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ABSTRACT

The Extended-Stencil Finite Element Method

Leah A. Brinkman

This dissertation introduces a novel finite element method called the extended-stencil

finite element method (ESFEM). The ESFEM uses conventional finite element meshes to

produce moderately high order polynomial element interpolants. The “nodal stencil” of

the ESFEM is extended such that elements reference nodal values of other elements. This

extension increases the nodal data available to an element. On each face of the element,

a polynomial fit is performed to the nodal data. These “face polynomials” are then used

as constraints in the polynomial fit of the element interpolant to the nodal data. Because

the element interpolants are formulated independently from other element interpolants, the

ESFEM is generally nonconforming. However, convergence is achieved by constraining the

interpolant to ensure passage of the so called F-E-M-Test. The ESFEM was implemented

into a finite element code base, and the results of the numerical examples show improved

accuracy over the conventional finite element method in problems exhibiting shear locking,

volumetric locking, and mesh distortion. In particular, the ESFEM enables an e�cient use

of a mesh’s degrees of freedom by using a polynomial fit to form the element interpolants.
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Chapter 1

Introduction

The finite element method (FEM) has undergone much algorithmic and mathematical de-

velopment, allowing extensive usage in engineering today. In the early days, Hrenniko↵’s

framework of bar elements is an example of the segmentation of a material into individ-

ual elements to estimate solutions to elastic problems [14]. Today, the FEM has extended

past structural mechanics into areas of electromagnetics, fluid flow, heat conduction, and

flow through porous media. Even with these advancements, there are still some problems

that remain di�cult to resolve. In the realm of solid mechanics, chief among the remaining

challenges are contact between two di↵erent moving bodies, highly nonlinear problems, and

locking.

The problem of interest in this dissertation is locking, which arises in two main circum-

stances: bending of thin structural elements, and near-incompressible materials. The former

is referred to as shear locking and the latter, volumetric locking. Locking presents itself as

large errors in the displacement solution that can often be multiple orders of magnitude less

than what would occur in reality. In Section 1.1, an example of locking in a cantilever beam

is presented. Moreover, Chapter 3 discusses locking and strategies for its mitigation more in

depth.

In this dissertation, the extended-stencil FEM (ESFEM) is introduced to increase the

1



polynomial order of the basis functions such that locking is mitigated while at the same time

avoiding rank deficiency. The full scope of the ESFEM’s potential has yet to be determined

and this work presents mainly the method’s capabilities involving shear and volumetric

locking.

1.1 Illustrative Example

This section investigates a cantilever beam with di↵erent element types to illustrate locking in

the Conventional Finite Element Method (CFEM). “CFEM” is utilized in this dissertation

in order to describe the FEM whose origins are described in [10] and is summarized in

Chapter 2. Generally, shape functions of the CFEM are mapped polynomials of the lowest

possible order such that the Kronecker-delta property holds on the element’s nodes. Now,

the crucial distinction between the CFEM and the ESFEM is the sets of nodes associated

with the element. In the ESFEM, a larger set of nodes is used than the CFEM, which

requires a higher polynomial order. For an 8-node hexahedral (hex-8) element in the CFEM,

shape functions are trilinear while the 27-node hexahedral (hex-27) element shape functions

are tri-quadratic. It is commonly thought that a hex-27 can be used to mitigate locking,

however the example below reveals a distorted hex-27 mesh does not mitigate locking. Please

note that this example is not meant to be an in depth analysis of shear locking. Rather, it

is intended to illustrate the phenomenon of locking.

Consider a cantilever beam with a square cross-section subject to a traction force at the

end as shown in Fig. 1.1. A mesh of 1x1x10 hex-27 elements is used. With undistorted

elements and ⌫ = 0.3, the hex-27 shows no locking, as the quadratic basis functions are

easily able to capture the bending deformation. This results in a displacement of node A

to be 0.984 (1.6% error). However, when the elements’ vertex nodes along the long edges

are randomly moved by a distance of up to 0.4 to introduce distortion, we see the return of

shear locking, with node A displacing only 0.402 (59.8% error).
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Figure 1.1: Square cross-section cantilever beam with dimensions w = 2 and L = 100.
Traction T = 1000 units force/area on the end face in the y-direction and the other end
fixed. All values are in consistent units.
Material properties: E = 109, ⌫ = 0.3 - 0.4999
Theoretical Displacement of Node A: 1.0 in the Y-direction

Now, consider this same mesh but with ⌫ = 0.4999, which corresponds to a nearly-

incompressible material. For an undistorted mesh, node A displaces 0.982 (1.8% error) and

with distortion, node A displaces 0.257 (74.3% error). This indicates the addition of not

only shear locking, but volumetric locking as well for the distorted mesh.

Comparing the displacement of node A in a hex-27 mesh to a hex-8 mesh, the displace-

ment is a significantly smaller value, with the undistorted mesh displacing 0.099 (90.1%

error) and 0.115 (88.5% error) for ⌫ = 0.3 and 0.4999, respectively. Furthermore, the dis-

torted hex-8 mesh displacements are 0.031 (96.9% error) and 0.035 (96.5% error) for ⌫ = 0.3

and 0.4999, respectively. See Table 1.1 for a summary.

Displacement of Node A
Hex-8 Hex-27

undistorted distorted undistorted distorted
⌫ = 0.3 0.4999 0.3 0.4999 0.3 0.4999 0.3 0.4999
0.099 0.115 0.031 0.035 0.984 0.982 0.402 0.257

Table 1.1: Displacements of node A in Fig. 1.1 for distorted and undistorted hex-8 and
hex-27 meshes with di↵erent values of Poisson’s ratio.

3



These values show that the use of hex-8 elements results in the presence of shear locking.

This is expected for hex-8 elements in this mesh since there is only one element through

the thickness, and the basis functions are tri-linear. While the consideration of a nearly-

incompressible material actually shows a slight increase in displacement for both distorted

and undistorted meshes, they are still highly inaccurate results due to the severe locking.

However, it is interesting that the hex-27 elements under these circumstances appear to have

compounding e↵ects of both shear locking and near-incompressibility. This problem displays

that, while an undistorted hex-27 element may not lock, there is still potential for locking to

occur if the element is distorted. Meshing flexibility is a critical aspect of the FEM’s overall

utility. And, an element’s allowance of mesh distortion is how such flexibility is obtained.

1.2 Shear Locking

Shear locking is identified in displacement results that are markedly diminished, frequently

by an order of magnitude or more, in comparison to the exact solution. This phenomenon

manifests in thin structures (such as beams, plates, and shells) that have been discretized

using conventional continuum elements. Furthermore, it occurs when the elements them-

selves are thin and the through-thickness discretization is coarse (e.g. one element through

the thickness).

Shear locking has plagued the FEM since the beginning, however it is fairly sparsely

treated in the literature, perhaps surprisingly so. For example, in an account of the 80-year

history of the FEM, shear locking was not mentioned once [22]. This may be due, in part,

to the fact that it is not well understood mathematically and can be hard to see without

experience. Xia et al. remarked that “[i]t is interesting to observe that if one looks only at

the calculated deflection of the beam, it o↵ers no clue that the solution is not correct.” [39]

Without careful and experienced examination of the FEM results, shear locking can be

overlooked and lead ultimately to wrong conclusions and poor engineering judgements.

4



In practice, three to four elements through the thickness, along with aspect ratios below

2-3, is often su�cient to avoid shear locking in hex-8 elements. However, this can lead

to excessive numbers of elements when attempting to alleviate shear locking with mesh

refinement alone. So-called structural elements, e.g. shell or beam elements, are often

preferred, though they present challenges of their own. Shell element nodes have rotational

degrees of freedom which complicates mesh generation when shell and continuum elements

must coexist in the same mesh. The extra rotational degrees of freedom at the interface of

the two element types may have to be set manually to ensure proper connection. Moreover,

in simulations involving sheet metal forming, it has been found that shell elements fail

to correctly capture the actual stress state in circumstances where the bending radii of

the metal is comparable with the sheet thickness, and thus continuum elements must be

used [21, 39, 42].

Another element specifically designed to overcome shear locking is the so-called solid-

shell element as presented in [7, 8]. In contrast to shell elements, solid-shell elements only

contain displacement degrees of freedom at the nodes, such that the degrees of freedom

match a hex-8 continuum element. Due to the similar degrees of freedom at the nodes, solid-

shell elements can easily connect to continuum elements, unlike shell elements. The “shell”

part of a solid-shell element relates to the restrictions applied that enforce constant strain

throughout the thickness. Consequently, as noted in [8], this brings about volumetric and

Poisson locking that is addressed by supplementing with methods such as the B-bar method

[7] and the enhanced assumed strain (EAS) method [8].

Upon a comprehensive analysis of recent literature, the potential causation of locking

phenomena has been correlated with a solution subspace incapable of reproducing the exact

polynomial order of the strain solution. Analyses of this form have been explored in various

studies employing EAS techniques and other methodologies. These investigations seek to ex-

pand the solution subspace through the incorporation of additional displacement-like degrees

of freedom. The additional degrees of freedom exist to enhance the strain field by increasing
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its polynomial order [3, 4, 6, 8]. The overall objective herein is to employ a mathemati-

cal subspace analysis to determine the optimal count of EAS parameters necessary for the

mitigation of shear locking, while introducing a minimal number of supplementary degrees

of freedom. These extra degrees of freedom have no physical significance beyond granting

increased flexibility to the strain field. Furthermore, sensible contemplation is important to

ensure the minimal inclusion of degrees of freedom, a process that involves intricacies and

therefore potential cost detriments.

The intricacies of finding the “proper number” of degrees of freedom to mitigate locking

arises with the potential occurrence of rank deficiency in the sti↵ness matrix. Rank deficiency

refers to a mathematical property of a matrix where its rank, denoting the maximum count

of linearly independent rows or columns, falls short of its overall count of rows or columns.

In other words, a matrix is rank deficient when it fails to have the full number of independent

dimensions that are theoretically possible for a matrix of its size. In the case of the FEM,

the sti↵ness matrix is often rank deficient in cases where an element’s integration rule is

unable to accommodate the number of degrees of freedom.

Further, the integration rule implemented on an element is an important factor in the

flexibility of the displacement field. Integration rules utilize integration points to partition

an element by defining where the governing equations are to be evaluated, which inform the

element’s strain field. Furthermore, integration rules dictate the locations and weights of the

integration points, influencing the accuracy and representation of strain behavior throughout

the element’s domain. Shear locking often occurs in thin structures with higher numbers of

integration points, due to the “over-sampling” of the strain field. Over-sampling entails the

addition of an excess number of integration points beyond the minimum required to ade-

quately represent the solution. In contrast, rank deficiency arises with an “under-sampling”,

where there are not enough integration points to adequately represent the solution.

Evaluation of the literature reveals formulations that provide locking mitigation, however

introduce rank deficiency due to the under-sampling of the sti↵ness matrix. For example,
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in reduced integration (RI) and selective-reduced integration (SRI) [7, 16, 25, 42, 43], terms

within the sti↵ness matrix are under-sampled as a way to “relax” the elements such that

locking is mitigated. However, the presence rank deficiency and spurious modes under bend-

ing dominated deformation, causes need for hourglass control [33, 38, 42]. Hourglass control

requires stability parameters developed through testing and assumptions to provide the so-

lution stability. To help mitigate locking without risk of rank deficiency or the need for

stabilizing factors, the basis functions themselves must be reworked in order to allow for

higher order interpolation and therefore better handle locking-prone circumstances.

Hughes et al. have investigated isogeometric analysis (IGA) with NURBS [18] to increase

the polynomial order of basis functions. While these methods increase the polynomial order

of the basis functions, and work to better align CAD geometries to FEA geometries, it has

been shown to not mitigate locking [28]. Thus, IGA must be combined with other methods

to alleviate locking [4, 6]. This implies that increasing the polynomial order of the basis

functions does not o↵er a definitive resolution, so further exploration is required.

1.3 Volumetric Locking

Volumetric locking emerges in situations where the material’s behavior is either incom-

pressible or exhibits near-incompressibility. This phenomenon occurs due to the imposed

requirement that deformation at the integration points remains isochoric or nearly so, con-

sequently leading to an excessive constraint on the element’s overall deformation behavior.

It is noteworthy that volumetric locking is better-known and understood, as compared to

shear locking. Increasing the number of integration points increases the isochoric constraint

in the presence of incompressible material behavior, and therefore increases the volumet-

ric locking potential. Conversely, employing too few integration points leads to a state of

“under-integration,” a condition characterized by an inadequate number of integration points

to su�ciently capture the true behavior of the simulation. This can lead to a deficiency in
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the rank of the element’s sti↵ness matrix that decreases the accuracy and stability of the

numerical solution.

As an attempt to mitigate volumetric locking, some methods employ additional degrees

of freedom, as in EAS methods [6, 7, 19, 31, 32]. However, if too many degrees of freedom

are added, this brings the element into a rank-deficient state that gives way to zero-energy

modes. Striking the balance between an appropriate number of integration points, the nature

of the material, and the specific element formulation is an essential consideration avoiding

volumetric locking and rank deficiency.

1.4 The Extended-Stencil Finite Element Method

As with the conventional FEM, the extended-stencil FEM (ESFEM) discretizes the problem

domain into non-overlapping elements, each associated with a set of nodes. These nodes hold

displacement degrees of freedom, and are associated with corresponding shape functions. In

fact, ESFEM meshes can be, and within this work are, identical to CFEM meshes consisting

of quasi-linear elements. However, the essence of the ESFEM is that it allows typically quasi-

linear elements of the CFEM to receive nodal data from adjacent elements. This nodal data

is then utilized to formulate shape functions via polynomial fitting.

As a result of the augmented nodal data available to an element, the polynomial fit

allows for higher-order interpolation of the displacement solution. Moreover, through ex-

perimentation, the ESFEM displays favorable locking mitigation capabilities. From what

has been gleaned from literature and experimentation, the ESFEM’s locking mitigation ten-

dencies stem from the implementation of full integration, in combination with a prudent

increase in the degrees of freedom associated with the system, if any increase is to take

place. Consider a problem subject to a pure bending load (i.e. a cantilever beam with an

end moment). The exact displacement solution for pure bending, in the context of linear

elasticity, is quadratic. Now, analyzing a hex-8 element in the context of the CFEM, the
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shape functions are all quasi-linear. Therefore, under pure bending, the linear functions are

not capable of representing a quadratic function fully. Additionally, it was shown that when

distortion is introduced, hex-27 meshes may result in the presence of shear and/or volumetric

locking. This is where the ESFEM is demonstrating potential value, giving higher prospects

of locking mitigation by increasing an element’s nodal dependencies. Moreover, it will be

shown that all this is achieved without the need for artificial stability treatments, such as

hourglass sti↵ness.

1.5 ESFEM: Novelty & Significance

The novelty in the ESFEM stems from the di↵erence in the shape functions. The shape

functions in the conventional finite element method are defined based on the element type

(i.e. hex-8 versus hex-27). In the ESFEM, the shape functions are obtained by performing

a polynomial fit to the nodal data referenced by an element. Additionally, the ESFEM

elements reference nodal data of other elements to better obtain higher-order polynomial

functions than conventional shape functions provide. The ESFEM methodology can obtain

these higher-order polynomial shape functions using the same conventional FEM mesh.

The main objective of the ESFEM development has been to mitigate shear and volu-

metric locking that often occurs with conventional finite element meshes. As shown in the

numerical examples of Chapter 5, the ESFEM hex-8 and 4-node tetrahedral (tet-4) elements

are capable of converging to the theoretical displacement solution at less refined meshes

than their conventional counterparts. A resulting significance of the ESFEM is the ability

to obtain accurate nodal value results with plate, shell, and beam meshes containing max-

imum aspect ratios greater than 3, and one element through the thickness. By decreasing

the aspect ratio and layers of elements needed for accurate results, time required for mesh

generation decreases. This, balanced with decreased CPU time for smaller meshes, facilitates

improved cost-e↵ectiveness for the ESFEM.

9



Another significant improvement is the ESFEM’s robust handling of mesh distortion.

As discussed in Section 1.1, distortion may reintroduce locking to a hex-27 mesh where its

undistorted counterpart does not exhibit locking. In Chapter 5, the ESFEM elements are

shown to still produce accurate results, even with distorted meshes.

1.6 Outline

In this dissertation, the ESFEM will be presented, explained, and tested rigorously. In

Chapter 2, the CFEM will be summarized to introduce the notational framework that will

then be used to explain the methodology behind the ESFEM. Chapter 3 then gives an in

depth account of existing locking mitigation methods. Chapter 4 provides a full explanation

of the ESFEM with particular emphasis on its performance in relation to locking scenarios.

Then, Chapter 5 will give numerical exploration of the ESFEM to demonstrate its locking

mitigation capabilities. Finally, in Chapter 6, the future of the ESFEM will be discussed to

speculate potential areas of continued exploration.
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Chapter 2

The Conventional Finite Element

Method

This dissertation utilizes the conventional finite element method (CFEM) in accordance with

the description found in [10], implemented in a finite deformation setting. This chapter is

dedicated to a comprehensive explanation of the CFEM, serving to establish a notational

framework and foundation that will be useful in later chapters. Subsequently, Chapter 4

extends the conventional framework via the the extended-stencil finite element method (ES-

FEM), which is the main contribution of this dissertation.

The CFEM is a useful approach for approximating solutions to boundary value problems

(BVPs) that are too complex to solve analytically. The technique involves partitioning a

body into smaller pieces, termed elements, thereby facilitating the development of a practical

solution strategy. These elements consist of a defined arrangement of nodes, which hold

essential information pertaining to material deformation. The integration points, on the

other hand, quantify the material state throughout the body, and facilitate evaluation of the

weak-form integrals over the problem domain.

Within this chapter, finite deformation kinematics are utilized to set up the deformation

gradient tensor, which described the deformation of the body. Moreover, the boundary
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value problem is described for quasi-static loading, and the strong form of the problem is

developed. Subsequently, the weak form problem statement is formulated with a Galerkin

approximation to allow for numerical analysis to solve the unknowns. Elements and their

properties in the CFEM are defined. Further, the numerical integration technique, Gaussian

quadrature, is defined. To conclude the chapter, limitations of the CFEM are discussed.

2.1 The Deformation Gradient Tensor

To establish the formulation of the CFEM within the scope of this dissertation, some elements

of finite-deformation continuum mechanics are needed. This section defines the deformation

gradient denoted as F, which serves as the basis for describing the deformation of a body.

Other, related kinematical quantities are defined as well.

Figure 2.1: Deformation map from the reference configuration to the current configuration.

Consider the initial, or reference, configuration of the body denoted as B0 at time t = 0.
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Through a time sequence of deformations, it transforms into the configuration of the body

B at a subsequent time t > 0, as visually represented in Fig. 2.1. The process involves the

establishment of a deformation map, characterized by the function x (X, t), facilitating the

mapping from the reference configuration B0 to the current configuration B. In this context,

the deformation gradient tensor, F, is defined by Eq. 2.1. This tensor defines the spatial

relationship between infinitesimal material line elements in the reference configuration B0

and their corresponding counterparts in the deformed configuration B, accounting for both

length and orientation changes.

F =
@x

@X
(2.1)

Furthermore, it is recognized that the ratio of volumes between two material volume

elements, one originating from B0 and the other, from B, is governed by the determinant

of the deformation gradient tensor F. This volumetric change, symbolized as J , defines the

change in volume and is expressed through the relationship in Eq. 2.2.

J = det (F) =
volume in B

volume in B0
(2.2)

The utilization of the polar decomposition theorem a↵ords a decomposition of the de-

formation gradient tensor F into pure rotation and pure stretch components, as depicted in

Eq. 2.3. Herein, U and V emerge as positive definite symmetric tensors, while R denotes a

proper orthogonal tensor corresponding to rotations. Specifically, U and V are termed the

right and left stretch tensors, respectively, with R serving as the rotation tensor. Eq. 2.3

then signifies that the overall local deformation described by F can be decomposed into a

sequence involving either a pure stretch followed by a rigid rotation or vice versa.

Right Decomposition F = RU

Left Decomposition F = VR
(2.3)

Furthermore, for the subsequent sections, the left Cauchy-Green tensor, B, is needed as
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defined below:

B = FFT = V2 (2.4)

2.2 A Static Boundary Value Problem

2.2.1 Eulerian Frame of Reference

Figure 2.2: Continuum potato body B with the boundary @B and the subset P ⇢ B

To commence, the scope of this dissertation resides within the domain of solid mechanics,

specifically focusing on scenarios characterized by quasi-static loading. Within the framework

of an Eulerian reference frame, the central interest revolves around a boundary value problem

(BVP) featuring a body in space, designated as B, herein termed a “continuum potato.” Force

equilibrium can be stated as follows. Consider a smaller section, P, encapsulated within B,
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as illustrated in Fig. 2.2. This configuration is then subject to the following:

Z

@P

t (x,n) da+

Z

P

⇢b (x) dv = 0 8 P ⇢ B (2.5)

Eq. 2.5 represents the equilibrium of forces on the smaller continuum potato P, where

t (x,n) is the traction (force per unit current-configuration area) on the boundary @P that has

the unit normal n. Moreover, ⇢ is the density (mass per unit current-configuration volume)

of the material, and b (x) is the body force per unit mass, such as gravity. Manipulating

Eq. 2.5 using the divergence theorem and localization theorem, Eq. 2.5 results in the local

statement

r ·T+ ⇢b = 0 8 x 2 B. (2.6)

Herein, T is the Cauchy stress tensor, related to the traction by Eq. 2.7. Note that n is the

same unit normal vector as defined above.

t = Tn (2.7)

Following the establishment of force equilibrium, a complete statement of the strong form

BVP necessitates a description of boundary conditions (BCs). BCs involve displacement

and traction boundary conditions, which must not overlap one another as shown in Fig. 2.3.

Furthermore, for an isothermal material subject to quasi-static loading, Eqs. 2.8 and 2.9

define the BVP strong form for this dissertation along with that, in the most general case, T

is a local function of the deformation-gradient (F) history up to the current time t. Eq. 2.8

is written in index notation with i and j spanning the values 1, 2, and 3 to represent the

Cartesian coordinate directions in three-dimensional space.

Equilibrium Equation Tij,j + ⇢ bi = 0

�
8 x 2 B (2.8)
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Figure 2.3: Boundaries on the continuum potato split into two sections: one containing
displacement boundary conditions (@uB), and the other the traction boundary conditions
(@tB).

Boundary Conditions

u = u on @uB

t = t on @tB

@uB \ @tB = ;

@uB [ @tB = B

(2.9)

2.2.2 Lagrangian Frame of Reference

In the context of solid mechanics, selection of the Lagrangian frame of reference is motivated

by the necessity to track the trajectories of individual material points as they traverse through

space. Unlike the Eulerian frame of reference in which field quantities are regarded to be

functions of points in space, the Lagrangian frame of reference facilitates the continuous

tracking of specific material points as they experience spatial displacement. Moreover, the

preference for Lagrangian reference frames in solid mechanics flows from the fact that, for
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a solid, the stress response is a function of the deformation history for a particular material

particle. And in FEM, we need the stress response at the integration points (IPs). If the

IPs coincide with fixed material particles for all time, then the calculation of the stress state

via time-integration of complex constitutive models becomes an entirely local process. In

fluid mechanics, on the other hand, the stress state is a function of the local, instantaneous

deformation rate; not of the entire history of the deformation experienced by the material

up to the current time. This is the key distinction between the two reference frames, and

why Lagrangian is favored in solid mechanics.

To commence, consider first the first Piola-Kirchho↵ stress, as defined in Eq. 2.10. Herein,

T symbolizes the Cauchy stress tensor, conventionally used within the Eulerian frame of

reference. Note that J and F are defined in Section 2.1.

P = J TF�1 (2.10)

An equivalent equation of motion within the Lagrangian framework, comparable to the

Eulerian equation defined in Eq. 2.8, can be derived using analogous procedures. In this

context, the derivation centers on the utilization of the reference configuration B0, whose

current configuration is B. The outcome of this derivation is Eq. 2.11, where the indices

i and j span the Cartesian coordinate axes in three-dimensional space. The fundamental

components of this formulation encompass the Piola-Kirchho↵ stress tensor P, the reference

configuration coordinates X, the mass per unit volume of B0 ⇢0, and the body force per unit

mass b. Additionally, p = PN is the Piola traction vector, where N is the unit normal

vector of material surfaces in the reference configuration, upon which the traction is applied.

p is related to the Cauchy traction vector t by Eq. 2.13, wherein da is an infinitesimal area

in the current configuration B, and dA is an infinitesimal area in the reference configuration

B0.

Equilibrium Equation
@Pij

@Xj
+ ⇢0 bi = 0

�
8 X 2 B0 (2.11)
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Boundary Conditions

u = u on @uB0

p = p on @pB0

@uB0 \ @pB0 = ;@uB [ @pB = B

(2.12)

p dA = t da (2.13)

2.3 The Galerkin Approximation

In order to practically solve complex boundary value problems, a transformation is applied to

the strong form boundary value problem (BVP) to develop the corresponding weak form. The

result of this transformation is outlined in Eq. 2.14, wherein the trial solution is represented

by the vector field denoted as u, and the test function is represented by v. It is crucial

to recognize that the the first Piola-Kircho↵ stress, P, depends on the trial solution, u,

through the material’s constitutive relation. The weak form is the basis for powerful and

flexible approximation methods in solid mechanics, the FEM chief among them.

Findu 2 S = {w |wi 2 C
0 (B0) , wi = ui on @uB0} such that:

R
B0

Pij
@vi
@Xj

dV =
R
@pB0

pividA+
R
B0
⇢0bividV

8v 2 V = {w |wi 2 C
0 (B0) , wi = 0on @uB0}

(2.14)

To establish the Galerkin approximation, the construction of a finite element mesh and

the derivation of suitable basis functions are necessary steps in the process of approximating

the solution. The FE mesh is used to generate finite-dimensional subspaces of the trial-

solution and test-function spaces, denoted as Sh ⇢ S and Vh ⇢ V , respectively. The mesh

consists of non-overlapping elements, each of which is associated with a small set of nodes.

The nodes carry the unknowns of the approximation problem as well as basis functions.

For the CFEM, the basis functions �a are defined at each node a, and satisfy the following

properties:
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1. Kronecker Delta Property: �a (xb) = �ab

2. Compact Support: �a 6= 0 only on elements containing node a

3. �a 2 C
0 (B0)

With the foundational principles in place, the formulation of the Galerkin approximation

to the weak form can now be developed. The Galerkin approximation is dependent upon

the definition of approximations to both the trial solution, denoted as uh 2 Sh, and the test

function, represented as vh 2 Vh. These approximations are structured as linear combina-

tions encompassing the set of basis functions �a, as expressed in Equation 2.15, where N

signifies the count of nodes present within the finite element mesh.

uh =
PN

a=1 ua�a (x)

vh =
PN

b=1 vb�b (x)
(2.15)

Subsequently, the set of nodes in the mesh can be broken up into two subsets, A0 and Au,

such that:

• Au represents the subset of nodes on @uB

• Au [ A0 = {1, 2, 3, ..., N}

• Au \ A0 = ;

Utilizing these subsets, along with information known about uh and vh on @uB, Eq. 2.15 can

be written as shown in Eq. 2.16.

uh =
P

a2A0
ua�a (x) +

P
a2Au

ua�a(x)

vh =
P

b2A0
vb�b (x)

(2.16)

This manipulation facilitates a transformation of the weak form, yielding a reformulated
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expression as demonstrated in Eq. 2.17.

Findua, a 2 A0 such that:
R
B0

Pij
@vhi
@Xj

dV =
R
@pB0

piv
h
i dA+

R
B0
⇢0biv

h
i dV

8vb, b 2 A0

(2.17)

The Galerkin approximation for vh is now substituted into the reformulated weak form,

resulting in the residual, as exhibited in Eq. 2.18.

0 =
P

b vibRib =
P

b2A0
vibRib

Rib = 0 =
R
B0

Pij
@�b

@Xj
dV �

R
@pB0

pi�bdA�
R
B0
⇢0bi�bdV 8 b 2 A0

(2.18)

The residual is “assembled” from element contributions, as follows. Consider a domain

⌦M ⇢ B0, representing an element M within the body. This element definition contributes a

corresponding element force vector and sti↵ness matrix. Assuming zero body force, the force

vector, (fia), contibutes to the residual Rib, and the sti↵ness matrix, (kia,rs), is the derivative

of this residual with respect to u
h
rs. This relationship is presented, assuming index notation

form, in Eq. 2.19. Here, NM
a is the shape function on element M for node a. NM

a is related

to the basis functions by �a|elementM = N
M
a

fia =
R
⌦M

Pij
@NM

a
@Xj

dV

kia,rs =
R
⌦M

@Pij

@uh
rs

@NM
a

@Xj
dV

(2.19)

While obtaining fia is straightforward, obtaining @Pij

@uh
rs

in kia,rs requires a chain rule of

operations, as depicted in Eq. 2.20. Here, B is the left Cauchy-Green tensor as is defined in

Section 2.1.
@Pij

@uh
rs

=
@Pij

@Bmn

@Bmn

@uh
rs

(2.20)

By invoking Eq. 2.10, the first term in Eq. 2.20 can be expanded, yielding the expression
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defined in Eq. 2.21.

@Pij

@Bmn
= J

@Ĵ
@Bmn

TiqF
�1
jq + J

@Tiq

@Bmn
F

�1
iq � JTiqF̂

�1
nq F

�1
jm

@Ĵ
@Bmn

=
@ det(F̂)
@Bmn

= @ det(B+I)
@Bmn

= @ det(B)
@Bmn

(2.21)

Here, J = det(F) and Ĵ = det(F̂), wherein F is the deformation gradient of the beginning-

step configuration relative to the global reference configuration, while F̂ corresponds to the

deformation gradient of the end-step configuration relative to the beginning-step configu-

ration. It is noteworthy that the total deformation gradient F is defined as the product

of F̂ and F. Conceptually, it can be defined as the composite outcome of the successive

deformation gradients.

In the FEM, the Newton-Raphson iteration is a mathematical method used to find the

approximate solutions through a step-by-step procedure. During each iteration, the residual

is evaluated to determine if convergence is achieved. The residual is a nonlinear function

of the nodal displacements, so the residual can be linearized by expanding it in a Taylor

series, and truncating the series after the linear term. This linearized residual equation (see

Eq. 2.22) is then solved for the corrections to the nodal degrees of freedom, ujb � u
0
jb, where

u
0
jb is the current “best estimate” to the nodal displacements.

0 = Rib(u
0
jb) +

@Ria

@ujb
|u0

jb

⇥
ujb � u

0
jb

⇤
(2.22)

Let �ujb = ujb � u
0
jb, Rib(u0

jb) = R
0
ib, and

@Ria
@ujb

|u0
jb
= Kia,jb such that the linearized residual

equation takes the form of Eq. 2.23.

K�u = �R0 (2.23)

Expanding upon the given context, the derivative @Ĵ
@Bmn

is defined in Eq. 2.21. Addition-

ally, the expression @Tiq

@Bmn
can be established in terms of the incremental rotation tensor R̂
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and stress values evaluated at a specific integration point. The second term of the right hand

side of Eq. 2.20, with the use of Eq. 2.24, becomes as shown in Eq. 2.25 where �mr is the

Kronecker delta.

Bmn =
NX

s=1

u
h
ms

@N
M
s

@Xk
F

�1
kn (2.24)

@Bmn

@uh
rs

= �mr
@N

M
s

@Xk
F

�1
kn (2.25)

2.4 Elements

Recall that elements in the CFEM are non-overlapping subregions that discretize the problem

domain, and are regular in the sense that they all map from a single parent element. All

elements have a small number of nodes associated with them. Nodes are geometric points,

usually at the vertices of the elements, with which there are associated shape functions

and problem unknowns. In Chapter 5, as part of the numerical exploration, two element

types will be employed: the hexahedral element with eight nodes (hex-8) and the tetrahedral

element with four nodes (tet-4). Within the framework of the CFEM, both of these elements

exhibit quasi-linear shape functions denoted as Nm
↵ , wherein ↵ is the local node number for

element m. From this definition, the basis function for a global node a, on element m, is

given by:

�a|elementm = N
m
↵ (2.26)

To provide a visual representation of the parent element local node ids and integration

points, see Figs. 2.4 and 2.5. For hex-8 elements, the parent element is a cube, while for

tet-4 elements, it is a tetrahedron. The local node coordinates within the parent element are

defined in the (⇠, ⌘, ⇣) coordinate system, ranging from -1 to 1. In the context of the CFEM,

an isoparametric mapping utilizes the shape functions to transform coordinates from the

parent element to the physical element. This transformation is depicted by Eq. 2.27, where

xi (⇠, ⌘, ⇣) is the i
th coordinate in the physical element, corresponding to the point (⇠, ⌘, ⇣)
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Figure 2.4: CFEM hex-8 parent element used in this dissertation for numerical exploration
with nodes and integration points (IP)s labeled. Local node numbers ↵ are labeled 1-8. b
= 1p

3

within the parent element. Additionally, xm
i↵ is the ith coordinate of local node ↵ on element

m, with shape function N
m
↵ .

xi (⇠, ⌘, ⇣) =
nX

↵=1

x
m
i↵N

m
↵ (⇠, ⌘, ⇣) (2.27)

In developing an isoparametric map, the map becomes bijective provided that the element

is not excessively distorted relative to the parent element, and exhibits the following set of

requirements on the shape functions:

• Kronecker Delta Property: Nm
↵ (x�) = �↵�

• Interior Smoothness: N
m
↵ 2 C

1 (⌦m) where ⌦m is the domain containing physical

element m

• Facet Autonomy:
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Figure 2.5: CFEM tet-4 parent element used in this dissertation for numerical exploration
with nodes and integration points (IP)s labeled. Local node numbers ↵ are labeled 1-4. h
= 1

4

1. N
m
↵ 6= 0 only on edges that local node ↵ belongs to

2. The variation of Nm
↵ on a facet depends only on the facet type. For example, if

the facet is a triangle with 3 nodes, Nm
↵ must be linear.

• Partition of Unity:
NX

↵=1

N
m
↵ (⇠, ⌘, ⇣) = 1

• Linear Completeness: Nodal values that are consistent with a linear function produce

exactly the same linear function.

The Kronecker Delta Property is important for two reasons: it facilitates convenient enforce-

ment of displacement boundary conditions, and it also facilitates the isoparametric mapping.

Interior smoothness is not strictly required, but continuity on the whole domain is, and in-

terior smoothness certainly is consistent with that. Facet autonomy is the shape function
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property that guarantees inter-element continuity. Partition of unity of the shape functions

is required for the isoparametric mapping to map the parent to the physical element, and

for the interpolant to be linearly complete in the physical coordinates. And finally, linear

completeness is important to enable convergence as the mesh is refined.

The trial solution is written as a linear combination of the shape functions within each

element, where the nodal values for the element are the coe�cients. This construction shown

in Eq. 2.28 leads to a globally continuous, linearly complete trial solution that supports

convergent approximations under mesh refinement. It is also of importance to mention

that shape functions for commonly used elements, such as the hex-8, are comprehensively

documented in [17].

ui (⇠, ⌘, ⇣) =
NX

↵=1

u
m
i↵N

m
↵ (⇠, ⌘, ⇣) (2.28)

2.5 Gaussian Quadrature

Gaussian quadrature is a widely used numerical integration technique, evaluating the inte-

grand at sample points, and accumulating the weighted results to approximate the integral

value. The approximation is given by Eq. 2.29, where
⇣
⇠̃`, ⌘̃`, ⇣̃`

⌘
is the integration point

(IP) location of IP `, nint is the number of IPs, g
⇣
⇠̃`, ⌘̃`, ⇣̃`

⌘
is a arbitrary integrand, and W`

is the weight of IP `. IP locations and weights of common elements can be found in [17].

Z 1

�1

Z 1

�1

Z 1

�1

g (⇠, ⌘, ⇣) d⇠ d⌘ d⇣ =
nintX

`=1

g

⇣
⇠̃`, ⌘̃`, ⇣̃`

⌘
W` (2.29)

Full integration is a quadrature rule of su�ciently high order that the sti↵ness matrix

is exactly integrated on undistorted elements. Full integration always leads to a full-rank

sti↵ness matrix. And in 3D, a sti↵ness matrix of full-rank has a rank 6 less than the

dimension due to the 6 rigid body modes. For full integration, hex-8 elements require

2x2x2-point Gauss quadrature while tet-4 elements require only 1-point. Full integration

prevents the occurence of zero-energy modes and the need for hourglass sti↵ness. Zero-
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energy modes, also referred to as spurious modes, represent non-physical solutions that have

unresisted deformation. They can have a significant impact on the accuracy and reliability

of the results. It is commonly accepted to mend this problem with the use of an artificial

sti↵ness, termed hourglass sti↵ness, that sti↵ens the element’s response in its zero-energy

modes. An example of this phenomenon is a hex-8 element with one integration point in the

middle, subject to a bending moment. The resulting deformation in the case of a hex-8 is

a trapezoidal prism. However, when the strain is evaluated at the single integration point,

there is zero strain, which results in zero nodal forces.

2.6 Limitations of the CFEM

Standard hex-8 elements are widely used and are often e↵ective in practice, but not for

all problems. Specifically, they are known to exhibit severe locking when the material is

nearly-incompressible, and/or deformation is bending dominated, and the aspect ratio of

the element is large. In addition, locking is not always obvious since a numerical solution is

produced, with little indication that something is wrong.

Tet-4 elements are often used in combination with hex-8 elements in order to facilitate

automatic meshing of complex domains. However, tet-4 elements are more prone to locking

than hex-8 elements are as seen in . And, while the solutions produced by tet-4 elements

provably converge under mesh refinement, the error is often unacceptably large for practical-

size meshes.

In Chapter 3, the focus shifts towards exploring various strategies designed to mitigate

locking phenomena. By addressing the issue of locking, these methods aim to expand the

utility of the finite element method to a broader range of problems involving complex ge-

ometries, thin structures subjected to bending, and nearly-incompressible materials.
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Chapter 3

Locking Mitigation

The primary focus of this dissertation is an investigation of two distinct forms of lock-

ing: shear and volumetric. Shear locking is a common occurrence in the analysis of thin

structures, where the aspect ratio of an element surpasses 3, mainly a↵ecting problems

dominated by bending. Volumetric locking, on the other hand, a↵ects scenarios featuring

nearly-incompressible materials.

This chapter surveys techniques devised to alleviate shear and volumetric locking within

the conventional finite element method. By illuminating the factors contributing to the emer-

gence of locking phenomena in simulations, the aim of this chapter is to provide mitigation

insights. The surveyed methods have been categorized into five main groups: assumed strain,

F-bar, smoothed FEM, multifield mixed variational formulations, and “other” approaches

that do not conform to any of the other groups. Throughout these diverse strategies, re-

searchers have cultivated a theoretical understanding of locking and its potential origins.

As earlier mentioned in Chapter 1, the mathematical comprehension of volumetric lock-

ing is more highly-developed than that of shear locking, thus resulting in more substantial

advancements in devising mitigation strategies. However, recent progress has been made in

attempts to mathematically define shear locking. For example, subspace analyses have been

employed to identify prohibited deformation modes, leading to solutions that increase the
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nullity of matrices associated with incompressibility and the Kirchho↵ hypothesis [6, 8, 4].

This extension of the polynomial order of the strain field serves to mitigate locking. Nonethe-

less, addressing shear locking involves more than merely increasing the polynomial order of

the solution, a point discussed in greater detail within Section 3.6.

3.1 Assumed Strain Methods

The classification termed “assumed strain” encompasses a range of methodologies wherein

the conventional strain-displacement matrix, B (see Eq. 3.5), is replaced with a modified

version based on a specific set of assumptions. In the CFEM, the strain-displacement matrix

relates the displacements at the nodes to the resultant strain at the element’s integration

points. Within this grouping, three distinctive subgroups emerge: enhanced assumed strain

(EAS), reduced integration (RI), and B-bar. Note that the replacement of B directly applies

only to small-deformation problems, in which the IP strains are linearly related to the nodal

displacements. The more generic term “enhanced assumed strain” encompasses general

finite-deformation kinematics.

Finite-deformation kinematics have been discussed in Chapter 2, but small-deformation

allows one to define B in terms of the element basis functions. Consider first the weak form

in the Eulerian reference frame shown in Eq. 3.1.

Find ua, a 2 A0 such that:
R
B
Tijvi,j dv =

R
B
⇢bividv +

R
@tB

vitida

8va, a 2 A0

(3.1)

In this equation, ua is the displacement at node a, A0 is the space of nodal values without

displacement boundary conditions, T is the cauchy stress tensor, ⇢ is the density, b is the

body force, ti is the applied traction force, and va is the test function. The strain, e, and
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the Cauchy stress, T, can be defined as column vectors, as shown in Eq. 3.2.

e =

2

666666666666664

e11

e22

e33

2e23

2e13

2e12

3

777777777777775

, T =

2

666666666666664

T11

T22

T33

T23

T13

T12

3

777777777777775

(3.2)

Now, for small deformations, the strain can be approximated to first order as

eij =
1

2
(ui,j + uj,i) . (3.3)

Thus, using the Galerkin approximation for the displacement in Eq. 2.28, the strain becomes

eij =
1

2

NX

a=1

(uia�a,j + uja�a,i) , (3.4)

where (),j =
@()
@xj

. Define then the formulation of the strain-displacement matrix at node a,

Ba, for small deformations in Eq. 3.5, in terms of the element basis functions at each node

a, �a(x).

Ba =

2

666666666666664

�a,1 0 0

0 �a,2 0

0 0 �a,3

0 �a,3 �a,2

�a,3 0 �a,1

�a,2 �a,1 0

3

777777777777775

(3.5)
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Therefore, the strain can be defined in terms of Ba:

e =
NX

a=1

Baua, ua =

2

66664

u1a

u2a

u3a

3

77775
. (3.6)

In addition, linear elasticity allows the Cauchy stress to relate to the strain using the relation

T = Ce =
NX

a=1

CBaua, (3.7)

where C is a rank-4 modulus tensor that holds material relations. For an isotropic material,

C =

2

666666666666664

�+ 2µ � �

� �+ 2µ � 0

� � �+ 2µ

µ 0 0

0 0 µ 0

0 0 µ

3

777777777777775

. (3.8)

Consider now the integrand on the left-hand side of Eq. 3.1. Recalling the Galerkin

approximation for the test function in Eq. 2.28,

Tijvi,j )
X

b2A0

vT
b B

T
b T (3.9)

)
X

b2A0

vT
b B

T
b

"
NX

a=1

CBaua

#
(3.10)

)
X

b2A0

NX

a=1

vT
b B

T
b CBaua. (3.11)

Plugging in the results for Tijvi,j, along with the Galerkin approximation to the displace-

ment and the test function to the weak form allows the formulation of the residual. From
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the residual, the sti↵ness matrix becomes

Kba =

Z

B

BT
b CBadv 2 R3⇥3 (3.12)

This sti↵ness matrix has been outlined to assist in the explanation of reduced integration

and B-bar methods.

3.1.1 Enhanced Assumed Strain

EAS methods are grounded in the idea that the strain field can be expressed as the sum

of two distinct components. These components encompass the conventional strain field

derived from the local strain-displacement relations at the integration points, alongside an

augmentation that remains independent of the displacement field. The augmented strain

field arises from the introduction of a displacement-like field into the problem, which scales a

modified version of the strain-displacement matrix B. This displacement-field augmentation

is not continuous at the element boundary, and therefore is subject to restrictions. This is

since discontinuous displacement fields do not arbitrarily lead to convergent FE solutions.

The precise count of supplementary degrees of freedom introduced to develop this en-

hancement may vary, demanding thoughtful consideration to attain the desired e↵ect. Con-

sequently, methods may intentionally introduce rank deficiency to mitigate locking issues.

It is seen here that balancing rank deficiency and locking reoccurs regularly in locking mit-

igation methods, as discussed in Section 1.2. Thus, many of these approaches acknowledge

the need to counteract rank deficiency through stabilization strategies [32, 19, 7, 6, 8].

The rank of an element sti↵ness matrix in three dimensions should be 6 less than the

dimension of the matrix to be considered “full rank” for the CFEM. The 6-dimensional

nullspace contains the rigid body modes, and any higher dimension can be influenced by

the number of integration points (IPs). Full rank can always be achieved by increasing

the number of IPs, but doing so can re-introduce locking. Returning to the discussion of
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over-sampling and under-sampling in Section 1.2, under-sampling can lead to rank deficiency

and over-sampling can lead to locking. The methods increasing the number of degrees of

freedom with EAS often results in element sti↵ness matrices that are under-sampled to avoid

locking. Thus, rank deficiency is introduced, and generally this means zero-energy modes will

be present in the solution. To counteract these zero-energy modes, artificial stabilization,

such as hourglass sti↵ness, must be added to the method.

The methodology described in [32] introduces hourglass force components to the internal

forces of the element, e↵ectively employing stabilization techniques. Additionally, [19] delves

into the establishment of sets of orthogonality conditions that must be satisfied by the

displacement gradient. The fulfillment of these conditions mitigates the necessity for external

stabilization, such as hourglass sti↵ness. Moreover, [7] combines multiple techniques to

formulate an axisymmetric solid-shell element. In this work, EAS is harnessed to counteract

volumetric locking, Selective Reduced Integration (SRI) is used to alleviate shear locking,

and B-bar methodology is deployed to mitigate volumetric locking within the hourglass field,

thus providing stabilization.

A recent advancement in the domain of EAS methods, introduced in [31], eliminates the

demand for stabilization by introducing an additional field termed the spatial-displacement

gradient (h-enhancement). The integration of this supplementary field is designed to avoid

zero-energy modes, achieved through coupling it with a Petrov-Galerkin approximation to

produce robust handling of mesh distortion. A notable result of this approach is the in-

evitable unsymmetric element sti↵ness matrices, leading to increased computational cost as

compared to symmetric element sti↵ness matrices.

3.1.2 Reduced Integration

RI techniques utilized for the mitigation of locking aim to eliminate from the integration

points what is colloquially referred to as “parasitic shear” [9]. To achieve this elimination,

RI uses a lesser number of Gaussian IPs, resulting in an under-sampled sti↵ness matrix with
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the intention to mitigate locking. In small-deformations, this involves under-sampling the

sti↵ness matrix defined in Eq. 3.12. The application of RI for locking mitigation often draws

from earlier attempts for volumetric and shear locking mitigation [25, 16, 43, 21].

However, in contemporary contexts, RI is frequently used in the form of SRI. In SRI, the

strain-displacement matrix of Eq. 3.12 is split into its devatoric and dilatational parts by

first defining the dilatational strain:

edil =
1

3

2

666666666666664

e11 + e22 + e33

e11 + e22 + e33

e11 + e22 + e33

0

0

0

3

777777777777775

, (3.13)

The dilatational part of B is defined through edil = Bdilu, and the deviatoric part is then

Bdev = B�Bdil
. (3.14)

With the split of the two parts, the sti↵ness matrix can be redefined to have two terms:

K =

Z

B

⇥
Bdev

⇤T
CBdev

dv +

Z

B

⇥
Bdil

⇤T
CBdil

dv (3.15)

Now, the second term on the right hand side is integrated using one integration point to

selectively reduce the integration of the sti↵ness matrix. In the contemporary texts, SRI is

utilized exclusively to counteract shear locking. In such cases, it is frequently combined with

other methodologies to address volumetric locking [7, 42].
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3.1.3 B-Bar

The B-bar subgroup encompasses methods that revolve around the replacement of the strain-

displacement matrix, B, with an altered matrix, B, featuring an “improved” dilatational

component. See Eq. 3.5 for the definition of B. This enhancement involves decomposing

B into its deviatoric and dilatational components, subsequently selecting a dilatational part

that aligns with specific requirements. Notably, a generalized form of SRI can be derived

from this framework by opting to utilize a solitary integration point at the center to compute

the dilatational contribution [17]. There is, therefore, a duality between selective reduced

integration and the B-bar approach, at least for small deformations and elastic material

behavior.

B-bar methodologies are frequently combined with other approaches to improve their

capabilities in mitigating locking issues [7, 33, 34]. For instance, in [33], the Element-Free

Galerkin Method (EFGM) [2] is coupled with a B-bar technique to mitigate volumetric

locking. Furthermore, as alluded to in Section 3.1.1, [7] incorporates a B-bar approach

alongside EAS and SRI to alleviate volumetric locking within the hourglass field. Given the

potential vulnerability of B-Bar methods to rank deficiency, stabilization measures are often

warranted. Moreover, a recent study by [34] adopts a B-bar method in conjunction with

a mixed formulation, thereby allowing independent strain and displacement interpolations.

Here, B-bar is essential in addressing volumetric locking.

Lastly, the work of [20] draws inspiration from [15], wherein B is computed as an average

value of multiple B matrices across a specified region. While [15] performed this averaging

over a single element, [20] conducts a weighted average of strain-displacement matrices from

multiple elements, as established within the CFEM. These elements used in the average occur

in a small patch such that they are adjacent to one another. Furthermore, this approach

incorporates nodal integration instead of Gaussian quadrature.
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3.2 F-bar Methods

In the original F-bar method, proposed in [11], the computation of the Cauchy stress tensor,

T, involves substituting the deformation gradient, F, with an assumed and adjusted gradi-

ent, denoted as F [27]. However, within the domain of linear elements, where F remains

constant, the original F-bar approach alone fails to e↵ectively address volumetric locking

with nearly-incompressible materials. To overcome this limitation, the F-bar-patch method

was introduced in [27]. This variant modifies F across a group of adjacent elements, thereby

extending the condition of isochoric deformation to encompass a group of elements instead

of being applied to each individual element. The choice of the count of elements forming a

patch introduces di�culties into the implementation of this technique.

Observations indicate that increasing the number of elements constituting the patch

increases the flexibility of the mesh. This increased flexibility may potentially lead to de-

formations exceeding theoretical predictions. Conversely, a reduction in the element count

within the patch results in diminished flexibility, thereby impeding the e↵ective alleviation

of locking. Thus, achieving a balance in determining the optimal count of elements within

a patch becomes paramount. Striking this balance is necessary to su�ciently increase mesh

flexibility for the purposes of locking mitigation, while simultaneously avoiding rank defi-

ciency.

3.3 Smoothed FEMs

Smoothed FEM (S-FEM) is an approach that combines the principles of the mesh-free meth-

ods’ weakened weak (W2) formulation with the traditional FEM [40]. This amalgamation

proves particularly e↵ective when applied to triangular elements, benefiting from the ease of

triangular mesh generation (i.e. tet-4 elements). In S-FEM, strains are computed through

integration utilizing a smoothing function that operates over a designated smoothing domain.

The process involves several key steps, as outlined by [40]:
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1. Generation of a Smoothing Domain: A smoothing domain is constructed based on

adjacent elements sharing edges, faces, and/or nodes within the CFEM mesh.

2. Development of Shape Functions: Shape function values are determined at a point

using point interpolation. This formulation avoids the need to explicitly generate

shape functions.

3. Calculation of Smoothed Strain: The smoothed strain is then evaluated in terms of the

shape function values at specific points and the nodal displacements for the elements

within the smoothing domain.

The S-FEM methodology exists in various forms, with the primary distinctions arising

from the nature of the smoothing domains. A summary of several S-FEM variations, along

with their characteristics, is provided below based on [40]:

• Cell-Based S-FEM (CS-FEM)

� smoothing done inside elements

� good for element distortion

� for each element type, there is a di↵erent optimal number of smoothing domains

to discretize the element with

• Edge-Based S-FEM (ES-FEM)

� smoothing domains based on edges of tetrahedral and polyhedral elements

� to mitigate locking, it must be paired with other methods such as F-bar [30]

• Node-Based S-FEM (NS-FEM)

� smoothing domains occur over the nodes

� not fully locking-free for incompressible materials

� paired with selective FS-FEM to mitigate shear and volumetric locking [29]
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• Face-Based S-FEM (FS-FEM)

� smoothing domains are associated with the faces of tetrahedral elements

� paired with NS-FEM to mitigate shear and volumetric locking [29]

• Selective S-FEM

� NS-FEM for volumetric part to avoid volumetric locking

� ES-FEM/FS-FEM for deviatoric part for good accuracy

In essence, S-FEM introduces a novel perspective by integrating mesh-free concepts into the

traditional FEM framework, providing a range of variations tailored to di↵erent scenarios

and locking concerns.

3.4 Multifield Mixed Variational Formulations

Methods falling under the category of multifield mixed variational formulations are rooted in

either the Hellinger-Reissner (HR) or Hu-Washizu (HW) variational principles. Unlike the

CFEM, which is based on a single unknown displacement field, these formulations incorporate

multiple unknown fields, such as displacement and stress. The choice between HR and HW

approaches depends on their underlying principles, as described in [26]. The key distinction

lies in the complementary energy function for HR and the strain energy for HW. HR involves

both displacement and stress fields, rendering it suitable for addressing shear and volumetric

locking [3, 4, 26, 41]. HW encompasses displacement, strains, and stress fields, making it

better suited for nonlinear materials [5, 43].

While HR methods, as in [26], exhibit favorable performance on distorted meshes, not

all HR-based approaches explicitly address the e↵ects of mesh distortion [3, 4]. The consid-

eration of mesh distortion is paramount for thin, bending-dominated problems, where such

distortion is often prevalent. Therefore, understanding and mitigating the impact of mesh
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distortion can greatly enhance the robustness and accuracy of multifield mixed variational

formulations, especially in scenarios where thin structures are involved.

3.5 Other Methods

3.5.1 Generalized Modal Element Method

The Generalized Modal Element Method (GMEM) is an approach that constructs the ele-

ment sti↵ness matrix by decomposing element deformation patterns into generalized modes,

as detailed in [13]. In this method, each generalized mode is defined by a nodal displacement

vectorU, and its corresponding nodal force vector F, which are referred to as modal displace-

ment and force vectors, respectively. Using these generalized modes, the element sti↵ness

matrix is formulated as K = FU�1, where U is a matrix containing modal displacement

vectors U =
⇥
U1

,U2
, . . . ,UN

⇤
, and F contains modal force vectors F =

⇥
F1

,F2
, . . . ,FN

⇤

for N generalized modes.

For an 8-node solid element, GMEM identifies a total of 24 modes, classified into various

categories: 6 rigid body motions, 3 tensile modes, 3 shear modes, 3 torsional modes, 6 bend-

ing modes, and 3 “unphysical” modes. While the first 21 modes are determined using solid

mechanics equations, the unphysical modes are computed using the assumed displacement

method to prevent volumetric locking. The assumed displacement method in [13] redefines

the internal displacement functions to be expressed in terms of the Cartesian coordinate

system, and this enables a more robust handling of mesh distortion. Moreover, the assumed

displacement method ensures that the matrix U remains invertible. In more complex modes,

as the “unphysical” modes commonly are, it is di�cult to find displacement functions that

satisfy the governing equations by solving the problem analytically.

The element sti↵ness matrix produced by GMEM is unsymmetric for any mesh that is not

strictly cuboidal. However, it can be transformed into a symmetric form by using di↵erent
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modal force vectors. The potentially unsymmetric sti↵ness matrix is illustrated below:

Kunsymmetric =

Z

B

BTCE dvU�1 (3.16)

where B is the strain-displacement matrix, C is the elasticity tensor, and E is termed the

modal strain matrix. The modal strain matrix contains column vectors of the modal strain

fields of each of the 24 modes. Now, to produce a symmetric sti↵ness matrix, EU�1 serves

the role of the strain-displacement matrix such that

Ksymmetric =
⇥
UT
⇤�1
Z

B

ETCE dvU�1
. (3.17)

One limitation of an unsymmetric element sti↵ness matrix is its inability to extend to fre-

quency analysis. Therefore, the numerical investigation in [13] examines both the unsymmet-

ric and symmetric versions of the GMEM element sti↵ness matrix formulation. The results

of the study demonstrate e↵ective mitigation of shear and volumetric locking in bending

problems, as well as robustness in the presence of mesh distortion for both cases.

While the unsymmetric case passes the patch test for solids proposed by MacNeal and

Harder [24], the symmetric case does not. Additionally, there is no theoretical analysis

of convergence, such as the F-E-M-Test [35]. The absence of a theoretical consideration

of convergence raises questions about the overall convergence behavior of the symmetric

GMEM element sti↵ness matrix formulation.

3.5.2 Generalized Finite Element Method

The Generalized Finite Element Method (GFEM) builds upon the Partition of Unity Method

(PUM) [1] and extends its capabilities to incorporate more generalized types of functions.

In PUM, overlapping subdomains or “patches” are combined with desirable approximation

functions to approximate solutions across the entire domain. A desirable approximation

function is smooth, continuous, and di↵erentiable on each subdomain. These approximation
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functions are weighted by functions that form a C
0 partition of unity on the domain ⌦,

ensuring continuity across the subdomains. The PUM approximation of the solution is given

by Eq. 3.18, where  (i)
j represents the jth desirable approximation function of patch i, a(i)j are

unknown coe�cients, and the �i are a collection of continuous basis functions. In fact, the

CFEM basis functions form good candidates. A patch ⌦i ⇢ ⌦ contains elements with vertex

Vi such that �i = 1 at Vi and zero on the boundary of the patch. This set of conditions for

�i is what produces a C
0 partition of unity that enforces inter-element continuity.

uPUM =
X

i

�i

 
X

j

a
(i)
j  

(i)
j

!
(3.18)

GFEM further extends PUM by adding another set of functions that can include higher

order shape functions, as shown in Eq. 3.19. Here, nvert represents the number of basis

functions at element vertices, ni is the number of desirable functions on patch i with vertex

Vi, nFEM is the number of additional side and interior nodes used to increase the polynomial

order of the solution, bk are unknown coe�cients, and �̃k are special functions. These special

functions can be higher order polynomials or can even be discontinuous. This formulation

generalizes the FEM by allowing any family of special functions to be included in the solution.

uGFEM =
nvertX

i

�i

 
niX

j

a
(i)
j  

(i)
j

!
+

nFEMX

k

bk�̃k (3.19)

It is worth noting that the addition of nFEM introduces extra degrees of freedom (DOFs),

which can potentially lead to zero-energy modes, as discussed in Chapter 1. This issue

becomes pronounced in GFEM, especially for large deformations of elastoplastic solids. In

an e↵ort to mitigate volumetric locking, [23] utilized GFEM without these extra DOFs. This

approach, proposed in [37], is demonstrated in Eq. 3.20, where L⌦i
j represents the enrichment
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function on patch ⌦i, and uj is the conventional nodal unknown of the CFEM.

uGFEM =
nvertX

i

�i

 
niX

j

L
⌦i
j uj

!
(3.20)

Results in [23] show this method’s potential for robustness against mesh distortion, sta-

ble convergence, and less-severe volumetric locking than the CFEM when handling nearly-

incompressible materials.

3.5.3 Field-Consistent Formulation

The field-consistent formulation introduced in [9] represents an early e↵ort to address locking

in finite element analysis. While it may be superseded by more recent approaches, it provides

valuable insights into the locking phenomenon and its mitigation. This approach focuses

on tackling shear locking by removing the “parasitic” shear terms through the assumption

of plane stress conditions. This adjustment helps alleviate shear locking and allows for

more accurate results with one element through the thickness of thin plate, beam, and shell

structures.

However, this solution introduces a new challenge: volumetric locking. With only one

hexahedral element through the thickness, and the use of quasi-linear shape functions, the

method encounters an issue known as “Poisson’s ratio sti↵ening,” which is referred to as

volumetric locking in this work. This phenomenon is particularly pronounced in problems

involving nearly-incompressible materials. In these cases, linear elements with the assump-

tion of plane stress exhibit constant strain throughout the thickness, leading to volumetric

locking.

To mitigate volumetric locking, the approach in [9] incorporates parabolic bubble func-

tions into the displacement fields. By introducing these additional functions, the strain

distribution can be adjusted to become linear through the element’s thickness, helping to

alleviate volumetric locking. This emphasizes the significance of increasing the polynomial
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order of the displacement field, especially in bending-dominated problems.

Although, it is important to note that increasing the polynomial order of the displacement

is not always an e↵ective solution to mitigate locking alone. As discussed in Section 3.6,

other factors such as the element formulation, choice of integration schemes, and material

behavior also play crucial roles in determining whether locking can be e↵ectively mitigated.

Therefore, while the approach in [9] sheds light on the importance of higher polynomial

order interpolation of the displacement solutions, it also highlights the complex interaction of

various factors that need to be considered when addressing locking in finite element analysis.

3.6 Locking Source Contemplation

As discussed in sections 1.2 and 1.3, expanding the solution subspace represents a sound

strategy for mitigating shear and volumetric locking. The underlying principle is to intro-

duce greater flexibility within the displacement field associated with a given set of nodal

displacements. This flexibility enables the nodal displacements to conform to the constraint

associated with the locking phenomenon. In the case of volumetric locking, this constraint

is the isochoricity in the case of near-incompressibility. This greater flexibility was achieved

in many of the above methods by augmenting the strain field within each element to obtain

additional terms controlled by independent unknowns.

Although, navigating locking mitigation involves a delicate balance between the strategic

increase of the polynomial order of the solution, and the avoidance of rank deficiency. The

excessive use of supplementary degrees of freedom can give way to under-sampling the sti↵-

ness matrix, which in turn may introduce rank deficiency. This domain of balance is where

ESFEM is established, by increasing the polynomial order of the solution primarily through

thoughtful utilization of existing degrees of freedom. Thus, ESFEM may keep the same

Gauss quadrature rules for the CFEM quasi-linear hex-8 element without under-sampling.

However, for the ESFEM tet-4 element, one integration point is so little that the quadrature
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rule may need to change for improved results. ESFEM provides new strategies to address

these complexities by balancing precision and stability in the aim to overcome challenges

provided in locking mitigation without inducing rank deficiency.
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Chapter 4

The Extended-Stencil Finite Element

Method

As discussed in Chapter 3, mitigating locking and at the same time avoiding rank deficiency

requires a novel approach. The ESFEM makes use of nodal data available in a conventional

finite element mesh. This is done by extending the concept of an element to reference nodes

of other elements in the mesh. A more comprehensive explanation of this extension is given

in later sections. By simply modifying an element’s nodal dependencies, the formulation

of the weak form and the Galerkin approximation to the Boundary Value Problem (BVP)

remains the same. However, the basis functions are now moderately high-order polynomials,

and formulated with a polynomial fitting algorithm.

The central aim of this methodology is to mitigate locking by way of these higher-order

polynomial basis functions. A resulting benefit discussed in Chapter 5 is improved accuracy

for the same conventional finite element mesh. Another desired aim is to increase the utility

of the tet-4 element. Currently, tet-4 elements are easily auto-generated; however yield

inaccurate results. The prospect of dependable outcomes from an auto-generated mesh may

decrease time spent developing a “high quality” mesh. Such meshes for thin plates and shells

are conventionally known to be hexahedral elements with 3-5 layers through the thickness
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and aspect ratios less than 3.

4.1 Increasing an Element’s Nodal Dependencies

To modify an element’s nodal dependencies to include those of other elements, two distinct

nodal categories are defined. Within this framework, nodes belonging to an element are

designated as its “primary nodes”, while those of other elements become “secondary nodes.”

There exist circumstances where the demand for more comprehensive data surpasses that

which the mesh provides. A notable example of this scenario is in the context of the example

in Section 1.1. Here, the mesh has only a single element through its thickness and width. In

such scenarios, the lack of nodes distributed across the width inhibits an accurate represen-

tation of anticlastic curvature. The exact solution to this curvature is a quadratic function,

so at least three nodes through the width is needed to represent the exact solution.

To address this limitation, “ghost” secondary nodes are added into the mesh to supple-

ment the nodal data. Ghost nodes are exclusively incorporated as secondary nodes, linked

to elements, and do not have any vertex association with elements in the mesh. This ad-

dition increases the available nodal data, developing increased accuracy in cases where the

conventional mesh representation is insu�cient alone.

4.1.1 Secondary Nodes

In the context of the ESFEM, secondary nodes are explicitly defined as nodes of other

elements. The input given to the ESFEM program is equivalent to the CFEM-compatible

mesh framework. An element’s own nodes assume the role of primary nodes. After the

program obtains the nodal locations and element connectivity, the identification of secondary

nodes may begin. This is achieved through the identification of nodes positioned precisely

one “element edge” away from the current element of interest. In this context, an “element

edge” defines the connection between an element’s vertices. In the context of hex-8 and tet-
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4 elements, this then consists of 2 nodes. To append secondary nodes to an element, each

primary node is considered individually. All edges of the current primary node are considered.

If the other node of the edge belongs to another element, then this node is appended as a

secondary node. Upon completion of this procedure, the resulting configuration provides all

elements with both primary and secondary nodes. This augmented nodal dataset serves as

a foundation to obtain the polynomial basis functions, as explained in Section 4.3.

Pictorially, in Fig. 4.1, the element highlighted is shown with its nodes conforming to

the CFEM arrangement as compared against the incorporation of secondary nodes in the

ESFEM. The ESFEM framework extends the stencil of the element beyond the the high-

lighted element to encompass the vertices of adjacent elements as secondary nodes. Thus, the

highlighted element references 24 nodes instead of 8. In instances where adjacent elements

exist on all faces of the highlighted element, the count increases to 32 nodes (comprising 8

primary nodes and 24 secondary nodes).

4.1.2 Ghost Secondary Nodes

Incorporating secondary nodes using solely the vertices of adjacent elements has limitations

dictated by the mesh. This constraint becomes apparent when considering the mesh of the

example in Section 1.1, which features a single element in two directions and a longitudinal

extension of 10 elements. In this mesh, two nodes are along the width of the beam. Given

that the analytical solution for anticlastic curvature is a quadratic polynomial, a minimum of

three points along an edge is necessary for an accurate representation of this curvature in the

ESFEM. To address this discrepancy, the concept of “ghost” secondary nodes is introduced.

Ghost secondary nodes are strategically introduced into the mesh to augment the avail-

able nodal data. The goal is for these additional nodes to facilitate a more precise represen-

tation of deformation without the need for additional elements. However, the inclusion of

ghost nodes must be executed thoughtfully to avoid rank deficiency. By limiting ghost node

additions to one per node on the external boundary of the mesh, the hex-8 sti↵ness matrix
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Figure 4.1: Comparison of a CFEM hex-8 compared to an ESFEM hex-8 with primary and
secondary nodes.

can remain of full-rank while maintaining 2x2x2 point quadrature. Increasing quadrature to

3x3x3 points would increase computational time, and should be avoided if possible.

Initial attempts involved the addition of ghost nodes until each primary node was con-

nected to at least six other nodes by an edge. These edges could be either an element edge

or a “ghost edge” (connecting the primary node to the ghost node). Although, this approach

led to an under-integrated sti↵ness matrix, and therefore rank deficiency.

So, a more refined strategy was adopted to frugally introduce ghost nodes while still

avoiding rank deficiency. The addition of ghost nodes is done by systematically traversing

each node within the mesh, guided by a specific set of rules outlined below. To facilitate

comprehension, the node under consideration during the traversal will be designated as the
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“planet” node. All nodes connected via edges will be designated as “satellites” to the planet

node. Note that the details of these rules rely on the element type. The prescribed rules for

the addition of ghost nodes are as follows:

1. The planet node must have less than six (hex-8) or eight (tet-4) existing satellites

2. The angle between the vector originating from the planet node to the ghost node

(ghost vector) and the vectors from the planet node to the existing satellites (satellite

vectors) must exceed a predefined threshold (i.e. the existing satellites must be heavily

weighted in one direction relative to the planet node)

3. Each planet node is permitted up to one ghost node

Upon satisfying rule one, and progressing to the second, vectors are generated to define

the directions extending from the planet node to each satellite. Fig. 4.2 depicts the front

top corner primary node of the ESFEM element in Fig. 4.1 as the planet node with its

corresponding satellites. This planet node has four satellite nodes, making it a candidate for

a ghost node. A trial ghost node is deployed to maximize the minimal angle formed between

the trial ghost vector and any of the satellite vectors. This angle is termed here to be the

“maximal minimum angle.” To further clarify, the maximal minimum angle is the minimum

angle between the trial ghost vector and all satellite vector that is the largest. This strategic

selection aims to increase the spatial distribution of nodes neighboring the planet node.

Subsequently, the angle derived from this procedure is evaluated and compared to a

threshold value of 15�. This is the minimum angular separation required between the ghost

vector and the nearest satellite vector. If this threshold is met, one ghost node is placed

along the ghost vector direction at a distance equivalent to the average distance between

all existing satellites and the planet node. If the threshold is not satisfied, meaning an

inadequate angular separation, the introduction of a ghost node is surrendered, and the

next primary node assumes the role of the planet node. The implementation of ghost nodes
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through this approach increases the spatial dispersion of nodes around the planet node. The

intention here is to facilitate a more accurate representation of complex deformations.

Figure 4.2: The front top corner node of the highlighted element of Fig. 4.1 as a planet node
and its satellite nodes before ghost node generation.

To examine the maximal minimum angle in greater detail, consider the planet node

depicted in Fig. 4.2. Then, satellite vectors are established as depicted in Fig. 4.3. The trial

ghost node is strategically positioned in such a manner that the trial ghost vector is the

largest minimum angle possible from any of the satellite vectors. In this mesh, and under

the assumption of zero mesh distortion, the ghost vector would yield an identical minimum
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angle of 135� for the primary nodes positioned both to the right and below the planet node,

as depicted in Fig. 4.3.

Figure 4.3: A ghost node is placed in this configuration if the maximal minimum angle is at
least 15�

The above procedure is iteratively applied to each primary node within the mesh, ensuring

that each node is considered as a planet node only once. In cases where ghost secondary

nodes are introduced, the elements and faces containing the planet node are augmented to

include the ghost node as a secondary node. In the mesh of Fig. 4.1, the repetition of this

process yields the incorporation of ghost nodes as depicted in Fig. 4.4.
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Figure 4.4: Hex-8 mesh with ghost nodes added that adhere to the rules of ghost node
generation described in Section 4.1.2. While it cannot be seen, the ghost nodes exist in a
similar fashion on the back side and bottom of the mesh.

4.2 Polynomial Fitting to a 3D Cloud of Points

To formulate the element interpolant in the ESFEM framework, a polynomial fit to the nodal

values is needed. Consider a set of N points in three-dimensional space (nodes in this case),

nodal coordinates xa, and associated nodal values pa, with subscript a ranging from 1 to N.
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The objective is to fit a complete polynomial expression of the form

f(x) =
nX

i=1

cimi(x) (4.1)

to the nodal data, where mi(x) are monomials in the Cartesian coordinates (x1, x2, x3) and

ci are monomial coe�cients. Since working with complete polynomial interpolants,

n =
(k + 1)(k + 2)(k + 3)

6
(4.2)

where k is the polynomial degree. The aim is to establish a mapping denoted as K, which

establishes a linear relationship between a vector encompassing nodal values and a vector

composed of polynomial coe�cients as

c = Kp. (4.3)

The basic tool used to calculate K is least squares, which seeks to minimize the nodal

interpolation error given by

F =
X

a

(cimia � pa)
2
, (4.4)

where mia = mi(xa), and summation over a repeated monomial index ()i is implied.

It will prove instructive to first consider a straightforward minimization of Eq. 4.4. Min-

imization of this expression with respect to ci yields

Ac = Mp, A = MMT
. (4.5)

The general solution to this equation for c is

c = Kp+ d, K = A+M, (4.6)
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where M is a matrix of mia values,

M =

2

66666666664

m1(x1) m1(x2) m1(x3) ... m1(xN)

m2(x1) m2(x2) m2(x3) ... m2(xN)

m3(x1) m3(x2) m3(x3) ... m3(xN)

... ... ... ... ...

mn(x1) mn(x2) mn(x3) ... mn(xN)

3

77777777775

, (4.7)

and A+ is the Moore-Penrose pseudo-inverse of A. The Moore-Penrose pseudo-inverse is a

mathematical concept that extends the idea of matrix inversion to encompass cases where

the matrix is not square, may be singular, or may not have a unique inverse. In this specific

case, it provides a generalized solution for solving systems of linear equations, even when

a true matrix inverse does not exist. The vector d is an arbitrary member of a particular

subspace of Rn, and will be discussed shortly. For now, it bears emphasis that the choice

d = 0 results in satisfaction of Eq. 4.5.

The n ⇥ N least-squares map K can be reduced through the use of a pseudo-inverse

identity that holds for all matrices:

B+ = (BTB)+B 8 B ) K = MT+
. (4.8)

Note that the transpose and pseudo-inverse operations commute.

We now take up the possible nonuniqueness of the map from nodal values to polynomial

coe�cients in Eq. 4.6, as expressed by the presence of d. Begin by recalling some facts

about linear maps and the Moore-Penrose pseudo-inverse. MT creates the subspace map

MC ! MR and MT+ maps MR ! MC (note that the C and R are swapped due to the
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transpose). The following facts about these vector subspaces can then be defined:

MC ✓ Rn = MC

L
M

?
C

MR ✓ RN = MR

L
M

?
R

dim(MC) = dim(MR)  min(n,N).

(4.9)

M
?
C and M

?
R are referred to as orthogonal complements of MC and MR, respectively. In

the case of equality on the last line of Eq. 4.9, MT is said to be of full rank, otherwise it is

rank deficient. If d 2 M
?
C , then it follows that MTd = 0, and the first of Eq. 4.5 remains

satisfied. On the other hand, if d 2 MC and d 6= 0, then Ad 2 MC and is nonzero, thereby

the solution to Eq. 4.5 is no longer adequate. We conclude then that d can be chosen from

M
?
C arbitrarily.

The best-fit coe�cient vector c is nonunique under the condition that M
?
C 6= ;, which

in turn means that MC 6= Rn. In essence, this condition states that the set of monomials

evaluated at each node does not provide a spanning set of n-vectors for all of Rn. This

is certain to happen when there are not enough nodes for the number of monomials (i.e.

N < n). Although, it may also happen when N � n, if the nodal positions exhibit certain

degeneracies. As an example, consider the case where k � 2, giving n = 10, and the

nodes are placed exclusively on two parallel planes that are normal to the z-direction (see

Fig. 4.5). Even in scenarios where an abundance of nodes is distributed across these planes,

the available nodal values remain inadequate to uniquely establish a variation in the z-

direction beyond a linear relationship.

In scenarios where nonuniqueness frequently arises, it remains vital to establish a proce-

dure to compute a mapping from nodal values to polynomial coe�cients. The overarching

strategy is then to select d by involving the minimization of an auxiliary quadratic function.

The chosen function here is the mean-square-magnitude of the gradient evaluated at the

nodal points, with respect to d. This approach proves advantageous when the dimensional-

ity of the system satisfies n > N .
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Figure 4.5: Two parallel planes normal to the z-direction with nodes placed strictly on each
plane

In Section 4.3, the polynomial fit on each individual face is developed. The analysis

extends to a fitting procedure that involves all nodal values referenced by the element. This

fitting process is subject to a set of constraints dependent on the vector d that help to

achieve higher levels of accuracy in the displacement solution.

4.3 Element Basis Functions

The main distinction between the ESFEM and the CFEM is the element basis functions.

In the CFEM, these functions are defined by predetermined shape functions associated with

the particular element type. In the ESFEM, the basis functions utilize a polynomial fit to a

distribution of points, governed by a set of specific constraints.
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Two distinct categories of constraints are enforced: quadrature consistency and Shi’s F-

Test constraint. The quadrature consistency constraint is imperative to maintain alignment

with the exact weak form, ensuring a consistent mathematical formulation. Shi’s F-Test

constraint guarantees convergence in accordance with the F-E-M-Test as introduced by Shi

[35]. The F-E-M-Test is considerd a practical implementation of Stummel’s Generalized

Patch Test [36].

To enforce these constraints, polynomial expressions are developed for each individual

face of the element. These polynomials are determined through a polynomial fitting process

that depends on the nodal values attributed to the primary and secondary nodes of the

respective face. The primary and secondary nodes of a face are depicted in Fig. 4.6.

The following sections provide comprehensive explanations, including both the method-

ology behind the polynomial face fitting process, and the development of the element basis

functions. The amalgamation of these features is a crucial aspect of the ESFEM framework,

contributing to its novel approach and capabilities.

4.3.1 Polynomial Fit to Nodal Values

In this section, a generalized approach for polynomial fitting is developed, applicable to

both the polynomial fitting process for the face polynomials and the formulation of element

basis functions. In the context of the ESFEM, the number of available primary and sec-

ondary nodes is often substantially fewer than the count of polynomial coe�cients. As a

result, this approach encounters complexity in the three-dimensional polynomial fit to an

underdetermined system of points. This fitting leads to a nonunique solution.

While the polynomial fitting process is straightforward when the size of the point cloud

surpasses the number of coe�cients in the polynomial, this is not the case within the ES-

FEM. Notably, the polynomial being determined is a moderately high-order polynomial. A

5th order polynomial is used throughout the numerical examples in Chapter 5, and is char-

acterized by 56 coe�cients. However, each individual face of a hex-8 element references at
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most 20 primary and secondary nodes.

Consider the mesh depicted in Fig. 4.6, where the face between elements 1 and 2 features

16 associated nodes. In this configuration, a challenge arises: a unique solution cannot be

obtained, and the task of determining the lowest order polynomial solution that minimizes

oscillations becomes di�cult. This predicament may lead to the generation of polynomial

coe�cient values of considerable magnitude, inevitably resulting in inaccurate results.

= face-primary nodes

= face-secondary nodes
all must belong to both element 1 and element 2

1

2

1

2

Figure 4.6: Face-secondary and primary nodes of the face that is shared between elements 1
and 2
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Consider Eq. 4.10,

p 2 RN
, c 2 Rn

, (4.10)

where the nodal values attributed to the associated primary and secondary nodes are orga-

nized within the vector p, such that N denotes the total count of primary and secondary

nodes for the given object (face or element). The vector of polynomial coe�cients is rep-

resented by c, with n denoting the number of monomials encompassed within a complete

polynomial.

Furthermore, define the matrix M to be that which is given in Eq. 4.7. Then, the nodal

values p for a given c is represented by MTc. Also define the inner product < ·, · > on Rn

by

< c,d >= cTMMTd = p · q, (4.11)

where MMT is positive semi-definite and

p = MTc, q = MTd. (4.12)

Then, the Gram-Schmidt orthogonalization process is utilized on the identity tensor

I 2 Rn⇥n with the inner product defined by Eq. 4.11. The outcome is B 2 Rn⇥m in the

form:

B = [b1,b2, . . .bm], (4.13)

where bi represents the orthonormal basis vectors of the subspace Rn containing c’s that

produce nonzero values at the nodes. Thus, the columns of B span the subset V ⇢ Rn,

where c 2 V .

Now, define the subspace V?, wherein the c 2 V? yield zero values at the nodes. Referring

to Eq. 4.9, it is evident the relationship Rn = V � V? holds, as V and V? are orthogonal

complements.

Now, let the subspace W ⇢ RN define the sets of nonzero nodal values p,q 2 W . Thus,
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MT maps V ! W . Then suppose c,d 2 V and < c,d > = 0. Moreover, let p = MTc and

q = MTd. Then,

p · q = cTMTMd

=< c,d > (4.14)

= 0,

and B generates an orthonormal basis of W , under the inner product in Eq. 4.11, by way

of MT . To elaborate further, it can be specified that the columns of MTB constitute an

orthonormal basis for W with respect to the inner product < ·, · >. Projection operators

are as outlined below:

MTB(MTB)T = MTBBTM projectsRn ontoW

BBTMMT projectsRn ontoV

I�BBTMMT projectsRn ontoV?

It is imperative to note that MT maps V? ! ;. More specifically, V? is the nullspace of

MT .

Now, suppose the following:

c = Ba, a 2 Rm

p = BMTa,
(4.15)

such that a contains the coe�cients in the orthonormal basis. Taking into account the

orthonormality of the columns of B with respect to the inner product defined in Eq. 4.11,

the following is presented. Begin with the relation

BTMMTB = I 2 Rm⇥m
. (4.16)
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) BTMp = BTMBMTa

= BTMMTBa

= Ia

= a

) a = BTMp (4.17)

) c = BBTMp (4.18)

K = BBTM (4.19)

In the above statement, the resulting K is a mapping from nodal values to polynomial

coe�cients that minimizes error at the nodes and produces linear exactness. However,

it is crucial to note that this map does not reflect any constraints. Thus, the matrix K

described above serves as the appropriate mapping for the development of the polynomial fit

on the faces. Although, for the element interpolants within the ESFEM framework, further

elaboration and e↵ort are required.

Let x 2 Rn, and thus the projection under the inner product defined in Eq. 4.11 of x

onto V be defined as x 2 V :

x =
mX

i=1

< bi,x > bi, (4.20)

where bi is the i
th column of B. Hence, we can conclude that

x =
mX

i=1

(biMMTx)bi (4.21)

) xl = [BjiMjaMkaxk]Bli

= BliBjiMjaMkaxk
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) x = BBTMMTx (4.22)

Given the relationship of Eq. 4.22, it is now possible to demonstrate that x � x has a zero

projection onto subspace V :

BBTMMT (x� x) = x�BBTMMT [BBTMMTx]

= x�B[⇠⇠⇠⇠⇠⇠⇠:I,Eq. 4.16
BTMMTB]BTMMTx

= x�BBTMMTx

= x� x

= 0

Subsequently, let P = I�BBTMMT be the projection from Rn onto V?, and the matrix

D 2 Rn⇥n be the mean square gradient on the element:

D =

Z

⌦

rm(x) ·rm(x) dv (4.23)

It becomes feasible to derive an orthonormal basis for V? by use of the Gram-Schmidt

orthogonalization process on the matrix P. It is noteworthy that this instance of Gram-

Schmidt employs the inner product, < ·, · >D defined in Eq. 4.24, to yield B 2 Rn⇥m, whose

columns are an orthonormal basis of V? under < ·, · >D.

< c,d >D= cTDd (4.24)

Recall that the desired outcome of the polynomial fit is the establishment of a mapping

denoted by K, which maps the nodal values p to the polynomial coe�cients c. In essence,

the objective is to obtain a matrix K 2 Rn⇥N that aligns with the formulation presented in

Eq. 4.25:

c = Kp. (4.25)
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In Eq. 4.19, no constraints were considered in its formulation. The following discussion

outlines the approach taken to enforce the constraints of the form Gc = Hp.

Drawing inspiration from the utilization of Eq. 4.6 and the insights regarding orthogonal

complements in Section 4.2, the vector c is partitioned into two distinct components:

c = ĉ+ c, (4.26)

where ĉ 2 V is chosen to minimize the sum of squared errors associated with nodal values, as

presented in Eq. 4.4. c 2 V? is determined through the utilization of the matrix D, wherein

cTDc is minimized. This minimization process is conducted while enforcing constraints of

the typeGc = Hp, a process facilitated by the adjustment of any residual degrees of freedom

that remain within the polynomial fit after the minimization of nodal errors. Due to the

typically underdetermined nature of the system in the ESFEM framework, there is a certain

degree of “residual freedom” that can be harnessed to satisfy these constraints.

Stemming from the partition of c, the concept of the map K is partitioned into K̂ and

K. These two map nodal values to polynomial coe�cients ĉ and c, respectively. Eq. 4.25

then becomes the following:

c = K̂p+Kp (4.27)

Given that c 2 V?, c is zero at the nodes, and ĉ 2 V exhibits strictly nonzero values

at the nodes. As a result, the matrix K̂ in Eq. 4.28 takes care of the mapping process

that involves minimizing nodal errors and produces linear exactness, while K manages the

mapping process related to the enforcement of constraints.

K̂ = BBTM (4.28)

Now, proceed with the process of enforcing the constraint Gc = Hp using the combined
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e↵orts of K and minimizing < c, c >D. Begin with

G(ĉ+ c) = Hp. (4.29)

Through rearrangement, and inclusion of ĉ = K̂p, H is defined:

H = H�GK̂ (4.30)

Now, obtain B using the Gram-Schmidt orthogonalization process on the matrix P, as

defined to be the projection of Rn onto V?, with inner product < ·, · >D. Given B, along

with c = Ba, the constraints are defined as follows:

Ga = Hp, G ⌘ GB (4.31)

Utilizing the Moore-Penrose pseudo-inverse to solve for a, one obtains Eq. 4.32 where N =

I�G
+
G and t is an arbitrary vector. If G is invertible, then N is just a zero matrix.

a = G
+
Hp+Nt (4.32)

Then, define the objective function for minimization to be

F =< c, c >D= a · a. (4.33)

By substituting in the expression from Eq. 4.32, then minimizing this modified objective

function with respect to the vector t, the following results are obtained:

a = G
+
Hp+NN

T
G

+
Hp (4.34)

= (I�NN
T
)G

+
Hp (4.35)
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Finally, using c = Ba along with c = Kp, the resulting map is formed:

K = B(I�NN
T
)G

+
H (4.36)

With the polynomial fit established and the constraints Gc = Hp in mind, the mapping

matrix K can be determined, which leads to the formulation of the element interpolant:

�
e(x) =

nX

i=1

cimi(x)

=
nX

i=1

NX

a=1

Kiapami(x) (4.37)

=
nX

i=1

NX

a=1

(K̂ia +Kia)pami(x),

where the element interpolant is now constructed based on the polynomial fit discussed

above. The next section addresses how to populate the G and H matrices with the specific

constraints required of the ESFEM.

4.3.2 Element Interpolant Constraints

Element interpolant constraints are expressed in the form Gc = Hp and depend on the

existence of “residual freedom.” In the context of a quintic polynomial, characterized by 56

monomial coe�cients, there exist 56 “knobs of freedom” that can be manipulated to achieve

the desired solution.

Consider an element on the interior of a mesh, entirely surrounded by other elements.

This element will have what can is termed a “complete set” of secondary nodes. Then, a

total of 32 nodes are referenced for a hex-8 mesh. Even if the process of minimizing nodal

errors involves the utilization of 32 out of the available 56 degrees of freedom, a surplus of

up to 24 degrees still remains.

The constraints are then utilized to manage this residual freedom. More specifically, up
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to 3 constraints contribute to ensuring quadrature consistency, while an additional 4 (tet-4)

or 6 (hex-8) constraints belong to what is called here, Shi’s F-E-M-Test constraint. These

constraints work together to fine-tune the polynomial fit.

The constraints associated with quadrature consistency ensure consistency with the exact

weak form. This is obtained by guaranteeing the validity of the divergence theorem for the

element interpolant. This correlates to the following equality:

Z

⌦

�
e
,i dv =

Z

@⌦

�
f
ni da 8 i = 1, 2, 3, (4.38)

where �e represents the element interpolant, �f symbolizes the polynomial fit on each face,

and ni denotes the ith component of the normal vector pertaining to the ith face of �f . This

equation fills the first three rows of the matrices G and H.

To follow, Shi’s F-E-M-Test constraint involves a distinct constraint for each face of the

element, ensuring convergence through the F-E-M-Test [35], in the context of non-conforming

elements. The test used for verifying the convergence of this method is known as the F1-Test

[35], which requires

lim
hK!0

|
R
�[�

e
h] ds|

h
3/2
K ||�e

h||1,K1[K2

= 0 (4.39)

across the shared face of two elements, denoted by � = K1 \ K2. Here, hK denotes the

maximum of the diameters of the smallest spheres capable of encompassing the individual

elements K1 and K2. The subscript “h” in Eq. 4.39 denotes the interpolation is dependent

upon the mesh size. Moreover, ||�e
h||1,K1[K2 corresponds to the H

1 norm over the union of

the two elements, defined as:

||�e
h||1,K1[K2 =

Z

K1[K2

|�e
h|2dx+

Z

K1[K2

|r�e
h|2dx. (4.40)

The term [�e
h] denotes the jump between the element interpolants on each individual element,
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evaluated at the shared face �, given by

[�e
h] = �

e,K1
h |� � �

e,K2
h |�. (4.41)

The F-E-M-Test constraint implemented for the ESFEM requires that the mean di↵erence

of �e on each element and �f on each face of said element, �, is zero such that

1
|�|
R
� �

e,K1
h + �

f
h ds = 0

1
|�|
R
� �

e,K2
h + �

f
h ds = 0.

(4.42)

So, beginning with the numerator of Eq. 4.39,

|
Z

�

[�e
h] ds| = |

Z

�

�
e,K1
h � �

e,K2
h ds|

= |
Z

�

�
e,K1
h � �

e,K2
h + �

f
h � �

f
h ds|

= |
Z

�

�
e,K1
h + �

f
h � �

e,K2
h � �

f
h ds|

= |
Z

�
⇠⇠⇠⇠⇠⇠⇠:0,Eq. 4.42
(�e,K1

h + �
f
h)�⇠⇠⇠⇠⇠⇠⇠:0,Eq. 4.42

(�e,K2
h + �

f
h) ds|

) |
Z

�

[�e
h] ds| = 0.

Referring to Eq. 4.39, this gives

|
R
�[�

e
h] ds|

h
3/2
K ||�e
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and exact satisfaction of the F1-Test. This condition contributes to the next 4 or 6 rows of

the matrices G and H for tet-4 and hex-8 elements, respectively.
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Chapter 5

Numerical Exploration of ESFEM

In this chapter, numerical examples are used to evaluate the ESFEM’s accuracy in a variety

of geometries, materials, and boundary conditions. Meshes have all been developed with hex-

8 elements and some with tet-4 elements. All meshes in this chapter have been developed

with Gmsh [12]. Note that all dimensions in the examples are of compatible units. The

di↵erent element types and their short-hand descriptor are listed in Table 5.1.

Descriptor Element Type Formulation Secondary Nodes? Ghost Nodes?
C-8 Hex-8 CFEM ⇥ ⇥
C-4 Tet-4 CFEM ⇥ ⇥
C-27 Hex-27 CFEM ⇥ ⇥

ES-8-N Hex-8 ESFEM ⇥ ⇥
ES-8-S Hex-8 ESFEM X ⇥
ES-8-GS Hex-8 ESFEM X X
ES-4-N Tet-4 ESFEM ⇥ ⇥
ES-4-S Tet-4 ESFEM X ⇥
ES-4-GS Tet-4 ESFEM X X

Table 5.1: Descriptors for the di↵erent element types used in this chapter, along with infor-
mation about the capability for secondary and ghost nodes.

To evaluate the accuracy of a solution, displacement will be one measurement of solu-

tion convergence and accuracy. For problems with a theoretical displacement solution, the
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displacement results will be presented as a normalized displacement such that

normalized displacement =
test results

theoretical solution
. (5.1)

Additionally, an energy norm error is used to measure convergence of stresses for some hex-8

problems. The development of the energy norm error is explained in Section 5.1. Not all

hexahedral problems will undergo this evaluation due to the large number of elements needed

to produce a converged solution with the C-8 mesh.

5.1 Energy Norm Error

The energy norm error of a solution is based on the comparison of a “reference” mesh and

a “test” mesh. The reference mesh is a refined C-8 mesh that has converged, while the test

mesh is a coarser hex-8 mesh. Let the stress of the reference mesh be T̂, and the stress of

the test mesh be T. The energy norm error is shown in Eq. 5.3, where Bi is element i and

D�1 is the inverse of

D =

2
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µ 0 0

0 0 µ 0

0 0 µ
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(5.2)

e =
# ref elemsX

i

Z

Bi

[T� T̂]TD�1[T� T̂]dv (5.3)

The integration is done over the reference mesh. Integration points (IPs) of each element

are given an “IP region,” which partitions a hex-8 parent element into 8 equal cubes. Each

one of these 8 cubes is associated with the IP that exists within it. To calculate the energy
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norm error, the volume of the overlap between the test mesh and reference mesh IP regions

is needed. To obtain these overlapping volumes, the test mesh elements are each divided

into 1000 “microelements” in the parent configuration with a 10x10x10 grid of elements.

The microelements will reference the location of its centroid in the current configuration,

volume in the current configuration, and the stress values of the closest test mesh and

reference mesh IPs. The volume and centroid are calculated in the parent configuration,

and the centroid is mapped to the current configuration using the element’s isoparametric

map. The current configuration volume is estimated with the Jacobian matrix evaluated at

the centroid of the microelement: (parent volume) ⇥ det(Jacobian). The “closest” test and

reference mesh IPs are those closest in distance to the microelement centroid in the current

configuration. With this information, the energy norm error is evaluated as shown in Eq. 5.4,

where wI represents the volume of the microelement in the current configuration, T̂I is the

stress at the closest reference mesh IP, and TI is the stress at the closest test mesh IP.

e =
#microelementsX

I=1

wI [TI � T̂I ]
T
D

�1[TI � T̂I ] (5.4)

5.2 Distortion Parameter

To quantify the distortion in a mesh, a “distortion parameter” (DP) (see Eq. 5.5) is used.

This parameter averages the departure of the determinant of the Jacobian (Jk) of the isopara-

metric transformation at each integration point (IP), k, from its average value over the ele-

ment (Javg). In Eq. 5.5, NIP is the number of integration points. For undistorted elements,

Jk is constant at all element IPs, and therefore the parameter is zero. Since the tet-4 ele-

ments used in this dissertation have only one IP, the DP is always zero for these meshes.

Therefore, DPs are only calculated for the hex-8 and hex-27 meshes.

DP =
1

# elements
⇥

X

# elements

sPNIP
k=1 (Jk � Javg)2PNIP

k=1 (Javg)
2

(5.5)
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5.3 Patch Test

The patch test for the hexahedral elements from [24] is set up with the following displacement

boundary conditions (BCs):

u = 10�3(2x+y+z
2 )

v = 10�3(x+2y+z
2 )

w = 10�3(x+y+2z
2 )

(5.6)

where u is the displacement BC in the x-direction, v in the y-direction, and w in the z-

direction. Moreover, the (x, y, z) values are the Cartesian coordinate locations of the nodes

on the boundary of the system. The theoretical solution of the stresses is

�x = �y = �z = 2000

⌧xy = ⌧yz = ⌧zx = 400.
(5.7)

The tet-4 patch test is inspired by the hexahedral patch test, consisting of a single, o↵-center

interior node that the rest of the mesh is generated around to give a total of 12 elements.

If a patch test produces correct results (in this case, appropriate stresses), then the results

of any problem will converge to the correct solution as the mesh is refined. However, it is

possible that even with passage of the patch test, an element’s rate of convergence may be

too slow for practical use [24]. Thus, a full suite of tests is required to verify an element’s

versatility.

5.3.1 Hex

This patch test passes for C-8, C-27, and ES-8-N with the method as-is. Note that the C-27

patch test is carried about in the same manner, just altered to account for the additional

nodes. For ES-8-S and ES-8-GS, the e↵ect of displacement BCs on the face of an element

changes between the CFEM and ESFEM methods. In the CFEM treatment of displacement

BCs, if all nodes on the face of an element are fixed, then the entire face is fixed. In
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Figure 5.1: Patch test geometry for hex-8 element with displacement BCs in Eq. 5.6. See
Table 5.2 for the nodal coordinates of the internal nodes numbered 1-8. Nodes 9 and 15 are
at (X,Y,Z) = (0,0,0) and (1,1,1), respectively.
Material Properties: E = 106, ⌫ = 0.25

Nodal Coordinates
Node X Y Z
1 0.249 0.342 0.192
2 0.826 0.288 0.288
3 0.850 0.649 0.263
4 0.273 0.750 0.230
5 0.320 0.186 0.643
6 0.677 0.305 0.683
7 0.788 0.693 0.644
8 0.165 0.745 0.702

Table 5.2: Nodal coordinates of internal nodes numbered 1-8 for Fig. 5.1.

contrast, the ESFEM allows for movement within the face due to dependence on secondary

nodes that may not be fixed. In this particular problem, the internal nodes are not fixed,

and thus movement is granted on the face.
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A temporary modification was added to remove secondary nodes on faces where all pri-

mary nodes have a displacement BC in at least one direction. With the secondary nodes

removed from such faces, and therefore from the element, ES-8-S and ES-8-GS then pass the

patch test. The e↵ects of this modification on the flexibility of the mesh should be evaluated

before being implemented permanently. Note that without the modification, the ESFEM

still satisfies the F-E-M-Test [35], guaranteeing its convergence. See Table 5.3 for a summary

of the results.

Descriptor Secondaries on BC Faces? Pass or Fail
C-8 N/A Pass
C-27 N/A Pass

ES-8-N N/A Pass
ES-8-S X Fail
ES-8-GS X Fail
ES-8-S ⇥ Pass
ES-8-GS ⇥ Pass

Table 5.3: Results for the hexahedral patch test.

5.3.2 Tet-4

Here, the C-4 and ES-4-N elements pass as is. In the same manner as the hexahedral

elements, the elements ES-4-S and ES-4-GS do not pass the patch test unless the secondary

nodes are turned o↵ for faces that contain displacement BCs at all nodes of the face. See

Table 5.4 for a summary of the results.

Descriptor Secondaries on BC Faces? Pass or Fail
C-4 N/A Pass

ES-4-N N/A Pass
ES-4-S X Fail
ES-4-GS X Fail
ES-4-S ⇥ Pass
ES-4-GS ⇥ Pass

Table 5.4: Results for the tetrahedral patch test.
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Figure 5.2: Patch test geometry for tet-4 element with displacement BCs in line with Eq. 5.6.
Internal node 9 is at (X,Y,Z) = (0.374,0.467,0.542) while nodes 3 and 5 are at (X,Y,Z) =
(0,0,0) and (1,1,1), respectively.
Material Properties: E = 106, ⌫ = 0.25

5.4 Twisted Beam: E↵ect of Warping

The twisted beam problem has been included to study the e↵ect of warping [24]. The setup

of the problem is illustrated in Fig. 5.3. Properties of the beam are as listed in the caption

and the loading includes nodal forces in the -Y-direction adding up to a magnitude of 1.0

at the Y = 0 and Z = L location on the free end of the beam. The left end at Z = 0 is

fixed, and the beam begins in the warped configuration where the free end is rotated 90�

counter-clockwise about the Z-direction.

The di↵erent mesh discretizations are given an ID in Table 5.5, with L, M, and N cor-

responding to the discretizations illustrated in Figs. 5.4 and 5.5. The “element diameter”

is the diameter of the smallest sphere that can enclose an element. Thus, the maximum

element diameter is the maximum value among all elements in the mesh.
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Figure 5.3: Thin cantilever beam with a beginning state twisted configuration, subject to a
tip force, applied as nodal forces at the nodes along Y = 0 and Z = L.
Material Properties: E = 29⇥ 106, ⌫ = 0.22
Geometrical Properties: L = 12, w = 1.1, t = 0.32
Theoretical Displacement of Node A: -0.005424 in the Y-direction

Mesh ID L M N Max Element Diameter Hex-8 DP
1 6 1 1 2.30001 9.85E-08
2 12 1 2 1.19478 1.51E-05
3 12 2 4 1.06150 8.57E-08
4 24 4 8 5.32473E-01 6.57E-08
5 80 6 10 1.97882E-01 3.98E-08
6 200 6 20 1.00202E-01 2.19E-08

Table 5.5: Mesh discretizations for the twisted beam.

Figure 5.4: Discretization of hexehedral mesh on the twisted beam. In this example, N = 2,
M = 1, and L = 12.
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Figure 5.5: Discretization of tetrahedral mesh on the twisted beam. In this example, N =
2, M = 1, and L = 12.

5.4.1 Normalized Displacement Results

The normalized displacement results are illustrated in Fig. 5.6. The ES-8-GS element is

converged for mesh ID 1, and remains at most 5% greater than the theoretical displacement.

The ES-8-S element needs more refinement than ES-8-GS and converges at mesh ID 3. This

need for additional refinement can be linked to the limited nodal data available with the

ES-8-S element as compared to the ES-8-GS element. As the N and M mesh discretizations

increase from mesh ID 2 to 3, the displacement reaches convergence.

Note that the ES-4-GS element converges faster than C-8, which indicates an improved

utility for the tet-4 element when given ghost secondary nodes. The test for the ES-4-S

element failed to give results for mesh ID 4, and therefore only meshes 1-3 are shown. As

expected, the normalized displacement of ES-4-S approaches the theoretical displacement at

a lesser slope than the ES-4-GS element due to the increased nodal data.

Note that even at mesh ID 6, the C-4 element is not converged to the theoretical solution.

These results indicate that the ES-4-GS, ES-8-S, and ES-8-GS elements all converge to the

theoretical solution at a coarser mesh than the C-8 element. The ES-4-S element does have a

greater slope than the C-8 element, but the failure at mesh ID 4 indicates a need for further

investigation of this element.
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Note the dotted vertical line at mesh ID 2. From mesh ID 1 to 2 the hex-8 DP increases

and from 2 to 3, it decreases. In both jumps, the hex-8 DP of mesh ID 2 is 3 orders of

magnitude greater than mesh IDs 1 and 3 (see Table 5.5). There is a notable variation in

the results at mesh ID 2 that likely relates to this increased DP. However, the ES-8-S and

ES-8-GS elements seem to be una↵ected by this outlier DP. And, if they are a↵ected, it

is minimal. This suggests that the ES-8-S and ES-8-GS elements handle the presence of

distortion well in this problem.

Figure 5.6: Plot of the normalized displacements for the twisted beam problem for di↵erent
mesh discretizations.

5.4.2 Energy Norm Error

The energy norm error explained in Section 5.1 is used to evaluate the accuracy of the stresses

evaluated at the IPs. Fig. 5.7 shows the energy norm error using all hex-8 elements for mesh

IDs 1-4. The energy norm error decreases for the C-8 element. For the Es-8-S and ES-8-GS

elements, the energy norm error increases from mesh ID 1 to 4. Ideally, the energy norm

error would decrease and approach zero at the same time the displacement solution reaches
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the theoretical value.

Figure 5.7: Plot of the energy norm error for the twisted beam problem for di↵erent mesh
discretizations.

5.5 Square Cantilever Beam

A square cantilever beam is included for multiple analyses that compare CFEM elements

to ESFEM elements. Included is an analysis of the sti↵ness matrix eigenvalues, a compar-

ison of CPU time, e↵ects of a nearly-incompressible material, and the evaluation of stress

convergence. Stress convegence is quantified by using the energy norm error in Section 5.1

for the hex-8 elements. All elements listed in Table 5.1 will be used in each test, except for

the eigenvalue analysis and stress convergence. For hex-27 elements, the package LPACK

utilized to calculate the eigenvalues gives an error that stops the run of the problem. For

the stress convergence, only hex-8 elements are considered.

A couple things to note about Table 5.6. The reference mesh to normalize the CPU

time with is mesh ID 7 of the C-8 element. For mesh ID 4 for the ES-4-S element, the

number of zero eigenvalues is marked N/A because the function package used to calculate
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the eigenvalues gave an error. Additionally, only one mesh discretization is given for ES-4-

GS since the more refined meshes would not converge. Looking at mesh ID 1 of the ES-8-S

element, it results in a normalized displacement 1.57. If a problem encounters shear locking,

it will produce smaller values than the theoretical result. So, while not an accurate result as

this discretization, this indicates that shear locking is not present for the ES-8-S element.

Figure 5.8: Thin cantilever beam with a square cross-section, subject to a traction of 103 at
Z = L.
Material Properties: E = 109, ⌫ = 0.3� 0.4999
Geometrical Properties: L = 100, w = 2
Theoretical Displacement at Node A: 1.0 in the Y-direction

5.5.1 Analysis of Eigenvalues

A sti↵ness matrix of full rank in the CFEM has 6 zero eigenvalues for the 6 rigid body

modes. Thus, the rank is 6 less than the dimension of the sti↵ness matrix. In the CFEM, a

rank-deficient sti↵ness matrix with more than 6 zero eigenvalues leads to zero-energy modes.

The maximum number of zero eigenvalues, and the normalized displacements are displayed

in Table 5.6. The number of zero eigenvalues for the ES-8-S, ES-8-GS, ES-4-S, and ES-4-

GS element sti↵ness matrix are all much larger than 6. However, the displacements and

convergence of the ES-8-S, ES-8-GS, and ES-4-S element meshes indicate no evidence of

rank-deficiency. While the element sti↵ness matrices are rank deficient, it is generally the
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Descriptor Mesh ID L M N Number of
Zero

Eigenvalues

Normalized
Displacement
at Node A

Normalized
CPU Time

C-8

1 10 1 1 6 0.09946 0.00038
2 10 2 1 6 0.09980 0.00076
3 20 4 2 6 0.30109 0.00939
4 100 4 4 6 0.92700 0.10460
6 200 4 4 6 0.99340 0.20598
7 300 6 6 6 0.99682 1.00000

ES-8-S

1 10 1 1 18 1.57321 0.00643
2 10 2 1 21 0.83895 0.00855
3 20 4 2 39 0.97955 0.09451
4 100 4 4 36 1.00011 1.37081

ES-8-GS

1 10 1 1 18 0.99012 0.00635
2 10 2 1 21 1.01399 0.01385
3 20 4 2 39 0.99982 0.13595
4 100 4 4 36 1.00206 1.97374

C-27

1 10 1 1 6 0.98406 0.00641
2 10 2 1 6 0.98406 0.01302
3 20 4 2 6 0.98322 0.13263
4 100 4 4 6 0.98281 1.85233
5 200 4 4 6 0.98284 3.68289

C-4

1 10 1 1 6 0.02036 0.00048
2 10 2 1 6 0.00884 0.00094
3 20 4 2 6 0.03014 0.00767
4 100 4 4 6 0.56824 0.19253
5 200 4 4 6 0.75434 0.53284
6 300 6 6 6 0.86745 4.14568

ES-4-S
1 10 1 1 30 0.15642 0.01619
2 10 2 1 49 0.07817 0.02981
3 20 4 2 48 0.22136 0.28563
4 100 4 4 N/A 0.96481 5.44524

ES-4-GS 1 10 1 1 33 0.51247 0.01724

Table 5.6: Results for a thin, square cantilever beam.

case that the global sti↵ness matrix is not rank deficient for the ESFEM.

5.5.2 Comparison of CPU Times

CPU time has been calculated for each run of the problem by adding together the CPU

times of the problem set up and the solution computations. It is notable that each problem
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run will result in di↵erent CPU times for the same mesh. However, the variation is only

a maximum of 10% for the same mesh. In contrast, the variation between di↵erent mesh

discretizations is at least 75%. Thus, only one run is used as a representation of the CPU

time. Since the code based used has not been optimized for speed, the CPU times have been

normalized with the converged C-8 CPU time. See Table 5.6 for the results.

For the same mesh, the normalized CPU times of the ES-8-S and ES-8-GS elements are

10-18 times greater than the C-8 element. However, the ES-8-S and ES-8-GS CPU times at

convergence are 0.46 and 0.031 of the C-8 time at convergence, respectively. This indicates

that while the ESFEM uses more CPU time for the same mesh than the CFEM, the method

may provide a lower CPU time in practice due to a decreased need for mesh refinement.

Comparing ES-8-GS and C-27 results, the discretization of convergence and the CPU

time are close. The normalized CPU times of ES-8-GS elements are less than 7% di↵erent

from the C-27 normalized CPU times of the same mesh. Moreover, both are converged for

the most coarse mesh (ID 1). In fact, the ES-8-GS result for this mesh is only 0.6% di↵erent

from the C-27 result.

Results indicate that use of a C-4 element would be impractical since the CPU time

of the most refine mesh is 4.1 times that of the same C-8 mesh. Although, for the same

tet-4 mesh, the ES-4-S element approaches convergence, with a normalized displacement of

0.96481. The CPU time of this mesh is 5.4 times higher than the most refined C-8 mesh.

While this is a much larger CPU time demand, it must be considered in conjunction with

other factors. One being that for complex geometries, an auto-generated tet-4 mesh could

save an analyst much time as compared to manually generating a “high quality” hex-8 mesh.

5.5.3 Nearly-Incompressible Material E↵ects

To evaluate the ESFEM’s handling of a nearly-incompressible material for this problem, the

Poisson’s ratio is varied from 0.3 to 0.4999. This is all done with distorted meshes. The

distortion is applied as the addition of a random parameter to the Z-coordinate of nodal
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coordinates. Note that the nodal coordinates at either end of the beam are una↵ected by

the distortion. The distortion parameters (DPs) are given for mesh IDs 1-4 in Table 5.7.

Mesh ID Hex-8 DP Hex-27 DP
1 6.27E-03 8.80E-03
2 3.47E-03 5.98E-03
3 2.53E-03 4.31E-03
4 4.37E-03 7.02E-03

Table 5.7: Distortion parameters (DPs) for the hex-8 and hex-27 mesh IDs 1-4.

Plots of the normalized displacement for mesh IDs 1-4 are displayed in Figs. 5.9- 5.12.

The C-8 graph shows a strong presence of shear locking, but the results seem to be una↵ected

by the change in Poisson’s ratio. This is concluded since all of the Poisson’s ratio lines overlap

closely.

The C-27 graph only has mesh IDs 1-3 included for Poisson’s ratio values greater than

0.3 because the solution would not converge. As shown in Section 1.1, the C-27 element

would not result in any forms of locking without distortion. Now, with distortion, there are

clear indicators of shear and volumetric locking. Even the most refined mesh ID 4 does not

converge for the distorted C-27 elements.

The ES-8-S graph depicts the presence of shear and volumetric locking that is only

avoided as the mesh is refined. As mentioned previously, the coarse meshes with only 1

element through the width and thickness do not provide the ES-8-S element with enough

nodal data to produce accurate results. However, the element converges for all Poisson’s ratio

values at mesh ID 4. This indicates that the mesh distortion does not a↵ect the ES-8-S’s

capability to produce accurate results for a nearly-incompressible material.

In the ES-8-GS graph, the solution decreases in accuracy at mesh ID 3. Interestingly,

this is the mesh with the lowest hex-8 DP. This suggests that the presence of distortion

could benefit the accuracy of the ES-8-GS elements. A study of the resulting normalized

displacements by varying the DP would help determine if this was the case.
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Figure 5.9: Comparison of normalized displacements of the square beam problem for varying
Poisson’s ratios in distorted C-8 elements.

Figure 5.10: Comparison of normalized displacements of the square beam problem for varying
Poisson’s ratios in distorted C-27 elements.
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Figure 5.11: Comparison of normalized displacements of the square beam problem for varying
Poisson’s ratios in distorted ES-8-S elements.

Figure 5.12: Comparison of normalized displacements of the square beam problem for varying
Poisson’s ratios in distorted ES-8-GS elements.
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5.5.4 Energy Norm Error: Stress Convergence

The energy norm error described in Section 5.1 is used here to evaluate the convergence of

the stress solution at the integration points (see Fig. 5.13). As expected, the C-8 solution

approaches zero as the mesh is refined, where mesh ID 7 (see Table 5.6) is the reference mesh.

For both the ES-8-S and ES-8-GS elements, the energy norm error remains about the same

as the mesh is refined. Due to the increased CPU times of the ES-8-S and ES-8-GS elements,

the most refined mesh tested was mesh ID 4. Since the polynomial fitting is performed with

an underdetermined system, large oscillations in the solution are possible. Without nodal

data inside of the element to inform the polynomial fit, it is likely that while the nodal

displacements are accurate, the stress solution inside the element remains inaccurate.

A potential remedy for these poor stress convergence results is the addition of a node in

the center of the element. As displayed by the use of ghost nodes, the ESFEM allows the

addition of nodes anywhere in the mesh. With a node at the centroid of the element, the

basis functions may be more likely to avoid oscillations that lead to inaccurate stress results.

Figure 5.13: The convergence of stress for the hex-8 elements.
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5.6 Curved Beam: E↵ect of Slight Irregularities

The curved beam problem has been chosen to test the e↵ect of slight irregularities in a mesh

[24]. The geometry of the problem is illustrated in Fig. 5.14. The material and geometrical

properties are listed in the caption of Fig. 5.14. The loading in this problem is a traction

with magnitude 50 applied to the faces at X = 0 in the -Y-direction. The hex and tet meshes

for the curved beam configuration are illustrated in Figs. 5.15 and 5.16.

Mesh ID L M N Max Element Diameter Hex-8 DP
1 6 1 1 1.13 5.59E-03
2 12 2 2 5.70E-01 9.88E-04
3 24 4 4 2.87E-01 1.75E-04
4 48 6 6 1.46E-01 5.49E-05
5 100 8 6 7.40E-02 2.47E-05
6 200 8 6 4.53E-02 1.75E-05

Table 5.8: Mesh discretizations for the curved beam.

5.6.1 Normalized Displacement Results

The normalized displacement results are illustrated in Fig. 5.17. Both the ES-8-S and ES-8-

GS elements converge to the theoretical displacement at a coarser mesh than C-8. At mesh

ID 2, ES-8-GS is already converged with a normalized displacement of 1.0301, while ES-8-S

converges at mesh ID 3 with a normalized displacement of 1.0263.

The C-4 mesh for this problem is not converged even for the most refined mesh. Addi-

tionally, all other elements approach the theoretical displacement with a larger slope. The

ES-4-S and ES-4-GS problems were only refined to mesh ID 3 due to the impractical time

required to run the problems. While they do not show improvement as compared to C-8

elements, they do show promise to potentially converge at a more coarse mesh than the C-4

elements.
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Figure 5.14: Thin beam with a beginning state curved configuration subject to a tip force
of magnitude 1 applied as a traction magnitude of 50 in the -Y-direction along the faces at
X = 0.
Material Properties: E = 1⇥ 107, ⌫ = 0.25
Geometrical Properties: R = 4.12, w = 0.1, t = 0.2
Theoretical Displacement at Node A: -0.08734 in the Y-direction

5.7 Scordelis-Lo Roof: Singly-Curved Thin Sheet

The Scordelis-Lo Roof problem is an example of a singly-curved thin sheet that is subject

to uniform traction on the top surface in the -Z-direction with magnitude 90 [24]. The

inner radius of the geometry is 25, while the outer radius is 25.25, as illustrated in Fig. 5.18.
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Figure 5.15: Discretization of hexehedral mesh on the twisted beam. In this example, N =
1, M = 1, and L = 6.

Symmetry allows one quarter of the geometry to be meshed, as indicated by the dotted lines.

Mesh ID N M Maximum Element Diameter Hex Aspect Ratio Hex-8 DP
1 4 1 7.64 25.0 7.18E-04
2 8 2 3.82 25.0 1.27E-04
3 16 4 1.91 25.0 2.40E-05
4 24 1 1.30 4.17 1.20E-04
5 24 4 1.28 16.7 9.77E-05
6 36 1 1.18 4.17 2.40E-05

Table 5.9: Mesh discretizations for the Scordelis-Lo roof problem.
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Figure 5.16: Discretization of tetrahedral mesh on the twisted beam. In this example, N =
1, M = 1, and L = 6.

The meshes used in this problem vary in number of elements through the thickness (M),

and in-plane of the roof (N). See Table 5.9 for the varying meshes and their maximum

element diameter. The normalized displacement results is given in Fig. 5.19. None of the

elements converge to the theoretical solution in the meshes used.

Since the aspect ratios exceed the commonly used maximum of 3, it would be valuable

to experiment with aspect ratios closer to 1. Another potential cause of the inaccurate

convergence of the ES-8-S and ES-8-GS elements is the presence of large oscillations in the
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Figure 5.17: Plot of the normalized displacements for the curved beam problem for di↵erent
mesh discretizations.

basis functions. As discussed in Section 5.5.4, adding a node to the centroid of the extended-

stencil elements may reduce the gyrations and therefore produce more accurate results.

The dotted vertical line indicates the maximum element diameter of mesh ID 4. The DP

of mesh ID 4 is an order of magnitude greater than mesh IDs 5 and 6. While the element

diameters for mesh IDs 4 and 5 are close, it was verified that the large jump in solutions

occurs at mesh ID 4. In other problems, a change in DP does not a↵ect the ES-8-S problem

much, but the normalized displacement for mesh ID 4 is 28% less than the result of mesh

ID 3 and 39% less than the result of mesh ID 5. Another potential cause of this jump is

the use of only one element through the thickness. This is considered since mesh ID 6 also

causes a jump in solutions for the ES-8-S element. To evaluate the root cause, it would be

valuable to test the ES-8-S element with varying DP values and number of elements through

the thickness.
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Figure 5.18: A singly-curved surface that is subject to a traction of 90 units force per area in
the -Z-direction. Nodes along X = 0 and Y = L/2 are given to symmetric BCs. The curved
edges are rigid such that the nodes at Y = 0 are fixed in the X and Z-directions.
Material Properties: E = 4.32⇥ 108, ⌫ = 0.0
Geometrical Properties: R = 25, t = 0.25, ✓ = 40�, L = 50
Theoretical Displacement of Node A: -0.3024 in the Z-direction

5.8 Lateral Rectangle: Shear Locking & Distortion Ef-

fects

The lateral rectangle problem has been included to evaluate performance in the presence of

shear locking when considering varying mesh distortion and aspect ratios. The geometry

of this problem involves a square plate, that allows only one quarter of the square to be

meshed due to symmetry (see Fig. 5.20). A uniform traction of 10�4 (property set 1) or

103 (property set 2) is applied across the front surface in the -X-direction, and has simply

supported displacement BCs.
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Figure 5.19: A plot of the Z-direction normalized displacement of the Scordelis-Lo roof at
node A.

5.8.1 Distortion E↵ects

All hexahedral elements are used to compare the e↵ects of distortion in the mesh and the

results are displayed in Figs. 5.21 - 5.24. To indicate the number of elements through the

thickness, the meshes are tagged with a “ T#” in the legend where # is the number of

element layers. The meshes distorted in-plane allow for random nodal perturbations in the

Y and Z direction and are tagged with “ YP” in the legend. The meshes distorted through

the thickness allow for random nodal perturbations in the X direction and are tagged with

“ YT” in the legend. Meshes with no distortion are tagged with “ N” in the legend.

As seen in Section 1.1, the C-27 element (see Fig. 5.22) no longer provides accurate

results for coarse meshes if distortion is introduced. Moreover, the C-27 results indicate a

dependence on the distortion being in-plane vs through the thickness. This is determined

by noticing the grouping of the curves that are tagged with “ YP” vs “ YT.” Distortion

91



Figure 5.20: A rectangular plate with simply supported (SS) BCs, that due to symmetry
allows 1/4 of the plate to be meshed. The bottom and left edges at Y = -1 and Z = -1 where
X = 0 are fixed in the X-direction for the SS BCs while the right and top edges are given
symmetric BCs across the surfaces of Y = 0 and Z = 0. There is a uniform traction of 10�4

(set 1) or 103 (set 2) across the entire front surface of the rectangle in the -X-direction.
Properties Set 1: a = 1.0, t = 0.01, E = 1.7472⇥ 107, ⌫ = 0.3
Properties Set 2: a = 1.0, t = 0.1, E = 109, ⌫ = 0.3
Theoretical Displacement of Node A: -4.06E-06 (Set 1) or -7.10E-04 (Set 2) in the X-direction

through the thickness results in more accurate solutions than distortion in-plane.

The C-8, ES-8-S, and ES-8-GS results do not indicate any strong e↵ects on the normalized

displacement for one form of distortion versus the other. Looking specifically at the ES-8-

GS T1 N results (see Fig. 5.24, the displacements are highly over-estimated as the aspect

ratio decreases. As distortion is added, the accuracy improves. This was also seen in the

square beam problem of Fig. 5.12. It would be valuable to test if the ES-8-GS problem has
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an increased accuracy for distorted meshes, as compared to undistorted meshes.

Figure 5.21: Comparison of normalized displacements of the lateral rectangle problem for
varying aspect ratios in C-8 elements. Note the di↵erent vertical axis scales for the element
as compared to Figs. 5.22 - 5.24.

5.8.2 Aspect Ratio E↵ects

The lateral rectangle problem with property set 2 is used here to evaluate the e↵ects of the

aspect ratio on the results. The normalized results are plotted against the aspect ratio of

undistorted hex-8 meshes ranging from 1.667 to 15. All meshes have six elements through the

thickness and vary the Y-Z plane discretization to vary the aspect ratio. Fig. 5.25 displays

the results for the C-8, ES-8-S, and ES-8-GS elements. Only the first five meshes were used

for the ES-8-S and ES-8-GS elements since the CPU times were 10 times that of the C-8

mesh and therefore not practical.
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Figure 5.22: Comparison of normalized displacements of the lateral rectangle problem for
varying aspect ratios in C-27 elements.

The value converged to by the C-8 element is slightly higher than the theoretical displace-

ment. A horizontal line has been added to indicate this value. This value the C-8 element

converges to is the same normalized displacement that the ES-8-S and ES-8-GS elements

converge to.

The C-8 element results show agreement with convention that an aspect ratio of 3 or

less is preferred. The normalized displacement is at or above 1 for all aspect ratios less

than 3. For the ES-8-S and ES-8-GS elements with an aspect ratio of 15, the normalized

displacements are only 3.6% and 2.6% di↵erent from the converged C-8 solution, respectively.

This indicates the potential for the ESFEM elements to produce accurate results with aspect

ratios much larger than 3.
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Figure 5.23: Comparison of normalized displacements of the lateral rectangle problem for
varying aspect ratios in ES-8-S elements.

5.9 Thick Cylinder: Volumetric Locking E↵ects

The thick cylinder problem is used to evaluate the di↵erent elements as the material ap-

proaches near-incompressibility. This is done by applying an outward pressure of magnitude

1 on the inner surface of the cylinder shown in Fig. 5.26. Due to symmetry, one one quarter

of the cylinder was meshed. This problem was inspired by the thick cylinder problem in [24]

that meshes only 1
36 of the cylinder, but the theoretical results remain the same.

The equation to calculate the theoretical displacement for each value of the Poisson’s

ratio is given in [24] to be

utheory =
(1 + ⌫)pr2

E (R2 � r2)


R

2

x
+ (1� 2⌫)x

�
, (5.8)
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Figure 5.24: Comparison of normalized displacements of the lateral rectangle problem for
varying aspect ratios in ES-8-GS elements.

where ⌫ is the Poisson’s ratio, p is the applied pressure, E is Young’s modulus, r is the inner

radius, R is the outer radius, and x is the radius at which the theoretical displacement is

calculated. In this problem, x = r since node A is at the inner radius. The calculated values

are given in Table 5.10.

Poisson’s Ratio Theoretical Displacement
0.3 4.58250E-03
0.49 5.03993E-03
0.499 5.06025E-03
0.4999 5.06227E-03

Table 5.10: Theoretical displacement of node A as calculated with Eq. 5.8 with x = r =
3, R = 9, E = 103, and ⌫ varying.
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Figure 5.25: Normalized displacement results for varying aspect ratios in the lateral rectangle
problem.

5.9.1 Normalized Displacement Results

The normalized displacement results are illustrated in Fig. 5.27. Both of the elements with

ghost nodes, ES-8-GS and ES-4-GS, overestimate the solution by up to 32.5% and 16.4%, re-

spectively. Interestingly, as the Poisson’s ratio approaches 0.5, the accuracy of these elements

slightly improves. Although, all tet-4 element displacement results have a large decrease in

results as the Poisson’s ratio increases beyond 0.49. This decrease in displacement results

is indicative volumetric locking is present. In addition to the C-8 and C-27 elements, the

ES-8-S element continues to reproduce accurate results as the Poisson’s ratio approaches 0.5.

5.10 Tapered Beam: E↵ect of No Secondary Nodes

To verify the utility of the ES-8-N element, a tapered cantilever beam (see Fig. 5.28) with

a traction of 103 in the Y-direction on the free end is compared to the C-8, ES-8-S, and
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Figure 5.26: A cylinder subject to outward pressure of magnitude 1 on the faces at the inner
radius. The edges at X = 0 and Y = 0 are given symmetric BCs.
Material Properties: E = 103, ⌫ = 0.3� 0.4999
Geometrical Properties: r = 3, R = 9, t = 0.1
Theoretical Displacement of Node A: In the X-direction, see Table 5.10

ES-8-GS elements. The results of the two elements are compared across multiple di↵erent

mesh discretizations, characterized by the maximum element diameter. The varying meshes

are defined in Table 5.11, where N defines the number of elements on an X-Y plane edge,

and M defines the number of elements along the length.

The displacement results at node A are given in Fig. 5.29. The displacement of the
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Figure 5.27: Plot of the normalized displacements for the thick cylinder problem for di↵erent
Poisson’s ratio values.

Figure 5.28: A tapered cantilever beam with a traction of 103 in the Y-direction at Z = 50.
Material Properties: E = 109, ⌫ = 0.3
Geometrical Properties: L = 50, a = 2, b = 10
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Mesh ID N M Maximum Element Diameter Hex-8 DP
1 2 30 7.26 2.83E-03
2 4 60 3.68 5.00E-04
3 6 100 2.45 2.00E-04
4 10 60 1.71 1.55E-04
5 15 100 1.11 6.19E-05

Table 5.11: Mesh discretizations for the tapered beam problem.

ES-8-N element is 10% greater than the result for the C-8 element for mesh ID 1. Ideally,

the results of these two elements would be similar, however this is not the case for coarse

meshes in this problem. As the mesh is refined, the solutions do become much closer. For

mesh ID 2, which is still more coarse than the other meshes, the ES-8-N element results in a

displacement only 2.6% less than the C-8 element. It would be valuable to study further the

coarse mesh results of the ES-8-N element as compared to the C-8 element. However, the

quick convergence of the two graph lines indicates that the two elements give very similar

results for mildly refined meshes. Note additionally that the ES-8-S and ES-8-GS elements

have results close in comparison to the C-8 results.

5.11 Rectangle with Circular Hole: E↵ect of Plasticity

In order to evaluate the ESFEM’s compatibility with plastic deformations, a rectangle with

a circular hole cut out is given a uniform traction pulling in opposite directions along the

Y-axis. Due to symmetry, only one quarter of the problem is meshed, as shown in Fig. 5.30.

For the material model, J2 plasticity is used.

The accuracy of the ESFEM hex-8 elements will be quantitatively compared to a refined

C-8 mesh’s nodal displacement at node A. The refinement of the mesh is described by varying

the number of elements along each edge (N) and through the thickness (M). The maximum

displacements of node A is given in Table 5.12. The ES-8-S element mesh ID 2 results in

a displacement that is only 1% less than the refined C-8 element. This result is achieved

with only one element through the thickness, as opposed to six in mesh ID 3. This result
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Figure 5.29: A plot of the Y-direction displacement of a tapered cantilever beam at node A.

shows good compatibility with the J2 plasticity material model for the ES-8-S element. For

the ES-8-GS element, it does not result in a similar value, with a result 101% greater than

the C-8 mesh ID 3 result. Further research to determine if the addition of ghost nodes is

increasing the solution would be valuable.

Descriptor Mesh ID N M Displacement Hex-8 DP

C-8
1 2 1 -5.21455E-04 7.69E-02
2 8 1 -5.86955E-04 5.45E-03
3 15 6 -5.98895E-04 6.39E-04

ES-8-S
1 2 1 -3.40754E-04 7.69E-02
2 8 1 -5.92027E-04 5.45E-03

ES-8-GS
1 2 1 -3.95670E-04 7.69E-02
2 8 1 -1.20675E-03 5.45E-03

Table 5.12: Maximum displacement of node A in the Y-direction for the rectangular plate
with a hole.
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Figure 5.30: A rectangular plate with a circular hole. Symmetric displacement BCs are given
along the edges where X = 0 and Y = 0. A uniform traction is applied along the faces where
Y = -1 with a magnitude of �20⇥ 103 in the Y-direction.
Material Properties: E = 30⇥ 106, ⌫ = 0.3, hardening modulus = 120⇥ 103

Geometrical Properties: R = 0.25, a = 1, t = 0.1
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Chapter 6

Summary and Future Work

The extended-stencil finite element method (ESFEM) is a novel method that takes a con-

ventional finite element mesh and improves its utility by augmenting an element’s nodal

dependencies. The literature and problems involving distorted hex-27 elements demonstrate

that simply increasing the polynomial order of the element interpolants may not always

provide a locking-free solution. Avoiding locking and rank deficiency seems to require an

“e�cient” use of a problem’s degrees of freedom. This “e�ciency” could be measured by

how many degrees of freedom are needed to produce an accurate solution. In this context,

the ESFEM for hex-8 elements has shown to be more e�cient than the CFEM in Chapter 5.

Future work potential for this method involves further investigation of its capabilities

and applications to di↵erent element forms. This work focused on locking mitigation and

robust handling of distortion in hex-8 and tet-4 elements. There are many other problem

domains in the finite element method that the ESFEM could be tested, such as dynamics.

And many other element formulations to test, including the 20-node hex.

The current ES-8-S and ES-8-GS elements avoid locking and rank deficiency, however

the stress solution at the integration points did not converge as the mesh was refined. The

polynomial fit on the faces will likely always be an underdetermined system. And this is

where the ESFEM has faced the most challenges. The polynomial fitting method itself seems
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to be good, but only if the right set of nodes is referenced by the elements. Ghost nodes

provide the faces with more nodal data outside of the mesh to improve the polynomial fit.

However, there are many more potential ways to add nodes due to the flexibility of ESFEM.

One potential node addition is a centroidal node. The centroidal node would exist as a

primary node at the centroid of the element. This addition may provide more control over

the displacement solution inside of the element. Currently, there are still larger oscillations

in the basis functions for some problems and that can cause inaccurate stress values. The

ESFEM would be of more value if the stresses were accurate and converged to the same

value as a refined conventional hex-8 mesh when the displacement solution converges.

Another option is to apply the ESFEM to other element types. For example, a 20-

node hex element with mid-edge nodes. The presence of these mid-edge nodes allow for an

accurate representation of anticlastic curvature through the thickness of a thin beam without

any node additions. The ESFEM may be applied to any CFEM element type, and may be

applicable to other FEM elements as well.

While results of the ES-4-S and ES-4-GS elements showed potential improvement from

the C-4 element, the ES-4-GS element meshes did not always converge to a solution before the

maximum Newton-Raphson iterations was reached. There is a potential that the addition

of the ghost nodes for the tet-4 element is not ideal. Additionally, only one integration

point in the tet-4 elements poses a risk for rank deficiency when adding ghost nodes. It

would be valuable to test 4-point integration for the ES-4-GS elements to verify only 1-point

integration is not causing the lack of convergence to a solution.

The problems used in Chapter 5 assumed quasi-static loading, so there was no need for

dynamics. Although, dynamics are an important part of many problems, such as airplanes

and cars. Value would come from implementing the ESFEM in a dynamic FEM numerical

example.

The performance of the rectangular plate with a hole problem reveals a need to further

analyze the ESFEM in conjunction with a J2 plasticity material model. Recall that the ES-8-
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GS element resulted in a nodal displacement 101% greater than the more refined C-8 result.

An analysis with more refined meshes would be able to better convey what is happening

with the ES-8-GS element.

The extended-stencil finite element method shows promise for an improved utility of con-

ventional finite element meshes. More numerical examples would assist in the discovery of

potential benefits besides locking mitigation and robust handling of mesh distortion. Addi-

tionally, expanding the method to other element types may improve accuracy past what is

shown for the extended-stencil hex-8 elements.
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