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ABSTRACT 

UCRL-18704 

We discuss the Veneziano model for 1111 scattering 

in connection with PCAC, the SU(2) ® SU(2) charge 

algebra, the scattering length ratio aO/a2, and the 

finite energy sum rules of Dolen,Horn, and Schmid. 

Following Dashen and Weinstein, and abstracting 

from the model,. it is proposed that SU(2) ~ SU(2) is 

a symmetry of the system, and that the strength of the 

symmetry breaking interaction is proportional to the 

deviation of the intercept of the p trajectory from 

1/2. 
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I. INTRODUCTION 

Recently, a model for two-body scattering processes has been 

proposed by Veneziano. l The model has various diseases, all of which 

we believe are due to violations ofunitarity which accompany the narrow 

resonance approximation, and all of which we ignore here. 2 

In Section II, we define the model, as applied to :n: + :n: ~:n: + IT. 

In Section III, we begin with some general remarks about SU(2)~SU(2) 

symmetry and its breaking. We discuss the Adler consistency condition, 

the value of the derivative of the I = 1 amplitude at threshold, the 

scattering length ratio aO/a2 , the Adler :n::n: sum rule, and the 

superconvergent I = 2 sum rule, evaluated at t = O. In Section IV; 

we briefly check the superconvergence of the I = 2 sum rules for 

t < O. In Section V we discuss finite energy sum rules (FESR) of the 

Dolen, Horn, and Schmid type,3 for I = 1 and I = 2. In Section VI, 

we summarize our conclusions. 
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II. THE MODEL DEFINED4 

We work in the t channel, taking for the isospin amplitudes 

~-~FO[a(s),a(u)] + ~ FO[a(t),a(s)] 

I 

(2.1) 

where a(x) a + bx, and where 

r(l - x) r(l - y) 
::: r(l - x - y) (2.2) 

The choice (2.1) insures that Bose statistics, isospin conser-

vation, and crossing symmetry are properly incorporated, while (2.2) 

imPlies average Regge asymptotic behavior, in the sense suggested by 

Veneziano. l ,5 The form of (2.2) leads to the violation of unitarity 

mentioned above. We do not attempt to improve on the narrow resonance 

approximation here. 6,7 However, we avoid the use of the asymptotic 

, 
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averaging procedure, in order to illustrate the problems involved in 

a strict application of (2.1) and (2.2). 

For convenience we define the variables w, 

z: [x = o(s), y = o(u)] s 

T 

1'] 

w 

z 

z 
u 

z s 

== 

1 - x- Y , 

1 -(x - y) , 2 

1 L 2 + T - X - Y 
2 

, 

2T 
1+--1 ' 

y - 2 

2T 
1 +--1 

x - 2 

, 

T , z, 

We will constantly refer to the important special case 

0, b -2 1 Case P. j.l - m = = 1 GeV , a = 2,below, as 
T( 

1 
- u), w = O(T), For case P, T = t, 1'] = v = 2(8 Z = 

z cos 9 s' z cos 9 . s u u 

We will also need the constants 

D x + Y + w (s + t + u)b + 3a = 4/b + 3a , 

z , 
u 

(2·3b) 

(2·3c) 

(2.3e) 

cos 9t , 

(2.3g) 



and 
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To formulate sum rules, we will use the expansions8 

00 

L 
K=l 

1 
r(K + T + 2) 

r(K) reT + ~) 

00 

L 
1 

r(K + T + 2") 

r(K) r( T + ~) K=l 

1 
1 

T) + -(1 -
2 

which follow from the properties of the hypergeometric series 2Fl" • 
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III. PCAC, THE SU (2) ® SU (2) CHARGE ALGEBRA, 

AND THE nn SCATTERING LENGTHS9 

We assume the amplitude (2.1) is, up to the narrow resonance 

approximation, a representation of reality.2 Now let us try and make 

our model consistent with a theory in which broken SU(2) ® SU(2) 

symmetry is relevant for nn interactions. 

A d · t D h d W· t· 10 h th k ccor lng ·0 as en an elns eln, suc a eory ma e sense 

in the symmetric limit only if the pion then becomes a Goldstone boson, 

while the pion decay constant f , 
n 

the nucleon mass, and gA' the 

q2 0 limit of axial form factor, remain nonzero. In this Picture
lO 

the nn scattering amplitude T(Pl' P2' P3' P4) can be written, 

suppressing isospin indices, 

T(p. ) 
l 

, 

where E measures the strength of the SU(2)QDSU(2) symmetry 

breaking, and s is a scaling factor such that for fixed Pi' 

p. = sP.. The constant BO appears on the left-hand side of the Adler 
l l 

n:rr sum rule, and is the derivative 

at s = u ="t = o. 

1 

8rtf 2 
rt 

evaluated 

If we assume how the symmetry breaking interaction transforms 

under SU(2) ® SU(2) we can compute EA1 . If it transforms as 
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(1 1_) 11 2' 2 we get the Weinberg result 
" 

EAl , 

which leads to the scattering length ratio aJa2 - 7/2 . 

If we choose 5 == a - ~ == 0 in (2.1) our :n::n: amplitude 

vanishes quadratically as p. -70. 
~ 

We therefore conjecture that the 

strength of the symmetry breaking interaction in proportional to 5. 

Case P is then SU(2) ex> SU(2) 

(2.1) tells us 

symmetric. 

g r(! - 5) r(! - 5) 
2 . 2 

r(-25) 

( /2) 
- -25g:n: ~" , 

to first order in 5. 

At p. == s == t == u == 0, 
~ 

Furthermore the derivative relation is 

gb:n: ' 

Putting in isospin and comparing (3·2) - (3.5) 

2 
== IJ. -6/b 

/ 
'\ < 

.. 
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We do not belabor this result further here numerically except to 

express our satisfaction that 5 comes out small. We note that (3.6) 

can be written CX([12) = ~ which is the assumption recently made by 

Lovelace. 12 ,13 

The model gives us two more hints that 
4 

is small: (1) the 

widths of the fellow traveler states become negative as 0 becomes 

less than -0.01 for physical [1; (2) the derivative at threshold of 

the s wave amplitudes becomes unreasonably large if 5 is greater 

than +0.1. 

If our identification of case P with SU(2) ® SU(2) symmetry 

is correct, the case P mass spectrum should give us a clue to that 

effect. However, all we know in advance is that the mass spectrum 

consists of degenerate isospin multiplets, since the symmetry generated 

by the axial charges is realized by the appearance of massless pions. lO 

Though there are probably simple words to describe the spectrum, we 

have been unable to find· them, and leave this as a subject for future 

investigation. 

In the next two subsections we will show that the resonance 

contributions to the Adler nn sum rule14 in the model, are in 

qualitative agreement with phenomenological estimates, and that the 

superconvergent I = 2 sum rule, evaluated at t = 0 in the model, 

yields" r Ir. 
Errn PTI rr 

9/2. The latter result also follows from the 

SU(2) ® SU(2), I 1 and 2 sum rules, if one assumes them to be 
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III.A. The,Adler nn Sum Rule 
,I , 

1 

T) - K 11 + ~(l - T) 

Taking d/d11 I11=O and T = 0 in .(3.7) we have the Adler sum rule for 

case P 

00 

L 
K=l 

1 r(K - -) 
2 

From (3.8) we see that in this model16 the sum rule is saturated 

64:~ by (p,E); ,11% by (f, p', E:'); 5% by the g family, etc. 

() 

• 
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According to Gilman and Harari,17 the bump at the fO mass contributes 

less than 10%, and the g a few percent·, to the sum rule, so we are 

. 16 18 in qualitative agreement with expenment. ' 

IILB. The I = 2, t = 0, Sum Rule 

Up to factors of n, the discontinuity in ~ arising from 

A2t can be read off from (2.5) and (2.1) and is 

00 ' 

\ K-l = L (-1) B (K + -r) 

K=l 

1 .' 
[o(~ + -(1 - -r) - K) 

2 

- o( -~ + ~(l - T) - K) ] , 

+ ~[P (z ) - P (z )J o(~ -~) + .•• + [z, ~zu' q ~ -~} .•• o 2 sIs 2 s , 

(3.9) 

where B(a,b) = rea) r(b)/r(a + b). 

The usual superconvergent I 2 sum rule reads 

t 
D2 (v,O) ° 
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From (3.9) it can be seen that for case P, at each mass. 

corresponding to 11 = half integer there is a degenerate tower of 
" ~ 

states with spins running from 0 to 211. For example, at 11 = ± 1/2 

we have p(l-) and E(O+), while at 11 = ± 3/2 we have f(2+), 

p' (1-), and E' (0+), etc. 

Along T= 0, the amplitude' A2t and its discontinuity vanish, 

and the contribution of each tower to the sum rule' (3.10) is zero, 

so that the resonances in every tower cancel each other. The cancella-

tion at Zs 0 is explicitly exhibited in (3.9)., 

Since there are no I = 2 poles, D2t crosses into 

D t 
2 = ! D s 

3 0 
_ ! D s 

2 1 

00 

~L 
, 

. ~(l + (_l)J) (2J + 1) bO(J,v) pizs) 

J=O 

00 

~ L (2J + 1) 'b 1 (J , v) P J ( z s) ~(l - (-1) J) , 
J=l 

where the u, left-hand discontinuity, has been suppressed. Assuming 

D2tl = 0, and that we have degenerate towers, as in the model, at 
, t=O 

the lowest mass tower, 

o 

• 
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.. 
yielding the ratio r/r = 9/2. Any model having (a) degenerate 

Eror pror 

towers with the proper spin content; (b) a zero in A2t along t = 0; 

(c) no I = 2 poles, will yield the 9/2 ratio. 

As pointed out by Gilman and Harari,15 the 9/2 ratio also comes 

out of the I = 1 and 2 charge algebra sum rules, provided one assumes 

they are saturated by p and· E only . 
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IV. I = 2 SUM RULES FOR '! < 0 

gets'negative, poles in FO(X'y) begin to move out 
i 

into the unphysical, double spectral region and the sand u poles 

cross.19 

We can check that each sum in (.3.9) still separately superconverges. 

For simplicity, consider T = -N, (N = 1,2,' .. ) and take any odd 

moment. Then we should have 

o 
(4.1) 

Because we have chosen T = -N, the sum truncates at N, and 

changing variables, (4.1) becomes 

Q2P+l r(N + 1) 
= 0 , (4.2) 

showing the cancellation explicitly. 

• 

, ' 
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V; SUM RULES FORT > O. FESR • 20 

V:A. I = 2 Sum Rules 

We now consider the lowest moment finite energy sum rule on 

the right hand discontinuity in (3.8), 

1 (+U 

2" ) 
-U 

= 0 

Let us check and see in what sense (5.1) holds. In (5.1) we 

choose U so that the highest mass pole included has K = N. 

(
. 1 t. 
-2"+N+2" ~ U ~ .2:.+ N + 1 +2. 

2 2 The left-hand side then 

becomes 

~ t H)K B-l(~,K)(2K - 1 + <) 

K=l 

, 

where TN(x) = r(x + N)/r(x). 

Equation (5.2) can be easily proved by induction. The sum 

changes sign and grows in absolute value as each new resonance is 

included; so that there are violent cancellations. 21 If we give a 
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finite width to the resonances, we can always find a point intermediate 

between any pair of neighboring resonances such that the sum vanishes. 

This remains true for all the moments. 

V.B. I = 1 Sum Rules for ,> 0 (FESR)20 

The It = 1 discontinuity, from (2.1) and (2.5), is 

D t 
1 

1 r(.2' + T + J) 

r(J) r(~ + T) 
[6(~ + ~ - ~ - J) + 6( -~ + ~ - ~ - J)] 

(5.3) 

Just as for the I = 2 case, we take U such that 

T 1 T 1 
N + '2 - '2 < U < N +1 + '2 - '2' and for the zeroth moment finite 

energy sum rule we have 

1 
'2 

N 1 \ r('2 + T + J) 

L r(J) r(! + T) J=l 2 

T (T +!) N+1 . 2 

r(N)(T + ~) 

(5. 4) 

which one easily can prove by induction. If we expand in powers bf 

N, we have 

f+U 
~L. [1 + 

3 1 
+ ") ] 1 t N

2 (- + T)(-
d'l) D1 ('I), T) 2 2 + O(N-2 ) 2 (T+:~)r(T+~) 2N 

-U 

(5·5) 

~; 
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or, inserting a(t) 

FESR form20 

1 
, + 2' the right-hand side takes the familiar 

[a(t) + 1] r[a(t)] 
[a( t) + 1] a( t) + ... ] 

2N 

At a(t) = 1 (i.e., at t = m 2) this becomes 
p 

1 
+ - + N 

... ] , 

so that we commit a 5010 error if we choose to keep the leading trajectory 

only on the right-hand side of the FESR, and take N = 2. (Meaning we 

keep the p, f families on the left.) Let us see what happens on the 

left if we keep only p and f. Rewriting the first term in (5.3) 

as Legendre polynomials in z we have s 

00 

L 
J=l 

1 
r(2+"+J) 

r(J) r(~ + ,) 
5(1) 

1 , 
+ 2 - 2 -J) 

" 
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so that the resonances cancel in the backward direction, as they 

should. At 
1 

T = 2' the p and f contributions to the left-hand 

side of the FESR are, from (5.8),using 

~ . 3 + L 11 
'+ .8 3 

while the E and p' contribute 

17 
8" 

7 
8 , 

making a total of 3, which checks with (5.4). 

2T 
1 ' x - -2 

Therefore, while the exact relation reads 3 =3, the FESR3 

at t 

reads 

2 -
m , with 

p 
p d f

o an on the left, and p on the right, 

17 8 . ~ 2, since compensating errors have been made. 

(5·10) 

The I = 0 sum rule, which is suspect in any case because we 

have neglected the pomeranchon,22 contains the oscillating object 

already associated with the I 2 sum rule. The same calculation 

as was performed here for the I 1 case can be done for I = 0, 

and is left as an exercise for the enterprising reader. 23 

• 
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:*,,"j. .. 

VI. SuMMARY AND CONCLUSION 

We have shown that the Veneziano model, applied to 

11 + 11 ~ 11 + 11, is consistent with the SU(2) (8) SU(2) charge algebra 

and with PCAC. 

We conjecture that the underlying SU(2) ® SU(2) symmetry of 

the 11J1 symmetry system is broken by an interaction whicb moves the 

intercept of the p trajectory away 'from 1/2. We then find that 

o = a - 1/2 is small if one is to get consistency with the results of 

Dashen and Weinstein,lO and of weinberg. ll Without this conjecture 

we are unable to check the model's consistency with the scattering 

length ratio aO/a2 = -7/2, because of its great sensitivity, in the 

model, to the precise value of the intercept of the p trajectory. 

However, if aO/a2 is to be appreciably different from -+5/2, the 

. ~ t t· b 1/2 ( / ~ 5 6p
2
b for In L,ercep fiUS, In any case e near . aO a2 = 2" + 5 

small and 2 
f.l .) We have also shown that the model has the qualita-

tive behavior suggested by Dolen, Horn, and Schmid3 with respect to 

finite energy sum rules, evaluated at positive t. 

We have made no detailed comparison with experiment because in 

our view the use of the narrow resonance approximation renders this a 

futile exercise. 24 

In our view, in order to go further than we have done here, 

one must attack the problem of including additional features of 

unitarity. 
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FOOTNOTES AND REFERENCES 
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1. G. Veneziano, Nuovo Cimento 21, 190 (1968). 

2. This is a rather strong statement in view of the variety of 

pathologies involved. Those diseases known to us are: 

(a) Nonuniqueness of the choice of amplitude; (b) Additive fixed 

poles in the angular momentum plane, in the I = 0 and 2 ampli-

tudes, at negative wrong signature integers; (c) Violation of 

factorization by the fellow traveler states lying below the 

leading trajectory. (Further, there is the phenomenological 

problem that some of these states, e.g., the p' (1-) degenerate 

with f O, do not show themselves in the data, and that a + -11 11 

state at ~050 MeV may exist that is not predicted by the modeL); 

(d) The neglect of the Pomeranchon. 

With respect to (a), an infinite set of amplitudes of the 

form r(M - x) r(N - y) 
r(M + N - K - x - y) + (M ~N), K ~ 1, M ~ K, N ~ K, 

can be used for + -
11 11 scattering. (See for example, Ref. -I, 

J. Mandula, Caltech preprint CALT-68-178, unpublished, and 

S. Mandelstam, Phys. Rev. Letters 21, 1724 (1968).) Except for 

the term with M = N = K = 1, which we use in the text, each 

individual term generates negative resonance widths, and has an 

angular behavior of its pole residues which does not match the 

average Regge behavior a:(s)a:(t). We expect the nonuniqueness will 

be removed if all internal states are considered as external states 

and consistency is achieved. 
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The fixed poles of (b) are discussed by D. Sivers and 

J. Yellin, UCRL-18665, unpublished, and have been independently 

discovered by M. A. Virasoro '(private communication to s. Mandelstam) 

and G. Veneziano (private communication). In the physical case one 

e}cpects a cut in J to appear and mask these singularities. See 

S. Mandelstam and L.":"L. Wang, Phys. Rev. 160, 1490 (1967). There is 

phenomenological evidence that an additiv~ fixed pole exists in the 

B(-) amplitude of nN charge exchange scattering. See R. Dolen 

et a1., Phys. Rev. 166, 1768 (1968), and.R. Roskies, Phys. Rev. 175, 

1933 (1968). 

With respect to (c), we conjecture that factorization cannot 

be implemented even with a (convergent) infinite sum, unless one is 

willing to introduce new leading trajectories. For example, several 

workers have observed that, starting with the M = N = K = 1 term 

only, for nIr ~ nn, consistency requires the existence of an isoscalar 

trajectory, degenerate with, and containing the same spin-parity 

content as the n trajectory. 

As for point (d), we have found it impossible to introduce 

the Pomeranchon as an ordinary Regge trajectory without accepting 

in addition (possibly nonleading), I = 2 Regge trajectories. 

3· R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768(1968). 

4. J. Shapiro and J. Yellin, A Model for nn Scattering, Lawrence 

Radiation Laboratory Report UCRL-18500, September 1968, to be 

published, -and J. Shapiro, Phys. Rev., to be published. 
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5. The asymptotic behavior and other simple properties of the model 

are considered in great detail by J. Yellin, Notes on :n:1l' scattering. 

I~, Lawrence Radiation Laboratory Report UCRL-18637, unpublished. 

6. What would happen to the correct :n:rr scattering amplitude if one 

made the narrow resonanCe approximation on it, is by no means clear. 

Three possibilities are: (i) Factorization mayor may not be 

destroyed but one gets the degenerate towers of resonances of the 

present model; (ii) Large mass shifts occur, in which, for example, 

the :n: and p. become degenerate; Su(6)w symmetry is appropriate. 

(S. Mandelstam, private communication.); (iii) The fellow travelers 

arise from continuum in the actual physical amplitude and should 

therefore be ignored. (Private communication, K. Bardakci.) 

7. Some problems involved in an attempt to go seriously beyond the 

narrow resonance approximation are discussed by R. Roskies, Phys. 

Rev. Letters 21, 1851 (1968). 

8. These expansions are discussed at some length by D. Sivers and 

J. Yellin, in Notes on rrrr Scattering III: J Plane Phenomena, 

.Lawrence Radiation Laboratory Report UCRL-18665, unpublished. 

The series (2.4) is interesting because both sets of poles are 

simultaneously exhibited and each set individually lacks the duality 

property. The expansion (2.~-) converges absolutely for T < 0, 

while (2.5) converges for We use the discontinuity of these 

(-.::/ sums here, when we leave the region of convergence. 

9· Details of the calculations in Sections III, IV, and V, and a 

review of the relevant PCAC and charge algebra results are contained 
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in J. Yellin, Notes on nn Scattering II: Sum Rules and Threshold 

Behavior, LaWTence Radiation Laboratory Report, UCRL-18664, 

unpublished. 

10. R. Dashen and M. Weinstein, Soft Pions, Chiral Symmetry, and 

Phenomenological Lagrangians, preprint Institute for Advanced Study 

(1969), unpublished. See also Goldstone's original work: 

J. Goldstone, Nuovo Cimento 19, 154 (1961); J. Goldstone, A. Salam, 

and S. Weinberg, Phys. Rev. 127, 965 (1962). We thank Dr. Dashen 

for several very informative discussions. 

As emphasized by Dashen and Weinstein, though the introduction 

of SU(2)Q?) SU(2) ss'1llilletry does not at present lead to new results, 

e.g., for TIn scattering, it gives, in contrast to previous formu-

lations, an exact meaning to PCAC, and this opens up the possibility 

of computing PCAC corrections in the future. If our guess about the 

connections between the intercepts of Regge trajectories and the 

symmetry breaking interaction is correct, this leads to many 

possibilities in precisely that direction. 

11. S. Weinberg, Phys. Rev. Letters TI, 616 (1966); N. N. Khuri, Phys. 

Rev. 153, 1477 (1966). Weinberg makes the explicit assumption that 

the symmetry breaking interaction transforms like (~,~) under 

SU(2) ® SU(2). 
"' , 

12. C. Lovelace, Phys. Letters 28B, 265 (1968). With reference to ! 

Lovelace's fit of the pn ~3n Dalitz plot, we are informed by 

Dr. E. L. Berger (private communication) that a more detailed compari-

son with the data, using Lovelace's expression yields the result that 
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the zero at T = 0 must be moved to 
2 

T = -2.7 GeV . 

UCRL-18704 

This tends 

to. cast grave doubts on the validity of mass extrapolations made 

in Lovelace's manner. 

Our philosophy is rather orthogonal to Lovelace's in that 

we believe the use of the narrow resonance approximation makes these 

results qualitative only. Because of the zero in the model at 

6 = 0, we cannot check the consistency of aO/a2, in the model, 

with -7/2, without additional information, such as our conjecture 

about the symmetry breaking. 

13. M. Ademoll.o, G. Veneziano, and S. Weinberg, Massachusetts Institute 

of Technology preprint (1968), unpublished, have generalized the 

argument about the PCAC zero in :n::n: ~:n::n: to allhadronicampli tudes 

and suggest a rule which spaces certain Regge intercepts by half 

integers. From our point of view this is a manifestation of the 

fact that for exact SU(2) ex> SU(2) symmetry the intercepts are 

precise~y integral or half-integral. 

More details of the extension are contained in the work of 

Goebel et al., see C. Goebel,M. Blackmon, and K. C. Wali, to be 

published. 

14. S. L. Adler, Phys. Rev. 137, 1022 (1965). 

15 .. F. J. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968). In their 

work the assumption of SU(2) ex:> SU(2) symmetry breaking through 

the (~,~) representation plays an essential role. 
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16. In connection with the derivative of the I = 1 amplitude, it is 

interesting that in the model the quantity 

satisfies , 
\~ 

~L n;g [1 + 4.7 5 + 1.4 A + quadratic terms] 

for small 5 and A, so that for 

~ -2 ~ ~ ~ 
b = 1 GeV , g = 1, and 5 = 0, ~L = 0.125 

as compared with the charge algebra result 0.10. 

17· Ref .15, p. 1823, paragraph 10 and footnote 67. 

18. It will be noted that the KSFR relation (Ref. 15, p. 1817 and 

footnote 53) reads 0.92 ~ 1.0 from experiment (using I' ~ 112 
p:n:n 

MeV, and f11 as given by r ) and 0.64 ~ 1.0 from our model. 
11iJ.V 

In order to derive the 9/2 ratio for I' /1' from the charge 
En11 pn11 

algebra sum rules one needs the KSFR relation, (or the arguments of 

S. Weinberg, to be published) in addition to the I = 1 and 2 

sum rules. We shed no light on this situation here. 

19. This situation is interesting because it is in this amplitude that 

the fixed poles in J occur. One can check that they are present 

by examining the Schwarz sum rules. See J. Schwarz, Phys. Rev. 

159, 1269 (1967). This has been done by Veneziano (private '. 
communication). The superconvergence of the 11+11- amplitude at 

t < 0 has been used by Schmid to construct an amplitude agreeing 

with (2.1). See C. Schmid, preprint CERN TH.965, to be published 

in Phys. Letters (1969). We thank Dr. Schmid for several very 

helpful private communications. 
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20. C. Schmid and J. Yellin, Finite Energy Sum Rules and the Process 

0- + 0- ~O- + 0-, Lawrence Radiation Laboratory Report UCRL-18625 

(1968)(to be published), give a detailed discussion.of the FESR 

in connection with 0-0- scattering. Further references are given 

there. Veneziano (Ref. 1) also discusses FESR for large limits of 

integration, and in an average sense. 

21. This is to be expected because the I 1 and 0 resonance contri-

butions are opposite in sign and we are going out of the physical 

region where the Legendre series diverges. See Ref. 20 and 

S. Mandelstam, Phys. Rev. 166, 1539 (1968) Section VI, for opposing 

views on whether or not one should formulate the FESR at positive t. 

Because of the oscillating behavior the I = 2 FESR were 

not used for numerical work in Ref. 20. However, in the I = 0 

case the oscillations occur about the Regge term rather than zero, 

and the resulting relations were used numerically. 

22. For a discussion of FESR and the Pomeranchon, see H. Harari, Is 

the Pomeranchon an Ordinary Regge Trajectory?, Stanford Linear 

Accelerator Center preprint SLAC-PUB-463, August 1968, unpublished. 

23. What is missing here is an ex~ct way of stating the FESR so that 

the nonleading contributions can be calculated. The reader is 

challenged to find one. 

24. This futility is evidenced in some detail in References 4 and 5, 

with respect to the nonexistence of the fellow traveler state, p', 

and the large predicted widths for the fellow travelers of the g. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned Fight~j-0I' 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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