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Abstract

Successful memory encoding is supported by medial temporal, retrosplenial, and occipital regions, 

which show developmental differences in recruitment from childhood to adulthood. However, little 

is known about the extent to which neural specificity in these brain regions, or the distinctiveness 

with which sensory information is represented, continues to develop during middle childhood and 

how it contributes to memory performance. The present study used multivariate pattern analysis to 

examine the distinctiveness of different scene representations in 169 children and 31 adults, and its 

relation to memory performance. Most children provided data over up to three measurement 

occasions between 8 and 15 years (267 total scans), allowing us to examine changes in memory 

and neural specificity over time. Memory performance was lower in children than in adults, and 

increased in children over time. Different scenes presented during memory encoding could be 

reliably decoded from parahippocampal, lateral occipital, and retrosplenial regions in children and 

adults. Neural specificity in children was similar to adults, and did not change reliably over time. 

Among children, higher neural specificity in scene-processing regions was associated with better 

memory concurrently. These results suggest that the distinctiveness with which incoming 

information is represented is important for memory performance in childhood, but other processes 

Correspondence concerning this article should be addressed to: Yana Fandakova, Max Planck Institute for Human Development, 
Lentzeallee 94, 14195 Berlin, Germany, fandakova@mpib-berlin.mpg.de. Simona Ghetti, University of California, Davis, One Shields 
Avenue, Davis, CA 95616, sghetti@ucdavis.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Competing Interests
None of the authors have any conflict of interest to declare.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2020 October 01.

Published in final edited form as:
Neuroimage. 2019 October 01; 199: 105–113. doi:10.1016/j.neuroimage.2019.05.050.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



operating on these representations support developmental improvements in memory performance 

over time.

Keywords

child development; fMRI; decoding; memory; scene; representation; parahippocampal; 
retroesplenial; occipital

The capacity to bind together different features of an episode, such as information about 

where, when, and what happened, plays a key role for the development of memory in 

childhood (e.g., Ghetti & Bunge, 2012; Lee, Wendelken, Bunge, & Ghetti, 2016; Ngo, 

Newcombe, & Olson, 2018). The hippocampus has long been recognized for supporting the 

binding of different features into a coherent mnemonic representation (e.g., Eichenbaum, 

2017; Yonelinas, 2013). The hippocampus receives sensory input from occipital and parietal 

regions via neighboring cortical regions in the medial temporal lobe (e.g., Inhoff & 

Ranganath, 2017). The formation of distinguishable memories may thus depend on the 

precision with which incoming sensory information is represented in these brain regions. 

Accumulating evidence suggests that hippocampal and cortical activations associated with 

memory success continue to develop and contribute to developmental change in memory 

processes (e.g., Ghetti et al., 2010; Gomez & Edgin, 2016; Ofen et al., 2007; Sastre et al., 

2016; Selmeczy et al., 2018). However, remarkably little is known about the extent to which 

neural specificity in the regions carrying sensory information, or the distinctiveness of their 

neural representations, additionally contributes to memory in childhood. The present study 

begins to fill this gap in the literature by examining how neural specificity of scene 

representations is associated with multiple measures of memory performance in child 

development.

A posterior brain network including the parahippocampal and retrosplenial cortex, along 

with the default mode network, supports scene construction and perception (e.g., Epstein & 

Kanwisher, 1998; Mullally & Maguire, 2011; Vann, Aggleton, & Maguire, 2009), and is 

involved in representing the relations between contextual features and individual events 

(e.g., Eichenbaum, Yonelinas, & Ranganath, 2007; Ranaganth & Ritchey, 2012). Thus, the 

specificity with which information associated with different events is represented in these 

cortical regions may play a critical role for children’s memory-guided behavior, especially 

when scenes or other contextual features are processed.

Behaviorally, strong age differences in memory are observed for scenes and other complex 

visual stimuli (e.g., Chai, Ofen, Jacobs, & Gabrieli, 2010; Mandler & Robinson, 1978), 

motivating the hypothesis that there may be developmental differences in the fidelity of 

memory representations, or the extent to which sensory and contextual representations carry 

precise enough information to capture subtle differences in complex events. The 

examination of neural specificity may provide new insights into the degree to which these 

age differences may reflect differences in the specific representation of incoming 

information. Alternatively, failure to find developmental differences in neural specificity –in 

the face of overall positive associations with memory accuracy – would suggest that 
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developmental improvements in memory ability are not driven by the distinctiveness of 

sensory representations.

Initial neuroimaging evidence has not provided a coherent picture about the role of neural 

specificity of incoming information for memory success in childhood. To date, multivariate 

approaches have not been used to understand memory development, and findings from 

univariate approaches are inconsistent. On the one hand, a few studies examining encoding-

related activity for subsequently remembered relative to subsequently forgotten information 

have reported age differences in several cortical regions supporting sensory representations, 

including the parahippocampal gyrus (Ghetti et al., 2010), the fusiform gyrus (Güler & 

Thomas, 2013) or occipital areas (Maril et al., 2011). These results indirectly suggest that 

the representation of mnemonic information at the time of encoding may potentially vary 

with age in development. On the other hand, several studies have failed to find age 

differences in cortical regions supporting sensory representations during memory encoding 

(e.g., Menon, Boyett-Anderson, & Reiss, 20015; Ofen et al., 2007). With regard to scene 

processing, one study reported that 7- to 11-year-olds activated less voxels in 

parahippocampal regions than adults during scene viewing suggesting that maturation of the 

(left) parahippocampal place area may continue beyond this age range (Golarai et al., 2007). 

Another study found age-related increases in activation in parahippocampal cortex during 

encoding of more complex relative to less complex scenes (Chai et al., 2010), suggesting a 

link between information-specific processing during learning and subsequent scene memory 

in childhood.

Taken together, results regarding age differences in neural activity associated with sensory 

processing during encoding are mixed. It should be noted, however, that previous studies 

vary considerably with respect to the age ranges examined and the specific tasks and stimuli 

used, thereby leaving open the question of whether differences in neural specificity are 

related to differences in memory ability beyond the context of a specific task.

Multivariate approaches may be particularly informative for examining neural specificity in 

childhood. Whereas univariate analyses provide information about activity in a voxel or 

averaged across a group of voxels, multivariate pattern analysis (MVPA, Haynes & Rees, 

2006) can capture the patterns or configuration of activity across voxels (Chadwick, Bonnici, 

& Maguire, 2012, Coutanche & Thompson-Shill, 2013; Rissman & Wagner, 2012). It is 

therefore more sensitive to fine-grained activation patterns reflecting individual percepts or 

memory traces. Here, it can be expected that more distinct neural representations of 

incoming scene information will be associated with less overlapping patterns of neural 

activity (Li & Sikström, 2002). Given that greater overlap among representations should 

result in lower classification accuracy in MVPA, classification accuracy can be used as a 

measure of neural specificity (cf. Rissman & Wagner, 2012). In aging, neural specificity 

declines, such that distributed activity patterns evoked by different visual categories (e.g., 

faces, scenes, objects) are more similar in older than in younger adults (e.g., Carp, Park, 

Hebrank, Park, & Polk, 2011). Furthermore, lower category-level neural specificity has been 

associated with lower fluid reasoning and processing speed among older adults (Park, Carp, 

Hebrank, Park, & Polk, 2010), indicating that the distinctiveness of sensory information 

contributes to higher cognitive functions. The extent to which individual differences in 
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neural specificity are associated with children’s memory, and cognitive abilities more 

broadly, is currently unknown.

Critically, recent studies have gone beyond classification of different categories (e.g., faces 

vs. scenes) to demonstrate that activity patterns can facilitate the classification of different 

exemplars of the same category (e.g., scene A vs. scene B), thereby allowing to capture the 

fidelity of memory representations at the item level (e.g., Favila, Chanales, & Kuhl, 2016; 

Xue, 2018). We adopted this approach to examine how the extent of differentiation among 

similar events (i.e., within the same general semantic category) is associated with memory 

performance during childhood. Three questions motivated the present research: (1) Are 

distributed activity patterns evoked by different scenes during memory encoding more 

similar in children (7–12 years) than in adults? (2) Is neural specificity related to individual 

differences in memory ability beyond a particular task? (3) Does neural specificity 

contribute to improved memory performance over time?

We investigated these questions in 169 children (7–12 years) and 31 adults (18–25 years) 

during encoding of scene-object pairings in the scanner. Children viewed one of three 

distinct scenes briefly before individual unique objects were superimposed on the scene. 

Children were instructed to remember the scene-object pair for a subsequent memory test. 

We trained and tested a MVPA classifier to distinguish patterns of multivoxel activity 

associated with each of the three scenes using a leave-one-run-out cross-validation. Age 

differences in neural specificity were examined in a priori regions of interest (ROIs) 

implicated in scene processing, including the lateral occipital cortex, parahippocampal 

cortex, retrosplenial cortex, and anterior hippocampus.

In line with previous findings in adults (cf. Diana, Yonelinas, & Ranganath, 2008; Rissman 

& Wagner, 2012), we predicted that the three scenes would be reliably decoded from areas 

associated with scene perception in both children and adults. However, we further predicted 

that classification accuracy for within-category exemplars would be higher for adults than 

children. Additionally, we predicted that children with better memory performance would 

exhibit greater neural specificity.

To examine the relation between neural specificity and memory beyond a specific task, we 

examined whether classification accuracy across scene-processing regions is associated with 

a latent factor of episodic memory that captured common variance in memory performance 

across three different tasks. We tested this hypothesis with structural equation modeling.

Finally, we sought to test the prediction that neural specificity at one timepoint would 

predict the growth of memory for individual children. To this end, we analyzed longitudinal 

data from two additional time points (time point 2 (T2) = 137 children, 8–14 years; time 

point 3 (T3) = 104 children, 9–15 years).
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Methods

Participants

A total of 169 children were included in the present study at T1 (Mage = 9.43 years, SDage = 

1.10; Nfemales = 86). Of those, 99 children provided neuroimaging data for MVPA analysis 

(Mage = 9.77, SDage = 1.03, Nfemales = 56). A total of 93 children provided both complete 

behavioral data and complete neuroimaging data. The remaining participants either 

contributed only behavioral data (N = 45), were excluded from neuroimaging analyses due 

to excessive motion (N = 25), or provided complete neuroimaging, but only partial 

behavioral data (N = 6). Additionally, 31 adults (Mage = 19.18 years, SDage = 1.34, Nfemales 

= 17) were included at T1 for age difference analyses. A total of 137 children provided data 

at T2, which took place 0.7 to 3 years after the initial assessment (65 females, Mage = 10.83, 

SDage = 1.22). Of those, 93 children provided neuroimaging data at T2 (49 females, Mage = 

10.83, SDage = 1.08). A total of 86 children provided both complete behavioral and 

neuroimaging data, while the remaining participants elected to contribute only behavioral 

data (N = 28), did not complete all three behavioral tasks (N = 7), or were excluded for 

excessive motion (N = 16). Finally, 104 children provided data at T3, which took place 0.7 

to 2 years later (49 females, Mage = 11.96 years, SDage = 1.26). Of those, 74 children 

provided neuroimaging data at T3 (30 females, Mage = 12.00 years, SDage = 1.22), while the 

remaining participants elected to contribute only behavioral data (N = 25) or were excluded 

for excessive motion (N = 5). A total of N = 65 children provided complete behavioral and 

neuroimaging data, whereas N = 11 children provided full neuroimaging, but only partial 

behavioral data. The UC Davis Institutional Review Board approved the study. Informed 

consent was obtained from all participants and their parents.

Memory Tasks

Memory ability was assessed across a set of three tasks, including a scene-object task 

(fMRI), the WRAML picture subtest (behavioral), and a selective scene encoding task 

(behavioral). Successful performance in all these tasks required remembering scene 

information, but the tasks differed in the specific scenes used and the aspects of scene 

information that participants needed to focus on.

Scene-object task.—Participants performed three interleaved encoding and retrieval runs 

of a scene-object memory task. Each encoding run included 48 picture drawings of an object 

or an animal (cf. Cycowicz et al., 1997), presented on one of three possible background 

scenes: a farm, a park, or a city. Each trial began with presentation of one of the three 

scenes. After 1000 ms, an object or an animal was superimposed on the scene for 500 ms. 

Following, a visual prompt (“Does it belong?”) appeared above the scene-object pair, cueing 

participants to indicate whether they thought the drawing belonged to the corresponding 

scene. Participants were given up to 2000 ms for this decision. Trials were intermixed with a 

jittered fixation period (500 – 8000 ms).

Each retrieval run included the 48 drawings from the preceding encoding run, along with 16 

novel drawings that had not been seen before. Participants were instructed to decide whether 

a drawing was previously studied (i.e., seen in the preceding encoding run) or new (i.e., 
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never seen before). If participants recognized an object or an animal as previously studied, 

they were instructed to indicate the scene with which it had been studied – or, if they did not 

remember which scene it had been paired with, to select the “not sure” button.

Memory performance in this task was used as one of three indicators of episodic memory 

capacity. More specifically, performance was computed as hits (i.e., trials in which a scene 

was chosen for accurately recognized studied object) – false alarms (i.e., trials in which a 

scene was chosen for an inaccurately recognized novel object) (Snodgrass & Corwin, 1988). 

Note that the design of this task allows for the computation of additional indices of memory 

performance. However, we opted for computing recognition accuracy in this way to increase 

comparability to the remaining indicator tasks and because the decision about whether the 

object has been presented is not made separately and independently from choosing a scene, 

thereby allowing to capture how scenes are used in service of memory. Neuroimaging data 

from the encoding phase was used for MVPA analyses. Neuroimaging data from the 

retrieval phase were not included in the present analyses (see Sastre et al., 2016; Selmeczy et 

al., in press).

Wide Range Assessment of Memory and Learning (WRAML) picture subtest.
—Participants were shown 4 different scenes (a zoo, a classroom, a garage, and a living 

room) one at a time and could examine the scene for 10 seconds. Immediately after the 10 

seconds, participants were presented with an altered version of the corresponding scene and 

were asked to identify elements of the scene that have been changed by placing a mark on 

each part of the picture that has been changed, moved, or added. Feedback was provided for 

the first scene.

Following WRAML’s evaluation instructions, the raw number of correct responses was used 

as the main index of memory performance on this test in the analyses reported below. 

However, this index is based on correct identification of changed scene elements at test, 

without a penalty for incorrectly marked changes (i.e., indicating that a scene element has 

been changed when in fact it was the same). Control analyses were performed, in which we 

counted the number of incorrectly marked changes for each participant and used these to 

derive a memory score similar to the other tasks (i.e., correctly marked changes – incorrectly 

marked changes). Results were similar with both the raw number of correct responses and 

the difference between correct and incorrect responses.

Selective scene encoding task.—During encoding (cf. Fandakova et al., 2017), 

participants were presented with 24 blocks of 4 outdoor scenes each that were either 

assigned to an active encoding condition (16 blocks) or a passive encoding condition (8 

blocks). Active blocks were designed to examine the modulation of attention; participants 

were instructed to attend to scenes presented on a green background, and to ignore (but still 

view) scenes presented on a red background. After each active block, participants were 

presented with a scene that was either one of the stimuli they had been asked to attend to 

(i.e., previously presented in green) or a novel scene, and were asked to indicate whether the 

item had been presented in the previous block. During passive blocks, participants were 

instructed to passively view scenes presented on a blue background. Following passive 

blocks, participants viewed an arrow and had to indicate the direction of the arrow. Each 
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scene was presented for 3 seconds, and the order of passive and active blocks was 

counterbalanced across participants.

Immediately after encoding, participants were given a self-paced recognition test involving 

stimuli from all 24 blocks. They viewed a scene and indicated whether they had seen it 

before, regardless of encoding condition (i.e., old scenes previously presented on a green, 

red, or blue background; 48 scenes) or novel (i.e., a new scene; 32 scenes). None of the test 

scenes had been used as probes during the encoding phase; thus, all the test scenes had been 

viewed only once before. As in the scene-object task, memory performance was computed 

as hits (i.e., studied scenes correctly recognized as “old”, irrespective of encoding condition) 

– false alarms (i.e., novel scenes incorrectly recognized as “old”).

fMRI Data Acquisition

Functional images were collected using a Siemens 3T Trio scanner with a 32-channel head 

coil and a gradient EPI sequence (TR = 2000 ms, TE = 23 ms, no interslice gap, FOV = 204 

mm, 37 slices, voxel size = 3 × 3 × 3 mm). A T1-weighted MPRAGE was acquired for co-

registration of the functional images (TR = 2500 ms, TE = 3.24 ms, FOV = 224 mm, voxel 

size = 0.7 × 0.7 × 0.7 mm).

Behavioral Data Analysis.

We conducted behavioral analyses in the structural equation modeling framework (McArdle, 

2009). With three indicator measures of memory performance, we estimated a latent factor 

of memory ability. This approach allowed us to examine individual differences in memory 

ability without contamination by unique variability (i.e., measurement error) of the single 

memory tasks, while at the same time allowing for more flexibility in dealing with missing 

data (e.g., Kievit et al., 2017). The present indicator tasks were well suited for this type of 

analyses as demonstrated by their relatively high correlations among children (scene-object 

<–> selective encoding: children r = .40, p < .001, adults r = .49, p = .005; scene-object <–> 

WRAML picture: children r = .25, p = .002, adults r = −.14, p = .46; selective encoding <–> 

WRAML picture: children r = .19, p = .02, adults r = .07, p = .72).

Analyses were conducted using Onyx (von Oertzen et al., 2015). First, a latent memory 

factor was modeled separately for children and adults (see Supplementary Figure 1). 

Subsequently, we used multi-group models to compare the latent memory factor between 

children and adults. Based on previous research demonstrating superior memory in adults, 

we sought to confirm a higher factor mean in adults than in children. Parameters were tested 

by restricting the corresponding paths to zero or to equality across groups and comparing the 

model fit of the resulting nested models to the freely estimated models via the χ2 statistic 

with degrees of freedom (DF) equal to the difference in the number of free parameters.

fMRI data analysis

Data were preprocessed using SPM8 (www.fil.ion.ucl.ac.uk/spm). Preprocessing steps 

included slice-time correction, realignment to the first volume using rigid body motion 

correction with sinc interpolation, co-registration to the MPRAGE, and smoothing with a 6-

mm FWHM isotropic Gaussian kernel. These preprocessing steps have been shown to 
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minimally affect classification accuracy, while at the same time allowing for meaningful 

comparisons across subjects with variability in brain anatomy (Kamitani & Sawahata, 2010; 

de Beeck, 2010). Volumes with head motion > 1 mm or signal change > 2% were replaced 

with interpolated values using ArtRepair (http://cibsr.stanford.edu/tools/human-brain-

project/artrepair-software.html). If more than 25% of the volumes in one scan were replaced, 

the corresponding scan was excluded from further analyses. Participants with fewer than two 

valid functional scans were not included in analyses.

MVPA analyses were performed in the following steps. First, we independently defined 

ROIs for this analysis. To this end, we performed a Neurosynth search (search term 

“scenes”, June 2016; Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011) and identified 

brain regions involved in scene processing across the 178 recovered studies (reverse 

inference, p < .01, FDR-corrected). From this mask, we isolated clusters including more 

than 100 voxels (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster). These regions included the 

bilateral lateral occipital cortex (Lat Occip), bilateral posterior parahippocampal cortex, 

extending into the lingual gyrus and the fusiform gyrus (PHG), bilateral retrosplenial cortex 

(RSC), and the bilateral anterior hippocampus (Ant HC). Two additional clusters in the right 

inferior occipital cortex and the middle temporal gyrus were not included in the present 

analyses, which were restricted to theoretically motivated ROIs involved in scene 

processing. To ensure the anatomical specificity of each ROIs, the Neurosynth activation 

map was masked with a bilateral anatomical mask of each of these regions from the AAL 

atlas, resulting in a total of four bilateral ROIs used in subsequent analyses. Given that the 

posterior hippocampus has been implicated in scene processing (Ranganath & Ritchey, 

2012), in additional control analyses we examined bilateral anatomical ROIs of the 

hippocampal body and tail based on the AAL atlas.

Second, we identified the most active voxels for each individual participant in each ROI. 

More specifically, we used the general linear framework to estimate the contrast trial > 

baseline at encoding in each individual participant. We modeled encoding-related activity 

with trial as a main regressor of interest and six estimated motion parameters as regressors 

of no interest. The resulting individual whole-brain maps were masked with each ROI to 

extract the 50 or 100 most active voxels within the corresponding ROI within each 

individual participant. We selected these two different voxel sizes to ensure that the number 

of included voxels did not affect the reported results. All analyses were corrected for 

multiple comparisons using an FDR correction.

Third, we used the TDT toolbox (Hebart, Görgen, & Haynes, 2015) to perform MVPA 

analysis. MVPA analyses were performed in native space. A L2-norm regularized support 

vector machines classifier (Hebart et al., 2015) was trained to classify the currently 

presented scene at encoding using a leave-one-run-out cross-validation. Parameter estimates 

for single trails were derived based on a stick function to model the onset of the trial. Note 

that since analyses were performed on the encoding data of the scene-object paradigm, the 

data in each run are balanced. We tested whether classification accuracy in the ROIs differed 

from chance (33.3%, given a choice among three scenes) and between age groups.
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Finally, we related classification accuracy to the latent memory factor to examine the extent 

to which neural specificity of distributed activation patterns in scene-processing brain 

regions was positively associated with memory ability in children. As we did not have 

specific hypotheses about differences among areas involved in scene processing, we formed 

a composite score representing average classification accuracy across ROIs with above-

chance accuracy, and related it to the latent memory factor.

Longitudinal analyses including T2 and T3 were performed following the same procedures 

as at the initial assessment, with the 50 and 100 most active voxels being determined 

separately for each time point. Thus, we used the same identical Neurosynth-based ROIs at 

each time point, but we performed the trial > baseline contrast separately at each time point, 

and selected the most active voxels within the corresponding ROI separately at each time 

point. This approach ensures that conclusions are based on the most active group of voxels 

within an individual at any given point in time within established ROIs.

To assess relations of change over time between classification accuracy and memory ability, 

we fit continuous time structural equation models using the ctsem software (Driver, Oud, & 

Voelkle, 2017). Here again we used composite scores for the neural specificity factor. This 

factor was conceptualized in terms of classification accuracy across all scene-processing 

regions with above-chance classification accuracy, and thus with only a single measurement 

error term. The models were structured as is typical for latent change and continuous time 

models, with initial intercepts and slopes for each factor, while at the same time accounting 

for individual differences in age and time intervals between measurement occasions. 

Because of the limited number of time points and the research focus on relations between 

overall change, the model we focused on did not incorporate shorter-term fluctuations from 

time point to time point. We did, however, repeat the analysis using an expanded model 

including stochastic change terms and cross-effects to check the consistency of inferences 

between the simpler and expanded model. While point estimates differed somewhat, results 

were similar across both models. Thus, we report the simpler model for both ease of 

understanding, and because of its lower AIC value (Akaike, 1973), indicating it is more 

likely to be an appropriate model. We performed control analyses including mean age 

(standardized) as a time-invariant predictor in the model. Although reported below, the 

results of these analyses should be treated as exploratory.

Results

Developmental differences in memory ability.

A model of memory performance in the scene-object task, selective encoding task, and the 

WRAML picture subtest in children demonstrated a significant positive correlation between 

age and memory ability, r = .53, Δχ2 = 30.57, ΔDF = 1, p < .001 (Figure 1). A multi-group 

model including children and adults indicated that memory ability was significantly lower in 

children (Mchildren = .67) than in adults (Madults = .85), Δχ2 = 28.97, ΔDF = 1, p < .001. In 

line with these cross-sectional age differences, continuous time structural equation models 

revealed that memory ability increased significantly over time, M = .27, SD = .03, 95% CI: .

21 to .34. Control analyses including children’s age as a time-invariant predictor revealed 

that older children showed overall higher memory, b = .36, SD = .07, 95% CI: .23 to .49, and 
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less pronounced increase in memory over time, b = −.15, SD = .03, 95% CI: −.23 to −.08. 

Together, these results are consistent with protracted memory development and suggest that 

memory ability continues to improve in early adolescence.

Classification accuracy in adults and children.

Before examining MVPA classification accuracy in children, we first sought to establish 

whether the patterns of neural activity associated with the three different scenes in the 

present study can indeed reliably be decoded in adults from the ROIs involved in scene 

processing according to the Neurosynth meta-analysis (Figure 2A). We observed an above-

chance classification accuracy in the parahippocampal/fusiform gyrus, retrosplenial cortex, 

and in the lateral occipital ROI (Figure 2B; Table 1). In contrast, classification accuracy in 

the anterior hippocampus was less consistent, and varied with the number of voxels included 

in the classification analysis (Table 1).

Similarly to adults, the three scenes could be reliably decoded from the parahippocampal, 

retrosprenial, and the lateral occipital ROIs in children (Figure 2C; Table 1). Classification 

accuracy did not differ significantly from chance in the anterior hippocampus (Figure 2C; 

Table 1). Thus, the regions that showed reliable differences in distributed activity patterns 

evoked by different scenes during memory encoding – parahippocampal, retrosplenial and 

lateral occipital areas – were the same in children and adults. At the same time, results in the 

hippocampus were less consistent across mask sizes. Consistent with these findings, whole-

brain searchlight analyses revealed similar posterior brain regions in both children and 

adults, suggesting that the results are unlikely to be driven by the selection of ROIs 

(Supplementary Figure 2).

To directly compare age groups and brain regions, we conducted a mixed ANOVA on 

classification accuracy with group (children vs. adults) and ROI (anterior hippocampus vs. 

parahippocampal vs. retrosplenial vs. lateral occipital). We found a main effect of ROI 

(F50 voxels(3,387) = 13.96, p < .001, ηp
2 = .05; F100 voxels(3,387) = 14.68, p < .001, ηp

2 = .

10), which was driven by lower classification accuracy in the anterior hippocampus 

compared to the remaining ROIs (all pFDR < .05) along with higher classification accuracy 

in the occipital ROI compared to the parahippocampal ROI (all pFDR < .05) and at a trend 

level compared to the retrosplenial cortex (pFDR 50 voxels = .08, pFDR 100 voxels < .001). There 

were no differences in classification accuracy between the parahippocampal and 

retrosplenial regions (all pFDR > .30). We observed no main effects of age group (ps > .10) 

or group x ROI interactions (ps > .45). Control analyses confirmed that these results were 

not confounded by age differences in univariate activation. More specifically, there were no 

age differences in univariate scene-related activation (i.e., trial > baseline) at encoding in any 

of the ROIs (all ps > .15). Univariate activation was not correlated with classification 

accuracy in the ROIs (all rs < .17, all ps ≥ .05). When univariate activation was accounted 

for in age comparisons of classification accuracy, the results reported above did not change.

In sum, scene classification accuracy was similar across age groups, and was highest in the 

lateral occipital cortex. These results were replicated at T2 and T3 (Figure 2C), where 

children again demonstrated above-chance classification accuracy in the parahippocampal, 

retrosplenial and lateral occipital ROIs, but not in the hippocampus (Table 1).
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Previous research has implicated the posterior hippocampus in scene processing and 

contextual memory (cf. Ranganath & Ritchey, 2012). In control analyses, we therefore 

examined whether the hippocampal body and tail showed above-chance classification 

accuracy. We did not find evidence for consistently reliable decoding from the hippocampal 

body or tail across mask sizes in children and adults (see Supplementary Figure 3 for 

details).

Scene representation distinctiveness and memory ability.

Children demonstrated substantial heterogeneity in classification accuracy in scene-

processing regions (Figure 3A). To further examine whether this variability was associated 

with individual differences in children’s memory performance, we computed a composite 

score representing average classification accuracy across parahippocampal, retrosplenial, 

and lateral occipital ROIs, from which scene information could be decoded reliably. Next, 

we related this composite score to the latent factor of episodic memory capacity.

A model combining memory and classification accuracy in children demonstrated an 

acceptable fit to the data (50-voxel mask: χ2 = 0.32, DF = 2, RMSEA = .00; 100-voxel 
mask: χ2 = 0.14, DF = 2, RMSEA = .00). There was a significant correlation between scene 

representation specificity and memory ability (Figure 3B), such that children with higher 

classification accuracy across scene processing regions showed better memory, (r50 voxels = .

40, Δχ2 = 9.02, ΔDF = 1, p = .003; r100 voxels = .51, Δχ2 = 14.84, ΔDF = 1, p < .001). 

Similar results were obtained when participants’ age was included in the model (r50 voxels = .

32, Δχ2 = 6.97, ΔDF = 1, p = .008; r100 voxels = .40, Δχ2 = 18.65, ΔDF = 1, p = .001). If, 

instead of using a composite score across ROIs, classification accuracy for each ROI was 

independently correlated with memory, the relation was primarily driven by the 

parahippocampal ROI (r50 voxels = .46; r100 voxels = .42, ps < .005), with lower positive 

values in lateral occipital (r50 voxels = .13, p = .17; r100 voxels = .33, p = .01) and retrosplenial 

regions (r50 voxels = .15, p = .16; r100 voxels = .32, p = .02). Thus, children’s memory ability 

tracked representational specificity, particularly in parahippocampal cortex.

Continuous time structural equation models revealed that classification accuracy across 

scene-processing regions did not change significantly over time in children, M50 voxels = .

022, SD50 voxels = .06, 95% CI: −.096 to .14; M100 voxels = .03, SD100 voxels = .057, 95% CI: 

−.08 to .15. Notably, we observed a positive correlation between the memory ability 

intercept and the classification accuracy intercept, r50 voxels = .67, 95% CI: .21 to .94; 

r100 voxels = .65, 95% CI: .32 to .92, suggesting that children with overall greater neural 

distinctiveness in the scene-processing network had overall better memory. At the same 

time, we did not find evidence that neural specificity was related to change in memory over 

time, all ps > .05. Thus, representational specificity helped to explain individual differences 

among participants, but not improved memory over middle childhood.

Control analyses including children’s age revealed that older children showed higher 

classification accuracy (b50 voxels = .22, SD50 voxels = .097, 95% CI: .03 to .41; b100 voxels = .

20, SD100 voxels = .10, 95% CI: .01 to .40), and a tendency for less pronounced change in 

classification accuracy over time (b50 voxels = −.14, SD50 voxels = .07, 95% CI: −.27 to −.09; 

b100 voxels = −.11, SD100 voxels = .06, 95% CI: −.23 to .01). Importantly, including age as a 
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time-invariant covariate did not change the observed positive relation between individual 

differences in classification accuracy and memory, r50 voxels = .60, 95% CI: .04 to .93; 

r100 voxels = .62, 95% CI: .28 to .91.

Discussion

The present study investigated the neural specificity of scene representations in childhood, 

and how it contributes to memory performance across a variety of tasks. In both children (7–

12 years) and adults, distributed activity patterns evoked by different complex scenes could 

be reliably decoded from cortical regions implicated in scene processing, including the 

parahippocampal and fusiform cortex, retrosplenial cortex, and lateral occipital cortex. 

Classification accuracy of the scene-specific neural patterns during memory encoding was 

above chance and similar across age groups. Notably, children with higher levels of neural 

item-level specificity for scene representations – particularly in parahippocampal cortex – 

demonstrated better memory. At the same time, we found no evidence that neural specificity 

was related to longitudinal memory improvements in the transition from childhood to 

adolescence.

During memory encoding, we demonstrated that different scenes could be reliably decoded 

from several cortical regions in children. Moreover, we found similar levels of within-

category classification accuracy across children and adults, indicating that the neural 

representation of complex scenes is relatively developed by middle childhood. To ensure that 

the present analysis was not biased by a particular group, we performed voxel selection 

within each individual for each ROI; this is likely to minimize age differences relative to 

studies in which areas are defined based on group results. While this result – similar 

classification accuracy between middle childhood and adulthood – is consistent with some 

studies examining univariate activity (e.g., Menon et al., 2005; Ofen et al., 2007), it is 

seemingly at odds with other studies demonstrating age-related increases in univariate 

activity in the parahippocampal place area during successful scene encoding (e.g., Chai et 

al., 2010; Golarai et al., 2007). It should be noted, however, that differences in distributed 

patterns of neural activity do not necessarily correspond to differences in average activity 

across a group of voxels (Rissman & Wagner, 2012). Critically, age-invariant classification 

accuracy points to the possibility that sensory information necessary to form episodic 

memories is successfully represented during this age period, and that developmental 

differences observed in univariate activity, including longitudinal changes in task-related 

activity (e.g., Fandakova et al., 2018; Selmeczy et al., 2018), may reflect the development of 

memory processes associated with committing incoming information to memory, not in the 

fidelity with which item-level sensory and contextual information is represented at encoding.

Neural representations of incoming information over distributed cortical networks represent 

key building blocks of memory. In adults, the fidelity of neural representations has been 

linked to the success of memory formation at the trial level (e.g., Xue et al. 2010; Favila et 

al., 2016). Additionally, higher category-level neural specificity has been associated with 

better memory performance in the same task (e.g., Kuhl, Rissman, & Wagner, 2012). At the 

behavioral level, lower fidelity of item-level representations, especially with visually 

complex stimuli, may result in lower memory accuracy and greater susceptibility to false 
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memories (e.g., Ye et al., 2016). Here, we provide evidence that the distinctiveness with 

which information about different complex scenes is represented during encoding in cortical 

regions associated with scene processing is related to better memory in childhood. Of note, 

representational specificity was correlated with memory ability beyond the specific task in 

which neural specificity was assessed, suggesting that this measure may capture a more 

general property related to the ability to form distinct representations for complex scene 

stimuli.

What might be a possible neural mechanism underlying the relation between neural 

specificity and individual differences in memory? Li and colleagues (2001) proposed a 

neurocomputational model linking age-related cognitive deficits in later adulthood to 

decreases in dopaminergic modulation. In this model, simulating decline in dopaminergic 

modulation resulted in lower neuronal responsivity and led to increased neural noise and less 

distinctive neural activation patterns. Although comparable evidence in childhood is 

missing, dopamine levels have been shown to increase during childhood (e.g., Goldman-

Rakic & Brown, 1982) and adolescence (Hoops & Flores, 2017; Luciana, Wahlstrom, Porter, 

& Collins, 2012) in humans and non-human primates. These changes are multifaceted in 

nature, including changes in dopamine receptor density and dopamine concentration. In 

addition, the exact trajectory of dopaminergic change is a matter of debate with some 

evidence of linear increase from childhood to adolescence vs. a concentration peak in 

adolescence (cf. Wahlstrom et al., 2017). Consistent with the model proposed by Li and 

colleagues (2001), it is possible that individual variability in neural specificity may, at least 

to some extent, reflect individual differences in dopaminergic modulation (cf. Luciana et al., 

2012) that contribute to heterogeneity in memory performance. The present results are 

consistent with empirical findings from aging - age-related reductions in neural specificity 

have been related to declines in cognitive performance across a variety of tasks (e.g., Park et 

al., 2010; Zheng et al., 2017). Interestingly, correlations between different tasks and 

cognitive domains are higher in children and older adults than in younger adults, likely 

because individual differences are driven primarily by domain-general rather than domain-

specific factors (e.g., Baltes, Lindenberger, & Staudinger, 2006). To the degree to which 

neural specificity reflects neural responsiveness regulated via dopaminergic pathways, 

representation fidelity may represent a domain-general mechanism contributing to individual 

differences in cognition.

Based on the well-established contributions of dopamine to cognitive control (e.g., Cools, 

2008), we should also consider that stimulus-specific processing can be enhanced through 

the engagement of top-down cognitive control processes in children and adults (e.g., 

Wendelken, Baym, Gazzaley, & Bunge, 2011). Further research is needed to examine how 

neural specificity for stimuli of different types and complexity interacts with these 

modulatory top-down effects.

We did not find evidence that neural specificity was related to individual differences in 

memory improvement over time. Variability in memory improvement over time may 

therefore be driven primarily by other developmental forces, such as the ability to bind 

different features of an event in an integrated memory representation (e.g., Ghetti & Bunge, 

2012), the ability to regulate encoding and retrieval in line with ongoing task demands 
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dependent on fronto-parietal development (e.g., Fandakova et al., 2018; Simmonds, 

Hallquist, & Luna, 2017; Yu et al., 2018), the increasing influences of pubertal changes 

(e.g., Selmeczy et al., 2018), or the increasing importance of motivational factors (e.g. 

Davidow, Foerde, Galván, & Shohamy, 2016). Future research is needed to directly test the 

influence of these different factors against each other.

The present study corroborates and extends the few previous studies that examined the 

relevance of scene processing for subsequent memory in childhood (Chai et al., 2010; 

Wendelken et al., 2011). Furthermore, a recent study (Rosen et al., 2018) reported that 

encoding-related activity in the fusiform face area and in the lateral occipital lobe predicted 

associative memory for face-object pairs in 6- to 19-year-olds after controlling for age 

differences. This and other prior studies demonstrated the relevance of individual differences 

in the recruitment of sensory processing areas for memory formation in childhood (e.g., 

Natu et al., 2016). The present study extends these findings by examining multivariate 

patterns of activity in childhood and demonstrating that representational specificity plays an 

important role for individual differences in memory ability.

More generally, multivariate approaches might provide further insights on the development 

of category-specific areas. For example, some studies suggested that object recognition in 

the lateral occipital complex is mature prior to age 8 (e.g., Golarai et al., 2007), whereas 

others demonstrated age-related increases in activity up to late adolescence (e.g., Rosen et 

al., 2018). Similarly, it is yet unclear whether age-related increases in the lateral occipital 

complex, as well as in the fusiform area for faces, reflect the development of modulatory 

effects of top-down attention or further development in neural specificity.

We acknowledge several limitations in the present study. First, we selected regions of 

interest that represent key nodes of the scene-processing network based on a Neurosynth 

meta-analysis. Although this procedure ensured that ROIs were defined independently of the 

task in which neural specificity was examined, the present design did not allow to determine 

ROIs based on localizer tasks specific to individual participants. Thus, it is possible that our 

results do not fully capture the development of neural specificity and its relevance for 

behavior. Our approach to select either 50 or 100 most informative voxels specific for each 

participant along with the whole-brain searchlight analyses likely attenuate this problem, but 

future research should complement these findings by using localizer tasks. Related to this, 

the task in which we examined neural specificity was not a pure scene task, but rather a 

scene-object association task. Thus, scene-object binding processes at encoding may have 

contributed to lower classification accuracy than would have been observed in a pure scene 

task. Even though the relation with memory performance speaks to the role of improved 

fidelity of scene representation (e.g., Xue, 2018), we cannot completely rule out that scene-

object binding may have contributed to individual differences in classification accuracy. 

Second, due to the developmental focus of the study, our adult sample was relatively small 

and demonstrated uniformly high memory performance, thereby precluding us from 

examining the contributions of neural specificity to memory in adults. Finally, future studies 

should examine younger children to test whether, based on the modulatory role of dopamine, 

age differences in neural specificity may be pronounced earlier in development. Here, 

different measures of memory performance that vary systematically on relevant dimensions 
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such as encoding-retrieval delay, incidental vs, intentional encoding, and that extend beyond 

scenes should be included.

Taken together, our results indicate that neural specificity of the distributed activity patterns 

evoked by different scenes is relatively mature by middle childhood, and is associated with 

memory ability in the transition between childhood and adolescence. Future research should 

test the extent to which these contributions reflect direct effects via different levels of 

distinctiveness in neural representations, possibly related to dopaminergic modulation, or 

indirect effects via biasing the engagement of still developing cognitive control operations. 

Thus, examining multivariate patterns of activity may contribute to our understanding of 

episodic memory development in childhood and beyond.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimated memory ability in children based on a latent factor of the scene-object task, 

selective encoding task, and the WRAML picture subtest. Older children demonstrated 

higher memory than younger children.

Fandakova et al. Page 19

Neuroimage. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Classification accuracy in scene-processing regions. A. Scene-processing ROIs based on 

Neurosynth meta-analysis. All ROIs were bilateral. B. Classification accuracy in adults. C. 

Classification accuracy in children across ROIs and time points. With three scenes chance 

levels for classification accuracy are at 33.3% (dotted line). T1 = Time 1; T2 = Time 2; T3 = 

Time 3
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Figure 3. 
Individual differences in classification accuracy in the 50-voxel mask (left) and the 100-

voxel mask (right) is related to memory ability at Time 1. A. Individual differences in 

classification accuracy across scene-processing regions (i.e., composite score of lateral 

occipital, parahippocampal, and retrosplenial ROIs which showed above-chance scene 

classification in both groups). Black dots represent average classification accuracy in 

children and adults. B. Correlation between classification accuracy and estimated memory 

ability in children. With three scenes chance levels for classification accuracy are at 33.3%.
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Table 1.

Results of tests of classification accuracy against chance in adults and children at each time point. Reported p-

values are corrected for multiple comparisons using an FDR correction.

Neurosynth ROI 50-voxel mask 100-voxel mask

Parahippocampal

Children

  - Time 1 t(99) = 3.28, pFDR = .001 t(99) = 4.01, pFDR < .001

  - Time 2 t(92) = 4.08, pFDR < .001 (92) = 5.75, pFDR < .001

  - Time 3 t(73) = 5.04, pFDR < .001 t(73) = 6.84, pFDR < .001

Adults t(30) = 3.31, pFDR = .004 t(30) = 3.23, pFDR = .005

Retrosplenial

Children

  - Time 1 t(99) = 4.67, pFDR < .001 t(99) = 5.38, pFDR < .001

  - Time 2 t(92) = 4.53, pFDR < .001 t(92) = 5.1, pFDR < .001

  - Time 3 t(73) = 3.04, pFDR = .004 t(73) = 4.63, pFDR < .001

Adults t(30) = 2.86, pFDR = .01 t(30) = 3.37, pFDR = .004

Lateral occipital

Children

  - Time 1 t(99) = 6.28, pFDR < .001 t(99) = 4.01, pFDR < .001

  - Time 2 t(92) = 7.74, pFDR < .001 t(92) = 9.50, pFDR < .001

  - Time 3 t(73) = 6.29, pFDR < .001 t(73) = 7.28, pFDR < .001

Adults t(30) = 4.53, pFDR < .001 t(30) = 5.46, pFDR < .001

Anterior hippocampus

Children

  - Time 1 t(99) = 0.95, pFDR = .40 t(99) = 0.75, pFDR = .46

  - Time 2 t(92) = 1.95, pFDR = .06 t(92) = 0.94, pFDR = .46

  - Time 3 t(73) = 0.23, pFDR = .82 t(73) = 1.06, pFDR = .34

Adults t(30) = 2.49, pFDR = .02 t(30) = 1.59, pFDR = .12
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