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Expression analyses of cave mollies
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involved in the early evolution of eye
regression
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KLM, 0000-0001-6388-3873; JLK, 0000-0002-7731-605X

Eye regression occurs across cave-dwelling populations of many species and is
often coupled with a decrease or loss in eye function. Teleost fishes are among
the few vertebrates to undergo widespread colonization of caves and often
exhibit eye regression with blindness. Cave populations of the poeciliid fish
Poecilia mexicana (cave molly) exhibit reduced—albeit functional—eyes, offer-
ing the opportunity to investigate partial eye regression. We sequenced eye
transcriptomes of cave and surface populations of P. mexicana to identify differ-
entially expressed genes that potentially underlie eye regression in cave mollies.
We identified 28 significantly differentially expressed genes, 20 of which were
directly related to light sensitivity, eye structure and visual signaling. Twenty-six
of these genes were downregulated in cave compared to surface populations.
Functional enrichment analysis revealed eye-related gene ontologies that were
under-represented in cavemollies. In addition,a set of co-expressedgenes related
tovisionandcircadian rhythmwas correlatedwithhabitat type (cave versus sur-
face). Our study suggests that differential gene expression plays a key role in
the beginning evolutionary stages of eye regression in P. mexicana, shedding
further light on regressive evolution in cavefish.
1. Background
Regressive evolution is common in cave-dwelling populations compared to their
surface relatives [1]. In teleost fishes, cave-dwelling phenotypes are often similar
across species and include reductions in eye size and function [2–4] and loss of
skin pigmentation [5]. The genetic and evolutionary processes underlying regres-
sive evolution, however, are still not fully understood. Prior studies suggest
that regressive phenotypes can evolve through mutation [6], differential gene
expression [7], or possibly both mechanisms. Moreover, both selection [8,9] and
genetic drift [3] have been implicated in the evolution of regressive phenotypes.

The Atlantic molly (Poecilia mexicana, Poeciliidae) offers the opportunity to
examine eye regression in a vertebrate system with reduced eyes in cave popu-
lations. In the Tacotalpa drainage in southern Mexico, this species has colonized
three extreme environments on a small spatial scale, including a surface stream
(El Azufre) with high levels of toxic hydrogen sulfide (H2S), a H2S-rich cave
(CuevadelAzufre) andanon-toxic freshwater cave (CuevaLunaAzufre) (electronic
supplementary material, figure S1). Previous comparisons of these extremophile
populations with P. mexicana from an ancestral non-sulfidic surface population
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Figure 1. Relative eye size across populations of Poecilia mexicana. Box-plots: centre line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile
range; points, raw data. (Online version in colour.)
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revealed local adaptation toboth caveandsulfidic environments,
strong genetic differentiation by habitat type, low gene flow and
ongoing parapatric speciation [10]. Populations of P. mexicana in
theTacotalpadrainage colonized sulfidic habitats approximately
10 000 years ago [11]. The two cave populations (Cueva del
Azufre andCueva LunaAzufre) likely originated from an ances-
tral sulfidicpopulationafter the initial divergence [12]. Therefore,
we estimate that the divergence between cave and surface
populations in this system is recent (less than 10 000 years).

Cave populations in the Cueva del Azufre system are charac-
terized by partial eye regression. Eyes of the cave mollies remain
functional, as these fishes are still photophilic [13]. However,
cavefish exhibit a heritable reduction in eye size compared to sur-
face populations (figure 1) [14–17] and exhibit reduced opsin
gene expression in retinal tissue [18]. Here, we compared tran-
scriptome-wide gene expression in the eyes between two cave
and two surface P. mexicana populations. We hypothesized that
genes related to eye regression would be differentially expressed
in cave populations comparedwith surface populations.We pre-
dicted that genes involved in visual sensitivity, eye structure, or
eye signalingwouldbedownregulated in cavemollies compared
to surface fish. We also aimed to identify genes that were differ-
entially expressed in sulfidic compared with non-sulfidic
populations (i.e. the second major axis of environmental vari-
ation in this system), because eyes are in direct contact with the
water. We hypothesized that genes involved in H2S detoxifica-
tion and metabolism would be upregulated in the sulfidic
populations, as observed in other tissues [12].
2. Methods
(a) Relative eye size of cave mollies compared to

surface fish
Male and female P. mexicanawere collected from a non-sulfidic sur-
face, sulfidic surface, non-sulfidic cave and sulfidic cave habitats
(electronic supplementary material, figure S1; [10]). Eye diameter
and standard length were measured with callipers to the closest
0.1 mm. Relative eye size was calculated by dividing eye diameter
by standard length. Owing to unequal variance across the four
populations, a Kruskal–Wallis test was used to determine if the
average relative eye size was significantly different. Pairwise popu-
lation comparisons were performed using a Wilcoxon rank-sum
test with a Benjamini–Hochberg correction for multiple testing.

(b) RNA-sequencing
Two whole eye samples (N = 4 individuals per population;
total N = 16; see electronic supplementary material, table S1 for
further details) were taken from adult females from sites described
above. Sample collection, RNA extraction, library preparation
and sequencing are described in the electronic supplementary
material. Trimmed reads were mapped to the P. mexicana reference
genome (GenBank: LMXC00000000.1) with an appended mito-
chondrial genome (GenBank: KC992991) using BWA-mem [16]. A
gene counts matrix was produced from the mapped reads using
StringTie and the associated Python script (prepDE.py) [19]. In
StringTie, mitochondrial genes were not included in the analyses.

(c) Identifying differentially expressed genes in the eyes
of cave mollies compared to surface fish

Differentially expressed genes were identified using EdgeR and
the limma package in R ([19,20]; see electronic supplementary
material). The two surface populations were compared with
the two cave populations, irrespective of the presence or absence
of H2S, in one model using a quasi-likelihood F-test with
contrasts [21] to determine which genes were significantly differ-
entially expressed between the two habitat types (false discovery
rate, FDR < 0.05). The same approach was used to compare the
two sulfidic populations with the two non-sulfidic populations,
irrespective of cave or surface, to test whether H2S also impacted
eye transcriptomes. Annotations for differentially expressed
genes were obtained from the annotated general feature format
(GFF) file of the P. mexicana reference genome (GenBank:
GCF_001443325.1).
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Figure 2. Log2-fold change (logFC) for significantly differentially expressed genes between cave and surface populations. Positive values indicate upregulation,
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(d) Functional annotation of gene expression based on
the environment

A gene set enrichment analysis (GSEA) was conducted using
GSEA v.3.0 [22]. Genes with human homologues identified by
SwissProt ID were ranked by their log2-fold change in expression
comparing cave to surface populations. The ranked list was input
into GSEAPreranked to determine whether specific biological pro-
cess gene ontology (GO) terms were over- or under-represented
(see electronic supplementary material for details).
(e) Identifying co-expressed gene modules correlated
with cave adaptation

An unsigned weighted gene co-expression network analysis
(WGCNA) was performed using the R package WGCNA [23]
on normalized (log2-counts per million) gene expression data to
determine whether modules of co-expressed genes were
significantly correlated with cave versus surface or sulfidic
versus non-sulfidic environment. Only genes that were expressed
in two or more samples were retained for analysis (see electronic
supplementary material for details).
3. Results
Relative eye size was significantly different across the four
populations of P. mexicana ( χ2 = 266.2, d.f. = 3, p < 0.001;
figure 1). The relative eye size of both cave populations was
significantly smaller than that of both surface populations
( p < 0.001 for each pairwise comparison).

We obtained more than 153 million paired-end raw reads
from sequencing 16 eye samples (electronic supplementary
material, table S2). Over 139 million reads remained after trim-
ming (electronic supplementary material, table S2). An average
of 2.4 ± 0.4 million trimmed reads (equivalent to 27.15 ± 3.51%)
per sample mapped to the P. mexicana reference genome (elec-
tronic supplementary material, table S3). Variation in gene
expression related to library size (R2 = 0.74, p < 0.0001; first
multidimensional scaling axis (MDS1) in electronic sup-
plementary material, figure S2). Samples were partitioned by
cave versus surface habitat along the second MDS axis.

After filtering out genes with zero counts across all
samples, 23 419 of 31 805 genes remained in the gene counts
matrix. Of these, 28 genes were significantly differentially
expressed between cave and surface populations, irrespective
of the presence or absence of H2S (FDR< 0.05; table 1). All
but two of these genes (encoding RACK1 and RPL35) were
downregulated in cave compared to surface populations, indi-
cated by a negative log2-fold change (figure 2 and electronic
supplementary material, figure S3). Twenty of the 28 differen-
tially expressed genes had known eye-related functions
(table 1), including five genes associated with light sensitivity,
six with eye structure and nine with signaling. Gene expression
differences were almost absent comparing sulfidic to non-
sulfidic populations, irrespective of cave or surface, with LSU
rRNA as the only downregulated gene (FDR< 0.05; electronic
supplementary material, table S4).

We found a negative correlation between habitat type (cave
versus surface) and 19 eye-related gene ontologies involving
visual sensitivity, eye development and signaling using
GSEA (electronic supplementary material, table S5). The top
GO term associated with gene expression was the detection of
light stimulus (GO:0009583). One module of 156 co-expressed
genes was significantly correlated with cave versus surface
habitat in the WGCNA (r =−0.7, p = 0.003; electronic sup-
plementary material, figure S4). The module contained many
eye- and circadian rhythm-related genes (electronic sup-
plementary material, table S6). The circadian rhythm-related
genes included those encoding circadian locomotor output
cycles protein kaput (CLOCK), circadian-associated transcrip-
tional repressor (CIART), period circadian protein homologue
2 (PER2), aryl hydrocarbon receptor (AHR), mitogen-activated
protein kinase 10 (MK10), nuclear receptor ROR-beta (RORB)
and several opsins including melanopsin (OPN4), among
others. These findings suggest that changes in circadian
genes were associated with the colonization of and adaptation
to cave environments. NoWGCNAmodules were significantly
correlated with the presence or absence of H2S.
4. Discussion
Eye regression is common in cave-dwellingpopulations andhas
evolved convergently in multiple phyla [1]. Determining the
mechanisms that drive phenotypic eye regression can help us
understand regressive evolution in caves. Based on our finding
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that more genes were differentially expressed between cave and
surface populations when compared with sulfidic and non-
sulfidic populations of P. mexicana, we concluded that the
presence or absence of light—not presence or absence of
H2S—was the primary environmental driver of gene expression
variation in the eye. While genes involved in H2S detoxification
and metabolism are upregulated in other organs in sulfidic
populations [12], eye tissues do not appear to be involved in
themaintenance ofH2S homeostasis. Furthermore, the downre-
gulation of opsin gene expression documented here supports
previous findings based on qPCR, where medium- and long-
wavelength-sensitive opsins were downregulated in individ-
uals of P. mexicana from deep cave chambers of the Cueva del
Azufre compared to those exposed to partial or full light [18].

Many eye-related genes from our analyses were also down-
regulated in other species of cavefish [7,24], suggesting
possible parallel mechanisms underlying eye regression.
Genes encoding RHO, GNAT1, GNB3-like, GNGT1-like and
OPN1SW were downregulated in adult cave mollies as well
as in the adult eyeless golden-line fish, Sinocyclocheilus
anophthalmus [7]. There were also similarities in gene
expression associated with visual sensitivity and signaling in
the Mexican tetra (Astyanax mexicanus), which has undergone
several independent cave colonizations [25] and is a model
system in cavefish biology [26]. For example, the expression
of genes coding for ROM1 and GNAT1 was completely sup-
pressed in blind adult A. mexicanus cavefish (Pachón
population [24]) and significantly reduced in the eye tissues
of adult P. mexicana. Similarly, genes encoding PDE6H-like,
PDE6G, PRPH2-like and gamma-crystallin M3-like were sig-
nificantly downregulated in both adult A. mexicanus [24] and
adult P. mexicana cavefish. Interestingly, a reduced eye pheno-
type also exists in several cave lineages of adult A. mexicanus
[27] and is often present after introgression with the eyed sur-
face morph [28–30]. However, the reduced eye in adult P.
mexicana cave mollies is not the result of introgression with
surface populations [10]. Consequently, these P. mexicana
populations provide an opportunity to examine the beginning
evolutionary stages of eye regression in cave mollies that is not
the result of admixture [31] but owing to recent divergence
from surface relatives [11,12].

Gene expression differences between cave and surface popu-
lations were not only related to eye function. The WGCNA also
uncovered correlations with the expression of genes associated
with circadian rhythm. The circadian clock typically relies on a
light/dark cycle, so this correlation—while unsurprising—
offers interesting insights into which circadian-related genes
are affectedby cave adaptation inP.mexicana. Studyingcircadian
rhythm is difficult in fishes because, unlike mammals, they do
not have amaster clock regulating circadian function [32]. How-
ever, genes encoding CIART, CLOCK, AHR, MK10, PER2 and
RORB, which were significantly correlated with habitat in this
study, are all involved in cyclical feedback loops that control cir-
cadian rhythm ([33] and GeneCards). Melanopsin (OPN4) also
correlated with cave versus surface habitat in P. mexicana and
has been suggested as a key clock regulator in Phreatichthys
andruzzii, a Somalian cavefish whose circadian rhythm depends
on food availability [34].

Collectively, our gene expression analyses suggest that
regressive evolution (reduced eyes) is correlated with a general
downregulation of genes that have key functions in the eyes of
P. mexicana. This finding leads to broader questions about the
proximate and ultimate causes driving expression differences
in those genes. The evidence for the downregulation of
eye-related genes in P. mexicana and the parallels with other
cavefish may suggest strong directional selection; however, it
is also possible that the promoter regions of eye-related
genes neutrally accumulate mutations because of a reduction
in purifying selection, which leads to reduced expression in
cave environments. Further work is needed to determine if
these changes in gene expression are owing to selection,
genetic drift, or a combination of these mechanisms.
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