
Lawrence Berkeley National Laboratory
LBL Publications

Title
Agile Acceleration of LLVM Flang Support for Fortran 2018 Parallel Programming

Permalink
https://escholarship.org/uc/item/01h204x9

Authors
Rasmussen, Katherine
Rouson, Damian
George, Najé
et al.

Publication Date
2022-11-15

DOI
10.25344/S4CP4S

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/01h204x9
https://escholarship.org/uc/item/01h204x9#author
https://escholarship.org
http://www.cdlib.org/

International Conference on High Performance Computing, Networking, Storage and Analysis (SC22)

Agile Acceleration of LLVM Flang Support for
Fortran 2018 Parallel Programming

Katherine Rasmussen, Damian Rouson,
Dan Bonachea, Brian Friesen, Hussain Kadhem

Lawrence Berkeley National Laboratory, USA
{krasmussen,rouson,dobonachea,bfriesen,hmk}@lbl.gov

Najé George
Computational Science Research Center

San Diego State University, USA
ngeorge8641@sdsu.edu

Abstract—The LLVM Flang compiler (”Flang”) is currently
Fortran 95 compliant, and the frontend can parse Fortran
2018. However, Flang does not have a comprehensive 2018
test suite and does not fully implement the static semantics of
the 2018 standard. We are investigating whether agile software
development techniques, such as pair programming and test-
driven development (TDD), can help Flang to rapidly progress to
Fortran 2018 compliance. Because of the paramount importance
of parallelism in high-performance computing, we are focusing
on Fortran’s parallel features, commonly denoted “Coarray
Fortran”. We are developing what we believe are the first
comprehensive, open-source tests for the static semantics of
Fortran 2018 parallel features, and contributing them to the
LLVM project. A related effort involves writing runtime tests for
parallel 2018 features and supporting those tests by developing a
new parallel runtime library: the CoArray Fortran Framework
of Efficient Interfaces to Network Environments (Caffeine).

Index Terms—HPC, Exascale Computing, Compiler Testing

I. INTRODUCTION

The LLVM Compiler Infrastructure project [1] provides
open-source frontends for several languages, including C and
C++. Because of the essential role that Fortran plays in
high-performance computing, the U.S. Department of Energy
(DOE) has led a multi-year effort, through the Exascale
Computing Project (ECP), to develop a Fortran frontend for
LLVM [2] named “Flang”. At the time of writing, over 150
developers have authored 4895 commits to the Flang subdirec-
tory on the main branch of the LLVM repository [1] (hereafter
“upstream”); that work has brought Flang up to Fortran 95 [3]
compliance. In addition to full support for Fortran 95, Flang
can parse Fortran 2018 [4]. However, the Flang test suite does
not exhaustively check Fortran standards-compliance, and the
authors are unaware of a publicly available, comprehensive
Fortran 2018 compliance test suite. Moreover, Fortran’s evo-
lution through three subsequent standards, commonly denoted
Fortran 2003, 2008, and 2018 [4–6], implies significant re-
maining work to reach up-to-date compliance. This situation
makes it attractive to explore ways to accelerate Flang’s
progression through Fortran language standards.

Berkeley Lab’s ECP Flang project [7] focuses on writing
static semantic tests for Fortran’s parallel features, which are
commonly referred to as “Coarray Fortran.” We contribute
these tests to the main branch of the upstream LLVM reposi-
tory. We are also writing a comprehensive runtime test suite for

parallel features. Fortran 2008 introduced parallel features but
Flang lacks complete 2008 support, so we are also developing
the Caffeine library to support runtime test execution.

Agile software development [8] encourages early release of
working software and subsequent iteration toward complete
solutions. To the extent that the concept of agility is associated
with deliberate speed, agile practices might provide helpful
avenues along which to attempt rapid development. This
abstract and our poster focus primarily on the outcomes of
approximately one person-year of effort, during which we
reached 56% completion of static semantics test coverage.
Although a direct comparison of speed with other development
approaches would require a great deal more information and
analysis, our subjective experience indicates that the agile
practices described herein save us development time through
frequent, rich developer interactions and through the unam-
biguous specification of feature requirements in the form of
unit tests.

Find
specification for a
language feature in
the Fortran 2018

Standard

Write new test
based on

specification

Develop
additional support

for language
feature

Can We Fix It?

Test passes

Create issue on
LLVM-Project
Repository and
contribute test

Test Passes?

YesNo

No

Yes

Contribute to
llvm-project

Fig. 1. Agile Test-Driven Development

II. METHODOLOGY

A. Agile Practices

The agile technique that we believe to be novel in its
application to an open-source Fortran compiler is test-driven
development (TDD) [9]. Our approach is illustrated in Fig. 1.

c⃝2022 LBNL doi:10.25344/S4CP4S 1

https://doi.org/10.25344/S4CP4S

Rasmussen, Rouson, et al.: Agile Acceleration of LLVM Flang Support for Fortran 2018 Parallel Programming

TDD starts with writing software tests in lieu of other forms
of requirements documents and specifications. Given the re-
sulting tests, developers add features to the subject software
specifically to, and only to, support the tests.

Another agile practice we employ is pair programming:
interactive sessions in which coders receive immediate feed-
back from a live observer. Pair programming keeps team
members abreast of work progression in real time and enables
synchronous communication of useful input. Our experience
indicates that two minds are better than one. For example, we
find and fix mistakes more quickly when one member focuses
on writing the test while the other focuses on critiquing and
contextualizing it within the broader aims of the project.

Once a new test is ready for wider dissemination and
additional feedback, we post it to the LLVM community’s
code-review tool, Phabricator, which also records the devel-
oper dialogue and any resulting code updates. Throughout
this process, we leverage an agile practice embraced by the
wider LLVM community: continuous integration (CI) testing.
LLVM’s CI infrastructure uses automation to verify that con-
tributed changes do not break pre-existing code.

B. Static Semantic Tests

We register a static semantic test for each parallel feature
in a GitHub issue associated with a GitHub project [10]
that captures the test’s status. For each feature, such as
the intrinsic function num_images, we write a test pro-
gram containing a comprehensive set of standard-conforming
and non-conforming statements exercising the given feature.
Constructing each program requires consulting the formal
definition of the feature in the Fortran 2018 standard [4].
The list of conforming invocations of num_images, for
example, covers each of the function signatures defined in
the 2018 standard: num_images(), num_images(team),
and num_images(team_number), where team is of in-
trinsic type team_type and team_number is an integer.
For each allowable form of invocation, different lines test
keyword and non-keyword arguments; different keyword ar-
gument ordering; and variable, constant, or literal-constant
arguments. We also test each allowable argument type. For
example, the collective subroutine co_sum accepts a first
argument of any numeric type, so we test each of integer,
real and complex arguments in separate invocations.

The non-conforming statements include various disallowed
statement forms and procedure invocations with arguments
rendered invalid by their type, type parameters, array di-
mensions (rank), (im)mutability, or other attributes. For ex-
ample, if the standard requires a dummy argument to have
the intent(out) attribute, we intentionally violate the
argument’s intent specification by passing a literal constant.
We also test procedure invocations with incorrect numbers
of arguments, invalid or repeated keyword names, and other
static semantics violations. We check constraints the standard
requires compilers to report as errors as well as statically
verifiable non-conformance that the standard specifies but does
not require compilers to diagnose.

We use LLVM’s llvm-lit testing tool [11], where tests
pass if and only if all lines of code marked by an ERROR
directive generate the error message provided in the directive
and no unmarked lines generate an error. The XFAIL directive
is used to mark a test that is expected to fail.

Our static semantics test suite reveals Flang’s current level
of parallel feature support. Many of our tests for intrinsic
procedures, for example, have revealed that the compiler
interpreted some intrinsic procedure references as user-defined
procedures with missing interfaces. In such cases, we mark
the corresponding tests with XFAIL, thus directing attention
to features for which additional work will be needed for the
test to pass. In other cases, the interface for the intrinsic
procedure is already available, but our tests have revealed
potential programmer mistakes that can be caught at compile
time but are not currently caught. Where feasible, our team
has added either the interface for the intrinsic procedures or
the additional static semantic analysis.

III. RUNTIME WORK

Because Flang cannot yet produce executable programs
from Fortran 2018 source code, we develop runtime tests in a
separate repository: Caffeine [12], a compiler-agnostic Fortran
2018 parallel runtime library that executes atop the GASNet-
EX [13, 14] networking middleware – see Fig. 2. We are also
developing Caffeine itself. We report elsewhere [15] on the
design and implementation of Caffeine.

 
GASNet-EX

System Runtime & Memory Technologies

Application
C O

M
P
I
L
E

R

 
Caffeine

Fig. 2. Caffeine system stack

IV. OUTCOMES

We have deployed static semantics tests for 32 of 41 parallel
statements and intrinsic procedures, including tests for intrinsic
functions that support coarrays, collective subroutines, syn-
chronization statements, and event statements. All 32 tests
have been pushed to the main branch of the upstream LLVM
Compiler Infrastructure project. Additional tests remain in-
development or in-review. Based on missing features identified
by our tests, the authors have contributed upstream additional
static semantic analysis and error checking for 11 parallel
features. We have also developed 44 runtime tests that we
exercise by developing Caffeine.

2

Rasmussen, Rouson, et al.: Agile Acceleration of LLVM Flang Support for Fortran 2018 Parallel Programming

ACKNOWLEDGMENT

This research was supported in part by the Sustainable
Research Pathways for High Performance Computing (SRP-
HPC), a project of the Sustainable Horizons Institute. This
research was supported in part by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration.

REFERENCES

[1] LLVM Compiler Infrastructure project, https://github.
com/llvm/llvm-project.

[2] Flang Project in the Exascale Computing Project, https:
//www.exascaleproject.org/research-project/flang/.

[3] Fortran Standards Committee JTC1/SC22/WG5, Infor-
mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:1997. International Organization
for Standardization (ISO), Dec 1997, https://www.iso.
org/standard/26933.html.

[4] Fortran Standards Committee JTC1/SC22/WG5, Infor-
mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:2018. International Organization
for Standardization (ISO), Nov 2018, https://www.iso.
org/standard/72320.html.

[5] Fortran Standards Committee JTC1/SC22/WG5, Infor-
mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:2004. International Organization
for Standardization (ISO), Nov 2004, https://www.iso.
org/standard/39691.html.

[6] Fortran Standards Committee JTC1/SC22/WG5, Infor-
mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:2010. International Organization
for Standardization (ISO), Oct 2010, https://www.iso.org/
standard/50459.html.

[7] Lawrence Berkeley National Lab, Flang Testing project,
https://go.lbl.gov/flang-testing.

[8] M. Beedle and et al., Manifesto for Agile Software
Development, https://agilemanifesto.org/.

[9] K. Beck, Test-driven development: by example.
Addison-Wesley Professional, 2003.

[10] Lawrence Berkeley National Lab, Semantics Tests for
Parallel Features in LLVM Flang, https://github.com/
BerkeleyLab/flang-testing-project/projects/1.

[11] lit - LLVM Integrated Tester, https://llvm.org/docs/
CommandGuide/lit.html.

[12] Caffeine: CoArray Fortran Framework of Efficient In-
terfaces to Network Environments, https://go.lbl.gov/
caffeine.

[13] D. Bonachea and P. H. Hargrove, “GASNet-EX: A High-
Performance, Portable Communication Library for Exas-
cale,” in Proceedings of Languages and Compilers for
Parallel Computing (LCPC’18), ser. LNCS, vol. 11882.
Springer, October 2018, doi:10.25344/S4QP4W.

[14] GASNet, https://gasnet.lbl.gov.
[15] D. Rouson and D. Bonachea, “Caffeine: CoArray Fortran

Framework of Efficient Interfaces to Network Environ-

ments,” in Proceedings of the Eighth Annual Workshop
on the LLVM Compiler Infrastructure in HPC (LLVM-
HPC2022), November 2022, doi:10.25344/S4459B.

3

https://github.com/llvm/llvm-project
https://github.com/llvm/llvm-project
https://www.exascaleproject.org/research-project/flang/
https://www.exascaleproject.org/research-project/flang/
https://www.iso.org/standard/26933.html
https://www.iso.org/standard/26933.html
https://www.iso.org/standard/72320.html
https://www.iso.org/standard/72320.html
https://www.iso.org/standard/39691.html
https://www.iso.org/standard/39691.html
https://www.iso.org/standard/50459.html
https://www.iso.org/standard/50459.html
https://go.lbl.gov/flang-testing
https://agilemanifesto.org/
https://github.com/BerkeleyLab/flang-testing-project/projects/1
https://github.com/BerkeleyLab/flang-testing-project/projects/1
https://llvm.org/docs/CommandGuide/lit.html
https://llvm.org/docs/CommandGuide/lit.html
https://go.lbl.gov/caffeine
https://go.lbl.gov/caffeine
https://doi.org/10.25344/S4QP4W
https://gasnet.lbl.gov
https://doi.org/10.25344/S4459B

• Employ agile software development
practices

• Test a comprehensive range of
standard-conforming and non-
conforming Fortran 2018 syntax

• Test-driven development: any
contributed tests that fail provide a
specification for new features to add
to Flang

Agile Acceleration of LLVM Flang Support for Fortran 2018 Parallel Programming
Katherine Rasmussen1, Damian Rouson1, Najé George2, Dan Bonachea1, Hussain Kadhem1, Brian Friesen1

1Lawrence Berkeley National Laboratory, 2San Diego State University

Figure 5: Updated static semantics test excerpt for the
co_sum subroutine that passes after interface is added

• Exhaustively delineate all of the
parallel programming features in
Fortran 2018

• Develop semantics tests for LLVM
Flang covering statically checkable
program errors that the Fortran
standard obligates the compiler to
detect

• Expand frontend support,
including additional error
checking, when tests identify
missing capabilities

Approach
Problem

LLVM's Flang Fortran compiler is
currently Fortran 95 compliant, and
the frontend can parse Fortran 2018.
However, Flang does not have a
comprehensive 2018 test suite and
does not fully implement the static
semantics of the 2018 standard.

Solution
Agile software encourages early
delivery of working software subject to
continual improvement. We are
investigating whether agile techniques
centered around pair programming
and test-driven development (TDD)
can help Flang to rapidly progress to
Fortran 2018 compliance. Because of
the paramount importance of
parallelism in high-performance
computing, we are focusing on
Fortran’s parallel features, commonly
denoted “Coarray Fortran.” We are
developing what we believe are the
first comprehensive, open-source tests
for Fortran 2018 parallel features. We
push our compile-time behavior tests
to the main LLVM-Project repository.
We push our runtime tests for parallel
Fortran features to the repository of
the Caffeine parallel runtime library
that we are concurrently developing.

• Because Flang cannot yet produce
executable files from Fortran 2018
source code, we are developing runtime
tests in a separate repository: Caffeine.

• Caffeine is a runtime library that
supports parallel Fortran 2018 features.

• Caffeine runs atop the GASNet-EX
exascale networking middleware.

go.lbl.gov/caffeine

• For more on Caffeine, see: Rouson &
Bonachea (2022) “Caffeine: CoArray
Fortran Framework of Efficient Interfaces to
Network Environments" SC22 Workshop
on the LLVM Infrastructure in HPC
doi:10.25344/S4459B

Test-Driven Development Example

Compile-Time Test Coverage

Figure 1: Exhaustive list of Fortran 2018 parallel programming features to test
https://go.lbl.gov/flang-testing

Figure 6: Interface to compiler for co_sum allows the test to pass when
combined with a static semantic check for coindexed objects (not shown).

Agile Development
• Test-driven development

• Pair programming sessions

• Valuable team member interactions

• Get feedback early and frequently

• Leverage existing git and Github
tools

• Leverage existing agile practices of
the LLVM developer community:

• Use LLVM’s continuous
integration (CI) test infrastructure
to quickly fix CI failures.

• Code reviews on Phabricator for
feedback, edits, and approvals

This research was supported in part by the Sustainable Research Pathways for High Performance Computing (SRP-HPC) a project of the Sustainable Horizons Institute.
This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Find
specification

for a language
feature in the
Fortran 2018

Standard

Write new test
based on

specification

Develop
additional
support for
language
feature

Can We Fix It?

Test passes

Create
issue on

LLVM Project
Repository and

contribute
test

Test Passes?

YesNo

No

Yes

Push to
LLVM Project

main branch after
review and
approval

Start

GitHub Project Board

Tests for intrinsic Fortran procedures include

Valid intrinsic function invocations or subroutine calls Invalid intrinsic function invocations or subroutine calls

Incompatible arguments

Pass too many argumentsPass not enough
arguments

With minimum required
arguments With optional arguments

With a comprehensive set
of compatible arguments With keyword arguments

With out-of-order
keyword arguments

Invalid keyword
arguments

Repeated keyword
arguments

Statically-checkable
semantic violations

Positive Tests Negative Tests

Objectives

Introduction

Outcomes

Runtime Tests

Video Walkthrough

go.lbl.gov/sc22-flang-testing

In Progress

Done

To Do

Figure 2: Diagram outlining the components of the static semantic tests for intrinsic
functions and intrinsic subroutines

 

GASNet-EX

 

Caffeine
Application C O

M
P
I
L

E
R

System Runtime & Memory Technologies

Figure 4: Static semantics test excerpt for the
co_sum subroutine, this test expectedly fails.

Figure 3: Signature for the intrinsic collective subroutine, co_sum, as defined by the Fortran
2018 standard. ‘a’ is the only required argument and the rest of the arguments are optional.

• The Berkeley Lab fork of the LLVM-
Project GitHub repository includes a
project board capturing an exhaustive
list of 41 parallel features to test.

• We have pushed static semantics tests
for 32 such features upstream to
LLVM-Project: intrinsic functions
supporting parallelism, collective
subroutines, atomic subroutines,
synchronization statements, and more.

• We have contributed additional static
semantic analysis and error checking
for 11 missing parallel features exposed
by our tests. More contributions are
under development or in code review.

• We contributed error checks for 2
non-parallel features.

• We have developed 44 runtime tests
that we exercise by developing Caffeine.

ERROR directives now produced for invalid code
that match the error the compiler produces.

XFAIL directive removed. The test passes now that the compiler knows that co_sum is an
intrinsic subroutine and knows its interface.

XFAIL directive to inform LLVM lit testing framework that test should expectedly fail. The
tests fails since compiler doesn’t know the interface to the intrinsic subroutine co_sum.

No errors produced for invalid code.

https://go.lbl.gov/caffeine
https://dx.doi.org/10.25344/S4459B
https://go.lbl.gov/flang-testing
https://go.lbl.gov/sc22-flang-testing

	I Introduction
	II Methodology
	II-A Agile Practices
	II-B Static Semantic Tests

	III Runtime Work
	IV Outcomes
	Acknowledgments
	References
	Poster

