meta-analysis results overview

Manhattan and QQ plots for the overall sample and population-specific primary discovery

analyses are provided in S1–S3 Figs. The maximum lambda value was 1.02, in the multi-ethnic

average SpO2 analysis, suggesting that our analysis results were largely free of technical arti-

facts and corrected appropriately for population structure within each ethnic group. We ana-

lyzed SNPs in loci with discovery p-values < 1 × 10−6 in our replication cohorts and identified

6 significant (p< 5.0 × 10−8) and 1 suggestive (p< 1.0 × 10−6) associations in joint discovery

and replication analyses spanning 5 regions; 2q12 (IL18R1; Fig 1), 10q22 (HK1; Fig 2), 3p24

(intergenic region; S8 Fig), 4q35 (RP11-242J7.1, S9 Fig); S2 Table), with several associations

GWAS of oxyhemoglobin saturation during sleep
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specific to given population backgrounds. Effect estimates and directions of allelic effect were

consistent in the discovery and replication stages for all SNPs (METAL heterogeneity p> 0.1).

Interleukin 18 Receptor 1 and Hexokinase 1 region meta-analysis results

In the multi-ethnic combined discovery and replication meta-analysis (n>20,000), genome-

wide significant associations were identified with: a) minimum SpO2 in the IL18R1 region

(rs78136548 discovery, p = 2.66 × 10−7, combined p = 2.70 × 10−10); and b) average SpO2 in

the HK1 region (rs72805692 discovery p = 7.20 × 10−8, combined p = 4.58 × 10−8) (Figs 1 and

2, Table 3). Lead population- and sex-specific SNPs from each locus meeting our replication

criteria definitions are also presented (S2 Table). Consistent negative effect directionality was

observed for the IL18R1 region SNP rs78136548 T across all 13 available association tests in

African, European, and Hispanic/Latino ancestral populations (S3 Table). The association was

largely driven by males (females beta(se) -0.065 (0.023), p = 0.005, males beta(se) -0.131

Table 1. Discovery sample description.

Ethnic

Group

Cohort N Age Percent

Female

BMI Sleep

Episode

SpO2

Minimum

Sleep

Episode

SpO2

Percent

Sleep

Under

90%

SpO2

Apnea

Hypopnea

Index

AHI

(% <5,

5–15,

> =

15)

Waking

SpO2

FVC (%

Predicted)

%

Asthma

COPD %

Diabetes

African-

American

CFS� 719 37.8

(19.4)

55.6 31.6

(9.6)

94.57

(3.77)

85.82 (9.88) 4.58

(13.14)

5.61 (19.68) 47.1,

21.2,

31.7

97.78

(1.91)

95.10

(19.67)

21.5 15.9 15.8

MESA 490 69.1

(9.1)

54.3 30.4

(5.7)

94.44

(1.96)

82.93 (8.17) 4.01

(9.46)

13.34

(21.16)

21.2,

32.2,

46.5

96.11

(1.35)

96.02

(17.62)

5.3 14.1 28.0

Asian-

American

MESA 228 68.1

(9.2)

50.4 24.1

(3.2)

94.96

(1.22)

83.42 (7.38) 2.17

(4.30)

13.97

(23.90)

22.4,

30.3,

47.4

96.18

(1.01)

98.45

(15.49)

4.4 16.6 16.0

European-

American

ARIC 1,432 62.4

(5.7)

51.5 28.8

(5.1)

94.47

(1.99)

85.62 (6.12) 3.36

(10.33)

8.67 (15.55) 3.0,

34.5,

32.5

96.08

(1.70)

102.39

(13.48)

7.3 0.9 6.1

CFS� 692 41.6

(19.5)

52.8 30.2

(8.7)

93.74

(3.67)

86.46 (9.07) 4.29

(12.30)

5.52 (18.17) 48.6,

20.7,

30.8

96.96

(2.01)

95.68

(18.05)

15.4 18.6 9.2

FHS� 640 59.4

(9.0)

50.0 28.5

(5.0)

94.68

(1.96)

85.71 (6.07) 2.79

(8.16)

8.20 (14.42) 34.5,

35.5,

30.0

96.15

(1.86)

101.45

(13.41)

7.7 0.4 5.3

MESA 707 68.5

(9.1)

53.6 28.0

(5.2)

93.93

(1.75)

83.49 (7.41) 4.36

(10.84)

12.62

(20.67)

21.6,

34.4,

44.0

95.70

(1.40)

94.43

(14.08)

2.0 13.6 11.1

MrOS 2,178 76.7

(5.7)

0.0 27.2

(3.7)

93.85

(1.73)

84.30 (6.08) 4.41

(9.89)

12.74

(18.13)

21.2,

35.0,

43.8

94.96

(1.63)

98.99

(18.33)

7.5 5.3 13.0

Hispanic/

Latino-

American

MESA 458 68.3

(9.2)

52.8 30.1

(5.5)

94.33

(1.56)

81.50 (9.38) 3.84

(7.35)

16.94

(23.05)

17.2,

27.9,

54.8

96.12

(1.37)

94.42

(14.91)

5.5 9.2 27.6

Starr 782 52.3

(11.3)

71.9 32.2

(6.8)

94.65

(2.09)

85.78 (7.50) 2.83

(8.79)

10.35

(17.18)

31.5,

31.5,

37.1

95.93

(2.43)

N/A N/A N/A 47.90

Six studies included 8,326 individuals with genotypes and phenotypes (1,209 African-Americans; 228 Asian-Americans; 5,649 European-Americans; 1,240 Hispanic/

Latino-Americans). Values are displayed as mean (SD), except for the skewed Apnea Hypopnea Index, which is displayed as median (IQR). Waking O2 saturation

values were based on point measurements collected prior to the sleep episode.

�: Family cohort.

https://doi.org/10.1371/journal.pgen.1007739.t001
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(0.022), p = 2.69 × 10−9; S4 Table). Average SpO2 was significantly associated with the HK1
region in a European-American analysis (rs16926246 n = 5,649; p = 2.46 × 10−8; 1000G EUR

rs72805692 r2 = 0.625). The HK1 region was also notable for a second European-American sig-

nificant association using the complementary phenotype Per90 (percentage of sleep with oxy-

hemoglobin saturation below 90%; rs148471505 p = 3.08 × 10−8; 1000G EUR rs72805692 r2 =

0.679; S2 Table). Minimum SpO2 was also suggestively associated with the HK1 region in

European-American males (rs17476364 p = 6.79 × 10−8; 1000G EUR rs72805692 r2 = 0.937; S3

Table).

Given that sleep disordered breathing and respiratory control vary by sleep state [27,28], we

also explored whether associations for oxygen saturation differed when using measurements

specific to non rapid eye movement (NREM) versus rapid eye movement (REM) sleep in

cohorts with sleep state information (S5 Table). Several SNPs showed associations with lower

p-values and/or higher point estimates for stage-specific results. The minimum SpO2 within

NREM rs72805692 association result showed the lowest p-value for any HK1 locus SNP across

all analyses (p = 1.60 × 10−9) and further indicated that the HK1 region SNPs were significantly

associated with all three traits.

Additional analyses

The secondary sex-stratified discovery analyses (Miami plots, S4–S6 Figs) identified 6 addi-

tional independent loci associated in males with consistent effects in replication and suggestive

p-values < 1.0 × 10−6 in joint analyses (S3 Table; S11–S17 Figs). A combined secondary

meta-analysis of the discovery and replication cohorts for SNPs with initial discovery phase

p-values� 1.0 × 10−6 identified four additional significantly associated loci (22q11, 6q25,

17p13 and 7q22 including new candidate genes CHRNE and RELN; S6 Table and S18–S22

Figs). Joint analysis results of the lead loci are provided for each SNP in S3 Table, while a

Table 2. Replication sample description.

Ethnic

Group

Cohort N Age Percent

Female

BMI Sleep

Episode

SpO2

Minimum

Sleep

Episode

SpO2

Percent

Sleep

Under

90%

SpO2

Apnea

Hypopnea

Index

AHI

(%

<5,

5–15,

> =

15)

Waking

SpO2

FVC (%

Predicted)

%

Asthma

%

COPD

%

Diabetes

African-

American

CHS 185 75.7

(4.8)

59.5 28.7

(4.8)

95.01

(2.07)

85.69

(5.34)

3.16

(8.84)

11.42

(16.67)

25.4,

36.8,

37.8

96.16

(1.99)

96.30

(23.21)

11.29 3.33 22.58

JHS 496 62.7

(10.8)

63.1 32.3

(7.0)

94.72

(2.06)

84.07

(6.52)

3.20

(9.19)

10.87

(14.65)

24.7,

39.6,

35.7

N/A N/A 8.23 4.32 22.43

European-

American

CHS 731 77.7

(4.2)

60.6 27.3

(4.4)

94.13

(1.91)

84.77

(6.39)

4.24

(11.32)

10.82

(15.47)

48.6,

20.7,

30.8

95.45

(1.87)

90.69

(18.80)

6.72 1.81 10.25

European-

Australian

WASHS 1,647 52.1

(13.7)

40.2 32.0

(7.8)

N/A 83.95

(9.39)

6.11

(15.10)

24.60

(30.80)

4.7,

24.5,

70.9

95.13

(2.48)

91.68

(14.59)

25.8 17.0 13.96

Hispanic/

Latino-

American

HCHS/

SOL

11,351 46.2

(13.8)

59.1 29.8

(6.0)

96.45

(0.95)

87.07

(6.05)

0.85

(3.14)

1.97 (6.20) 68.9,

19.4,

11.7

96.94

(3.13)

94.34

(15.71)

7.70 2.78 19.55

Four studies included 14,410 individuals with genotypes and phenotypes (681 African-Americans; 2,378 European-Americans and European-Australians; 11,351

Hispanic/Latino-Americans). Values are displayed as mean (SD), except for the skewed Apnea Hypopnea Index, which is displayed as median (IQR). Waking O2

saturation values were based on point measurements collected prior to the sleep episode.

https://doi.org/10.1371/journal.pgen.1007739.t002
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comparison of individual SNP results using combined-sex and sex-stratified models can be

found in S4 Table.

Fig 1. Minimum oxygen saturation 2q12 regional association plot. Physical positions (Build 37 coordinates) are shown on the

X-axis. The main graphic shows log-transformed p-values for individual SNPs on the Y-axis. SNP colors indicate the degree of

linkage disequilibrium (LD) with the lead SNP rs78136548 (based on combined 1000 Genomes AFR, AMR, and EUR

populations). The significance cut-off of p = 5 × 10−8 is shown with a horizontal red line. The blue line denotes recombination

rates. Lower tracks indicate positions of SNPs with strong LD with rs78136548, regions of Dnase hypersensitivity sites, and exon

positions for local genes.

https://doi.org/10.1371/journal.pgen.1007739.g001
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GWAS results overlap across oxygen saturation traits, apnea hypopnea

index, and pulmonary traits

Although overnight oxygen saturation values most strongly correlate with measurements of

SDB, they also may be influenced by pulmonary function, waking oxygen saturation, and

Fig 2. Average oxygen saturation 10q22 regional association plot. This figure depicts the multi-ethnic average oxygen

saturation results in the HK1 (hexokinase 1) region, which had the highest sample size among all significant HK1 region

associations (n = 20,676). Other significant and suggestive HK1 regional associations are shown in S7, S11 and S17 Figs.

https://doi.org/10.1371/journal.pgen.1007739.g002
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hemoglobin levels. We therefore tested associations of the lead loci for sleep SpO2 traits with

waking SpO2, the AHI (the clinical metric for SDB), forced vital capacity (FVC, percent pre-

dicted, a measure of pulmonary function), and hemoglobin concentration (S5 Table). Sample

sizes for the comparison traits varied based on the availability of these exploratory phenotypes,

with hemoglobin and FVC collected at different exams from the sleep recordings in a subset of

cohorts. Consistent with the strong correlation between sleep period SpO2 and AHI pheno-

types (S1 Table), several lead oxygen saturation SNPs also displayed modest to strong associa-

tions with the AHI (12 of 17 available p-values < 0.05; minimum AHI p = 5.3 × 10−5). Weaker

associations were observed with the other traits: waking SpO2 (p generally > 0.01 and< 0.05;

minimum p = 0.005); FVC (p generally > 0.05; minimum p = 0.025); and hemoglobin concen-

tration (p generally > 0.05; minimum p = 0.003). We next evaluated whether associations

between sleep SpO2 values and lead SNPs persisted after adjusting for AHI, FVC percent pre-

dicted, waking SpO2, asthma history, COPD history, current smoking status, and hemoglobin

concentration (S8 Table). Analyses restricted to individuals with these available covariates

showed that neither FVC, asthma, COPD, current smoker status or hemoglobin concentration

changed the estimated SNP effects for sleep SpO2 by more than 10% for any SNP, suggesting

that lung function and lung disease did not mediate the associations between sleep oxygen sat-

uration and each SNP. In contrast, adjustment for AHI reduced the SNP association effect esti-

mates by more than 10% in most of the models tested. Adjustment for waking SpO2, which

correlated with nocturnal oxygen saturation, reduced the effect estimates by 0.2 to 35% (S8

Table), although the statistical significance of direct associations of these SNPs with waking

SpO2 was modest (p = 0.003–0.93; S5 Table).

Correlated functional and eQTL SNPs and cell line enhancer enrichment:

Bioinformatics data

We searched for SNPs in our top loci that overlap regulatory regions as determined by the

ENCODE and Roadmap Epigenomics Consortia and collated by HaploReg. S9 Table lists the

144 of 227 unique SNPs with p-values < 1 × 10−6 that overlap regulatory regions (promoter or

enhancer marks; DNase I hypersensitivity sites; or protein binding regions) in at least 1 cell

line. Our lead HK1 region SNP in multi-ethnic meta-analysis, rs72805692 (average SpO2

multi-ethnic p = 4.58 × 10−8) overlapped enhancer marks in 107 cell lines across 21 organs.

Other notable genome-level significant SNPs in the HK1 locus include rs16926246 and

rs148471505 (overlapping enhancer marks in 91 and 71 cell lines, respectively). We further

queried for Blueprint Consortium promoters and enhancers (largely blood cell lines) and Ver-

munt et al. brain region enhancers (S10 Table). 104 of the 227 unique replication and com-

bined meta-analysis SNPs with p-values < 1 × 10−6 overlapped at least one regulatory region.

Table 3. Significant IL18R1 and HK1 region meta-analysis results.

Region Phenotype Model SNP Suggestive

Regional

SNPs

Combined

N

CAF Discovery

Beta (SE)

Discovery

P

Replication

Beta (SE)

Replication

P

Combined

Beta (SE)

Combined

P

IL18R1 Min SpO2 All rs78136548

T

66 22,333 0.866–

0.953

-0.124

(0.024)

2.66 × 10−7 -0.082

(0.021)

1.01 × 10−4 -0.101

(0.016)

2.70 × 10−10

HK1 Avg SpO2 All rs72805692

G

2 20,676 0.017–

0.112

0.141

(0.026)

7.20 × 10−8 0.060 (0.025) 1.46 × 10−2 0.098

(0.018)

4.58 × 10−8

Lead significant (p < 5.0 × 10−8) IL18R1 (2q12) and HK1 (10q22) region SNP multi-ethnic (n > 20,000) meta-analysis associations are shown. Suggestive regional SNPs

denotes the count of SNPs with p < 1.0 × 10−6. CAF indicates coded allele frequency range. SNP columns include the coded allelle. Individual regional SNP results are

provided in S3 Table, with sex-stratified analyses of each locus SNP provided in S4 Table. Stage-specific analyses (lead loci SNPs only) are provided in S5 Table.

https://doi.org/10.1371/journal.pgen.1007739.t003
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rs72805692 additionally overlapped 30 Blueprint and 98 Vermunt enhancer regions, and

rs16926246 overlapped 106 combined enhancer regions.

We also queried overlap with published expression quantitative trait loci (eQTL) associa-

tions. 182 of the 227 unique SNPs with p-values < 1 × 10−6 were eQTL SNPs for at least one of

42 genes (S11 Table). 13 SNPs that were genome-level significant SNPs in the IL18R1 region

were also eQTL SNPs for both interleukin 18 receptor subunits in whole blood (IL18R1 eQTL

p< 4.9 × 10−11; IL18RAP eQTL p< 1.6 × 10−46), indicating a possible role for interleukin 18

signaling in the as yet unknown causal tissue(s). No significant colocalization was observed

when testing this region using Blueprint Consortium eQTL signals. The lead significant HK1
region SNP rs16926246 was also associated with HK1 expression in whole blood (EA average

SpO2 p = 2.46 × 10−8; HK1 eQTL p = 9.64 × 10−13).

Gene and pathway analyses

We performed a multi-variate GWAS of the three SpO2 traits in the European-ancestry sam-

ples using MTAG [29]. Lead results (p< 1 × 10−6) are shown in S12 Table. No novel genome-

level significant loci were detected.

We used our European-American GWAS meta-analysis results to impute gene-level expres-

sion differences in a subset of 6 GTEx-assayed tissues and Depression and Genes and Net-

works (DGN) whole blood using MetaXcan. Tissue-specific results are presented in S13–S19

Tables. Three genes were associated at either a Bonferroni-adjusted significance level

(p< 4.01 × 10−7) or at a suggestive level within an order of magnitude, all in the minimum

SpO2 analysis: CHRNE (minimum p = 7.61 × 10−8 in subcutaneous adipose tissue), C17orf107
(overlapping and antisense to CHRNE; minimum p = 2.68 × 10−7 in visceral omentum adipose

tissue), and IL18R1 (minimum p = 6.28 × 10−7 in subcutaneous adipose tissue).

We carried the whole blood MetaXcan results forward for pathway analyses (DGN sample

size = 922). GIGSEA analyses of KEGG pathways and Molecular Signatures Database curated

microRNAs and transcription factors are presented in S20–S22 Tables respectively. The most

enriched KEGG pathway was steroid hormone biosynthesis (Average SpO2 empirical p-value

= “0” following 10,000 permutations). This pathway was observed twice with empirical p-

values< 0.05, as were the KEGG asthma and ribosome pathways. The most significantly

observed miRNA binding site was for MIR-380-3P (average SpO2 empirical p-value = 0.006).

MIR-140 and MIR-190 displayed empirical p-values < 0.05 in two analyses. PPARG transcrip-

tion factor binding sites were enriched in all three analyses, while PPAR signaling was the

most enriched Per90 KEGG pathway. NHLH1 (formerly HEN1) transcription factor binding

sites were enriched in all three analyses, and six transcription factor binding sites were

enriched in two analyses.

Discussion

Novel associations were identified for several genetic loci with traits measuring oxyhemoglo-

bin saturation during sleep in a large, multi-ethnic population. The traits examined quantify

overnight hypoxemia, a key component of sleep disordered breathing that predicts risk of

developing cognitive impairment, cardiovascular disease, atrial fibrillation, and mortality in

community and clinical cohorts [2,7,12–14]. Although nocturnal hemoglobin oxygen satura-

tion level inversely correlates with the number of breathing pauses at night (apneas, hypop-

neas), there is much individual variation in sleep-associated hypoxemia that is not well

understood. For the first time, this study identified genetic variants associated with oxyhemo-

globin saturation traits measured during sleep. Specifically, we identified and replicated vari-

ants in two gene regions- hexokinase 1 (HK1) and interleukin 18 receptor (IL18R1)- that
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individually and together are of potential high relevance to lung and ventilatory-control patho-

biology. In addition, we identified several other loci of potential biological significance.

HK1 and IL18R1 regional associations

We identified significant associations between HK1 SNPs and average oxygen saturation

(SpO2) during sleep and percentage of sleep with SpO2 < 90% (Table 3). State-specific results

also indicate a genome-level association with minimum SpO2 during NREM sleep (S5 Table).

Hexokinase is the first enzyme and the rate-limiting step in the glycolysis pathway [30,31] and

its activity is regulated by hypoxia inducible factor 1a (HIF1A) [5,32,33]. Obstructive sleep

apnea following CPAP withdrawal increases glucose during sleep [34]. Rs16926246 (signifi-

cantly associated with average SpO2) and rs10159477 (among our suggestive average SpO2

SNPs, S3 Table) are associated with HK1 expression in whole blood ([35], S11 Table) and also

have been associated with hemoglobin concentration [36]. Rs16926246 was the study-wide

lead SNP and previously found to be highly significantly associated with hemoglobin A1c

(HbA1c) levels, a marker of glucose homeostasis, through an erythrocytic pathway [37].

Rs72805692, our lead multi-ethnic average SpO2 SNP, has also been associated with HbA1c

levels [38]. Both SNPs overlap enhancer marks in� 197 ENCODE, Roadmap Epigenomics,

Blueprint, and Vermunt et al. cell lines and/or brain regions (including erythroblasts; S9 and

S10 Tables). The Rapoport–Luebering glycolytic shunt affects erythrocytic oxygen capacity

through allosteric binding of 2,3-bisphosphoglycerate (2,3-BPG, also known as 2,3-diphospho-

glycerate or 2,3-DPG) to hemoglobin. The concentration of glycolytic pathway intermediates

can impact 2,3-BPG concentration, partially mediated by hexokinase [39–41]. Rs72805692 was

marginally associated with hemoglobin concentration in our sample for individuals with avail-

able measurements (p = 0.0034). The A allele was associated with reduced hemoglobin concen-

tration, average sleeping and waking SpO2 and increased sleep time with oxygen saturation

under 90%. However, the association with average sleeping SpO2 was not appreciably changed

when adjusting for hemoglobin concentration (S5 Table).

Alternatively, HK1, in concert with cytokines including IL18, may influence overnight oxy-

gen saturation through effects on pulmonary inflammation and ventilation-perfusion mis-

match. Hexokinase-1 mediated glycolysis regulates the NLR Family Pyrin Domain Containing

3 (NLRP3) inflammasome [42], a multiprotein complex implicated in obesity-related inflam-

mation [43] as well as several pulmonary diseases [44–50]. The NLRP3 inflammasome acti-

vates caspase-1, resulting in cleavage of pro-IL1B and pro-IL18 into their mature forms,

amplifying inflammation [50,51]. The NLRP3 inflammasome is proposed to play a critical role

in lung injury occurring in response to exposures to inflammatory mediators, oxidative stress

and mechanical ventilation, including cyclic pulmonary stretching, which induces NLRP3
inflammasome activation in alveolar macrophages [52]. Patients with SDB, particularly

obstructive sleep apnea, experience oxidative stress and pulmonary inflammation [53], as well

as swings in intrathoracic pressure, potentially causing pulmonary strain. Our data suggest the

possibility that variations in HK1 (and possibly IL18) pathways may contribute to individual

differences in pulmonary gas exchange occurring during sleep, possibly through pulmonary

inflammation and/or subclinical pulmonary injury. Circulating markers of alveolar epithelial

injury, including KL-6, surfactant protein-A, and matrix metalloproteinase-7, correlate with

degree of overnight hypoxemia and AHI in patients with SDB [54,55]. Chronic intermittent

hypoxia induces physiological deficits in rats with allergen-induced airway inflammation, due

to collagen deposition and other effects [56]. Although the mechanisms underlying these asso-

ciations are unclear, lung imaging studies show an increase in subclinical interstitial lung

abnormalities in individuals with sleep apnea [55]. Our data suggest the possibility that
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variations in HK1 pathways may contribute to differences in pulmonary gas exchange that

occurs during sleep, possibly through effects on ventilation-perfusion mismatch due to sub-

clinical pulmonary inflammation. Recent population-based studies found that sleep apnea

associates with both elevated pulmonary inflammatory markers and imaging evidence of inter-

stitial lung abnormalities [55]. Finally, the NLRP3 inflammasome has been shown to influence

brain tissue, and changes in sleep delta power have been observed in knock-out mice [57].

Another and correlated mechanism could be through HIF1A. In addition to oxygen sensing

effects in the carotid body [58], HIF1A regulates HK1 in human alveolar cells [59], is regulated

by PFKM (a downstream glycolysis enzyme) in macrophages [60], and is involved with meta-

bolic reprogramming of macrophages [61]. Activation of glycolytic enzymes in pulmonary epi-

thelial cells exposed to cyclic mechanical stretching is abrogated with HIF1A repression [62].

Ventilatory differences in responses to intermittent hypoxemia secondary to SDB could influ-

ence several measures of overnight SpO2, as observed in our analyses.

The second set of significant SNPs implicated in overnight SpO2 levels were in the IL18R1
region, with external evidence indicating eQTL associations with both IL18 receptor subunit

genes (IL18R, IL18RAP) in over a dozen genome-level significant SNPs (S8 Table). Minor

alleles were associated with an increase in minimum oxygen saturation, an increase in

IL18RAP expression, and a decrease in IL18R1 expression in whole blood [35]. IL18R1 expres-

sion was also suggestively associated with minimum oxygen saturation in a gene-level analysis

using MetaXcan. These genes are essential for IL18 signaling [63,64], suggesting that the IL18
pathway may partially mediate the association at this locus. IL18 is a pro-inflammatory cyto-

kine produced by macrophages and is involved in multiple inflammatory disorders [65]. This

region has been associated with Blautia genus microbiota abundance in the gut (lead locus

SNP rs79387448 Min SpO2 p = 8.61 x 10–8 [S3 Table]) [66]. Il18 over-expression in mice leads

to chronic pulmonary inflammation, including the increased levels of CD4+, CD8+ CD19+,

eosinophils, macrophages, NK1.1+, and neutrophils; along with alveolar destruction, fibrosis,

and other effects [67,68]. In humans, IL18 plasma concentration levels are elevated in acute

respiratory distress syndrome [69]. As described above, IL18 as well as IL1B are the inflamma-

tory proteins activated by caspase 1 in HK1-regulated NLRP3 inflammasome activation [42].

MTOR, a member of the complex that induces this HK1-mediated activation, is the 6th most

associated gene in our analyses of Per90 using MetaXcan whole blood analysis (p = 4.5 × 10−4,

S18 Table). Mechanical stretching-induced NLRP3 inflammasome activation induces activated

IL18 release from alveolar macrophages [52]. Casp1- (required for Il18 activation) and Nlrp3-

knockout mice are protected from hypoxemia accompanying mechanical ventilation [70].

Models of cyclic stretching induce the release of Il18 in mouse alveolar macrophages, mediated

by Nlrp3 [52]. Serum IL18 concentrations are also significantly higher in patients with SDB

compared to obese controls and correlated with serum concentrations of C reactive protein

and interleukin 6 [71]. Il18r1 is among the genes with the most robust circadian rhythmic pro-

files in healthy mouse lung [72]; it is possible that timing-specific gene expression may influ-

ence the nocturnal hypoxemia phenotype we studied. An association between asthma and a

SNP in the IL18R1 region is reported [73]. Our lead SNPs had reduced linkage disequilibrium

with this SNP (rs3771166 minimum p in any model = 5.6 x 10−5 for minimum SpO2 in EA

males). Analyses adjusted for asthma did not significantly attenuate our associations

(rs78136548 minimum SpO2 p adjusted for asthma = 1.21 x 10−7, unadjusted p = 1.01 x 10−7 in

equivalent samples). Therefore, different variants in the IL18R1 region may influence pulmo-

nary and sleep related hypoxemia traits. The circadian timing of sleep may impact IL18 path-

way-specific effects on pulmonary-related traits. The associations with HK1 further also

implicate the possibility that variants in both genes may contribute to SpO2 levels. IL18 has

also been shown to regulate HIF1A [74].
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Other regional associations

The protein coding gene most proximal to the Per90 association with the 4q35 region in Afri-

can-Americans (S2 Table, S9 Fig) was CASP3, a second caspase gene involved with alveolar

wall destruction [75]. Despite the modest sample size, the p-value almost met genome-wide

significance (p = 9.39 x 10−7), suggesting the utility of future studies of the role of this gene in

influencing nocturnal saturation.

We also detected multiple genome-level significant associations following a combined dis-

covery plus replication cohort meta-analysis (S7 Table). Although these associations require

independent evidence for replication, two of these associations are of particular interest. In

European-Americans, minimum oxygen saturation was associated with 2 genome-level signifi-

cant and 65 suggestive SNPs that are associated with CHRNE (acetylcholine receptor, nicotinic

epsilon [muscle]) expression in 19 GTEx tissues and monocytes (p< 5 x 10−8; S11 Table).

CHRNE and the proximal gene C17orf107 had the lowest p-values in the expression-based

MetaXcan gene tests. Phospholipidase D2 (PLD2), another gene associated with the locus

through expression (eQTL) SNPs, is required for hypoxia-induced expression of HIF1A. Hyp-

oxia-induced gene expression in mouse lung endothelial cells is reduced in Pld2 knockout

mice [76]. A multi-ethnic Per90 association physically overlaps RELN (reelin). While no

expression or epigenetic evidence was available, this association is of interest given the sug-

gested respiratory role of reelin within the Pre-Bötzinger complex, a major center for respira-

tory control [77].

No novel genome-level significant loci were detected in our multi-variate MTAG analyses

(S12 Table). As expected from the univariate results, HK1 was significantly associated and the

lead SNP rs72805692 had reduced p-values for average and minimum SpO2 (p = 4.0 × 10−9

and 1.1 × 10−9 respectively). Among the genes in novel suggestive regions was WLS (formerly

GPR177; rs17481104 minimum SpO2 p = 5.8 × 10−7), which is involved in pulmonary vascular

development and has been suggestively associated with airflow obstruction in COPD [78,79].

Enrichment of the KEGG asthma pathway for both minimum SpO2 and Per90 (S20 Table)

lends support to the ‘overlap syndrome’ of these two pulmonary diseases [80]. PPAR-gamma

transcription factor binding site enrichment in all three analyses (S22 Table) suggests the

potential importance of future mechanistic studies of this inflammation-related transcription

factor. PPAR signaling was the most enriched KEGG pathway in the Per90 analysis (S20

Table). PPAR signaling and PPARG expression in visceral adipose tissue have previously been

associated with obstructive sleep apnea [81].

Sex- and state-specific effects

Sex-stratified analyses identified stronger associations among males compared to females for

the IL18R1 signal (rs78136548 p females = 0.005, males = 2.69 × 10−9; S4 Table) and for several

SNPs within the HK1 locus (e.g. rs17476364 EA min SpO2 p females = 0.19, males = 6.79 × 10−8).

In addition, sex-stratified analyses identified two other loci of interest (S6 Table). Among EA

males only, a suggestive association with Per90 in the IL1RAPL1 region of the X chromosome

was identified. The region has recently been suggestively associated with asthma in Hispanic/

Latino children, with one replication cohort indicating potential male-specific effects [82]. An

association in the PPP4R1 region (protein phosphatase 4 regulatory subunit 1) was nearly

genome-level significant in EA males (p = 5.4 × 10−8). Ten suggestive SNPs in this locus were

also PPP4R1 eQTL SNPs in whole blood (p< 1 × 10−40; S11 Table). PPP4R1 regulates HDAC3
(histone deacetylase 3), an epigenetic modulator of circadian lipid metabolism [83,84].

Respiratory control and neuromuscular activation vary between NREM and REM sleep.

Analyses restricting to these states may reduce heterogeneity due to differences in state that
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influence airway patency or respiratory chemosensitivity. The PPP4R1 locus p-value lowered

to genome-level significance when analyzed using NREM sleep data (rs78805840

p = 1.81 × 10−8; S5 Table). The lowest overall p-value in the HK1 locus was a minimum SpO2

within NREM association with rs27805692 (all population combined-sex p = 1.60 × 10−9).

Pulmonary trait effects

The three traits that we analyzed (average and minimum SpO2 during sleep, percent of sleep

with SpO2 < 90%) each are commonly measured and reported in evaluation of patients with

sleep apnea. Although correlated, they each measure somewhat different aspects of oxygen sat-

uration. Notably, associations for the Hexokinase 1 (HK1) region showed associations with

several measures of oxygen saturation. Consistency of these findings across phenotypes sug-

gests the importance of the HK1 pathway in influencing several aspects of oxygenation during

sleep, including severity of response to an airway occlusion (i.e., as measured by minimal satu-

ration), overall severity (Per90), and overall level (average). Although overnight hypoxemia

can occur with underlying pulmonary disease, our analyses also showed that each SpO2 associ-

ation typically associated with the AHI, a primary index of sleep apnea, and associations were

not appreciably influenced after considering effects of lung disease, tobacco use, lung function,

and hemoglobin level (S8 Table). As expected, baseline oxygen saturation also correlated with

average SpO2, consistent with an influence of waking SpO2 on overall nocturnal levels. Nota-

bly, none of our sleep-related trait associations overlapped published associations for resting

oxygen saturation in COPD.

Across our cohorts, average level of lung function was within the normal range, and preva-

lence of lung diseases was low. These findings, as well as our analyses that adjusted for several

factors and independently assessed genetic signals for the other pulmonary traits, indicate that

the variations in SpO2 traits in our cohorts predominantly reflected differences in SDB-related

levels of hypoxemia. Relevance of our results to SDB is supported by finding that 12 of the 17

available lead loci SNPs across all analyses had at least a nominal association with the AHI (S5

Table), including the associations for HK1 rs72805692 and IL18R1 region rs78136568 SNPs

(p = 8.1 × 10−5 and 7.2 × 10−5 respectively). SDB is a common disorder affecting 17% of mid-

dle-aged men and 9% of middle-aged women and characterized by repetitive episodes of

upper airway obstruction resulting in intermittent hypoxemia, sleep disruption, and profound

physiological disturbances [85]. Past genetic analyses of sleep apnea have mainly focused on

the AHI, which does not fully describe the broad range of physiologic stressors that occur in

SA, including patterns of SpO2 desaturations [86]. Overnight SpO2 analysis provides clinically

relevant information [2,7–9,12–14] and can be measured relatively simply, and thus can be

scaled for future genetic studies and precision medicine.

Strengths and weaknesses

Our study has several strengths. The sample size of over 22,000 is among the largest available

GWAS analyses of any trait associated with objectively recorded sleep disordered breathing.

The associations were observed in cohorts with varying demographics and ascertainment

strategies (Tables 1 and 2), and as such are likely generalizable to diverse populations. We used

a stringent imputation quality threshold (0.88) to reduce random error, using a 1000 Genomes

Project or denser template in all studies. Several of our associations are supported by published

gene expression, bioinformatics evidence, and/or physiological studies.

Several weaknesses also need to be acknowledged. While we have not performed functional

assays as part of the present analysis, the most biologically compelling candidates are sup-

ported by several lines of evidence from the literature and will require future experimental
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validation. Data on potential mediators (e.g., lung function, hemoglobin) were collected in dif-

ferent visits or were available only in a subset of our cohorts. Some promising findings did not

meet genome-wide significance criteria or could not be replicated across cohorts. While this

first multi-ethnic meta-analysis of the three traits included over 22,000 individuals, weak or

population-specific associations were likely to be missed due to power limitations.

In conclusion, we have performed the first genome-wide association analysis of clinically

relevant sleep disordered breathing traits, specifically measures of nocturnal oxygen saturation,

and identified several novel associations that are of potential biological relevance. Of particular

interest were variants in the HK1 and IL18R1 regions. Understanding the genetic underpin-

nings of these sleep-related traits may guide future studies investigating the contribution of

sleep disordered breathing to the hypoxemic burden of pulmonary disorders, and identify

common mechanisms such as activation of the NLRP3-inflammasome pathway.

Full meta-analysis results are freely available from http://www.sleepdisordergenetics.org/

informational/data.

Material and methods

This research was approved by the Partners Healthcare IRB committee (protocol #

2010P001765). Participant consent was obtained through written documents.

Discovery group studies

The Atherosclerosis Risk in Communities Study (ARIC; n = 1,432) and Framingham Heart

Study (FHS; n = 640) cohorts participating in the Sleep Heart Health Study (SHHS) were ana-

lyzed with available polysomnography (PSG) and genotype data [87–89]. This community-

based study included a baseline examination (1995–1998) that included in-home polysomno-

graphy, and questionnaires [89]. Polysomnography from the baseline examination was col-

lected using the Compumedics PS-2 system (Abbotsford, AU) [90]. Oxyhemoglobin

saturation was measured with finger pulse oximetry over the sleep episode and cleaned of sig-

nal artifact. The 3 parent cohorts are described below, with CHS used as a replication cohort in

the current study (genetic data from this cohort was obtained after the other two studies). In

ARIC, genotyping was performed using the Affymetrix 6.0 array. In FHS, genotyping was per-

formed using the Affymetrix 500k and Illumina Omni 5M arrays (obtained from dbGaP;

pht000395.v7.p8).

The Cleveland Family Study (CFS) is examining the genetic and familial basis of sleep

apnea with 2,534 African- and European-American individuals from 356 families. Four visits

occurred from 1990–2006, with a final visit at a clinical research center (2000–2006). Index

probands with confirmed sleep apnea were recruited from sleep centers in northern Ohio.

Additional family members and neighborhood control families were also studied [91]. Mea-

surements including sleep apnea monitoring, anthropometry, other related phenotypes, and

questionnaires. Before 2000, an Edentrace Type 3 home sleep apnea device was used (Eden

Prairie, MN). The final examination used 14-channel polysomnography (Compumedics E

series, Abottsford, AU). Genotyping was based on the Affymetrix 6.0 and Illumina OmniEx-

press, Exome, and IBC chip arrays. Data were based on 1,411 individuals with both genotypes

and sleep data from either the home sleep study (n = 784) or the lab-based study (n = 627).

The Multi-Ethnic Study of Atherosclerosis (MESA) is examining the risk factors of clinical

cardiovascular disease [92]. The baseline examination in 2000 included 6,814 participants ages

45 to 84 from 6 communities: Baltimore MD, Chicago IL, Los Angeles CA, New York NY,

Minneapolis/St. Paul MN, and Winston-Salem NC. Four ethnicities are being studied: Afri-

can-, Asian-, European-, and Hispanic/Latino-Americans. An ancillary sleep study of 2,060
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individuals who did not use nightly CPAP, overnight oxygen, or an oral device for sleep apnea

occurred between 2010–2013. Sleep measurements included in-home PSG, actigraphy, and a

questionnaire adapted from the SHHS questionnaire [93]. Unattended polysomnography used

a 15-channel monitor (Compumedics Somte System, Abbotsford, AU). Final study inclusion

for individuals with an Affymetrix 6.0 assay was 1,883.

The Osteoporotic Fractures in Men Study (MrOS) is a prospective cohort study examining

the risk factors for fractures, osteoporosis, and prostate cancer [94,95] in males age 65 or older

from six U.S. communities. An ancillary sleep study of 3,135 individuals was conducted between

2003 and 2005, including in-home PSG (Compumedics Safiro system; Abbotsford AU), anthro-

pometry, and questionnaires. Genotyping was performed with the Illumina Human Omni 1

Quad v1-0 H array. A total of 2,178 European ancestry individuals had PSG and genotype data.

The Starr County Health Studies (Starr) have been examining the risk factors of diabetes in

a predominantly Mexican-American border county in Texas since 1981 [96,97]. The sleep

apnea assessment occurred between 2010 and 2014 and included a questionnaire and home

sleep apnea testing using the WatchPAT-200 device (Itamar-Medical Ltd., Caesarea, Israel),

with recording of finger pulse oximetry, actigraphy, body position, peripheral arterial tonome-

try, and snoring. It has previously been validated using polysomnography [98]. The current

analysis included 782 individuals with valid oximetry and Affymetrix 6.0 data.

Replication group studies

Data from the Sleep Heart Health Study Cardiovascular Health Study (CHS) [99] was available

after ARIC and FHS and used in replication analysis. Sleep phenotyping was performed as

described earlier. 185 African-American and 731 European-Americans with available poly-

somnography and Illumina CNV370, and/or Omni1M plus IBC genotypes obtained through

dbGaP (pht003699.v1.p1) were analyzed.

The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is studying risk and

protective factors of multiple health conditions in Hispanics/Latinos [100,101]. 16,415 com-

munity members from randomly selected households aged 18–74 from 4 cities (Chicago, IL;

Miami, FL; Bronx, NY; San Diego, CA) were examined in a baseline exam between 2008–

2011. The sample design consisted of a stratified two-stage area probability sample of house-

hold addresses. Six cohort backgrounds were represented: Central American (n = 1,730),

Cuban (n = 2,348), Dominican (n = 1,460), Mexican (n = 6,471), Puerto-Rican (n = 2,728),

and South American (n = 1,068). The exam included anthropometry, questionnaires, and

home sleep apnea testing using the ARES Unicorder 5.2 (B-Alert, Carlsbad, CA), which rec-

ords measurements of airflow using a nasal pressure cannula and pressure transducer; oxyhe-

moglobin saturation and pulse rate using a forehead-based reflectance oximeter; head

movements and position using an accelerometer; and snoring levels using a microphone. The

device has undergone previous validation for in-home use [102]. Records were manually

scored and cleaned of artifacts at a central sleep reading center [101]. The current study

includes 11,351 non-Asian ancestry individuals with oxyhemoglobin saturation values during

sleep and Illumina Omni 2.5 genotyping.

The Jackson Heart Study (JHS) is a population-based prospective investigation of cardio-

vascular disease [103,104]. The ancillary sleep study occurred from 2012–2016, and included

home sleep apnea testing with the Embla Embletta Gold, a 6-channel device that includes an

oximeter (Broomfield, CO). The device has been validated previously [105]. Additional col-

lected measures include sleep questionnaires and anthropometry. 496 African-American indi-

viduals with phenotyping and Affymetrix 6.0 genotyping were included in this study,

reflecting a dataset freeze at the time of analysis.
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The Western Australian Sleep Health Study (WASHS) is examining the epidemiology and

genetics of sleep apnea and related comorbidities [106]. This clinic-based study examines

patients presenting to the sole public sleep clinic in Western Australia, located in Perth. 91% of

patients were referred for SDB. Data collection for individuals in the current analysis occurred

from 2006–2010. In-lab, attended polysomnography was performed using the Compumedics

Series E device (Abbotsford, AU). After excluding principal component (PC) outliers (see

below), valid oximetry data and genotype data (Illumina Omni 2.5) were available for 1,647

European ancestry patients.

Phenotype and covariate definitions

The quantitative phenotypic outcome was oxyhemoglobin saturation during sleep (SpO2),

measured as an average, minimum, or as a percentage of the night with SpO2 < 90% (Per90)

measured using finger pulse oximetry (all using NONIN oximetry boards) or transcutaneous

oximetry (HCHS/SOL only) measured continuously as part of polysomnography or home

sleep apnea testing. Other than the WASHS clinical cohort, all sleep data were scored by a cen-

tral reading center with high levels of established reliability [107] by scorers blinded to all

other data. Intermittent waking and SpO2 artifact were manually edited from all records.

Covariates were obtained by questionnaires, direct measurement (BMI), and oximetry (waking

oxygen saturation was measured prior to the sleep recording). Secondary measures such as

hemoglobin concentration and spirometry were collected from the same visit whenever possi-

ble, however this was not possible for all cohorts (most notably hemoglobin was collected

years prior to the sleep exam in some cohorts). Potential device differences were minimized by

both performing analyses at a cohort level and using a rank-normal phenotype transformation

to reduce the impact of phenotypic outliers. Our analysis focused on identifying potential loci

operating in obesity-independent pathways. Hispanic/Latino-specific results have been

reported previously for average SpO2 [25].

Genotyping and statistical analyses

Genotypes from all cohorts were imputed to at least a 1000 Genomes Phase 1 density. ARIC,

JHS, and HCHS/SOL were imputed using a 1000 Genomes Phase 1 version 3 template.

WASHS was imputed using a Haplotype Reference Consortium version 1.0 template [108]. All

other cohorts were imputed using a 1000 Genomes Phase 3 version 5 template [109,110]. Sin-

gle nucleotide polymorphisms (SNPs) and insertions/deletions with minor allele

frequency< 0.01, minor allele counts < 20 within a cohort, or an IMPUTE2/PBWT info

score < 0.88 were removed from the analysis. Sample sizes and variant counts for each cohort

for the three primary phenotype analyses are provided in S23 Table.

We explored ancestry-specific associations given past SDB trait differences (e.g. [93,101])

and linkage disequilibrium differences [109]. Data were analyzed at a cohort- and population-

specific level (e.g. 4 separate analyses for the MESA cohort). Population structure was con-

trolled for using linear mixed models followed by genomic control. Population structure prin-

cipal components were calculated for the minimally-admixed, self-reported Asian-American

and European-American/Australian population groups within individual studies using

TRACE [111]. WASHS initial self-reported European ancestry was based on classification of

the patient’s parents [106]. Individuals were defined as population outliers and removed from

analysis if any coordinate from PC 1–4 was greater than 5 standard deviations from the popu-

lation mean. Individuals self-reporting into groups with modest sample size within a cohort (e.

g. MrOS Asian-Americans) were excluded from study.

GWAS of oxyhemoglobin saturation during sleep

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007739 April 16, 2019 17 / 31

https://doi.org/10.1371/journal.pgen.1007739


Our analysis focused on identifying potential loci operating in obesity-independent path-

ways. We adjusted for age, age2, sex, age × sex, BMI, and BMI2 to address known demographic

factors and potential non-linear effects of age and BMI. Phenotypes, adjusted for age and sex,

were rank-normalized. Residuals were then calculated by further adjusting for BMI. Primary

analyses were performed using GEMMA, which incorporates linear mixed models that control

for the relatedness structure [112]. HCHS/SOL analyses were performed using the GENESIS

Bioconductor package [113] (DOI:10.18129/B9.bioc.GENESIS). A fixed effects, inverse vari-

ance weighted meta-analysis was performed using METAL with genomic control applied in

each analysis [114]. Variants with p-values < 1 × 10−6 in the discovery cohort meta-analysis

were carried forward to replication and combined discovery/replication analysis. To reduce

the influence of small studies possibly leading to spurious findings, we only present meta-anal-

ysis results where 1,000 or more individuals contributed. Individual SNPs in the multi-ethnic

analyses were only analyzed if they remained unfiltered in two or more populations. The three

traits differed in their final variant counts due to phenotype missingness and ascertainment

(no average SpO2 was available for WASHS in this analysis). In aggregate for the discovery

cohorts, there were 11,297,250–11,298,080 AA; 8,956,016–8,958,150 EA; and 9,481,040–

9,481,751 multi-ethnic variants. The replication cohorts included 12,243,361–12,346,361 AA;

7,448,148–8,707,439 EA; and 10,173,881–10,480,925 multi-ethnic variants. Visualizations were

constructed using LocusExplorer and EasyStrata [115,116].

Sleep and sleep disordered breathing may be regulated by multiple tissues [86,117]. Epige-

netic database queries were performed using HaploReg version 4 using an imputed model and

exact SNPs. HaploReg data included ENCODE and Roadmap Epigenomics consortia data

[118–120]. Additional queries examined non-cancerous Blueprint Consortium data (largely

related to blood cell lines) and Vermunt et al. brain region enhancer data[121–123]. Gene

expression data used in expression quantitative trait loci (eQTL) lookups were obtained from

multiple studies, including a seven-cohort consortium investigating whole blood (Westra

et al.) [35,124–130]. The Westra data were pruned to include only eQTL SNPs with

FDR< 0.05. Moloc was used to test colocalization [131]. Gene-level analyses used MetaXcan

to impute expression levels based on GTEx tissues and Depression and Genes and Networks

(DGN) whole blood [132]. GIGSEA, which is designed to work with MetaXcan output, was

used for pathway analyses using the whole blood results (queried due to improved power from

increased sample size) [133]. We used the weighted linear regression model with 10,000

permutations.

Supporting information

S1 Fig. Average oxygen saturation discovery cohorts manhattan and QQ plots. Top: Afri-

can-Americans; Middle: European-Americans; Bottom: Multi-ethnic. Variants in the multi-

ethnic results had to have results from cohorts in two or more populations.

(PDF)

S2 Fig. Minimum oxygen saturation discovery cohorts manhattan and QQ plots. Top: Afri-

can-Americans; Middle: European-Americans; Bottom: Multi-ethnic (2 or more populations

for each variant).

(PDF)

S3 Fig. Per90 discovery cohorts manhattan and QQ plots. Top: African-Americans; Middle:

European-Americans; Bottom: Multi-ethnic (2 or more populations for each variant).

(PDF)
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S4 Fig. Multi-ethnic discovery cohorts average oxygen saturation miami plots. Top:

Females; Bottom: Males.

(PDF)

S5 Fig. Multi-ethnic discovery cohorts minimum oxygen saturation miami plots. Top:

Females; Bottom: Males.

(PDF)

S6 Fig. Multi-ethnic discovery cohorts Per90 saturation miami plots. Top: Females; Bottom:

Males.

(PDF)

S7 Fig. Average oxygen saturation regional plot (European ancestry, 10q22). The supple-

mental regional plot order corresponds to the order found in S2, S3 and S4 Tables, minus the

associations shown in Figs 1 and 2.

(PDF)

S8 Fig. Per90 regional plot (African-American ancestry, 3p24).

(PDF)

S9 Fig. Per90 regional plot (African-American ancestry, 4p35).

(PDF)

S10 Fig. Per90 regional plot (European ancestry, 10q22).

(PDF)

S11 Fig. Average oxygen saturation regional plot (European ancestry males, 10q22).

(PDF)

S12 Fig. Average oxygen saturation regional plot (European ancestry males, 12q14).

(PDF)

S13 Fig. Average oxygen saturation regional plot (European ancestry males, 2p21).

(PDF)

S14 Fig. Average oxygen saturation regional plot (European ancestry males, 5p15).

(PDF)

S15 Fig. Average oxygen saturation regional plot (European ancestry males, 5q21).

(PDF)

S16 Fig. Minimum oxygen saturation regional plot (European ancestry males, 10q22).

(PDF)

S17 Fig. Minimum oxygen saturation regional plot (European ancestry males, 23p21).

(PDF)

S18 Fig. Average oxygen saturation regional plot (Combined discovery/replication Afri-

can-American ancestry, 22q11).

(PDF)

S19 Fig. Minimum oxygen saturation regional plot (Combined discovery/replication Afri-

can-American ancestry, 6q25).

(PDF)
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S20 Fig. Minimum oxygen saturation regional plot (Combined discovery/replication Euro-

pean ancestry, 17p13).

(PDF)

S21 Fig. Minimum oxygen saturation regional plot (Combined discovery/replication Euro-

pean ancestry, 2p12).

(PDF)

S22 Fig. Per90 regional plot (Combined discovery/replication, 7q22).

(PDF)

S1 Table. Phenotype and covariate correlations. Spearman correlations between phenotypes

and covariates across all discovery cohorts and ethnic groups are shown. Correlations with the

spirometry measures FEV1 and FVC are also shown. Correlations were pooled using Fisher Z-

transformations weighted by sample size. 95% confidence intervals are listed in parentheses.

(XLS)

S2 Table. Significant and suggestive meta-analysis results. Lead SNPs are shown for regions

with significant (p< 5.0 × 10–8) and suggestive (p< 1.0 × 10–6) p-values. Discovery regions

were carried forward if the combined discovery and replication analysis results indicated a

lower p-value, retained genome-level significance, or replication was unavailable (i.e. due to

frequency or imputation filters). SNPs denotes the count of regional SNPs with p< 1.0 × 10–

6. Genes indicates overlapping Ensembl genes within 5 kb of the p< 1 × 10–6 SNPs. CAF indi-

cates coded allele frequency range. Individual regional SNP results are provided in S3 Table.

Individual regions were minimally 500 kb apart.

(XLS)

S3 Table. All top locus SNP results (p< 1 x 10–6; full sleep combined-sex and sex-stratified

analyses). “Locus Class” indicates “Discovery/Replication” for main analyses or “Combined

meta-analysis” for regions not clearing initial discovery p-value thresholds (i.e. S7 Table loci).

(XLS)

S4 Table. Sex-stratified comparison of top locus SNPs (p < 1 x 10–6). Sex-stratified samples

with n < 1000 are included here for comparison but were not included in the main analyses.

An individual variant present in the combined-sex analysis for a given cohort may be missing

from the equivalent sex-stratified analysis due to analysis-specific minor allele count thresh-

olds of 20. “Locus Class” indicates “Discovery/Replication” for main analyses or “Combined

meta-analysis” for regions not clearing initial discovery p-value thresholds (i.e. S7 Table loci).

(XLS)

S5 Table. Lead loci results for other phenotypes. Each lead SNP from the “Original Pheno-

type” and “Original Model” columns was analyzed using equivalent individuals and models

for different phenotypes. Available sample size will vary depending on the availability of the

phenotype. AHI values are taken from Chen, Cade, et al. (submitted) “Locus Class” indicates

“Discovery/Replication” for main analyses or “Combined meta-analysis” for regions not clear-

ing initial discovery p-value thresholds (i.e. S7 Table loci).

(XLS)

S6 Table. Suggestive sex-stratified meta-analysis results. Lead SNPs are shown for regions

with suggestive (p< 1.0 × 10–6) p-values. Discovery regions were carried forward if the com-

bined discovery and replication analysis results indicated a lower p-value, retained genome-

level significance, or replication was unavailable (i.e. due to frequency or imputation filters).

SNPs denotes the count of regional SNPs with p< 1.0 × 10–6. Genes indicates overlapping

GWAS of oxyhemoglobin saturation during sleep

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007739 April 16, 2019 20 / 31

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007739.s020
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007739.s021
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007739.s022
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007739.s023
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007739.s024
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007739.s025
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007739.s026
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007739.s027
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007739.s028
https://doi.org/10.1371/journal.pgen.1007739


Ensembl genes within 5 kb of the p< 1 × 10–6 SNPs. CAF indicates coded allele frequency

range. Individual regional SNP results are provided in S3 Table. Individual regions were mini-

mally 500 kb apart.

(XLS)

S7 Table. Significant combined discovery/replication cohort meta-analysis results. Lead

SNPs are shown for regions with significant (p < 5.0 x 10–8) combined-analysis p-values with

p> 1 x 10–6 in the discovery phase. SNPs denotes the count of regional SNPs with p< 1.0 x

10–6. Genes indicates overlapping Ensembl genes within 5 kb of the p< 1 x 10–6 SNPs. CAF

indicates coded allele frequency range. Individual regional SNP results are provided in S3

Table. Individual regions were minimally 500 kb apart.

(XLS)

S8 Table. Lead loci results adjusted for additional covariates. Lead variants were re-analyzed

with standard models and additional covariates as listed. As these covariates were not collected

in all cohorts and individuals, the analysis were also performed with the same individuals for

direct comparisons (matched N control columns).

(XLS)

S9 Table. Top locus SNP (p < 1 x 10–6) HaploReg (Roadmap Epigenomics and ENCODE)

epigenetic evidence. Data were obtained from HaploReg 4.1 (https://pubs.broadinstitute.org/

mammals/haploreg/haploreg.php) using exact SNPs (LD threshold = NA) and a ChromHMM

15-state model, followed by extraction from HTML. “Locus Class” indicates “Discovery/Repli-

cation” for main analyses or “Combined meta-analysis” for regions not clearing initial discov-

ery p-value thresholds (i.e. S7 Table loci).

(XLS)

S10 Table. Top locus SNP (p< 1 x 10–6) Blueprint and Vermunt epigenetic evidence. Blue-

print cell lines are a non-cancerous sub-set of largely blood cells. Vermunt brain region sam-

ples were not assayed for promoter regions. “Locus Class” indicates “Discovery/Replication”

for main analyses or “Combined meta-analysis” for regions not clearing initial discovery p-

value thresholds (i.e. S7 Table loci).

(XLS)

S11 Table. Top locus SNP (p< 1 x 10–6) eQTL evidence. Data were obtained from Fairfax

et al. (monocytes), Geuvadis (LCLs), GTEx, Hao et al. (lung), Muther (adipose, LCLs, skin),

Raj et al. (CD4, monocytes), Westra et al. (whole blood), and Zeller et al. (monocytes). “Locus

Class” indicates “Discovery/Replication” for main analyses or “Combined meta-analysis” for

regions not clearing initial discovery p-value thresholds (i.e. S7 Table loci).

(XLS)

S12 Table. Multi-variate MTAG (p< 10 x 10–6) results. MTAG analysis was performed on

European ancestry samples using our summary statistics for the three traits simultaneously.

Lead results (p< 1 x 10–6) are shown.

(XLS)

S13 Table. MetaXcan gene-level results for subcutaneous adipose tissue in European-

Americans. Lead results (p< 0.05) are shown. Note that Ensembl IDs obtained from MetaX-

can are occasionally unavailable.

(XLS)

S14 Table. MetaXcan gene-level results for visceral omentum adipose tissue in European-

Americans. Lead results (p< 0.05) are shown. Note that Ensembl IDs obtained from
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MetaXcan are occasionally unavailable.

(XLS)

S15 Table. MetaXcan gene-level results for hypothalamus in European-Americans. Lead

results (p< 0.05) are shown. Note that Ensembl IDs obtained from MetaXcan are occasionally

unavailable.

(XLS)

S16 Table. MetaXcan gene-level results for liver in European-Americans. Lead results

(p< 0.05) are shown. Note that Ensembl IDs obtained from MetaXcan are occasionally

unavailable.

(XLS)

S17 Table. MetaXcan gene-level results for lung in European-Americans. Lead results

(p< 0.05) are shown. Note that Ensembl IDs obtained from MetaXcan are occasionally

unavailable.

(XLS)

S18 Table. MetaXcan gene-level results for skeletal muscle in European-Americans. Lead

results (p< 0.05) are shown. Note that Ensembl IDs obtained from MetaXcan are occasionally

unavailable.

(XLS)

S19 Table. MetaXcan gene-level results for DGN whole blood in European-Americans.

Lead results (p< 0.05) are shown. Note that Ensembl IDs obtained from MetaXcan are occa-

sionally unavailable.

(XLS)

S20 Table. GIGSEA KEGG pathway enrichment in whole blood analyses. MetaXcan gene-

level results for DGN whole blood (S19 Table, all p-values) were used as input.

(XLS)

S21 Table. GIGSEA micro RNA enrichment in whole blood analyses. MetaXcan gene-level

results for DGN whole blood (S19 Table, all p-values) were used as input. MicroRNAs are

curated by the Molecular Signatures Database (http://software.broadinstitute.org/gsea/

msigdb/index.jsp).

(XLS)

S22 Table. GIGSEA transcription factor binding site enrichment in whole blood analyses.

MetaXcan gene-level results for DGN whole blood (S19 Table, all p-values) were used as input.

Transcription factor binding sites are curated by the Molecular Signatures Database (http://

software.broadinstitute.org/gsea/msigdb/index.jsp).

(XLS)

S23 Table. Study-level variant counts. Cohort-level information is shown for the three pri-

mary analyses, including discovery/replication category, the number of individuals with avail-

able phenotyping and genotyping, genotyping platform, imputation panel, and the number of

imputed variants tested in each analysis following info score, MAC, and MAF filtering.

(XLS)
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P., Zarski J.-P., and Pépin J.-L. (2014). Nonalcoholic fatty liver disease, nocturnal hypoxia, and endo-

thelial function in patients with sleep apnea. Chest 145, 525–533. https://doi.org/10.1378/chest.13-

0938 PMID: 24264333

16. Lacasse Y., Sériès F., Vujovic-Zotovic N., Goldstein R., Bourbeau J., Lecours R., Aaron S.D., and Mal-

tais F. (2011). Evaluating nocturnal oxygen desaturation in COPD–revised. Respir Med 105, 1331–

1337. https://doi.org/10.1016/j.rmed.2011.04.003 PMID: 21561753

GWAS of oxyhemoglobin saturation during sleep

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007739 April 16, 2019 24 / 31

https://doi.org/10.1007/s00415-003-1005-4
http://www.ncbi.nlm.nih.gov/pubmed/12638024
https://doi.org/10.1001/jama.2011.1115
http://www.ncbi.nlm.nih.gov/pubmed/21828324
https://doi.org/10.1165/rcmb.2014-0135OC
https://doi.org/10.1165/rcmb.2014-0135OC
http://www.ncbi.nlm.nih.gov/pubmed/24825563
https://doi.org/10.1007/s00408-014-9563-z
http://www.ncbi.nlm.nih.gov/pubmed/24584632
https://doi.org/10.1093/icb/icj004
http://www.ncbi.nlm.nih.gov/pubmed/21672719
https://doi.org/10.1002/gepi.21957
http://www.ncbi.nlm.nih.gov/pubmed/27027516
https://doi.org/10.1016/j.jacc.2006.08.060
http://www.ncbi.nlm.nih.gov/pubmed/17276180
https://doi.org/10.1164/rccm.201201-0130OC
http://www.ncbi.nlm.nih.gov/pubmed/22610391
https://doi.org/10.1164/rccm.201209-1671OC
http://www.ncbi.nlm.nih.gov/pubmed/23155146
https://doi.org/10.5665/sleep.6004
http://www.ncbi.nlm.nih.gov/pubmed/27166241
https://doi.org/10.1111/jsr.12321
http://www.ncbi.nlm.nih.gov/pubmed/26096939
https://doi.org/10.1371/journal.pmed.1001599
http://www.ncbi.nlm.nih.gov/pubmed/24503600
https://doi.org/10.1093/eurheartj/ehv624
http://www.ncbi.nlm.nih.gov/pubmed/26612581
https://doi.org/10.1016/j.ijcard.2015.11.108
https://doi.org/10.1016/j.ijcard.2015.11.108
http://www.ncbi.nlm.nih.gov/pubmed/26630630
https://doi.org/10.1378/chest.13-0938
https://doi.org/10.1378/chest.13-0938
http://www.ncbi.nlm.nih.gov/pubmed/24264333
https://doi.org/10.1016/j.rmed.2011.04.003
http://www.ncbi.nlm.nih.gov/pubmed/21561753
https://doi.org/10.1371/journal.pgen.1007739


17. Ross K.R., Storfer-Isser A., Hart M.A., Kibler A.M.V., Rueschman M., Rosen C.L., Kercsmar C.M.,

and Redline S. (2012). Sleep-disordered breathing is associated with asthma severity in children. J

Pediatr 160, 736–742. https://doi.org/10.1016/j.jpeds.2011.10.008 PMID: 22133422

18. Corte T.J., Wort S.J., Talbot S., Macdonald P.M., Hansel D.M., Polkey M., Renzoni E., Maher T.M.,

Nicholson A.G., and Wells A.U. (2012). Elevated nocturnal desaturation index predicts mortality in

interstitial lung disease. Sarcoidosis Vasc Diffuse Lung Dis 29, 41–50. PMID: 23311122

19. Kolilekas L., Manali E., Vlami K.A., Lyberopoulos P., Triantafillidou C., Kagouridis K., Baou K., Gyfto-

poulos S., Vougas K.N., Karakatsani A., et al. (2013). Sleep oxygen desaturation predicts survival in

idiopathic pulmonary fibrosis. J Clin Sleep Med 9, 593–601. https://doi.org/10.5664/jcsm.2758 PMID:

23772193

20. Shungin D., Winkler T.W., Croteau-Chonka D.C., Ferreira T., Locke A.E., Mägi R., Strawbridge R.J.,
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