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Abstract

This dissertation delves into the rich intersection of machine learning (ML) and biology, a field

marked by significant progress yet full of opportunities for further breakthroughs. The work pre-

sented here is divided into three main parts. The first two focus on employing ML to investigate

reward-based learning in animals and to study protein-protein interactions within viruses. The third

part shifts focus to explore the development of robust computer vision models, drawing inspiration

from biological insights.

In the first part, we apply the reinforcement learning (RL) framework to gain insights into reward-

based learning in animals. We explore how key neural circuits and neurotransmitter systems,

specifically the prefrontal cortex, ventral striatum, and the dopaminergic pathways, contribute to

the implementation of RL algorithms to learn the association of actions with delayed outcomes,

known as the credit assignment problem. We first identify a distinct pattern of neural activity

in the prefrontal cortical inputs to the ventral striatum: activity that is sequential over time and

selective to a given choice. We then use computational modeling to show how these inputs provide

an effective state representation for the ventral striatum, enabling it to calculate accurate value

signals for each choice at any given time point. This is demonstrated through the implementation

of two neural circuit models of reinforcement learning, where reward prediction error drives learning

either by inducing rapid synaptic plasticity or by altering neural dynamics. Additionally, we test

and confirm our circuit model predictions experimentally through direct manipulation of the input

neurons to the ventral striatum.

In the second part, we conduct two computational studies of SARS-CoV-2 to understand its spike

protein interactions and its implications in viral transmission and immune response evasion. To

achieve this we employ two key computational tools: molecular dynamic simulations and Al-

phaFold2, an advanced deep learning model designed for predicting protein structures. The study

is divided into two main parts. The first part examines the biophysical properties of the SARS-

CoV-2 Omicron variants compared to the wild type and Delta variants, analyzing the spike protein

binding to (i) the ACE2 receptor protein, (ii) antibodies from all known binding regions, and (iii)

the furin binding domain. Our findings indicate that the Omicron variant shows reduced binding
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to the ACE2 receptor, but increased immune evasion, consistent with preliminary observations.

The second part delves deeper into the interactions between the Furin Cleavage Domain (FCD) of

SARS-CoV-2 variants and other coronaviruses with the furin enzyme. Here, we demonstrate that

the Delta variant exhibits the strongest possible binding with the furin enzyme, and we identify

key sequences, both observed and unobserved, that could exhibit similar binding strengths.

In the final part, we explore how integrating biological insights, particularly from the primary

visual cortex area V1, can improve the robustness of Convolutional Neural Networks (CNNs) against

various image corruptions. For this purpose, we utilize VOneNet, a hybrid CNN containing a model

of V1 as the front-end, followed by a standard trainable CNN architecture. We first observe that

different variants of the V1-inspired model exhibit performance trade-offs for different corruptions.

Building on this, we develop a new model using an ensembling technique, which combines multiple

individual models with different V1-inspired variants. This model effectively harnesses the strengths

of each individual model, leading to significant improvements in robustness across all corruption

categories. Further, we demonstrate that knowledge distillation can help compress the knowledge

in the ensemble model into a single, more efficient V1-inspired model. Overall, we demonstrate that

by merging the unique strengths of various neuronal circuits in V1 we can significantly enhance the

robustness of CNNs against a wide array of perturbations.
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CHAPTER 1

Introduction

In today’s world of rapid technological advancements and our deepening understanding of biological

systems, we are witnessing a significant intersection of machine learning (ML) and biology. Over

the past decade, machine learning has showcased remarkable achievements, driven in part by its

emulation of certain computational processes of the human brain. Deep neural networks, inspired

by the brain’s neural architecture, have enabled computers to perform a range of tasks, from driving

vehicles to creating art and music, tackling complex mathematical problems, and even conversing

in a human-like manner. On the flip side, machine learning with its generative capabilities and the

ability to understand complex data and extract hidden patterns has led to significant breakthroughs

in biology, such as solving the complex protein-folding problem and advancing the development of

brain-computer interfaces. Despite these achievements, the intersection of ML and biology still

holds vast, untapped potential.

This dissertation delves into this fascinating interplay between ML and biology, divided into three

main sections. The first two sections focus on the application of ML to enhance our understanding of

reward-based learning in animals and to contribute to the computational study of the SARS-CoV-2

virus. The final section investigates how biological insights, specifically from the primary visual

cortex, can be leveraged to improve the robustness of computer vision models. In this chapter, we

provide a detailed introduction to each section.
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1.1. Part 1: Reinforcement learning in animals

1.1.1. Background and Motivation

Introduction to Reinforcement Learning

Reinforcement Learning (RL) is a machine learning framework that is inspired by behavioral psy-

chology and focuses on how agents learn to make decisions in an environment. It is based on the

concept of agents interacting with an environment, learning optimal behaviors through trial and

error, and adapting their actions based on rewards and punishments. This learning process mimics

how humans and animals learn from their experiences, constantly adjusting their actions to achieve

better outcomes.

Basic Concepts in RL

Agent and Environment: The agent is the decision-maker. The environment includes everything

the agent interacts with.

States: States, denoted by St, represent the agent’s situation or context within the environment

at the current time t.

Actions: Actions, denoted by At, are the decisions an agent makes at time t.

Policy: A policy π(At|St) represents the agent’s probability for selecting action At given the current

state St.

Rewards: Rewards, denoted by Rt, are the feedback from the environment based on the actions

taken by the agent at time t.

Value function: The value function is given by the discounted sum of all future rewards, thus

providing an estimate of how beneficial it is for the agent to be in a given state, or how good an

action is, considering all future rewards. There are two main types of value functions:
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State-value function - The state-value V π
t (s) of a state s under a policy π is the expected cumulative

future reward starting from that state and following policy π:

V π
t (s) = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]
(1.1)

where Eπ denotes the expected value given that the agent follows policy π and γ denotes the rate

at which future rewards are discounted.

Action-value function - The action-value Qπ
t (s, a) is the expected cumulative future reward from

taking an action a in a given starting state s and thereafter following policy π

Qπ
t (s, a) = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s,At = a

]
(1.2)

A typical RL process (Figure 1.1) involves an agent interacting with its environment through a

series of actions. At any given time t, the agent is in a state St, and it takes an action At. As a

consequence of this action, the agent transitions to a new state St+1 and receives reward feedback

Rt+1 from the environment. The goal of the agent is to learn a policy π that maximizes the

cumulative reward (value) over time.

Figure 1.1. RL cycle. Adapted from ”Reinforcement learning: An introduction”
by Richard S. Sutton and Andrew G. Barto, 2018, MIT press, p. 48.

RL Methods
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RL algorithms can be broadly categorized into three main types: policy-based methods, value-

based methods, and actor-critic methods. Each method employs different strategies for learning

the optimal policy to maximize cumulative future rewards.

Value-based method: The objective of value-based learning is to learn the value function for

each state V (s) or state-action pair Q(s, a) in order to derive the optimal policy π(a|s) indirectly.

For example, given the state-value function Q(s, a), the policy π(a|s) is estimated as:

π(a|s) = argmax
a

Q(s, a) (1.3)

Policy-based method: The objective of policy-based methods is to model and learn an optimal

policy π(a|s) directly that maximizes the expected return from each state.

Actor-critic method : A popular class among the policy-based methods is the actor-critic method,

which combines the benefits of both policy-based and value-based approaches. It consists of two

main components: the actor, which is responsible for selecting actions given the current state,

essentially learning the policy π(a|s), and the critic, which evaluates these actions by computing

the value function. The actor aims to learn a policy that optimizes future rewards, while the critic’s

feedback on the actor’s choices is crucial for optimizing the policy.

Reward Prediction Error

In RL, learning is driven by reward prediction errors (RPE), which quantify the discrepancy between

expected future rewards and actual future rewards. This error signal is vital for updating the value

estimates and refining policies. Mathematically, the general form of RPE can be represented as:

RPE = Gt − V (St) (1.4)

where Gt =
∑∞

t=0 γ
tRt+1 represents the actual sum of discounted future rewards received after time

t. This formulation captures the essence of RPE but presents a practical challenge: the experienced

sum of future rewards Gt can only be fully determined at the end of a task.
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Given the sequential and dynamic nature of most RL tasks, waiting until the end to calculate RPE

is impractical for learning purposes. To address this issue, we can use the Bellman formulation of

the value function, which enables estimating future rewards at any point in a task based on current

knowledge. In this formulation, the value function for a given state s (Equation 1.1) is written

recursively as follows:

V π
t (s) = Eπ[Rt+1 + γV π(St+1)|St = s]. (1.5)

Here Rt+1 denotes the immediate reward received after transitioning from state St to state St+1.

This equation enables computing an updated expectation of future rewards in terms of the newly

experienced reward Rt+1. Replacing Gt in the original formulation of RPE (Equation 1.4) with

this updated value function, we obtain the Temporal Difference (TD) RPE:

TD RPE = Rt+1 + γV (St+1)− V (St) (1.6)

The TD RPE measures the difference between the old estimated value of St, V (St), and the new

value estimate, Rt+1 + γV (St+1), after observing the new state St+1 and receiving feedback Rt+1.

It serves as a more practical form of RPE enabling learning at every step of the task.

RL in Continuous State Spaces

In tasks with continuous state spaces, representing value functions and policies becomes challenging

due to the infinite number of possible states. To manage this complexity, basis functions offer a

powerful solution by providing a finite set of features that can approximate the value functions or

policies over the continuous space. These functions can be approximated as a linear combination

of the basis functions or through more complex functions that can be approximated by deep neural

networks (DNNs).

Consider, for example, a set of basis functions ϕi(s). The state-value function can be approximated

linearly as

V (s) ≈
N∑
i=1

wiϕi(s), (1.7)

where wi are the weights and N is the number of basis functions, or non-linearly using DNNs as

V (s) ≈ f(ϕ1(s), ϕ2(s), ..., ϕN (s); θ) (1.8)
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where f represents the DNN with network weights θ. The linear approach is computationally

simple and provides ease of interpretation, whereas DNNs offer the flexibility to approximate highly

complex mapping that would be infeasible to represent with linear models.

Action-value functions and policies can be approximated in a similar manner. The use of basis

functions in representing value functions and policies allows for scalable and efficient learning in

environments with continuous state and action spaces.

RL in Neuroscience

In neuroscience, RL has emerged as an important framework for studying reward-based learning in

animals. It is primarily focused on understanding how the brain learns from rewards and adapts

behavior accordingly. The RL algorithm is believed to be mediated by various neural circuits and

neurotransmitter systems. The nucleus accumbens (NAc), a part of the ventral striatum, plays an

important role in reward-based learning and decision-making [1,2,3,4,5,6,7,8,9,10,11,12,13,14]

and is believed to carry a neural representation of value. This region notably receives glutamatergic

inputs from multiple areas [15,16,17,18,19,20,21,22,23,24,25], including the prefrontal cortex,

which is thought to represent the agent’s state, among other things. Additionally, the NAc receives

dopaminergic projections from the ventral tegmental area (VTA), which are thought to signal

reward prediction errors [26].

A fundamental question in the study of RL within neuroscience is how the brain associates actions

with delayed outcomes (the credit assignment problem). Given the roles of these brain regions, they

are presumed to play a significant part in this mechanism. Yet several questions remain. First, it

is unclear whether the glutamatergic projections to NAc actually convey a representation of the

current decision, which forms the basis for the state representation in this problem. Moreover,

assuming these inputs do reflect the current decision, the task remains to develop a biologically

plausible neural circuit model based on the observed inputs that implement an RL algorithm to

solve the credit assignment problem.
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1.1.2. Contribution

In Chapter 2, we provide both experimental and computational insights on the role of these brain

areas in solving the credit assignment problem. The study involved neural recordings by our

experimental collaborators of the glutamatergic inputs to the NAc in mice performing a probabilistic

reversal learning task. In this task, mice are presented with a choice between two levers: left or

right. Selecting one lever yields a high reward probability of 70%, while choosing the other offers a

low reward probability of 10%. The assignment of high and low reward probabilities to the levers

changes randomly after a random number of trials. The objective for the mice in this task is to

consistently choose the lever with the high reward probability to maximize their overall rewards.

The experiments demonstrate that the glutamatergic inputs from the prefrontal cortical area PL

to NAc (PL-NAc inputs) encode choice-selective sequential activity, i.e., the activity is selective to

a given choice, with neurons firing sequentially in time in a set order. This sequence bridges the

time from making a choice to receiving reward feedback, and continues until the beginning of the

next trial.

Driven by these findings, we aimed to understand how these inputs contribute to solving the credit

assignment problem. Through computational modeling, we find that the distinct choice-selective

and sequential patterns in PL-NAc input activity provide an accurate state representation (temporal

basis functions) necessary to compute the value at any given time. We demonstrated this through

a neural circuit model of reinforcement learning that relies either on synaptic plasticity or neural

dynamics.

Synaptic plasticity model: In this model, the PL-NAc inputs serve as temporal basis functions

fRi (t) and fLi (t) corresponding to the right-choice and left-choice preferring neurons. These inputs

are linearly combined within the NAc to estimate the value of making a left VL(t) or right VR(t)

choice as follows:

VR(t) =

nR∑
i=1

wR
i (t)f

R
i (t)

VL(t) =

nL∑
i=1

wL
i (t)f

L
i (t)

(1.9)
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where the overall estimated value at time t, V (t), is given by the sum over both the left and right

neurons as

V (t) = VR(t) + VL(t) (1.10)

Here, nR and nL are the number of right- and left-preferring choice-selective neurons respectively,

and wR,L
i are the weights between the ith PL neuron and the NAc, which multiply the corresponding

basis functions. Learning in this model occurs in the PL-NAc weights wR,L
i using the TD learning

algorithm. In this algorithm, the weights wR,L
i are adjusted based on the TD RPE signaled by

dopamine neurons, aiming to minimize the TD RPE through the loss function:

LTD(t) = δ(t)2 = (r(t) + γV (t)− V (t−∆))2 (1.11)

where δ(t) represents the TD RPE at time t, r(t) is the reward received at the current time t, and

V (t) and V (t−∆) represent the value estimates at current and previous times, respectively.

The update rule for the synaptic weights, wR,L
i , are then given by gradient descent on the TD loss

function:

∆wR,L
i (t) = −α · dLTD(t)

dwR,L
i

= α · δ(t) · fR,L
i (t)

(1.12)

Therefore, learning in the PL-NAc synapses is driven by the correlation of the dopamine RPE signal

with the PL-NAc input activity. By adjusting the synaptic weights to capture the appropriate value

of each choice, the model learns to solve the task.

Neural dynamics model: In contrast to the synaptic plasticity model, the dopamine error signal

drives the dynamics of a recurrent neural network (RNN), rather than fast synaptic plasticity, to

update the values and corresponding selection of actions. The initial learning of the neural network’s

synaptic weights is based on an actor-critic reinforcement method [27], enabling the model to learn

the dynamics of the task. However, once the weights are learned initially, the synaptic weights

remain fixed during the performance of the task, with the dopamine RPE serving only to alter

neural dynamics.

8



Similar to the synaptic plasticity model, the input PL-NAc activity serves as the temporal basis

functions for value computation. However, in this case, the temporal basis function are non-linearly

combined within the NAc to generate value using a recurrent neural network (RNN):

V (St; θv) = g(fR1 (t), fR2 (t), ..., fRnR
(t), fL1 (t), f

L
2 (t), ..., f

L
nL

(t); θv), (1.13)

where g represents the RNN with network weights θv. This forms the critic network. Similar to

the synaptic plasticity model, the critic parameters θv are updated to accurately learn the value

function by minimizing the TD loss:

∆θv(t) = −αv · ∇θvLTD(t; θv)

= αv · δ(t) · ∇θvV (St; θv),
(1.14)

where αv is the learning rate for the critic.

Unlike the synaptic plasticity model, which leverages a value-based method, this model adopts an

actor-critic framework and thus incorporates both an actor and a critic network. The actor network

models the policy using an RNN with network weights θπ.

The actor’s objective is to maximize the expected future returns J(t; θπ) of the policy π parame-

terized by θπ, defined as:

J(t; θπ) = Eπθπ
[Gt] (1.15)

where Gt is the cumulative sum of rewards starting from time step t.

The gradient of J(t; θπ) with respect to the policy parameters θπ can be computed using the policy

gradient theorem [28]:

∇θπJ(t; θπ) = Eπθπ
[Gt · ∇θπ log π(At|St; θπ)]. (1.16)

Since Gt represents the cumulative rewards received from choosing action At in state St in the

above equation, it can be replaced by Q(St, At):

∇θπJ(t; θπ) = Eπθπ
[Q(St, At) · ∇θπ log π(At|St; θπ)]. (1.17)
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However, directly using Q(St, At) in Equation 1.17 can lead to high variance in the gradient esti-

mates, particularly in environments with stochastic dynamics or rewards, potentially resulting in

slow and unstable learning. To address this, Q(St, At) can be replaced with the ”advantage func-

tion” A(St, At) = Q(St, At) − V (St). This function measures the relative benefit of taking action

At in state St compared to the average value of the state. By doing so, it reduces the variance in

the gradient estimates without altering the expected gradient, since the value of the state is not

dependent on the policy parameters.

The advantage function can be closely approximated by the TD RPE δ(t), since Q(St, At) can

be approximated by r(t) + γV (St+1). Substituting Q(St, At) with the TD RPE in Equation 1.17,

the gradient of the expected future returns J(t; θπ) with respect to the policy parameters θπ is

represented as:

∇θπJ(t; θπ) = Eπθπ
[δ(t) · ∇θπ log π(At|St; θπ)]. (1.18)

The update equation for the actor parameters is given by stochastic gradient ascent on the expected

future returns J(t; θπ):

∆θπ(t) = απ · ∇θπJ(t; θπ)

= απ · δ(t) · ∇θπ log π(At|St; θπ),
(1.19)

where απ is the learning rate for the actor.

10



1.2. Part 2: Computational study of SARS-CoV-2

1.2.1. Background and Motivation

The ongoing global health crisis caused by Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) has created an urgent need for a comprehensive understanding of its virology and

pathogenesis. SARS-CoV-2 belongs to the broad family of viruses known as coronaviruses. Coro-

naviruses infect humans, other mammals, including livestock and companion animals, and avian

species.

SARS-CoV-2 (Figure 1.2A) is a positive-sense single-stranded RNA virus, characterized by club-

like spikes projecting from its surface and an unusually large RNA genome. The genome of SARS-

CoV-2 encodes four major structural proteins (Figure 1.2A): the spike (S) protein, nucleocapsid

(N) protein, membrane (M) protein, and envelope (E) protein. The N protein encapsulates the

RNA genome, while the S, E, and M proteins collectively form the viral envelope.

Central to SARS-CoV-2’s entry into host cells is its S glycoprotein [29,30], which comprises two

functional subunits (Figure 1.2B): the S1 subunit, containing the receptor-binding domain (RBD)

and N-terminal domain (NTD), and the S2 subunit, responsible for mediating the fusion of viral

and host cell membranes.

The SARS-CoV-2 S protein binds to the angiotensin converting enzyme 2 (ACE2) receptor with high

affinity at the surface of host cells, initially through the S1 RBD [29,30] (Figure 1.2B). Following

this initial binding, S1 is released, enabling the S2 subunit to facilitate membrane fusion [29,30].

This process depends on the activation of the S protein through cleavage at the Furin Cleavage

Domain (FCD) [29,30] (Figure 1.2B), located between the S1 and S2 subunits, both by Furin and

by transmembrane serine proteases, especially TMPRSS2. This cleavage is believed to enable the

fusion of the viral capsid with the host cell to permit viral entry [29,30]. The role of the NTD in

this process is still unclear but it is believed to play an important role in escaping antibodies [31].
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Figure 1.2. SARS-CoV-2. A. Structure B. Entry mechanism. 1
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Although the basic mechanism of SARS-CoV-2 entry into host cells is established, the nuances of

how this process varies among different variants of the virus remain unclear. Specifically, there

is a lack of clarity regarding how variations in binding impact the virus’s severity and its ability

to spread. Additionally, the critical role of the Furin Cleavage Domain (FCD) in viral entry

necessitates a deeper understanding of its structure and interaction with the furin enzyme. Yet, a

detailed study of the FCD’s binding characteristics has been challenging for several reasons. Firstly,

the FCD is situated within a rapidly fluctuating random coil region of the spike protein which has

not been resolved by structural probes. Secondly, because the furin enzyme rapidly cleaves the

spike protein at the FCD, it complicates efforts to determine the FCD-Furin bound structure. As

a result, there is a lack of structural information regarding the FCD in its bound state.

1.2.2. Contribution

To tackle the challenges outlined previously, this dissertation consists of two computational studies,

detailed in chapters 3 and 4, focusing on the biophysics of the SARS-CoV-2 variants and related

viruses.

Chapter 3. SARS-CoV-2 omicron spike simulations: broad antibody escape, weakened

ACE2 binding, and modest furin cleavage: This chapter delves into the biophysical properties

of the SARS-CoV-2 Omicron variants, comparing them with the original wild type and Delta

variants. We conduct a comprehensive analysis of the binding strengths in various interactions:

RBD-ACE2, RBD-antibody (AB), FCD-Furin, and NTD-antibody for these SARS-CoV-2 variants.

In line with initial observations specific to the Omicron variant, our findings reveal (i) a significant

increase in antibody evasion across all regions compared to the wild type and Delta variants, (ii)

an intermediate level of FCD binding to furin between the wild type and Delta variants, and (iii)

a reduced affinity for the ACE2 receptor compared to both the wild type and Delta variants.

Chapter 4. Computational study of the furin cleavage domain of SARS-CoV-2: delta

binds strongest of extant variants: This chapter presents a comprehensive analysis of the

binding interactions between the Furin Cleavage Domain (FCD) of SARS-CoV-2 variants and other

1Source: https://www.abcam.com/content/structural-and-functional-mechanism-of-sars-cov-2-cell-entry
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coronaviruses with the furin enzyme. We discover that the Delta variant exhibits the strongest

possible binding with the furin enzyme. The study also identifies critical sequences, both observed

and unobserved, that could exhibit similar binding strengths. Additionally, we predict various

binding modes between the FCD and the furin enzyme, while verifying our predictions through

comparison with existing crystal structures of furin inhibitors and furin complexes.

To generate the protein-protein interactions (bound structure) between the spike proteins of SARS-

CoV-2 variants (and other viruses) with human cell receptors, we utilized two key computational

tools: molecular dynamics simulations and AlphaFold2. While the interactions involving the ACE2-

RBD, RBD-antibody, and NTD-antibody of the wild-type SARS-CoV-2 have been previously char-

acterized, the structure of the complex formed between the FCD of the wild-type SARS-CoV-2 and

the Furin enzyme remains unknown. To address this gap, we utilized AlphaFold2 to predictively

model the FCD-Furin complex. To simulate the interactions for other viral sequences, we initial-

ized molecular dynamics simulations with the corresponding wild-type bound structures, modified

to incorporate mutations reflecting the differences between the wild-type (WT) sequence and the

given viral sequence.

Molecular dynamics

Molecular dynamics is a widely used computational tool to study the dynamics of large atomic

systems. This method calculates the positions of atoms at different time points by solving their

equations of motion. The process begins with a precise description of the potential energy that

captures all atomic interactions within the system. From this potential energy, MD calculates the

forces acting on the atoms using the gradients of the energy. By applying Newton’s second law,

these forces determine the atoms’ accelerations, which, in turn, dictate their motion. A numerical

integration algorithm then solves the equations of motion, using initial positions and velocities, to

simulate the trajectory of each atom across discrete time steps.

The accuracy and effectiveness of MD simulations hinge on several initial conditions. These include:

1. Initial Coordinates: The starting positions of all the atoms are required to generate the

trajectory coordinates of the system.

14



2. Force-Field: The potential energy description of atoms, known as the force-field, is crucial. It

defines the energy landscape of the system through non-bonded interactions like Lennard-Jones and

electrostatic Coulomb potentials, as well as bonded interactions like bonded potentials and angular

potentials. The primary force field model used in this work is AMBER14 [32], which models the

potential energy [33] as:

Etotal =
∑

i∈bonds
Kr(ri − ri,eq)

2 +
∑

i∈angles
Kθi(θi − θi,eq)

2

+
∑

i∈dihedrals

∑
n

Vi,n
2

[1 + cos(nωi − γi,n)]

+
N−1∑
j=1

N∑
i=j+1

{[(
Aij

Rij

)12

−
(
Bij

Rij

)6
]
+

qiqj
4πϵ0Rij

}
.

Here, Kr and Kθi specify the force constants for bond stretching and angle bending, respectively.

The variables ri and θi denote the current bond length and bond angle between the two atoms or

the two bonds, respectively, with ri,eq and θi,eq as their equilibrium values. The dihedral angle, ωi,

describes the clockwise angle between two planes, each of which is determined by a set of three

atoms. These two planes share a common bond, formed by the two atoms that are part of both

sets. Vi,n is the amplitude of the torsional barrier for the nth dihedral rotation. n represents the

periodicity of the dihedral potential, indicating the number of energy minima (or maxima) present

within a 360° rotation. γi,n is the phase shift in the dihedral potential, determining the angular

position of the energy minima. The parameters Aij and Bij are the parameters for the Lennard-

Jones potential, determining the strength of the van der Waals forces. Rij measures the distance

between the ith and jth atoms. Lastly, qi and qj are the partial electrostatic charges on atoms i

and j, respectively.

The first term computes the energy between atoms that are covalently bonded. This term uses

a harmonic potential, which is an accurate approximation when atoms are near their equilibrium

bond lengths. The second term accounts for the energy due to the spatial arrangement of electron

orbitals in covalent bonds. The third term, known as torsional energy, is related to the energy

resulting from the twisting of bonds. The fourth term captures the non-bonded energy between all

pairs of atoms, consisting of van der Waals interactions as well as electrostatic interactions. The van
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der Waals interactions are characterized using a potential that closely resembles the Lennard-Jones

potential. For electrostatic (Coulomb) interactions, the model assumes that the atomic charges,

resulting from protons and electrons, can be well approximated as single point charges.

3. Solvent Model: The choice of solvent model can significantly impact the simulation, partic-

ularly in systems where solvent interactions are important. The way the solvent is represented

(explicitly or implicitly) affects the simulation. Explicit solvent modeling includes individual sol-

vent molecules, while implicit modeling uses a mathematical representation to simulate the solvent

effect. In this work, we explicitly modeled water as the solvent. We used the TIP3P [34] model of

the water force fields.

4. Ensemble Conditions: Conditions such as temperature, pressure, volume, and energy define

the statistical ensemble for the simulation, influencing the system’s behavior and properties. For

our simulations, we specified the temperature to be 298 K (approximately 25°C, which is room

temperature) and the pressure to be 1 atm. These conditions define an NPT ensemble (constant

number of particles, pressure, temperature), which is a statistical ensemble commonly used in

molecular dynamics simulations to mimic real-life biological or chemical environments.

5. Time Step Choice: The time step choice in MD simulations is critical. It should be small

enough to capture the dynamics accurately but not so small as to make the computation impractical.

Typically, the time step is a fraction (at least a fifth) of the smallest period of oscillation in the

system, often 1-2 femtoseconds (fs). In our simulations, the equations of motion were integrated

with a time step of 1.25 fs for bonded interactions and 2.5 fs for non-bonded interactions.

AlphaFold2

This method [35] leverages machine learning to predict protein structures with remarkable accuracy.

The model architecture (Figure 1.3) can be divided into three main components:

1. Data Preprocessing Pipeline: This process involves the extraction of data from protein

databases, focusing on multiple sequence alignments (MSA) and structural templates relevant to

the given protein sequence. MSAs are compilations of sequences from multiple proteins that are
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aligned to identify regions of similarity or difference, created by searching large protein databases

to find similar sequences to the target protein sequence. They provide insights into the functional,

structural, or evolutionary relationships between the sequences. Templates are known protein

structures that may share structural similarities with the target sequence. They help provide an

initial guess for the target protein structure.

By integrating MSA and template information, the method generates two representations: MSA and

pair representations. The MSA representation captures correlations between the protein residues

(i.e., individual amino acids) using information about parts of the sequence that are more likely

to mutate, while the pair representation utilizes both the input sequence and the templates to

estimate the distances between residues in the protein’s structure.

Figure 1.3. AlphaFold2 model architecture. Arrows show the information
flow among the various components described in this paper. Array shapes are shown
in parentheses with s, the number of sequences; r, the number of residues; c, the
number of channels. Adapted from ”Highly accurate protein structure prediction
with AlphaFold” by John Jumper, Richard Evans, and others, 2021, Nature, 596,
p. 584.

2. Evoformer: This component refines the MSA and pair representations. It uses a transformer

neural network. The key ingredient in this network is the attention mechanism. The objective

of the attention mechanism is to identify which parts of the input are more important for the

objective of the neural network, i.e., to identify which parts of the input it should pay attention

to. The Evoformer consists of 48 transformer blocks, refining the MSA and pair representations

iteratively. To refine the MSA representation, the network computes attention between residues in
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a given sequence (row-wise attention) to identify which residues in the sequence are more related

to each other and attention across sequences (column-wise attention) to identify which sequences

are more important. The pair representation is refined using a triangular self-attention mechanism

which ensures that predicted distances between amino acids can be realistically embedded in three-

dimensional space by enforcing the triangle inequality principle from geometry.

3. Structure Module: This component generates the final three-dimensional structure of the

protein. It models proteins as a residue gas with each amino acid being modeled as a triangle

representing the backbone atoms, floating in space and moved by the network to form the structure.

A key feature of the Structure Module is the Invariant Point Attention (IPA) module, which models

rotations and displacements of the residues based on an attention mechanism that is invariant to

translations and rotations. AlphaFold 2 operates end-to-end, continually refining its models of the

protein through a feedback loop. Outputs from the Evoformer and the Structure Module are fed

back into the process for further refinement, enhancing the connection between pairwise distance

predictions and the 3D structure.
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1.3. Part 3: Brain-inspired CNN

1.3.1. Background and Motivation

Introduction to CNNs

The introduction of Convolutional Neural Networks (CNNs) has been one of the most important

developments in the field of computer vision. The structure of a CNN (Figure 1.4) is designed to

imitate the hierarchical pattern recognition observed in the human visual cortex. This structure

enables CNNs to automatically learn and generalize from image data, which is critical for tasks

such as image classification and object detection.

The initial layer of a CNN is the input layer (Figure 1.4), which receives the raw pixel data from

an image. Following this are the convolutional layers (Figure 1.4), which utilize filters, or kernels,

to perform convolutions over the image. This produces feature maps that identify local patterns

like edges and textures. Each convolutional layer is followed by a nonlinear activation function

(Figure 1.4), such as the Rectified Linear Unit (ReLU), to enable the network to learn more complex

patterns. The ReLU function transforms the input by rectifying it to ensure non-negativity:

ReLU(x) = max(0, x) (1.20)

where x represents the input to the ReLU function.

Figure 1.4. CNN architecture. Example CNN for object classification. 2
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After these are the pooling layers (Figure 1.4), which reduce the spatial size of the feature maps,

decreasing parameters and computations, and help prevent overfitting. Pooling layers apply a

downsampling operation, such as max pooling, which selects the maximum value within a defined

window that slides over the input.

Deeper convolutional layers extract increasingly abstract features, which are then transformed into

a 1D vector by a flattening layer (Figure 1.4). This vector is then fed through fully connected

layers. In classification tasks, the final outputs, also known as the logits, of the fully connected

layers are subsequently transformed into class probabilities by the softmax activation function:

softmax(xi) =
exi∑
j e

xj
(1.21)

where xi represents the logits for class i. The softmax activation ensures that the ultimate output

is a set of probabilities corresponding to each class.

Through these convolution, non-linearity, pooling, and fully connected layers, CNNs achieve high

accuracy in image-based tasks. The architecture captures local and global patterns in an image,

leading to effective recognition and classification.

Robustness in CNNs

Despite the progress made by CNNs, they still face significant robustness issues. These networks are

notably vulnerable to adversarial examples [36,37,38]: inputs subtly modified to mislead the neural

network into making dramatically incorrect predictions. This weakness is particularly concerning

in areas like autonomous vehicles and medical diagnostics. Moreover, CNNs often struggle with

common image corruptions [39, 40, 41] such as blurring, weather effects, or digital distortions,

reducing their reliability in practical situations.

Recent efforts to improve the robustness of CNNs, particularly against commonplace corruptions,

have been a key focus of research [41,42,43,44,45,46,47,48,49,50]. The current state-of-the-

art model for common image corruptions (DeepAugment+AugMix) [43] uses an image-to-image

2Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-
3bd2b1164a53
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network for adding perturbations to input images along with augmentation mixing. The image-to-

image network transforms an original image into a modified version (augmented image) by applying

various perturbations, effectively simulating a range of corruption types. Through augmentation

mixing, where different perturbations are combined in varying proportions, this process generates a

diverse set of augmented images. This exposes the model to diverse conditions and helps improve its

robustness. Other data augmentation techniques include adding Gaussian noise [45] to small image

patches to improve robustness. However, these methods have notable limitations. For instance,

augmenting with Gaussian noise can enhance robustness but might adversely affect performance

on unaltered images [45]. Additionally, applying Gaussian noise can create susceptibilities to low-

frequency corruptions [46]. This suggests a compromise where increasing resilience to one type of

corruption might reduce resistance to another.

Biologically-Inspired Methods

As a result of millions of years of evolution, human and animal visual systems exhibit remarkable

robustness to visual disturbances. These systems can handle various environmental and visual

challenges effortlessly. For instance, humans easily recognize objects in varying lighting, orienta-

tions, and even when partially hidden. This capability contrasts sharply with CNNs, which often

falter under similar conditions. This disparity has sparked interest in exploring and emulating the

principles of biological vision systems to enhance artificial ones.

Dapello, Marques et al. [51] showed that incorporating a model of the primary visual cortex area V1

in front of CNNs significantly enhances their robustness against white-box adversarial attacks, which

are attacks where the attacker has complete knowledge of the model’s architecture and parameters.

In a similar work, [52] improved resilience to noise by substituting the initial convolutional layer of

a standard CNN with Gabor filters. A Gabor filter is a filter used for texture and edge detection

in images, characterized by its sinusoidal signal of particular frequency and orientation, modulated

by a Gaussian envelope:

G(x, y;λ, θ, ψ, σ, γ) = exp

(
−x

′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ ψ

)
(1.22)
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where x and y are the spatial coordinates in the original image, x′ = x cos θ + y sin θ and y′ =

−x sin θ + y cos θ are the coordinates in the frame obtained after rotation by the filter’s preferred

orientation θ, λ denotes the wavelength of the sinusoidal component, θ represents the orientation

of the normal to the parallel stripes of a Gabor function, ψ is the phase offset of the sinusoidal

function, σ is the standard deviation of the Gaussian envelope, and γ is the spatial aspect ratio of

the Gaussian ellipse.

Gabor filters are believed to be approximately implemented in area V1 [53]. Additional efforts in

adopting biologically-inspired approaches for improvement in robustness include constraining the

CNN models to align their representations more closely with those of mouse V1 [54], and training

models to predict neural activity in the V1 area during image classification tasks [55].

VOneNet

In this study, we specifically examine the biologically-inspired CNN known as VOneNet [51]. The

VOneNet (Figure 1.5) is a hybrid CNN that incorporates a model of the V1 area of the visual cortex

as its front end, followed by a standard trainable CNN architecture. This design was inspired by

research showing that the early stages of more robust models closely resemble neuronal responses

in the macaque V1.

At the heart of VOneNet is the VOneBlock (Figure 1.5A), a specialized front-end module that en-

capsulates a fixed-weight neural network mimicking the early visual processing observed in primates.

The VOneBlock is based on the linear-nonlinear-Poisson (LNP) model [56]. It includes a series of

biologically-constrained Gabor filters (Gabor filter bank) (Figure 1.5A) designed to simulate V1’s

receptive fields [53]. These filters capture the orientation and spatial frequency information from

visual stimuli, analogous to the processing done by simple cells in V1.
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Figure 1.5. VOneNet model architecture. A. The VOneBlock is a model of
V1 with a Gabor filter bank, a non-linear stage, and a stochasticity generator. B.
VOneNet is the VOneBlock followed by a standard trainable CNN architecture.

After the Gabor filter bank, the model incorporates layers that represent simple and complex

cell [57] nonlinearities (Figure 1.5A). For simple cells, the model applies a rectified linear trans-

formation, ensuring outputs are strictly non-negative. Complex cells combine the responses of

pairs of simple cells with identical spatial frequencies and orientations but offset by 90 degrees in

phase. This is achieved by calculating the square root of the sum of the squared responses of these

phase-offset filters, effectively measuring the spectral power across the quadrature phase pair. This

process renders the complex cell’s response invariant to the exact phase of the stimulus. These

nonlinearities are critical, allowing VOneNet to maintain robustness against minor variations in

the image, such as slight shifts or distortions, much like the complex cells in V1 that respond to

broader features and patterns rather than precise details.

The nonlinearities are followed by a stochastic layer (Figure 1.5A), which injects neuronal variability

akin to the stochastic nature of biological neurons [58]. This variability is not arbitrary but exhibits

a distinct pattern; for instance, studies on awake monkeys have shown that the variability in their

spike counts across trials tends to follow a Poisson distribution, where the variance of the spike

count is approximately equal to its mean. To approximate this property of neuronal responses,

independent Gaussian noise is added to each unit of the VOneBlock, with variance equal to its

activation. It provides the network with a degree of randomness that is expected to be beneficial

in handling a variety of visual perturbations.
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The VOneBlock’s parameters are not learned during training but are instead mathematically pa-

rameterized to closely approximate primate V1 neural processing [59, 60, 61]. The rest of the

VOneNet architecture (Figure 1.5B), following the VOneBlock, uses conventional CNN layers that

are trainable. By incorporating a V1-inspired module with a standard CNN, VOneNet not only

retains high performance on benchmark datasets such as ImageNet but also exhibits increased

robustness to adversarial attacks compared to its CNN counterparts.

The integration of a V1 model into CNNs led to substantial improvements in adversarial robustness

[51], rivaling more computationally intensive methods like adversarial training. However, despite

these advances, the VOneNet models did not exhibit significant gains in robustness against common

image corruptions [51], including noise variations like Gaussian, shot, and impulse noise; blurs

such as motion, defocus, zoom, and glass blur; weather-induced distortions like snow, frost, fog,

and changes in brightness; and digital alterations like JPEG compression, elastic transformations,

contrast adjustments, and pixelation. This shortfall highlights a crucial area for further research

and development, underscoring the need for models that are robust not only to adversarial attacks

but also to a variety of real-world image distortions.

1.3.2. Contribution

In Chapter 5, we demonstrate that by combining the specific strengths of different neuronal circuits

in V1 to create diverse VOneNet variants, it is possible to improve the robustness of CNNs for a wide

range of image corruptions. Each variant of VOneNet utilizes a unique VOneBlock configuration by

either omitting or altering specific components. We explored eight distinct variants: the standard

VOneBlock, variants without neural stochasticity, those with sub-Poisson stochasticity, and versions

focusing solely on low, intermediate, or high spatial frequency filters, as well as those exclusively

utilizing simple cells or complex cells. We first observed that different variants of the V1-inspired

front-end result in trade-offs between accuracy and robustness. Motivated by this observation, our

goal is to integrate these different variants to combine their individual strengths. To this end, we

employ two primary machine learning techniques:
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Ensembling This technique involves combining multiple models to create a more powerful com-

posite model. This technique has been shown to enhance performance significantly, leading to

superior outcomes compared to individual models [62,63,64,65,66,67]. In our case, we create an

ensemble by combining the different V1 front-end variants. We achieve this by using the ensembling

technique of uniformly averaging the logits (the outputs of the model before applying the softmax

function) of the individual models. This combined model effectively leverages the strengths of each

individual model, leading to significant improvements in robustness across all corruption categories

and outperforms the base model by 38% on average.

Knowledge DistillationWhile the ensemble model showed significant improvement in robustness,

it was also computationally more expensive. To address this, we utilize the knowledge distillation

technique [68], which trains a smaller ’student’ model to emulate the performance of a larger

’teacher’ model. This technique involves constraining the student predictions, specifically the logits,

to match that of the teacher, rather than just predicting binary labels. By fitting the student model

to the logits of the teacher, it captures the nuanced probability distribution that the teacher model

has learned over the classes. In our case, the ’teacher’ was the robust ensemble of the VOneNet

variants, and the ’student’ was a single model with a V1 front-end. We find that this ’student’ model

successfully compressed the knowledge of the ensemble model, exhibiting improved robustness to

all image corruption categories while maintaining its performance on clean images.
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CHAPTER 2

Choice-Selective Sequences Dominate in Cortical Relative to

Thalamic Inputs to NAc to Support Reinforcement Learning

This chapter appears as an article [69] published in Cell Reports 2022. This work was done in

collaboration with Nathan F. Parker, Julia Cox, Laura M. Haetzel, Anna Zhukovskaya, Malavika

Murugan, Ben Engelhard, Mark S. Goldman, and Ilana B. Witten.

2.1. Introduction

Multiple lines of experimental evidence implicate the nucleus accumbens (NAc, part of the ventral

striatum) in reward-based learning and decision-making [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

The NAc is a site of convergence of glutamatergic inputs from a variety of regions, including

the prefrontal cortex and the midline thalamus, along with dense dopaminergic inputs from the

midbrain [15,16,17,18,19,20,21,22,23,24,25].

A central question in reinforcement learning is how actions and outcomes become associated with

each other, even when they are separated in time [70, 71, 72, 73]. A possible mechanism that

could contribute to solving this problem of temporal credit assignment in the brain is that neural

activity in the glutamatergic inputs to the NAc provide a neural memory trace of previous actions.

However, whether glutamatergic inputs to the NAc indeed represent memories of previous actions

is unclear. More broadly, what information is carried by glutamatergic inputs to the NAc during

reinforcement learning, and whether different inputs provide overlapping or distinct streams of in-

formation, has not been examined systematically. To date, there have been relatively few recordings

of cellular-resolution activity of glutamatergic inputs to the NAc during reinforcement learning, nor

comparison of multiple inputs within the same task, nor examination of the timescale with which
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information is represented within and across trials. Furthermore, if glutamatergic inputs do indeed

provide memories of previous actions, construction of a neurally plausible instantiation of an algo-

rithm for credit assignment based on the measured signals remains to be demonstrated (for review

of biological instantiation of reinforcement learning algorithms, see [74]).

To address these gaps, we recorded from glutamatergic inputs to the NAc during a probabilistic

reversal learning task and built circuit-based computational models to connect our data to promi-

nent theories of reinforcement learning. In this task, dopamine neurons that project to the NAc

encode RPE, and inhibition of dopamine neurons substitutes for a negative RPE [26]. To compare

activity in major cortical and thalamic inputs to the NAc core, we combined a retrograde viral

targeting strategy with cellular-resolution imaging to examine the inputs from prelimbic cortex

(“PL-NAc”, part of medial prefrontal cortex) and midline regions of the thalamus (“mTH-NAc”).

We found that PL-NAc neurons preferentially encode actions and choices relative to mTH-NAc

neurons, with choice-selective sequential activity that bridges the delay between choice and reward

and that persists until the start of the subsequent trial. We demonstrated with computational

modeling that these choice-selective sequences can support neural instantiations of reinforcement

learning algorithms, either through dopamine-dependent changes in synaptic weights onto NAc

neurons [75,76,77,78], or dopamine-dependent changes in neural dynamics [79]. Finally, we test

and confirm a prediction of our models through direct optogenetic manipulation of PL-NAc neu-

rons. Thus, by recording and manipulating glutamatergic inputs to the NAc and integrating these

data with computational modeling, we provide specific proposals for how reinforcement learning

could be implemented by neural circuitry.

2.2. Results

2.2.1. Cellular resolution imaging of glutamatergic inputs to the NAc during a

probabilistic reversal learning task
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Figure 2.1. Cellular-resolution imaging of PL and mTH neurons that project to the NAc in

mice performing a reinforcement learning task. (a) Schematic of probabilistic reversal learning task.

(b) Example behavior during a recording session. The choice of the mouse (black marks) follows the identity

of the high probability lever as it alternates between left and right (grey lines). (c) Left, Probability the

mice choose the left or right lever 10 trials before and after a reversal from a left to right high-probability

block. Right, same as left for right to left high-probability block reversals. (d) Mice had a significantly
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higher stay probability following a rewarded versus unrewarded trial (*** p=5x10-9, two-tailed t-test, n=16

mice). (e) Coefficients from a logistic regression that uses choice and outcome from the previous five trials to

predict choice on the current trial. Positive regression coefficients indicate a greater likelihood of repeating

the previous choice. Data in c,d,e are represented as mean ± SEM across mice (n=16). (f) Left, surgical

schematic for PL-NAc (top) and mTH-NAc (bottom) recordings showing the injection site and optical lens

implant with miniature head-mounted microscope attached. Right, Coronal section from a PL-NAc (top)

and mTH-NAc (bottom) mouse showing GCaMP6f expression in the recording sites. Inset: confocal image

showing GCaMP6f expression in individual neurons. (g) Left, example field of view from a recording in

PL-NAc (top, blue) and mTH-NAc (bottom, orange) with five representative regions of interest (ROIs).

Right, normalized GCaMP6f fluorescence traces from the five ROIs on the left. For visualization, each trace

was normalized by the peak fluorescence across the hour-long session.

Mice performed a probabilistic reversal learning task while inputs from thalamus or cortex were

imaged (Figure 2.1a). A trial was initiated when the mouse entered a central nose poke, which

prompted the presentation of a lever on either side after a variable delay of 0-1 s. Each lever

had either a high (70%) or low (10%) reward probability, with the identity of the high and low

probability levers reversing in an unsignaled manner after a variable number of trials (see Methods

for block reversal probabilities). After a variable delay (0-1s), either a sound (CS+) was presented

at the same time as a reward was delivered to a central reward port, or another sound (CS–) was

presented that signaled the absence of reward.

As expected, mice switched the lever they were more likely to press following block reversals (Fig-

ure 2.1b,c). Similarly, mice were significantly more likely to return to the previously chosen lever

(i.e. stay) following rewarded, as opposed to unrewarded, trials (Figure 2.1d), meaning that, as

expected, mice were using previous choices and outcomes to guide behavior. A logistic regression

to predict choice based on previous choices and outcomes indicated that mice relied on ∼3 previous

trials to guide their choices (Figure 2.1e; see Methods for choice regression details).

To image activity of glutamatergic input neurons to the NAc during this behavior, we injected a

retroAAV or CAV2 to express Cre-recombinase in the NAc as well as an AAV2/5 to Cre-dependently

express GCaMP6f in either the PL or mTH (Figure 2.1f). A gradient refractive index (GRIN) lens
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was implanted above either the PL or mTH (see Supplementary Figure 2.8 for implant locations),

and a head-mounted miniature microscope was used to image activity in these populations during

behavior (Figure 2.1f,g, n=278 neurons in PL-NAc from n=7 mice, n=256 neurons in mTH-NAc

from n=9 mice). Behavior between mice in the PL-NAc versus mTH-NAc cohorts was similar

(Supplementary Figure 2.9).

2.2.2. Actions are preferentially represented by PL-NAc neurons, while

reward-predicting stimuli are preferentially represented by mTH-NAc

neurons

Individual PL-NAc and mTH-NAc neurons displayed elevated activity when time-locked to specific

behavioral events in the task (Figure 2.2a). Given the correlation between the timing of task events,

as well as the temporal proximity of events relative to the time-course of GCaMP6f, we built a linear

encoding model to properly relate neural activity to each event [26,80,81,82,83,84,85,86,87].

Briefly, time-lagged versions of each behavioral event (nosepoke, lever press, etc) were used to

predict the GCaMP6f fluorescence in each neuron using a linear regression. This allowed us to obtain

“response kernels”, which related each event to the GCaMP6f fluorescence in each neuron, while

removing the potentially confounding (linear) contributions of correlated task events (Figure 2.2b;

see Methods for details).

To visualize the response kernels, we plotted them as a heatmap, where each row was the response

kernel for a particular neuron associated with each behavioral event. This heatmap was then or-

dered by the time of peak kernel value across all behavioral events. Visual observation revealed

a clear difference between the PL-NAc and mTH-NAc populations: PL-NAc neurons were ro-

bustly modulated by the action-events in our task (Figure 2.2c; kernel values associated with ‘nose

poke, ’ipsilateral lever press’, ’contralateral lever press’ and ‘reward consumption’) while mTH-NAc

neurons appeared to be most strongly modulated by the stimulus-events, specifically the positive

reward auditory cue (Figure 2.2d, kernel values associated with ‘CS+’).
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Figure 2.2. PL-NAc preferentially represents action events while mTH-NAc preferentially

represents the CS+. (a) Time-locked responses of individual PL-NAc (blue) and mTH-NAc (orange)
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neurons to task events. Data are represented as mean ± SEM across trials. (b) Kernels representing the

response to each of the task events for an example neuron, generated from the encoding model. The predicted

GCaMP trace is the sum of the individual response kernels (see Methods). (c) Heatmap of response kernels

generated from the encoding model for all PL-NAc neurons. Heatmap is ordered by the time of the peak

response across all behavioral events (n=278 neurons, n=7 mice). (d) Same as c except heatmap of response

kernels from mTH-NAc neurons (n=256 neurons, n=9 mice). (e) Heatmap of mean Z-scored GCaMP6f

fluorescence from PL-NAc neurons aligned to the time of each event in the task. Neurons are ordered as in

c. (f) Same as e for mTH-NAc neurons. (g) Top row, fraction of neurons significantly modulated by action

events in the PL-NAc (blue) and mTH-NAc (orange). For all action events, PL-NAc had a larger fraction

of significantly modulated neurons than mTH-NAc. Bottom row, fraction of neurons in PL-NAc (blue) and

mTH-NAc (orange) significantly modulated by stimulus events. 2 out of 3 stimulus events had a larger

fraction of significantly modulated neurons in mTH-NAc than in PL-NAc. Significance was determined

using the linear model used to generate response kernels in b (Methods). (h) Top, a significantly larger

fraction of event-modulated PL-NAc neurons encode at least one action event (P=0.0004: two-proportion

Z-test comparing fraction of action-modulated PL-NAc and mTH-NAc neurons). Bottom, a significantly

larger fraction of mTH-NAc neurons encode a stimulus event (P=0.002: two-proportion Z-test comparing

fraction of stimulus-modulated neurons between PL-NAc and mTH-NAc). For g,h, fractions are determined

using the total number of neurons significantly modulated by at least one task event (n=140 for PL-NAc,

n=90 for mTH-NAc).

Examination of the GCaMP6f fluorescence time-locked to each behavioral event (rather than the

encoding model-derived response kernels) revealed similar observations of action encoding in PL-

NAc and CS+ encoding in mTH-NAc (Figure 2.2e,f). While this time-locked GCaMP6f heatmap

displays neurons which appear to respond to multiple events (Figure 2.2e, see neurons approximately

70-170 that show elevated activity to ‘lever press’, ‘levers out’ and ‘nose poke’), this impression

is likely a result of the temporal correlation between neighboring behavioral events, which our

encoding model accounts for. To illustrate this, we applied our encoding model to a population

of simulated neurons that responded only to the lever press events. We observed a similar multi-

peak heatmap when simply time-locking the simulated GCaMP6f fluorescence, but this multi-peak
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effect is eliminated by the use of our encoding model, which recovers the true relationship between

GCaMP6f fluorescence and behavior in the simulated data (Supplementary Figure 2.10).

2 4 6 8 10
# neurons used in decoder

ou
tc

om
e 

de
co

di
ng

 a
cc

ur
ac

y

0.5

0.6

0.7

0.8

PL-NAc

mTH-NAcoutcome-selective

2 4 6 8 10ch
oi

ce
 d

ec
od

in
g 

ac
cu

ra
cy

0.5

0.6

0.7

0.8

# neurons used in decoder

PL-NAc

mTH-NAc

choice-selective

ba

c d

*PL-NAc 
(n=92/278, 33%)* 
mTH-NAc 
(n=42/256, 16%)

PL-NAc 
(n=62/278, 22%) 

mTH-NAc 
(n=86/256, 34%)*

****

Figure 2.3. PL-NAc preferentially represents choice but not outcome relative to mTH-NAc.

(a) Fraction of choice-selective neurons in PL-NAc (n=92 out of 278 neurons, 7 mice) and mTH-NAc (n=42

out of 256 neurons, 9 mice). A significantly larger fraction of PL-NAc neurons were choice-selective compared

to mTH-NAc neurons (P=9.9x10-6: two-proportion Z-test). (b) Choice decoding accuracy using randomly

selected subsets of simultaneously imaged neurons around the lever press. The PL-NAc population more

accurately decoded the choice of the trial compared with mTH-NAc (* indicates P<0.05, unpaired two-tailed

t-test, n=9 PL-NAc and 6 mTH-NAc mice, peak decoding accuracy of 72±3% for PL-NAc and 60±2% for

mTH-NAc). (c) Fraction of outcome-selective neurons in mTH-NAc (n=86 out of 256 neurons, 9 mice)
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and PL-NAc (n=62 out of 278 neurons, 7 mice). A significantly larger fraction of mTH-NAc neurons were

outcome-selective compared to PL-NAc neurons (P=0.004: two-proportion Z-test). (d) Outcome decoding

accuracy using neural activity after the time of the CS from randomly selected, simultaneously imaged

neurons in mTH-NAc (orange, peak decoding accuracy: 73±2%) and PL-NAc (blue, peak decoding accuracy:

68±1%). P>0.05, unpaired two-tailed t-test. Data in b,d are represented as mean ± SEM across mice; n=6

PL-NAc mice and 9 mTH-NAc mice. In a,c, * indicates P<0.05, two-proportion Z-test.

This encoding model was used to identify neurons in the PL-NAc and mTH-NAc populations that

were significantly modulated by each event in our task (by comparing the encoding model with and

without each task event, see Methods). We found that a substantial fraction of both PL-NAc and

mTH-NAc neurons were modulated by at least one task event (Figure 2.2g). Of these neurons that

were selective to at least one task event, the selectivity for actions versus sensory stimuli differed

between the two populations (Figure 2.2h). In particular, more PL-NAc neurons were modulated

by at least one action event (nose poke, ipsilateral lever press, contralateral lever press and reward

consumption). By contrast, a significantly larger fraction of mTH-NAc neurons were modulated

by at least one stimulus cue (levers out, CS+ and CS-).

2.2.3. PL-NAc neurons preferentially encode choice relative to mTH-NAc

neurons

This preferential representation of actions in PL-NAc relative to mTH-NAc suggests that lever

choice (contralateral versus ipsilateral to the recording site) could also be preferentially encoded

in PL-NAc. Indeed, a significantly larger fraction of neurons were choice-selective in PL-NAc

compared with mTH-NAc (Figure 2.3a; significant choice-selectivity was determined with a nested

comparison of the encoding model with and without choice information, see Methods). A logistic

regression population decoder supported this observation of preferential choice-selectivity in PL-

NAc relative to mTH-NAc (Figure 2.3b).

In contrast to the preferential representation of choice in PL-NAc compared to mTH-NAc, a larger

fraction of neurons in mTH-NAc encoded outcome (CS identity or reward consumption) compared

to PL-NAc (Figure 2.3c). However, while outcome decoding accuracy in mTH-NAc was slightly
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higher relative to PL-NAc, this difference was not statistically significant (Figure 2.3d). These

results suggest that, unlike the preferential choice representation observed in PL-NAc over mTH-

NAc, outcome was more similarly represented between these two populations. This is presumably

due to the fact that both CS+ and reward consumption responses contribute to outcome represen-

tation, and although more neurons encoded CS+ in mTH-NAc, the opposite was true for reward

consumption (Figure 2.2g). We found no obvious relationship between the strength of either choice

or outcome decoding and recording location in either PL-NAc or mTH-NAc (Supplementary Fig-

ure 2.11).

2.2.4. PL-NAc neurons display choice-selective sequences that persist into the

next trial

We next examined the temporal organization of choice-selective activity in PL-NAc neurons. Across

the population, choice-selective PL-NAc neurons displayed sequential activity with respect to the

lever press that persisted for >4s after the press (Figure 2.4a-c; see Supplementary Figure 2.12

for sequences without peak-normalization). These sequences were visualized by time-locking the

GCaMP6f fluorescence of choice-selective neurons with respect to the lever press, rather than with

the encoding model from the earlier figures. The robustness of these sequences was confirmed

using a cross-validation procedure, in which the order of peak activity across the PL-NAc choice-

selective population was first established using half the trials (Figure 2.4b, ‘train’), and then the

population heatmap was plotted using the same established ordering and activity from the other

half of trials (Figure 2.4c, ‘test’). To quantify the consistency of these sequences, we correlated the

neurons’ time of peak activity in the ‘training’ and ‘test’ data and observed a strong correlation

(Figure 2.4d). Additionally, the ridge-to-background ratio, a metric used to confirm the presence

of sequences [88,89,90] was significantly higher when calculated using the PL-NAc choice-selective

sequences compared with sequences generated using shuffled data (Supplementary Figure 2.13a-c).

In contrast, choice-selective sequential activity in the mTH-NAc population was significantly less

consistent than in PL-NAc (Supplementary Figure 2.14a-d). Additionally, while the ridge-to-

background ratio of the sequences generated using mTH-NAc activity was significantly higher than
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that using shuffled data, this ratio was also significantly lower than that obtained from PL-NAc

sequences (Supplementary Figure 2.13d-f). The ridge-to-background ratio of both the PL-NAc

and mTH-NAc sequences did not significantly change across either a block or recording session

(Supplementary Figure 2.15a-d).
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Figure 2.4. Choice-selective sequences in PL-NAc persist into the subsequent trial. (a) Top,

average peak-normalized GCaMP6f fluorescence of three simultaneously imaged PL-NAc choice-selective

neurons. Data are represented as mean ± SEM across trials. Bottom, heatmaps of GCaMP6f fluorescence

across trials aligned to ipsilateral (blue) and contralateral (grey) press. (b,c) Heatmaps showing sequential

activation of choice-selective PL-NAc neurons (n=92/278 neurons from 7 mice). Each row is a neuron’s

average GCaMP6f fluorescence time-locked to the ipsilateral (left column) and contralateral (right column)

lever press, normalized by its peak average fluorescence. In b (‘train data’), heatmap is average fluorescence

from half of trials and ordered by the time of peak activity. In c (‘test data’), the peak-normalized, time-

locked GCaMP6f fluorescence from the other half of trials was plotted in the order from ‘train data’ in b.

(d) Correlation between time of peak activity using the ‘train’ and ‘test’ trials for choice-selective PL-NAc

neurons in response to a contralateral or ipsilateral lever press (R2 = 0.80, P = 5.3×10−22, n = 92 neurons).
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(e) Average decoding accuracy of choice on the current (blue), previous (grey) and next (black) trial as a

function of time-adjusted GCaMP6f fluorescence throughout the current trial from 10 simultaneously imaged

PL-NAc neurons. Data are represented as mean ± SEM across mice. Red dashed line indicates median onset

of reward consumption. * indicates P<0.01, two-tailed, one-sample t-test across mice comparing decoding

accuracy to chance, n = 6 mice.

A striking feature of these choice-selective sequences in PL-NAc was that they persisted for seconds

after the choice, potentially providing a neural ‘bridge’ between choice and outcome. To further

quantify the timescale of choice encoding, both within and across trials, we used activity from

simultaneously imaged neurons at each timepoint in the trial to predict the mouse’s choice (with

a decoder based on a logistic regression using random combinations of 10 simultaneously imaged

neurons to predict choice). Choice on the current trial could be decoded above chance for 7s after

the lever press, spanning the entire trial (including the time of reward delivery and consumption),

as well as the beginning of the next trial (Figure 2.4e). Choice on the previous or subsequent trial

was not represented as strongly as current trial choice (Figure 2.4e; in all cases we corrected for

cross-trial choice correlations with a weighted decoder, see Methods) and choice from two trials

back could not be decoded above chance at any time point (Supplementary Figure 2.15e). We also

examined the temporal extent of choice decoding in the mTH-NAc population (Supplementary

Figure 2.14e). Similar to PL-NAc, we observed that decoding persisted up to the start of the

next trial. However, the peak decoding accuracy across all time points in the trial was lower in

mTH-NAc (60±0.1%) compared with PL-NAc (73±0.2%).

2.2.5. Synaptic plasticity or neural dynamics models incorporating

choice-selective sequences in PL-NAc neurons can reproduce behavioral

and neural recordings

We next used computational modeling to explain how a biologically realistic circuit incorporating

the observed choice-selective sequences in PL-NAc neurons could solve the probabilistic reversal

task. We constructed two models of the observed trial-by-trial changes in choice probabilities, one

based on synaptic plasticity, and one based on slow neural dynamics. Each model sought to explain
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two features of our data: first, how choices made at an earlier time (around the time of the nose

poke, when choice-selective activity appears, Figure 2.4b,c) could be reinforced by rewards that

occur at a later time, and, second, how this reinforcement could persist across multiple trials as

suggested by our choice regressions (Figure 2.1e).

Synaptic plasticity model. The synaptic plasticity model mathematically implemented a tem-

poral difference (TD) reinforcement learning algorithm by combining the recorded choice-selective

sequential activity of PL-NAc neurons with the known connectivity of downstream structures

(Figure 2.5a,b). The goal of TD learning is to learn to predict the sum of future rewards, or

“value” [91, 92, 93, 94]. When this sum of expected future rewards changes, such as when an

unexpected reward is received or an unexpected predictor of reward is experienced, a TD reward

prediction error (RPE) occurs and adjusts the weights of reward-predicting inputs to reduce this

error. The error signal in the TD algorithm closely resembles the RPE signal observed in ventral

tegmental area (VTA) dopamine neurons [26,95,96], but how this signal is computed remains an

open question.

In our model, the PL-NAc sequences (Figure 2.5c) enabled the calculation of the RPE in dopamine

neurons which, in turn, reinforced those PL-NAc inputs that lead to better-than-predicted rewards.

In more detail, the model took as inputs experimental, single-trial recordings of choice-selective,

sequentially active PL neurons (Figure 2.5a, left, see Methods). These inputs represented temporal

basis functions fi(t) for computing the estimated value of making a left or right choice. These

basis functions are weighted in the NAc by the strength wi of the PL-NAc synaptic connection

and summed together to create a (sign-inverted) representation of the estimated value, at time t,

of making a left choice, VL(t), or right choice, VR(t). To create the RPE observed in DA neurons

requires that the DA neuron population receive a fast, positive value signal V (t) and a delayed

negative value signal V (t−∆), as well as a direct reward signal r(t) (Figure 2.5b). In Figure 2.5a,

the summation of NAc inputs and sign-inversion occurs in the ventral pallidum (VP) [97,98], so

that the fast value signal is due to direct VP to DA input. The delayed negative value signal

to the DA population is due to a slower, disynaptic pathway that converges first upon the VTA

γ-aminobutyric acid (GABA) neurons, so that these neurons encode a value signal as observed

experimentally [99]. The temporal discounting factor γ is implemented through different strengths
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of the two pathways to the VTA DA neurons (Figure 2.5b). Other mathematically equivalent

circuit architectures, including those involving other structures such as the lateral habenula [100],

are given in Supplementary Figure 2.16.
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Figure 2.5. Choice-selective sequences recorded in PL-NAc, combined with known down-

stream connectivity, can implement a temporal difference (TD) learning model based on

synaptic plasticity. (a) Schematic of circuit architecture used in the model. Model implementation used

single-trial recorded PL-NAc or mTH-NAc responses as input. See Results and Methods for model details

and Supplementary Figure 2.16 for alternative, mathematically equivalent circuit architectures. (b) Model

equations. V : value; VL, VR: weighted sum of the nL left-choice or nR right-choice preferring NAc neuron

activities fLi and fRi , respectively, with weights wL
i or wR

i . α: learning rate; τe: decay time constant for the

PL-NAc synaptic eligibility trace E(t); ∆: delay of the pathway through the VTA GABA interneuron; γ:

discounting of value during time ∆. (c) Heatmap of single trial PL-NAc estimated firing rates input to the

model. (d) Behavior of the synaptic plasticity model for 120 example trials. The decision variable (red trace)

and the choice of the model (black dots) follow the identity of the higher probability lever. (e) Probability

the model chooses left (black) and right (grey) following a left-to-right block reversal. (f) Stay probability of

the synaptic plasticity model following rewarded and unrewarded trials. (g) Top, simulated VTA dopamine

neuron activity averaged across rewarded (green) and unrewarded (grey) trials. Bottom, coefficients from

a linear regression that uses outcome of the current and previous five trials to predict dopamine neuron

activity following outcome feedback (Methods). (h-l) Same as c-g except using the estimated firing rates

from mTH-NAc single-trial activity. The mTH-NAc model input generates worse performance than using

PL-NAc input, with less and slower modulation of the decision variables, and weaker modulation of DA

activity by previous trial outcomes. Dashed line in l shows results from PL-NAc model (same data as panels

g). (m) Control model including only early-firing neurons active at the onset of the sequence, when the

model makes the choice. (n-q) Same as d-g, except results from using the early-only control model. Open

bar and dashed line in p,q show results from PL-NAc model (same data as panels f,g).

Learning is achieved through DA-dependent modification of the PL-NAc synaptic strengths. We

assume that PL-NAc neuronal activity leads to an exponentially decaying synaptic “eligibility

trace” [93, 101]. The correlation of this presynaptically driven eligibility trace with DA input

then drives learning (Figure 2.5b). Altogether, this circuit architecture (as well as those shown in

Supplementary Figure 2.16) realizes a TD learning algorithm for generating value representations in

the NAc, providing a substrate for the selection of proper choice based on previous trial outcomes.
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The synaptic plasticity model was able to correctly perform the task and recapitulate the mice’s

behavior. It achieved a comparable rate of reward (47.2% for the model, 47.6% for the mice)

and exhibited similar alternation of choice following block reversals (Figure 2.5d,e; compare to

Figure 2.1b,c; choice was based upon a probabilistic readout, at the start of the sequence, of

the difference between right and left values plus a stay-with-previous choice bias (Methods) and

similarly higher stay probability following rewarded relative to unrewarded trials (Figure 2.5f;

compare to Figure 2.1d).

Model neuron responses resembled those previously observed experimentally. The RPE signal

within a trial showed characteristic positive response to rewarded outcomes and negative response to

unrewarded outcomes (Figure 2.5g; compare to Supplementary Figure 2.17a,b) and had similar de-

pendence upon previous trial outcomes (Figure 2.5g, multiple linear regression similar to [26,102];

Supplementary Figure 2.17c-d). The VTA GABA interneuron had a sustained value signal, due

to the converging input of the transient, sequential value signals from NAc/VP (Supplementary

Figure 2.18), replicating the sustained value signal in VTA GABA interneurons observed in monosy-

naptic inputs to VTA dopamine neurons [99]. Alternatively, the VP neurons shown in Figure 2.5a

could project to a second set of VP neurons that functionally take the place of the VTA GABA

interneurons (Supplementary Figure 2.16a,c,f), leading to sustained positive value encoding VP

neurons as observed in VTA-projecting VP neurons [103].

We next ran the same model using single-trial activity from choice-selective mTH-NAc neurons

(Figure 2.5h). In line with the less consistent sequential choice-selective activity in mTH-NAc rel-

ative to PL-NAc (Figure 2.4; Supplementary Figure 2.14), the correct value after a block switch

was learned much more slowly within the NAc and VTA GABA neurons (Supplementary Fig-

ure 2.18c,d), leading to correspondingly slow changes in choice probability (Figure 2.5i,j). As a

result, choice probabilities were often out of sync with the current block, leading to overall reward

rate near chance levels (38.7% reward rate, chance rate of 40%). Stay probabilities were inappro-

priately high following unrewarded trials (Figure 2.5k), reflecting reduced formation of an RPE and

thus less negative modulation of dopamine signal at the time of expected reward (Figure 2.5l).
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The choice-selective sequences in PL-NAc neurons were critical to model performance, as they

allowed proper formation of an RPE at the time of reward receipt. This was verified by generating

a control model that only included early-firing PL-NAc neurons (neurons active at the onset of the

sequence when the model makes its choice) (Figure 2.5m). This “early-only control” model failed

to quickly modulate lever value following block reversals (∼10 trials to reverse following a block

switch rather than ∼3 trials for the full PL-NAc data; Figure 2.5n-p). The inferior performance of

this control model (model reward rate: 43.9%) reflected two factors. First, the early-only control

model was unable to generate a well-timed RPE signal due to the absence of significant PL-NAc

input activity at the time of reward. As a result, on unrewarded trials, there was almost no negative

reward-predictive dip in DA activity at the time of reward omission, unlike for the model with the

full PL-NAc input activity (Figure 2.5q). This lack of learning from unrewarded trials is evident

in the stay probability plot (Figure 2.5p), which shows less modulation by unrewarded trials when

controlling (by adjusting the model’s action-selection parameters) for the stay probability following

rewarded trials. Second, unlike the sequential model, the RPE in the early-only control model

could not propagate backwards across successive trials, so single-trial learning (enabled by the

eligibility trace) was the only mechanism available to bridge the gap in time between the firing of

the early-firing decision neurons and an RPE occuring at the time of reward.

Neural dynamics model. The synaptic plasticity model described above requires fast, dopamine-

mediated synaptic plasticity, on the time scale of a trial, to mediate behavior. Whether plasticity

operates in the NAc on this timescale is unclear. We thus developed an alternative model (Fig-

ure 2.6a; Methods) in which the across-trial updating of values and corresponding selection of

actions is accomplished through the dynamics of a recurrent neural network rather than the dy-

namics of synaptic plasticity [79,104,105,106,107]. The initial learning of the neural network’s

synaptic weights is based on a reinforcement learning algorithm, which models slow initial task

acquisition, but during task performance, synaptic weights remain fixed and the DA RPE serves

only to alter neural dynamics.
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Figure 2.6. Neural dynamics model, with recorded choice-selective PL-NAc activity input

to the critic, performs the task similarly to synaptic plasticity model. (a) Model schematic. See

results and methods for details. (b-e) Example behavior and dopamine activity from the neural dynamics

model. Figure panel descriptions same as those for the synaptic plasticity model (Figure 2.5d-g). (f) Reward

rate as a function of the number of training episodes for the model with recorded PL-NAc input to the critic

(orange) and for a model with persistent choice-selective input to the critic (black). Red arrow indicates the

training duration used to generate all other figure panels. Grey dashed line indicates chance reward rate

of 0.4. (g) Relationship between the decision variable used to select the choice on the next trial and the

calculated RPE across right and left blocks. The RPE shown is an average of 0-2s after lever press, averaged

across blocks. The decision variable is also averaged across blocks. (h) Evolution of the principal components

of the output of the actor LSTM units across trials within a right and left block. The displayed activity is

from the first time point in each trial (when the choice is made), averaged across blocks. The first three

components accounted for 70.9%, 16.6%, and 6.4% of the total variance at this time point, respectively. (i)
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Cosine of the angle between the actor network’s readout weight vector and the vectors corresponding to the

first three principal components. Network activity in the PC1 direction (but not PC2 or PC3) aligns with

the network readout weights. (j) Coefficients from a linear regression that uses choice on the previous trial

(green), average RPE from 0-2 s after the lever press (red), and ‘Choice x RPE’ interaction (blue) from the

previous 7 trials to predict the amplitude of activity in PC1 on the current trial.

Similar to the synaptic plasticity model, single-trial, experimentally recorded PL-NAc activity was

input to a (now recurrent) neural network that modeled NAc and other associated brain regions

(the “critic network”) to calculate value. RPE was calculated in the DA neurons from the value

signal using the same circuit architecture as the synaptic plasticity model. However, rather than

reweighting PL-NAc synapses on the timescale of trials, the RPE was input to a second recurrent

neural network that modeled dorsomedial striatum (DMS) and other associated brain regions (the

“actor network”; [108, 109, 110, 111, 112]). This actor network used the RPE input from the

previous timestep, the action from the previous timestep and a “temporal context” sequence that

may arise from hippocampus or other cortical areas [88,113,114] to generate a decision variable

corresponding to the probability of selecting one of three choices (left, right, or no action) at any

time. Selection of the left or right choice then triggered the onset of the corresponding PL-NAc

activity sequence.

The neural dynamics model appropriately modulated choice following a reversal in the identity of

the high probability lever (Figure 2.6b-d) and generated RPE signals in VTA dopamine neurons

that resemble previous experimental recordings (Figure 2.6e; Supplementary Figure 2.17). By

contrast, when we replaced the choice-selective sequences to the NAc by choice-selective persistent

activity, the model failed to train within the same number of training episodes (Figure 2.6f). This

suggests that temporal structure in this input is beneficial for efficient task learning.

To reveal how the model appropriately modulates its choices, we analyzed the evolution of the actor

network’s activity across trials (Figure 2.6g-j). We found that the actor network’s activity at the

time of decision was low-dimensional, with the first three principal components explaining ∼94%

of the variance. Given the symmetry in the block structure, the average RPE signal as a function

of trial number is similar for the left and right block. However, the model should make opposite
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choices for left and right blocks, meaning that the actor network needs to respond oppositely to

similar RPE inputs. Consistent with this, the decision variable for a given RPE was approximately

opposite for left versus right blocks (Figure 2.6g). At a block reversal, for example from a left block

to a right block, the network activity rapidly transitioned from the approximately steady-state

representation of the left block (cluster of blue-purple points in Figure 2.6h) to the approximately

steady-state representation of the right block (cluster of red-yellow points). Furthermore, the model

learned to align the first principal component of activity along the direction of the network readout

weights that determine the actor’s choice a(t) (Figure 2.6i). Thus, the actor learned to generate an

explicit representation of the decision variable in the first principal component of its activity.

To solve the reversal learning task, the network needs to use its past history of choices and rewards

to accumulate evidence for whether the current block is a left block or a right block. Rewarded

left-side choices, or unrewarded right-side choices, represent evidence that the current block is a

left block, while the converse represents evidence for a right block. In the synaptic plasticity model

(Figure 2.5), new evidence (not accounted for by previous expectations) is accumulated in the PL-

NAc synaptic weights as the product of the eligibility trace (which, due to the choice-selectivity of

the PL-NAc activity, represents the current choice) and the RPE. To analyze whether the actor

network uses a similar accumulation of evidence to solve the task, we linearly regressed the first

principal component of actor activity (PC1, which correlated strongly with the decision variable

as described above) against the past history of choices and RPEs, which serve as inputs to the

network, as well as the product of these (‘Choice x RPE’). PC1 most strongly depended upon the

‘Choice x RPE’ predictor, with coefficients that decayed on a timescale of approximately 3 trials,

suggesting that the actor used a leaky accumulation of evidence over this timescale to solve the task

(Figure 2.6j, blue trace). In addition, like the mice and the synaptic plasticity model, the neural

dynamics model tended to stay with its previous choices as evident from the positive coefficients

for the previous choice regressors in Figure 2.6j (green trace). Thus, both the synaptic plasticity

model and the neural dynamics model follow the same principle of accumulating evidence across

trials to perform fast reversal learning in addition to having a tendency to repeat their previous

choices.
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Figure 2.7. Stimulation of PL-NAc neurons disrupts the influence of previous trial outcomes

on subsequent choice in both the models and mice. (a) In the mice and models, PL-NAc neurons

were stimulated for the whole trial on a random 10% of trials, disrupting the endogenous choice-selective
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sequential activity (see Methods and Supplementary Figure 2.20). (b) Effect of stimulating the PL-NAc

input on the previous (left) or current (right) trial in the synaptic plasticity model. (c) Logistic choice

regression showing dependence of the current choice on previously rewarded and unrewarded choices, with

and without stimulation. Higher coefficients indicate a higher probability of staying with the previously

chosen lever. (d-e) Same as b-c for the neural dynamics model. (f) Top left, schematic illustrating injection

site in the PL (black needle) and optical fiber implant in the NAc core. Top right, location of optical fiber

tips of PL-NAc ChR2 cohort (n=14 mice) Bottom left, coronal section showing ChR2-YFP expression in PL.

Bottom middle and right, ChR2-YFP expression in PL terminals in the NAc-core. (g) Similar to the models,

PL-NAc ChR2 stimulation on the previous trial significantly reduced the mice’s stay probability following

a rewarded trial (P = 0.002) while increasing stay probability following an unrewarded trial (P = 0.0005).

Stimulation on the current trial had no significant effect on stay probability following rewarded (P = 0.62)

or unrewarded (P=0.91) trials. All comparisons: paired, two-tailed t-tests, n=14 mice. (h) PL-NAc ChR2

stimulation decreased the weight of rewarded choices one- and two-trials back (P=0.002: one-trial back;

P=0.023: two-trials back) and increased the weight of unrewarded choices one-trial back (P=5.4×10−6). (i-

k) Same as f-h for mTH-NAc ChR2 stimulation (n=8 mice). mTH-NAc stimulation had no significant effect

on stay probability following either rewarded (P=0.85) or unrewarded choices (P=0.40) on the previous (j,

paired t-test, n = 8 mice) or multiple trials back (k, P>0.05 for all trials back, one-sample t-tests). Current

trial stimulation also had no effect following either rewarded (P=0.59) or unrewarded (P=0.50) choices. For

all panels, ** indicates P<0.005 and * indicates P<0.05 for one-sample, two-tailed t-tests.

2.2.6. Stimulation of PL-NAc (but not mTH-NAc) neurons decreases the effect

of previous trial outcomes on subsequent choice in both the models and

the mice

We next generated experimentally testable predictions from our models by examining the effect of

disruption of the PL-NAc inputs on behavioral performance. To do so, we simulated optogenetic-like

neural stimulation of this projection by replacing the PL-NAc sequential activity in the model with

constant, choice-independent activity across 70% of the population on a subset of trials Figure 2.7a).

For both models, this generated a decrease in the probability of staying with the previously chosen

lever following rewarded trials and an increase following unrewarded trials relative to unstimulated
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trials (Figure 2.7b,d). In other words, the effect of previous outcome on choice was reduced when

PL-NAc activity was disrupted. This effect persists for multiple trials, as revealed by a logistic

regression of current-trial choice on the history of previous rewarded and unrewarded choices with

and without stimulation (Figure 2.7c,e; note that the negative coefficients for unrewarded trials in

the neural dynamics model reflect that, unlike the synaptic plasticity model, this model does not

include an explicit stay-with-previous choice bias). This reduced effect of outcome on choice arises

because the stimulation disrupts the calculation of value. In the synaptic plasticity model, the

stimulation of both left- and right-preferring PL-NAc neurons has two effects: first, it disrupts the

RPE calculation by the circuit; second, it leads to dopamine indiscriminately adjusting the synaptic

weights (i.e., value) of both the right and left PL-NAc synapses following rewarded or unrewarded

outcomes. These weight changes then persist for multiple trials, leading to decreased performance

in subsequent trials. In the neural dynamics model, stimulation reduces behavioral performance on

subsequent trials by disrupting the RPE signal that is transmitted to the actor, and this effect lasts

for multiple trials because the actor network temporally accumulates RPE signals across multiple

trials (Figure 2.6j). In both models, the choice behavior on the current trial is unaffected because

choice is determined at the beginning of the trial, before the weights are updated (Figure 2.7b,d).

We tested these model predictions experimentally by performing an analogous optogenetic manip-

ulation in mice (Figure 2.7f). In close agreement with our models, mice significantly decreased

their stay probability following a rewarded trial that was paired with stimulation and significantly

increased their stay probability following an unrewarded trial paired with stimulation (Figure 2.7g).

Similar to the models, the effect of stimulation on the mouse’s choice persisted for multiple trials.

Mice had a significant decrease in their stay probability following PL-NAc stimulation on rewarded

choices one and two trials back (Figure 2.7h). Also similar to the model, stimulation on the current

trial had no significant effect on choice following either rewarded or unrewarded trials (Figure 2.7g).

In contrast to PL-NAc stimulation, but consistent with the relatively weak choice encoding in mTH-

NAc compared to PL-NAc (Figure 2.3a,b) and weak trial-by-trial learning in our synaptic plasticity

model (Figure 2.5h-k), mTH-NAc stimulation (Figure 2.7i) had no significant effect on the mice’s

stay probability on the subsequent trial, following either rewarded or unrewarded stimulation trials

(Figure 2.7j). Similarly, inclusion of mTH-NAc stimulation in our choice regression model revealed
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no significant effect of stimulation on rewarded or unrewarded choices (Figure 2.7k). Additionally,

there was no effect on the mice’s stay probability for current trial stimulation (Figure 2.7j).

For both PL-NAc and mTH-NAc stimulation, we observed an increase in the probability of mice

abandoning the trials with stimulation compared to those trials without (P=0.0006 for PL-NAc,

P=0.032 for mTH-NAc: paired, two-tailed t-test comparing percentage of abandoned trials on

stimulated versus non-stimulated trials; 12.2±2.5% and 22.1±7.9% abandoned for PL-NAc and

mTH-NAc stimulated trials, respectively; 0.9±0.2% and 6.4±3.1% for PL-NAc and mTH-NAc non-

stimulated trials, respectively). Relatedly, we also found an increase in the latency to initiate a trial

following either PL-NAc or mTH-NAc stimulation (Supplementary Figure 2.19a-c). Together, these

results suggest that this manipulation had some influence on the mouse’s motivation to perform the

task. However, unlike the stronger effect of PL-NAc versus mTH-NAc stimulation on subsequent

choice behavior, this trial-abandonment effect was stronger for mTH-NAc than PL-NAc.

To control for non-specific effects of optogenetic stimulation, we ran a control cohort of mice that

received identical stimulation but did not express the opsin (Supplementary Figure 2.19e,f). Stim-

ulation had no significant effect on the mice’s choice behavior (Supplementary Figure 2.19d,g,h)

or probability of abandoning trials on stimulation versus control trials (P=0.38: paired, two-

tailed t-test comparing percentage of abandoned trials on stimulated versus non-stimulated trials;

0.4±0.08% for stimulated trials, 0.4±0.01% for non-stimulated trials).

2.3. Discussion

This work provides both experimental and computational insights into how the NAc and associated

regions could contribute to reinforcement learning. Experimentally, we found that mTH-NAc neu-

rons were preferentially modulated by a reward-predictive cue, while PL-NAc neurons more strongly

encoded actions (e.g. nose poke, lever press). In addition, PL-NAc neurons display choice-selective

sequential activity which persists for several seconds after the lever press action, beyond the time

the mice receive reward feedback. Computationally, we demonstrate that the choice-selective and
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sequential nature of PL-NAc activity can contribute to performance of a choice task by implement-

ing a circuit-based version of reinforcement learning based on either synaptic plasticity or neural

dynamics. Furthermore, PL-NAc perturbations affect future but not current choice in both the

models and in mice, consistent with perturbation of the critic not the actor.

Relationship to previous neural recordings in the NAc and associated regions

To our knowledge, a direct comparison, at cellular resolution, of activity across multiple gluta-

matergic inputs to the NAc has not previously been conducted. The preferential representations of

actions relative to sensory stimuli in PL-NAc is somewhat surprising, given that previous studies

have focused on sensory representations in this projection [19], and also given that the NAc is

heavily implicated in Pavlovian conditioning [5,7,11,115,116,117].

On the other hand, there is extensive previous evidence of action correlates in PFC [118,119,120,

121, 122], and NAc is implicated in operant conditioning in addition to Pavlovian conditioning

[108,123,124,125,126,127,128]. Our finding of sustained choice-encoding in PL-NAc neurons is

in agreement with previous work recording from medial prefrontal cortex (mPFC) neurons during

a different reinforcement learning task [129,130]. Additionally, other papers have reported choice-

selective sequences in other regions of cortex, as well as in the hippocampus [89,131,132]. In fact,

given previous reports of choice-selective (or outcome-selective) sequences in multiple brain regions

and species [133,134,135,136,137,138], the relative absence of sequences in mTH-NAc neurons

may be more surprising than the presence in PL-NAc.

Our observation of prolonged representation of the CS+ in mTH-NAc (Figure 2.2d,f) is in line with

previous observations of pronounced and prolonged encoding of task-related stimuli in the primate

thalamus during a Pavlovian conditioning task [139]. Together with our data, this suggests that

the thalamus is contributing information about task-relevant stimuli to the striatum, which could

bridge the gap between a CS and US in a Pavlovian trace conditioning task [16,140,141,142].

Implementation of reinforcement learning in models based on synaptic plasticity or

neural dynamics
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We presented two different classes of models that could solve the reversal learning task when

provided with the choice-selective sequences observed in PL-NAc neurons as inputs. In our synaptic

plasticity model, we show how these sequences may contribute to a neural implementation of

TD learning by providing a temporal basis set that bridges the gap in time between actions and

outcomes and enables the calculation of RPE in dopamine neurons. Other forms of neural dynamics,

such as constant or slowly decaying persistent activity, can also maintain values across a delay

period. However, creating a temporally precise RPE from such persistent activity is challenging if

the persistent activity does not have sharp temporal features. Likewise, synaptic eligibility traces

are another useful mechanism for bridging gaps in time, enabling earlier inputs to be reinforced by

an RPE, but they do not provide the active input required to create the RPE itself.

A limitation of the synaptic plasticity model for producing the rapid reversals of behavior at block

switches is that it requires a dopamine-dependent synaptic plasticity mechanism that operates on

the timescale of trials (Figure 2.5). Whether dopamine-mediated synaptic plasticity operates on

such fast timescales is not clear. Furthermore, model-free TD learning cannot take advantage of

additional task-structure information such as the reward probabilities within a block [143, 144]

but see Supplementary Figure 2.21 for challenges in identifying this ability within tasks like ours).

These observations motivated the neural dynamics model in which, following initial slow-timescale

learning of synaptic weights, the plasticity was turned off and trial-by-trial modulation of behavior

was mediated by dopamine-dependent neural dynamics instead of synaptic plasticity (Figure 2.6;

see related work by [79,104,105,106,107,145,146,147,148,149]. Because the recurrent “critic”

network dynamics can be trained to construct a temporally rich representation, the neural dynamics

model has less need for precise temporal sequences in the PL-NAc inputs. However, we found

that strictly eliminating the temporal structure of the PL-NAc input while preserving the choice-

selectivity made training of the network less efficient (Figure 2.6f), suggesting that having temporal

structure in PL-NAc inputs facilitates the calculation of value.

Previous work in biological TD learning has used sequentially active neurons as the basis for

learning in the context of sequential behaviors [150, 151] and learning the timing of a CS-US

relationship [152,153,154,155]. Likewise, our neural dynamics model was inspired by a previous
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meta-reinforcement learning model that was used to solve a reversal learning task [79]. Here we

extend these ideas in multiple important ways:

First, we link these theoretical ideas directly to data, by demonstrating that choice-selective sequen-

tial activity in the NAc is provided primarily by PL-NAc (as opposed to mTH-NAc) input neurons,

and that perturbation of the PL-NAc (but not mTH-NAc) projection disrupts action-outcome pair-

ing consistent with model predictions. Thus, our models provide a mechanistic explanation of a

puzzling experimental finding: that optogenetic manipulation of PL-NAc neurons affects subse-

quent choices but not the choice on the stimulation trial itself and that this stimulation creates

oppositely directed effects following rewarded versus unrewarded trials.

Second, both of our models replicate numerous experimental findings in the circuitry downstream

of PL-NAc. Each calculates an RPE signal in dopamine neurons [26,102], generates conjunctive

encoding of actions and outcomes [127,156] and calculates chosen value signals [109]. Additionally,

both models generate encoding of value by GABA interneurons [99, 103], which produces the

temporally delayed, sign inverted signals required for the calculation of a temporally differenced

RPE (Figure 2.5a; see [74,152,153,157,158,159,160,161,162]). Consistent with our models,

electrical stimulation of VP generates both immediate inhibition of dopamine neurons, and delayed

excitation [163]. Conceptually, the proposed temporal differencing by the VTA GABA interneuron

is attractive in that it could provide a generalizable mechanism for calculating RPE: it could extend

to any pathway that projects both to the dopamine and GABA neurons in the VTA [164], and

that also receives a dopaminergic input that can modify synaptic weights.

Third, we showed that the fundamental operating principle of both models was similar: each

temporally accumulates the correlation of previous choices with reward to determine the current-

trial choice probability. In the synaptic plasticity model, this accumulation is done in the PL-NAc

synaptic weights (Figure 2.5b). In the neural dynamics model, the accumulation is done in the low-

dimensional neural dynamics of the actor network (Figure 2.6j). Future experiments that exploit

these differences will need to be designed and executed to determine whether the brain more closely

resembles the synaptic plasticity or neural dynamics model.

Limitations of the Study
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A limitation of this study is that we could not artificially recapitulate sequential firing to directly test

its role in constructing value representations. Additionally, any artificial stimulation can have off

target and unintended consequences. Thus, further work directly investigating the causal role of PL-

NAc sequences in reinforcement learning is needed. Neither of our models account for the influence

of glutamatergic inputs to NAc from regions other than prelimbic cortex and the medial thalamus.

In addition, our neural dynamics model used LSTM units, which should not be interpreted as single

neurons, but might model computations performed by larger populations. Finally, single-photon

imaging limits the ability to resolve single z-planes during imaging and, thus, can make single

neuron identification difficult. Future studies confirming our studies with multi-photon imaging in

head-restrained animals may be helpful.
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2.4. Methods

2.4.1. Experimental model and subject details

Mice

46 male C57BL/6J mice from The Jackson Laboratory (strain 000664) were used for these exper-

iments. Prior to surgery, mice were group-housed with 3-5 mice/cage. All mice were >6 weeks of

age prior to surgery and/or behavioral training. To prevent mice from damaging the implant of

cagemates, all mice used in imaging experiments were single housed post-surgery. All mice were

kept on a 12-h on/ 12-h off light schedule. All experiments and surgeries were performed during

the light off time. All experimental procedures and animal care was performed in accordance with

the guidelines set forth by the National Institutes of Health and were approved by the Princeton

University Institutional Animal Care and Use Committee.

Probabilistic reversal learning task

Beginning three days prior to the first day of training, mice were placed on water restriction and

given per diem water to maintain >80% original body weight throughout training. Mice performed

the task in a 21 x 18 cm operant behavior box (MED associates, ENV-307W). A shaping protocol

of three stages was used to enable training and discourage a bias from forming to the right or left

lever. In all stages of training, the start of a trial was indicated by illumination of a central nose

poke port. After completing a nose poke, the mouse was presented with both the right and left

lever after a temporal delay drawn from a random distribution from 0 to 1s in 100ms intervals.

The probability of reward of these two levers varied based on the stage of training (see below for

details). After the mouse successfully pressed one of the two levers, both retracted and, after a

temporal delay drawn from the same uniform distribution, the mice were presented with one of two

auditory cues for 500ms indicating whether the mouse was rewarded (CS+, 5 kHz pure tone) or

not rewarded (CS–, white noise). Concurrent with the CS+ presentation, the mouse was presented

with 6µl of 10% sucrose reward in a dish located equidistantly between the two levers, just interior

to the central nose poke. The start time of reward consumption was defined as the moment the
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mouse first made contact with the central reward port spout following the delivery of the reward.

The end of the reward consumption period (i.e., reward exit) was defined as the first moment at

which the mouse was disengaged from the reward port for >100ms. In all stages of training, trials

were separated by a 2s intertrial interval, which began either at the end of CS on unrewarded trials

or at the end of reward consumption on rewarded trials.

In the first stage of training (“100-100 debias”), during a two-hour session, mice could make a central

nose poke and be presented with both the right and left levers, each with a 100% probability of

reward. However, to ensure that mice did not form a bias during this stage, after five successive

presses of either lever the mouse was required to press the opposite lever to receive a reward. In

this case, a single successful switch to the opposite lever returned both levers to a rewarded state.

Once a mouse received >100 rewards in a single session they were moved to the second stage

(“100-0”) where only one of the two levers would result in a reward. The identity of the rewarded

lever reversed after 10 rewarded trials plus a random number of trials drawn from the geometric

distribution:

P (k) = (1− p)k−1 (2.1)

where P (k) is the probability of a block reversal trials into a block and is the success probability

of a reversal for each trial, which in our case was 0.4. After 3 successive days of receiving >100

total rewards, the mice were moved to the final stage of training (“70-10”), during which on any

given trial pressing one lever had a 70% probability of leading to reward (high-probability lever)

while pressing the opposite lever had only a 10% reward probability (low-probability lever). The

identity of the higher probability lever reversed using the same geometric distribution as the 100-0

training stage. On average, there were 23.23 ± 7.93 trials per block and 9.67 ± 3.66 blocks per

session (mean ± std. dev.). In this final stage, the mice were required to press either lever within

10s of their presentation; otherwise, the trial was considered an ‘abandoned trial’ and the levers

retracted. All experimental data shown was collected while mice performed this final “70-10” stage.

Cellular-resolution calcium imaging
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To selectively image from neurons which project to the NAc, we utilized a combinatorial virus

strategy to image cortical and thalamic neurons which send projections to the NAc. 16 mice (7 PL-

NAc, 9 mTH-NAc) previously trained on the probabilistic reversal learning task were unilaterally

injected with 500nl of a retrogradely transporting virus to express Cre-recombinase (CAV2-cre,

IGMM vector core, France, injected at ∼2.5 × 1012 parts/ml or retroAAV-EF1a-Cre-WPRE-

hGHpA, PNI vector core, injected at ∼6.0 x 1013) in either the right or left NAc core (1.2 mm

A/P, ± 1.0 mm M/L, -4.7 D/V) along with 600nl of a virus to express GCaMP6f in a Cre-dependent

manner (AAV2/5-CAG-Flex -GCaMP6f-WPRE-SV40, UPenn vector core, injected at 1.27 x 1013

parts/ml) in either the mTH (-0.3 & -0.8 A/P, ± 0.4 M/L, -3.7 D/V) or PL (1.5 & 2.0 A/P, ±

0.4 M/L, -2.5 D/V) of the same hemisphere. 154 of 278 (55%, n=5 mice) PL-NAc neurons and

95 out of 256 (37%, n=5 mice) mTH-NAc neurons were labeled using the CAV2-Cre virus, the

remainder were labeled using the retroAAV-Cre virus. In this same surgery, mice were implanted

with a 500 µm diameter gradient refractive index (GRIN) lens (GLP-0561, Inscopix) in the same

region as the GCaMP6f injection – either the PL (1.7 A/P, ± 0.4 M/L, -2.35 D/V) or mTH (-0.5

A/P, ± 0.3 M/L, -3.6 D/V). 2-3 weeks after this initial surgery, mice were implanted with a base

plate attached to a miniature, head-mountable, one-photon microscope (nVISTA HD v2, Inscopix)

above the top of the implanted lens at a distance which focused the field of view. All coordinates are

relative to bregma using Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates, 2nd

edition (Paxinos and Franklin, 2004). GRIN lens location was imaged using the Nanozoomer S60

Digital Slide Scanner (Hamamatsu) (location of implants shown in Supplementary Figure 2.8). The

subsequent image of the coronal section determined to be the center of the lens implant was then

aligned to the Allen Brain Atlas (Allen Institute, brain-map.org) using the Wholebrain software

package (wholebrainsoftware.org; [165]).

Post-surgery, mice with visible calcium transients were then retrained on the task while habituating

to carrying a dummy microscope attached to the implanted baseplate. After the mice acclimated

to the dummy microscope, they performed the task while images of the recording field of view

were acquired at 10 Hz using the Mosaic acquisition software (Inscopix). To synchronize imaging

data with behavioral events, pulses from the microscope and behavioral acquisition software were

recorded using either a data acquisition card (USB-201, Measurement computing) or, when LED
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tracking (see below for details) was performed, an RZ5D BioAmp processor from Tucker-Davis

Technologies. Acquired videos were then pre-processed using the Mosaic software and spatially

downsampled by a factor of 4. Subsequent down-sampled videos then went through two rounds of

motion-correction. First, rigid motion in the video was corrected using the translational motion

correction algorithm based on [166] included in the Mosaic software (Inscopix, motion correction

parameters: translation only, reference image: the mean image, speed/accuracy balance: 0.1,

subtract spatial mean [r = 20 pixels], invert, and apply spatial mean [r = 5 pixels]). The video then

went through multiple rounds of non-rigid motion correction using the NormCore motion correction

algorithm [167] NormCore parameters: gSig=7, gSiz=17, grid size and grid overlap ranged from

12-36 and 8-16 pixels, respectively, based on the individual motion of each video. Videos underwent

multiple (no greater than 3) iterations of NormCore until non-rigid motion was no longer visible).

Following motion correction, the CNMFe algorithm [168] was used to extract the fluorescence

traces (referred to as ‘GCaMP6f’ throughout the text) as well as an estimated firing rate of each

neuron (CNMFe parameters: spatial downsample factor=1, temporal downsample=1, gaussian

kernel width=4, maximum neuron diameter=20, tau decay=1, tau rise=0.1). Only those neurons

with an estimated firing rate of four transients/ minute or higher were considered ‘task-active’

and included in this paper – 278/330 (84%; each mouse contributed 49,57,67,12,6,27,60 neurons,

respectively) of neurons recorded from PL-NAc passed this threshold while 256/328 (78%; each

mouse contributed 17,28,20,46,47,40,13,13,32 neurons, respectively) passed in mTH-NAc. Across

all figures, to normalize the neural activity across different neurons and between mice, we Z-scored

each GCaMP6f recording trace using the mean and standard deviation calculated using the entire

recording session.

Optogenetic stimulation of PL-NAc neurons

22 male C57BL/6J mice were bilaterally injected in either the PL (n=14 mice, M–L ± 0.4, A–P

2.0 and D–V −2.5 mm) or mTH (n=8 mice, M–L ± 0.3, A–P -0.7 and D–V −3.6 mm) with 600nl

AAV2/5-CaMKIIa-hChR2-EYFP (UPenn vector core, injected 0.6 µl per hemisphere of titer of

9.6 × 1013 pp per ml). Optical fibers (300 µm core diameter, 0.37 NA) delivering 1–3 mW of 447

nm laser light (measured at the fiber tip) were implanted bilaterally above the NAc Core at a 10

degree angle (M–L ± 1.1, A–P 1.4 and D–V −4.2 mm). An additional cohort of control mice (n=8)
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were implanted with optical fibers in the NAc without injection of ChR2 and underwent the same

stimulation protocol outlined below (Supplementary Figure 2.19e-h). Mice were anesthetized for

implant surgeries with isoflurane (3–4% induction and 1–2% maintenance). Mice were given 5 days

of recovery after the surgical procedure before behavioral testing.

During behavioral sessions, 5 ms pulses of 1-3 mW, 447 nm blue light was delivered at 20 Hz on

a randomly selected 10% of trials beginning when the mouse entered the central nose poke. Light

stimulation on unrewarded trials ended 1s after the end of the CS– presentation. On rewarded

trials, light administration ended either 1s after CS+ presentation (‘cohort 1’) or at the end of

reward consumption, as measured by the mouse not engaging the reward port for 100ms (‘cohort

2’). See Supplementary Figure 2.20 for a schematic of stimulation times as well as the behavior of

the two cohorts. Mice alternated between sessions with and without stimulation – sessions without

stimulation were excluded from analysis. Anatomical targeting was confirmed as successful in all

mice through histology after the experiment, and therefore no mice were excluded from this data

set.

To quantify the effect of laser stimulation on latency times shown in Supplementary Figure 2.19a-

d, we ran a mixed effects linear model using the fitglme package in MATLAB. In this model, the

median latency to initiate a trial of a mouse, defined as the time between illumination of the central

nose poke (i.e., trial start) and the mouse initiating a trial via nose poke, was predicted using i)

opsin identity (PL-NAc CaMKII-ChR2, mTH-NAc CaMKII-ChR2 or no-opsin controls), ii) laser

stimulation on the current trial, iii) laser stimulation on the previous trial, iv) the interaction

between opsin identity and laser stimulation on the current trial and v) the interaction between

opsin and laser stimulation on the previous trial. To account for individual variation between mice,

a random effect of mouse ID was included.

2.4.2. Quantification and statistical analysis

Logistic choice regression
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For the logistic choice regressions shown in Figure 2.1e and Supplementary Figure 2.9a, we modeled

the choice of the mouse on trial i based on lever choice and reward outcome information from the

previous n trials using the following logistic regression model:

log
C(i)

1− C(i)
= β0 +

n∑
j=1

βRj R(i− j) +

n∑
j=1

βUj U(i− j) + error (2.2)

Where C(i) is the probability of choosing the right lever on trial i, and R(i− j) and U(i− j) are

the choice of the mouse j trials back from the ith trial for either rewarded or unrewarded trials,

respectively. R(i−j) was defined as +1 when the jth trial back was both rewarded and a right press,

−1 when the jth trial back was rewarded and a left press and 0 when it was unrewarded. Similarly,

was defined as +1 when the trial back was both unrewarded and a right press, −1 when the trial

back was unrewarded and a left press and 0 when it was rewarded. The calculated regression

coefficients, βRj and βUj , reflect the strength of the relationship between the identity of the chosen

lever on a previously rewarded or unrewarded trial, respectively, and the lever chosen on the current

trial.

To examine the effect of optogenetic stimulation from multiple trials back on the mouse’s choice

(Figure 2.7c,e,h,k; Supplementary Figure 2.19h & Supplementary Figure 2.20c−d), we expanded our

behavioral logistic regression model to include the identity of those trials with optical stimulation,

as well as the interaction between rewarded and unrewarded choice predictors and stimulation:

log
C(i)

1− C(i)
= β0 +

n∑
j=1

βRj R(i− j) +
n∑

j=1

βUj U(i− j) + ...

n∑
j=1

βLRj L(i− j)R(i− j) +
n∑

j=1

βLUj L(i− j)U(i− j) +
n∑

j=1

βLj L(i− j) + error

(2.3)

where L(i) represents optical stimulation on the ith trial (1 for optical stimulation, 0 for control

trials), βLj represents the coefficient corresponding to the effect of stimulation on choice j trials
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back, βLRj and βLUj represents the coefficients corresponding to the interaction between rewarded

choice x optical stimulation and unrewarded choice x stimulation, respectively.

To visualize the relative influence of stimulation on the mice’s choices compared with unstimulated

trials, in Figure 2.7c,e,h,k; Supplementary Figure 2.19h & Supplementary Figure 2.20c-d, the solid

blue trace represents the sum of the rewarded choice coefficients (represented by the black trace) and

rewarded choice x stimulation coefficients (βRj + βLRj ). Similarly, the dashed blue trace represents

the sum of the unrewarded choice coefficients (grey trace) and unrewarded choice x stimulation

coefficients (βUj +βLUj ). For all choice regressions, the coefficients for each mouse were fit using the

glmfit function in MATLAB and error bars represent mean ± SEM across mice.

Encoding model to generate response kernels for behavioral events

To determine the response of each neuron attributable to each of the events in our task, we used

a multiple linear encoding model with lasso regularization to generate a response kernel for each

behavioral event (example kernels shown in Figure 2.2b). In this model, the dependent variable

was the GCaMP6f trace of each neuron recorded during a behavioral session and the independent

variables were the times of each behavioral event (‘nose poke’, ’levers out’, ‘ipsilateral lever press’,

’contralateral lever press’, ‘CS+’, ’CS–’ and ‘reward consumption) convolved with a 25 degrees-of-

freedom spline basis set that spanned -2 to 6s before and after the time of action events (‘nose poke’,

‘ipsilateral press’, ‘contralateral press’ and ‘reward consumption’) and 0 to 8s from stimulus events

(‘levers out’, ‘CS+’ and ‘CS–’). To generate this kernel, we used the following linear regression

with lasso regularization using the lasso function in MATLAB:

min
β0,βjk

 T∑
t=1

F (t)− K∑
k=1

Nsp∑
j=1

βjkXjk(t)− β0

2

+ λ
K∑
k=1

Nsp∑
j=1

|βjk|

 (2.4)

where F (t) is the Z-scored GCaMP6f fluorescence of a given neuron at time t, T is the total time

of recording, K is the total number of behavioral events used in the model, Nsp is the degrees-of-

freedom for the spline basis set (25 in all cases, splines generated using the FDAfuns MATLAB

package), βjk is the regression coefficient for the jth spline basis function and kth behavioral event,
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β0 is the intercept term and λ is the lasso penalty coefficient. The value of lambda was chosen for

each neuron that minimized the mean squared error of the model, as determined by 5-fold cross

validation. The predictors in our model, Xjk, were generated by convolving the behavioral events

with a spline basis set, to enable temporally delayed versions of the events to predict neural activity:

Xjk(t) =
N=81∑
i=1

Sj(i)ek(t− i) (2.5)

where Sj(i) is the jth spline basis function at time point i with a length of 81 time bins (time

window of -2 to 6s for action events or 0 to 8s for stimulus events sampled at 10 Hz) and ek is a

binary vector of length T representing the time of each behavioral event k (1 at each time point

where a behavioral event was recorded using the MED associates and TDT software, 0 at all other

timepoints).

Using the regression coefficients, βjk, generated from the above model, we then calculated a ‘re-

sponse kernel’ for each behavioral event:

kernelk(t) =

Nsp∑
j=1

βjkSj(t) (2.6)

This kernel represents the (linear) response of a neuron to each behavioral event, while accounting

for the linear component of the response of this neuron to the other events in the task.

Quantification of neural modulation to behavioral events

To identify neurons that were significantly modulated by each of the behavioral events in our task

(fractions shown in Figure 2.2g-h), we used the encoding model described above, but without the

lasso regularization:

F (t) = β0 +
K∑
k=1

Nsp∑
j=1

βjkXjk(t) (2.7)
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As above, F (t) is the Z-scored GCaMP6f fluorescence of a given neuron at time t, K is the total

number of behavioral events used in the model, Nsp is the degrees-of-freedom for the spline basis set

(25 in all cases), βjk is the regression coefficient for the jth spline basis function and kth behavioral

event and β0 is the intercept term. To determine the relative contribution of each behavioral event

when predicting the activity of a neuron, we compared the full version of this model to a reduced

model with the X and β terms associated with the behavioral event in question excluded. For each

behavioral event, we first generated an F-statistic by comparing the fit of a full model containing

all event predictors with that of a reduced model that lacks the predictors associated with the

event in question. We then calculated this same statistic on 500 instances of shuffled data, where

shuffling was performed by circularly shifting the GCaMP6f fluorescence by a random integer. We

then compared the F-statistic from the real data to the shuffled distribution to determine whether

the removal of an event as a predictor compromised the model significantly more than expected by

chance. If the resulting P-value was less than the significance threshold of P=0.01, after accounting

for multiple comparison testing of each of the behavioral events by Bonferroni correction, then the

event was considered significantly encoded by that neuron.

To determine whether a neuron was significantly selective to the choice or outcome of a trial

(‘choice-selective’ and ‘outcome-selective’, fractions of neurons from each population shown in Fig-

ure 2.3a,c), we utilized a nested model comparison test similar to that used to determine significant

modulation of behavioral events above, where the full model used the following behavioral events

as predictors: ‘nose poke’, ‘levers out’, ‘all lever press’, ‘ipsilateral lever press’, ‘all CS’, ‘CS+’ and

‘reward consumption’. For choice-selectivity, an F-statistic was computed for a reduced model lack-

ing the ‘ipsilateral lever press’ predictors and significance was determined by comparing this value

with a null distribution generated using shuffled data as described above. For outcome-selectivity,

the reduced model used to test for significance lacked the predictors associated with both the ‘CS+’

and ‘reward consumption’ events.

By separating the lever press and outcome-related events into predictors that were either blind

to the choice or outcome of the trial (‘all lever press’ and ‘all CS’, respectively) and those which

included choice or outcome information (‘ipsilateral lever press’ or ‘CS+’ and ‘reward consumption’,

respectively) we were able to determine whether the model was significantly impacted by the
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removal of either choice or outcome information. Therefore, neurons with significant encoding of

the ‘ipsilateral lever press’ event (using the same P-value threshold determined by the shuffled

distribution of F-statistics) were considered choice-selective, while those with significant encoding

of the ‘CS+/reward consumption’ events were considered outcome-selective.

Neural decoders

Choice decoder In Figure 2.3b, we quantified how well simultaneously imaged populations of 1

to 10 PL-NAc or mTH-NAc neurons could be used to decode choice using a logistic regression:

log

(
C(i)

1− C(i)

)
= β0 +

n∑
j=1

βjXj(i) + ϵ (2.8)

where C(i) is the probability the mouse made an ipsilateral choice on trial i, β0 is the offset term,

n is the number of neurons (between 1 and 10), βj is the regression weight for each neuron, Xj(i)

is the mean z-scored GCaMP6f fluorescence from -2s to 6s around the lever press on trial i and ϵ

is the error term.

Given that the mice’s choices were correlated across neighboring trials, we weighted the logistic

regression based on the frequency of each trial type combination. This was to ensure that choice

decoding of a given trial was a reflection of the identity of the lever press on the current trial

as opposed to that of the previous or future trial. Thus, we classified each trial as one of eight

‘press sequence types’ based on the following ‘previous-current-future’ press sequences: ipsi-ipsi-

ipsi, ipsi-ipsi-contra, ipsi-contra-contra, ipsi-contra-ipsi, contra-contra-contra, contra-contra-ipsi,

contra-ipsi-ipsi, contra-ipsi-contra. We then used this classification to equalize the effects of press-

sequence type on our decoder by generating weights corresponding to the inverse of the frequency

of the press sequence type of that trial. These weights were then used as an input to the fitglm

function in MATLAB, which was used to fit a weighted version of the logistic regression model

above (Equation 2.8).

Decoder performance was evaluated with 5-fold cross-validation by calculating the proportion of

correctly classified held-out trials. Predicted ipsilateral press probabilities greater than or equal to
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0.5 were decoded as an ipsilateral choice and values less than 0.5 were decoded as a contralateral

choice. This was repeated with 100 combinations of randomly selected, simultaneously imaged

neurons from each mouse. Reported decoding accuracy is the average accuracy across the 100 runs

and 5 combinations of train-test data for each mouse. Note that only 6/7 mice in the PL-NAc

cohort were used in the decoder analyses as one mouse had fewer than 10 simultaneously imaged

neurons.

Outcome decoder For the outcome decoder in Figure 2.3d, we used the same weighted logistic

regression used for choice decoding, except the dependent variable was the outcome of the trial (+1

for a reward, 0 for no reward) and the predictors were the average GCaMP6f fluorescence during

the intertrial interval (ITI) of each trial. The ITI was defined as the time between CS presentation

and either 1s before the next trial’s nose poke or 8s after the CS, whichever occurred first. This

was used in order to avoid including any neural activity attributable to the next trial’s nose poke

in our analysis.

To correct for outcome correlations between neighboring trials, we performed a similar weight-

ing of predictors as performed in the choice decoder above using the following eight outcome

sequence types: ‘reward- reward- reward’, ‘reward- reward- unreward’, ‘reward- unreward- unre-

ward’, ‘reward- unreward- reward’, ‘unreward- unreward- unreward’, ‘unreward- unreward- reward’,

‘unreward- reward- reward’, ‘unreward- reward- unreward.’

Time-course choice decoder To determine how well activity from PL-NAc and mTH-NAc neurons

was able to predict the mouse’s choice as a function of time throughout the trial (Figure 2.4e,

Supplementary Figure 2.14e & Supplementary Figure 2.15e), we trained separate logistic regressions

on 500ms bins throughout the trial, using the GCaMP6f fluorescence of 10 simultaneously imaged

neurons.

Because of the variability in task timing imposed by the jitter and variability of the mice’s actions,

we linearly interpolated the GCaMP6f fluorescence trace of each trial to a uniform length, tadjusted,

relative to behavioral events in our task. Specifically, for each trial, T , we divided time into the

following four epochs: (i) 2s before nose poke, (ii) time from the nose poke to the lever press, (iii)

time from the lever press to the nose poke of the subsequent trial, T+1 and (iv) the 3s following the

64



next trial nosepoke. For epochs ii and iii, tadjusted was determined by interpolating the GCaMP6f

fluorescence trace from each trial to a uniform length defined as the median time between the

flanking events across all trials. Thus, tadjusted within each epoch for each trial, T , was defined as:

Tadjusted(t) ≡



t , tTnp − 2 ≤ t < tTnp

2 +
(t−tTnp)

(tTlp−tTnp)
ẽpii , tTnp ≤ t < tTlp

2 + ẽpii +
(t−tTlp)

(tT+1
np −tTlp)

ẽpiii , tTlp ≤ t < tT+1
np

t , tT+1
np ≤ t < tT+1

np + 3

(2.9)

where tTnp, and t
T
lp are the times of the nose poke and lever press on the current trial, tT+1

np is the

time of the nose poke of the subsequent trial and ẽpii and ẽpiii are the median times across trials

of epoch ii and iii.

The resulting time-adjusted GCaMP6f traces were divided into 500ms bins. For each bin, we

fit the weighted logistic regression described above to predict choice on the current, previous or

future trial from the activity of 10 simultaneously imaged neurons. Predictors were weighted based

on press sequence type as described above. Decoding accuracy was assessed as described above

using 100 combinations of 10 randomly selected neurons and 5-fold cross-validation. To determine if

decoding was significantly above chance, which is 0.5, for each timepoint we performed a two-tailed,

one-sample t-test.

Statistics

All t-tests reported in the results and as specified in each figure legend were performed using either

the ttest or ttest2 function in MATLAB. In all cases, t-tests were two-tailed. In cases where multi-

ple comparisons were performed, we applied a Bonferroni correction to determine the significance

threshold. Two-proportion Z-tests (used to compare fractions of significantly modulated/selective

neurons, Figures 2h & 3a,c) and Fisher’s Z (used to compare correlation coefficients, Figure 2.4d

& Supplementary Figure 2.14d) were performed using Vassarstats.net. Asterisks indicating signif-

icance thresholds are referenced in respective figure legends.
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For all t-tests in this paper, data distributions were assumed to be normal, but this was not formally

tested. No statistical methods were used to predetermine sample sizes, but our sample sizes were

similar to those generally employed in the field.

2.4.3. Synaptic plasticity model

To computationally model how the brain could solve the reversal learning task using fast dopamine-

mediated synaptic plasticity, we generated a biological instantiation of the TD algorithm for rein-

forcement learning [93] by combining the recorded PL-NAc activity with known circuit connectivity

in the NAc and associated regions [18,19,169,170]. The goal of the model is to solve the “temporal

credit assignment problem” by learning the value of each choice at the onset of the choice-selective

PL-NAc sequence, when we assume the mouse makes its decision and which is well before the time

of reward.

Synaptic plasticity model description

The value function Our implementation of the TD algorithm seeks to learn an estimate, at any

given time, of the total discounted sum of expected future rewards, known as the value function

V (t). To do this, we assume that the value function over time is decomposed into a weighted sum

of temporal basis functions fRi (t) and fLi (t) [93] corresponding to the right-choice and left-choice

preferring neurons:

VR(t) =

nR∑
i=1

wR
i (t)f

R
i (t)

VL(t) =

nL∑
i=1

wL
i (t)f

L
i (t)

(2.10)

with the total value being given by the sum over both the left and right neurons as

V (t) = VR(t) + VL(t) (2.11)
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Here, VR(t) and VL(t) are the components of the value functions encoded by the right- and left-

preferring neurons respectively, nR and nL are the number of right- and left-preferring choice-

selective neurons respectively, and wR,L
i are the weights between the ith PL neuron and the NAc,

which multiply the corresponding basis functions. Thus, each term in VR(t) or VL(t) above corre-

sponds to the activity of one of the striatal neurons in the model (Figure 2.5a). Note that, in our

model, the total value V (t) sums the values associated with the left and right actions and is thus

not associated with a particular action. At any given time on a given trial, the choice-selective ac-

tivity inherent to the recorded PL-NAc neurons results predominantly in activation of the sequence

corresponding to the chosen lever compared to the unchosen lever (see Figure 2.5c), so that a single

sequence, corresponding to the chosen action, gets reinforced.

The reward prediction error (RPE) TD learning updates the value function iteratively by

computing errors in the predicted value function and using these to update the weights wi. The

RPE at each moment of time is calculated from the change in the estimated value function over a

time step of size dt as follows

RPE = δ(t)dt = r(t)dt+ e
−dt
τ V (t)− V (t− dt) (2.12)

where δ(t) is the reward prediction error per unit time. Here, the first two terms represent the

estimated value at time t, which equals the sum of the total reward received at time t and the

(discounted) expectation of rewards, i.e. value, at all times into the future. This is compared to

the previous time step’s estimated value V (t − dt). The coefficient e
−dt
τ represents the temporal

discounting of rewards incurred over the time step dt. Here τ denotes the timescale of temporal

discounting and was chosen to be 0.7s.

To translate this continuous time representation of RPE signals to our biological circuit model,

we assume that the RPE δ(t) is carried by dopamine neurons [95,171]. These dopamine neurons

receive three inputs corresponding to the three terms on the right side of the above equation: a

reward signal originating from outside the VTA, a discounted estimate of the value function V (t)

that, in Figure 2.5a, represents input from the striatum via the ventral pallidum [103,163] and
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an oppositely signed, delayed copy of the value function V (t − ∆) that converges upon the VTA

interneurons [99].

Because the analytical formulation of TD learning in continuous time is defined in terms of the

infinitesimal time step dt, but a realistic circuit implementation needs to be characterized by a

finite delay time for the disynaptic pathway through the VTA interneurons, we rewrite the above

equation approximately for small, but finite delay ∆ as:

δ(t)dt = r(t)dt+
γV (t)− V (t−∆)

∆
dt (2.13)

where we have defined γ = e
−∆
τ as the discount factor corresponding to one interneuron time

delay and, in all simulations, we chose a delay time ∆ = 0.01s. Note that the discount factor

is biologically implemented in different strengths of the weights of the VP inputs to the GABA

interneuron and dopaminergic neuron in the VTA.

The proposed circuit architecture of Figure 2.5a can be rearranged into several other, mathemat-

ically equivalent architectures (Supplementary Figure 2.16). These architectures are not mutually

exclusive, so other more complicated architectures could be generated by superpositions of these

architectures.

The eligibility trace The RPE at each time step δ(t)dt was used to update the weights of the

recently activated synapses, where the “eligibility” Ei(t) of a synapse for updating depends upon

an exponentially weighted average of its recent past activity [93,101]:

Ei(t) =

∫ t

−∞
e

s−t
τe fi(s) ds (2.14)

which can be rewritten as

dEi(t)

dt
= −Ei(t)

τe
+ fi(t) (2.15)
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or, in the limit dt << 1,

Ei(t) ≈ e−
dt
τeEi(t− dt) + fi(t)dt (2.16)

where τe defines the time constant of the decay of the eligibility trace, which was chosen to be 0.8s

consistent with [101,172].

Weight Updates The weight of each PL-NAc synapse, wi, is updated according to the product

of its eligibility Ei(t) and the RPE rate δ(t) at that time using the following update rule [93,101] :

dŵi(t)

dt
= αδ(t)Ei(t)

wi(t) = max[0, ŵi(t)]

(2.17)

where α = 0.009(spikes/s)−1 was the learning rate. Note that the units of α derive from the units

of weight being value · (spikes/s)−1. The PL-NAc weights used in the model are thresholded to be

non-negative so that the weights obey Dale’s principle.

Action Selection In the model, the decision to go left or right is determined by “probing” the

relative values of the left versus right actions just prior to the start of the choice-selective sequence.

To implement this, we assumed that the choice was read out in a noisy, probabilistic manner

from the activity of the cluster of neurons that responded at the time choice-selectivity robustly

appeared, when we assume the decision is made. This corresponded to the first 17 neurons in each

(left or right) PL population prior to the start of the sequential activity. This was accomplished by

providing a 50 ms long, noisy probe input to each of these PL neurons and reading out the summed

activity of the left and the summed activity of the right striatal populations. The difference between

these summed activities was then put through a softmax function (given below) to produce the

probabilistic decision.
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To describe this decision process quantitatively, we define the probability of making a leftward

or rightward choice in terms of underlying decision variables dleft and dright corresponding to the

summed activity of the first 17 striatal neurons in each population:

dleft = Et

[
17∑
i=1

wleft
i nlefti (t)

]

dright = Et

[
17∑
i=1

wright
i nrighti (t)

] (2.18)

where Et[.] denotes time-averaging over the 50 ms probe period and nlefti (t) and nrighti (t) denote

the non-negative stochastic probe input, which was chosen independently for each neuron and each

time step from a normal distribution (truncated at zero to enforce non-negativity) with mean prior

to truncation equal to 0.05 s−1 (5% of peak activity) and a standard deviation of 0.0025/
√
dt

s−1. Note that the weights w
left/right
i used here correspond to the weights from the end of the

previous trial, which we assume are the same as the weights at the beginning of the next trial. The

probability of choosing the left or the right lever for a given trial n is modeled as a softmax function

of these decision variables plus a “stay with the previous choice” term that models the tendency

of mice in our study to return to the previously chosen lever irrespective of reward (Figure 2.1d),

given by the softmax distribution

Prob(left) =
exp(βvaluedleft + βstayIleft)

exp(βvaluedleft + βstayIleft) + exp(βvaluedright + βstayIright)

Prob(right) =
exp(βvaluedright + βstayIright)

exp(βvaluedleft + βstayIleft) + exp(βvaluedright + βstayIright)

(2.19)

where Ileft/right is 1 if that action (i.e. left or right) was chosen on the previous trial and 0

otherwise, and βvalue = 7000 and βstay = 0.15 are free parameters that define the width of the

softmax distribution and the relative weighting of the value-driven versus stay contributions to the

choice.
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Synaptic plasticity model implementation

Block structure for the model Block reversals were determined using the same criteria as

in the probabilistic reversal learning task performed by the mice – the identity of the rewarded

lever reversed after 10 rewarded trials plus a random number of trials drawn from the geometric

distribution given by Equation 2.1. The model used p=0.4 as in the reversal learning experiments.

Given the variation in performance across the models that use PL-NAc, mTH-NAc or early-only

activity as input (see Figure 2.5), the average block length for each model varied as well (because

block reversals depended upon the number of rewarded trials). The average block length for the

single-trial PL-NAc model, single-trial mTH-NAc model and early-only control were 23.0±7.6,

28.1±8.8 and 25.1±6.3 trials (mean ± std. dev.), respectively. The PL-NAc model produced a

similar block length as that of behaving mice (23.2±7.9 trials, mean ± std. dev.). Because a block

reversal in our task is dependent on the mice receiving a set number of rewards, the choices just

prior to a block reversal are more likely to align with the identity of the block and result in reward

(see Figure 2.5e,j,o). Thus, the increase in choice probability observed on trials close to the block

reversal is an artifact of this reversal rule and not reflective of the model learning choice values.

PL-NAc inputs to the neural circuit model To generate the temporal basis functions fi(t)

(example activity shown in Figure 2.5c), we used the choice-selective sequential activity recorded

from the PL-NAc neurons shown in Figure 2.4b-c. Spiking activity was inferred from calcium

fluorescence using the CNMFe algorithm [168] and choice-selectivity was determined using the

nested comparison model used to generate Figure 2.3a (seeQuantification of neural modulation

to behavioral events above for details). Model firing rates were generated by Z-scoring the

inferred spiking activity of each choice-selective PL-NAc neuron. The resulting model firing rates

were interpolated using the interp function from Python’s numpy package to match the time step,

dt = 0.01s, and smoothed using a Gaussian kernel with zero mean and a standard deviation of 0.2s

using the gaussian filter1d function from the ndimage module in Python’s SciPy package.

To generate a large population of model input neurons on each trial, we created a population of 368

choice-selective “pseudoneurons” on each trial. This was done as follows: for each simulated trial,

we created 4 copies (pseudoneurons) of each of the 92 recorded choice-selective PL-NAc neurons
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using that neuron’s inferred spiking activity from 4 different randomly selected trials. The pool

of experimentally recorded trials from which pseudoneuron activities were chosen was balanced to

have equal numbers of stay and switch trials. This was done because the choices of the mice were

strongly positively correlated from trial to trial (i.e., had more stay than switch trials), which (if

left uncorrected) potentially could lead to biases in model performance if activity late in a trial was

reflective of choice on the next, rather than the present trial. To avoid choice bias in the model,

we combined the activity of left- and right-choice-preferring recorded neurons when creating the

pool of pseudoneurons. We then randomly selected 184 left-choice-preferring and 184 right-choice-

preferring model neurons from this pool of pseudoneurons. An identical procedure, using the 92

most choice-selective mTH-NAc neurons, was followed to create the model mTH-NAc neurons. The

identity of these 92 neurons was determined by ranking each neuron’s choice-selectivity using the

p-value calculated to determine choice-selectivity (see Quantification of neural modulation to

behavioral events above for details).

To generate the early-only control activity (example activity shown in Figure 2.5m), similar to the

PL-NAc activity, we created a population of 368 pseudoneurons on each trial that were divided into

184 left-choice-preferring and 184 right-choice-preferring pseudoneurons. However, in this case, we

only used the early-firing neurons (neurons active at the onset of the sequence) of the PL-NAc

population to create the pseudoneurons. Thus, for this control simulation, all neurons contribute

to the decision as they are all active at the onset of the sequence when the model makes its choice.

More specifically, to create a pool of pseudoneurons, we created multiple copies of each of the first

17 neurons of the left-choice-preferring and right-choice-preferring PL-NAc population, where each

copy corresponds to the activity of the neuron on a different randomly selected trial. We then

randomly selected 184 left-choice-preferring and 184 right-choice-preferring model neurons from

this pool of pseudoneurons. We used a smaller learning rate α = 0.003(spikes/s)−1 in this case

in order to prevent the PL-NAc synaptic weights from exhibiting unstable growth. We also adjust

βvalue = 1000 in order to match the stay probability following rewarded trials to that of the model

with recorded PL-NAc input (Figure 2.5p).

To mimic the PL-NAc activity during the optogenetic stimulation of PL-NAc neurons (Figure 2.7b-

c), we set fR,L
i (t) equal to 0.2 for a randomly selected 70% of PL neurons, at all times t, from the
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time of the simulated nosepoke to 2s after the reward presentation. These ‘stimulation trials’

occurred on a random 10% of trials. 70% of PL neurons were activated to mimic the incomplete

penetrance of ChR2 viral expression.

Reward input to the neural circuit model The reward input r(t) to the dopamine neurons

was modeled by a truncated Gaussian temporal profile centered at the time of the peak reward:

r(t) = R(i)
1√
2πσ2r

e
− (t−µr)

2

2σ2
r (2.20)

where R(i) is 1 if trial i was rewarded and 0 otherwise, µr is the time of peak reward and σr defines

the width of the Gaussian (0.3s in all cases, width chosen to approximate distribution of dopamine

activity in response to reward stimuli observed in previous studies such as [95, 173]). For each

trial, a value of µr was randomly drawn from a uniform distribution spanning 0.2-1.2s from the

time of the lever press. This distribution was chosen to reflect the 1s jitter between lever press

and reward used in our behavioral task (see Methods above) as well as the observed delay between

reward presentation and peak dopamine release in a variety of studies [26,99,173,174]. To ensure

that no residual reward response occurred before the time of the lever press, ra(t) was set to 0 for

any time t that was 0.2s before the time of the peak reward, µr.

Initial weights The performance of the model does not depend on the choice of the initial weights

as the model learns the correct weights by the end of the first block irrespective of the chosen initial

weights. We chose the initial weights to be zero.

Weight and eligibility update implementation We assumed that the weight and eligibility

trace updates start at the time of the simulated nose poke. The nose poke time, relative to the time

of the lever press, varies due to a variable delay between the nose poke and the lever presentation

as well as variation in time between lever presentation and lever press. To account for this, the

weight and eligibility trace updates are initiated at time t = tstart, where tstart was drawn from

a Gaussian distribution with a mean at –2.5s, and a variance of 0.2s, which was approximately

both the time of the nose poke and the time at which choice-selective sequences initiated in the

experimental recordings. The eligibility trace is reset to zero at the beginning of each trial. We
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stopped updating the weights at the end of the trial, defined as 3s after the time of lever press.

The eligibility traces were updated according to Equation 2.16. The weights were updated by

integrating Equation 2.17 with a first-order forward Euler routine. In all simulations, we used a

simulation time step dt = 0.01s.

2.4.4. Neural dynamics model

To computationally model how the brain could solve the reversal learning task without fast dopamine-

mediated synaptic plasticity, we used an actor-critic network based on the meta-RL framework

introduced by [79]. The model actor and critic networks are recurrent neural networks of Long

Short-Term Memory (LSTM) units whose weights are learned slowly during the training phase of

the task. The weights are then frozen during the testing phase so that fast reversal learning occurs

only through the activation dynamics of the recurrent actor-critic network. Like the synaptic plas-

ticity model, we input recorded PL-NAc activity to a value-generating “critic” network (conceived

of as NAc, VP, and associated cortical regions) to generate appropriate reward prediction error

signals in dopamine neurons. Unlike the synaptic plasticity model, the reward prediction error

signals in this model are sent to an explicit actor network (conceived of as DMS and associated

cortical regions), where they act as an input to help generate appropriate action signals based on

reward history.

Neural dynamics model description

LSTM The model comprises two separate fully connected, gated recurrent neural networks of

LSTM units, one each for the actor and critic network. An LSTM unit works by keeping track of a

‘long-term memory’ state (‘memory state’ c(t), also known as cell state) and a ‘short-term memory’

state (‘output state’ h(t), also known as hidden state) at all times. To regulate the information to

be kept or discarded in the memory and output states, LSTMs use three types of gates: the input

gate i(t) regulates what information is input to the network, the forget gate ϕ(t) regulates what

information to forget from the previous memory state, and the output gate o(t) (not to be confused

with the output state h(t)) regulates the output of the network. More precisely, the dynamics of

an LSTM is defined by the following equations:
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ϕ(t) = σ(Wϕx(t) +Uϕh(t−∆t) + bϕ)

i(t) = σ(Wix(t) +Uih(t−∆t) + bi)

o(t) = σ(Wox(t) +Uoh(t−∆t) + bo)

c(t) = ϕ(t)⊙ c(t−∆t) + i(t)⊙ tanh(Wcx(t) +Uch(t−∆t) + bc)

h(t) = o(t)⊙ tanh(c(t))

(2.21)

where x(t) is the vector of external inputs to the LSTM network at time step t, Wq and Uq are the

weight matrices of the input and recurrent connections, respectively, where the subscript q denotes

the state or gate being updated, bq are the bias vectors, ⊙ denotes element-wise multiplication and

σ denotes the softmax function.

Critic network As in the synaptic plasticity model, the goal of the critic is to learn the value

(discounted sum of future rewards) of a given choice at any time in a trial. The learned value signal

can then be used to generate the RPE signals that are sent to the actor. The critic is modeled as a

network of LSTM units that linearly project through trainable weights to a value readout neuron

that represents the estimated value V (t) at time step t. The critic takes as input the reward received

r(t) and the experimentally recorded PL-NAc choice-selective sequential input C(t). The PL-NAc

input provides the critic with a representation of the chosen side on the current trial as well as the

time during the trial. This allows the critic to output an appropriately timed value signal (and

consequently an appropriately timed RPE signal) corresponding to the chosen side. The reward

input acts as a feedback signal to the critic that provides information about the correctness of the

chosen action.

To map the critic to a biological neural circuit, we hypothesize that NAc, together with VP and

associated cortical areas, form the critic recurrent neural network (Figure 2.6a; [108, 109, 110,

111, 112]). The choice-selective sequential input C(t) to the critic is provided by the recorded

choice-selective sequential activity in PL-NAc neurons (Figure 2.6a).
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The reward prediction error (RPE) As in the synaptic plasticity model (Figure 2.5a), the

RPE δ(t) is computed in the VTA DA neurons based on the value signal from the critic network

(Figure 2.6a).

δ(t) = r(t) + γV (t)− V (t−∆t) (2.22)

Unlike the synaptic plasticity model, the RPE signal is conveyed by the VTA dopamine neurons to

the actor network. Note that the delay of the negative value signal equals one time step ∆t = 0.1s

in this model, rather than the smaller delay ∆ = 0.01s for the synaptic plasticity model. This is

because the neural dynamics model used a larger time step for simulations due to limitations in

computational power.

Actor network In contrast to the synaptic plasticity model, in which actions were directly readout

from the activity of the value neurons early in the trial, we consider an explicit actor network that

generates actions. The actor is modeled as a network of LSTM units that compute the policy, i.e.,

the probability of choosing an action a(t) at time step t given the current state of the network.

The policy is represented by three policy readout neurons, corresponding to choosing left, right

or ‘do nothing’, whose activities are given by a (trainable) linear readout of the activities of the

actor LSTM units. The actor receives three inputs: (i) an efference copy of the action taken at

the previous time step a(t−∆t), (ii) a ‘temporal context’ input ξ(t), encoded as a vector of all 0s

except for a value of 1 in the entry corresponding to the current time point t, that provides the

actor with a representation of the time within the trial, and (iii) the reward prediction error at the

current time step δ(t).

To map the actor to a biological neural circuit, we hypothesize that the DMS and associated cortical

areas form the actor recurrent neural network (Figure 2.6a; [108,110,175,176]). The temporal

sequence input ξ(t) to the actor is assumed to originate in the hippocampus or other cortical areas

(Figure 2.6a; [113,177,178,179]).
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Training algorithm To train the recurrent weights of the network, which are then held fixed

during task performance, we implement the Advantage Actor-Critic algorithm [27] on a slightly

modified version of the reversal learning task (see “Block structure for training” section below).

In brief, the weights of the neural network are updated via gradient descent and backpropagation

through time. The loss function for the critic network, Lcritic, defines the error in the estimated

value function. The synaptic weight parameters θv of the critic network are updated through

gradient descent on the critic loss function Lcritic:

∆θv = −α∇Lcritic

∇Lcritic = −βvδt(st; θv)
∂V

∂θv

(2.23)

where α is the learning rate, st is the state at time step t, V denotes the value function and βv

is the scaling factor of the critic loss term. δt(st; θv) is the k-step return temporal difference error

(not to be confused with the RPE input to the actor defined in Equation 2.22) defined as follows:

δt(st; θv) = Rt − V (st; θv)

where Rt is the discounted k-step bootstrapped return at time t

Rt =

k−1∑
i=0

rt+i

i∏
j=0

γt+j

+ V (st+k; θv)

k∏
j=0

γt+j

where rt is the reward received at time step t, γt is the discount factor at time step t (defined

below), and k is the number of time steps until the end of an episode.

The loss function for the actor network, Lactor, is given by a weighted sum of two terms: a policy

gradient loss term, which enables the actor network to learn a policy π(at|st) that approximately

maximizes the estimated sum of future rewards V (st), and an entropy regularization term that

maximizes the entropy of the policy π to encourage the actor net.work to explore by avoiding

premature convergence to suboptimal policies. The gradient of the actor loss function Lactor with

respect to the synaptic weight parameters of the actor network, θ, is given by
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∆θ = −α∇Lactor

∇Lactor = −∂ log π(at|st; θ)
∂θ

δt(st; θv)− βe
∂H(st; θ)

∂θ

(2.24)

where at is the action at time step t, π is the policy, βe is the scaling factor of the entropy

regularization term and H(st; θ) is the entropy of the policy π

H(st; θ) = −
∑
a∈A

π(a|st; θ) log π(a|st; θ)

where A denotes the space of all possible actions.

Neural dynamics model implementation

LSTM Both the actor and critic LSTM networks consisted of 128 units each and were imple-

mented using TensorFlow’s Keras API. The weight matrices Uq were initialized using Keras’s

‘glorot uniform’ initializer, the weight matrices Wq were initialized using Keras’s ‘orthogonal’ ini-

tializer and the biases b were initialized to 0. The output and memory states for both LSTM

networks were initialized to zero at the beginning of each training or testing episode.

PL-NAc inputs to the critic Input to the critic was identical to the smoothed, single-trial input

used for the synaptic plasticity model described above, except i) activity was not interpolated

because each time step in this model was equivalent to the sampling rate of the collected data

(10 Hz), and ii) we chose to input only the activity from 2s before to 2s after the lever press

(as compared to 3s after the lever press for the synaptic plasticity model) in order to reduce the

computational complexity of the training process. To reduce episode length, and therefore training

time, we also excluded those neurons whose peak activity occurred more than 2s after the lever

press, reducing the final number of ‘pseudoneurons’ used as input to 306 (compared with 368 for

the synaptic plasticity model).

78



Optogenetic-like stimulation of the PL-NAc population (Figure 2.7d-e) was performed in a similar

manner to the synaptic plasticity model, with activity set to 0.15 for a randomly selected 70% of

neurons for the duration of the trial.

Trial structure Each trial was 4s long starting at 2s before lever press and ending at 2s after

lever press. At any given time, the model has three different choices: choose left, choose right or

do nothing. Similar to the synaptic plasticity model, the model makes its decision to choose left

or right at the start of a trial, which then leads to the start of the corresponding choice-selective

sequential activity. However, unlike the synaptic plasticity model, the model can also choose ‘do

nothing’ at the first time step, in which case an activity pattern of all zeros is input to the critic for

the rest of the trial. For all other time steps, the correct response for the model is to ‘do nothing’.

Choosing ‘do nothing’ on the first time step or choosing something other than ‘do nothing’ on

the subsequent time steps results in a reward r(t) of -1 at that time. If a left or right choice is

made on the first time step, then the current trial is rewarded based on the reward probabilities of

the current block (Figure 2.1a) and the reward input r(t) to the critic is modeled by a truncated

Gaussian temporal profile centered at the time of the peak reward (Equation 2.20) with the same

parameters as in the synaptic plasticity model.

Block structure for training We used a slightly modified version of the reversal learning task

performed by the mice in which the block reversal probabilities were altered in order to make the

block reversals unpredictable. This was done to discourage the model from learning the expected

times of block reversals based on the number of rewarded trials in a block and to instead mimic the

results of our behavioral regressions (Figure 2.1e) suggesting that the mice use only the previous

∼4 trials to make a choice. To make the block reversals unpredictable, the identity of the high-

probability lever reversed after a random number of trials drawn from a geometric distribution

(Equation 2.1) with p=0.9.

Training Each training episode was chosen to be 15 trials long and the model was trained for

62000 episodes. For this model, we used a time step ∆t = 0.1s. The values of the training

hyperparameters were as follows: the scaling factor of the critic loss term βv = 0.05, the scaling

factor of the entropy regularization term βe = 0.05, the learning rate α = 0.01s−1 (α = 0.001 per
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time step), and the timescale of temporal discounting within a trial τ = 2.45s, leading to a discount

factor γ = e−∆t/τ = 0.96 for all times except for the last time step of a trial when the discount

factor was 0 to denote the end of a trial. The network’s weights and biases were trained using the

RMSprop gradient descent optimization algorithm [180] and backpropagation through time, which

involved unrolling the LSTM network over an episode (630 time steps).

Block structure for testing Block reversal probabilities for the testing phase were the same as

in the probabilistic reversal learning task performed by the mice. The average block length for the

PL-NAc neural dynamics model was 19.3±5.0 trials (mean±std. dev.).

Testing The model’s performance (Figures 6b-j) was evaluated in a testing phase during which

all network weights were held fixed so that reversal learning was accomplished solely through the

neural dynamics of the LSTM networks. The network weights used in the testing phase were the

weights learned at the end of the training phase. A testing episode was chosen to be 1500 trials

long and the model was run for 120 episodes.

Actor network analysis For Figures 6g-j, we tested the model’s performance on a slightly mod-

ified version of the reversal learning task in which, after training, block lengths were fixed at 30

trials. This facilitated the calculation and interpretation of the block-averaged activity on a given

trial of a block. Dimensionality reduction of the actor network activity (Figure 2.6h) was performed

using the PCA function from the decomposition module in Python’s scikit-learn package.

Replacing sequential input to the critic with persistent input. In Figure 2.6f, we analyzed how

model performance changed when the temporal structure provided by the choice-selective sequential

inputs to the critic were replaced during training by persistent choice-selective input. The persistent

choice-selective input was generated by setting the activity of all the left-choice selective neurons

to 1 and all the right-choice selective neurons to 0 for all time points on left-choice trials and vice

versa on right-choice trials.
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2.4.5. Cross-trial analysis of RPE in dopamine neurons

To generate the regression coefficients in Figure 2.5g,l,q, Figure 2.6e and Supplementary Fig-

ure 2.17c,d, we performed a linear regression analysis adapted from [102], which uses the mouse’s

reward outcome history from the current and previous 5 trials to predict the average dopamine

response to reward feedback on a given trial, i:

D(i) = β0 +
5∑

j=0

βjR̂(i− j) + error (2.25)

where D(i) is the average dopamine activity from 0.2 to 1.2s following reward feedback on trial

i, R̂(i − j) is the reward outcome j trials back from trial i (1 if j trials back is rewarded and 0

if unrewarded) and βj are the calculated regression coefficients that represent the effect of reward

outcome j trials back on the strength of the average dopamine activity, D(i). For the regression

coefficients generated from recorded dopamine activity (Supplementary Figure 2.17c,d) we used

the Z-scored GCaMP6f fluorescence from VTA-NAc terminal recordings of 11 mice performing the

same probabilistic reversal learning task described in this paper (for details see [26]). The regression

coefficients for the experimental data as well as the synaptic plasticity and neural dynamics model

simulations were fit using the LinearRegression function from the linearmodel module in Python’s

scikit-learn package.

2.4.6. Simulation of model-free versus model-based task performance

In order to identify possible RPE signatures that distinguish ideal observer (“model-based”) versus

Q-learning (“model-free”) behavior in this task (Supplementary Figure 2.21), we simulated choices

using the two models. Based on the dopaminergic signature of block reversal inference reported

in [181], we first confirmed that our ideal observer and Q-learning models gave rise to distinct

dopamine signatures when performing the task used in [181]. In that task, reward probabilities

were 100% and 0% for the “high probability” and “low probability” choices, respectively, and the

reward probabilities reversed with a 5% probability on each trial. Next, we applied the same
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framework to our task, to determine if we could observe similar distinctions between the models.

In this case, the reward probabilities were 70% and 10%, as in the task studied in this paper, and

blocks reversed with a 5% probability on each trial, which resulted in block lengths comparable to

those observed in our experiments.

Ideal observer model The ideal observer model was provided with knowledge of the reward

probabilities associated with each block and the probability of block reversal on each trial. The

5% block reversal probability on each trial can be written in terms of the block state transition

probabilities as

Tij = P (s(t) = sj |s(t− 1) = si) =

0.95 0.05

0.05 0.95

 (2.26)

where Tij is defined as the transition probability between block state si on trial t and block state

sj on trial t+ 1. Here, ‘block state’ refers to whether the current block has a higher probability of

left or right choices being rewarded. The reward probabilities for each block were as follows

Rik = P (r(t) = 1|s(t) = si, c(t) = ck) =



1.0 0.0

0.0 1.0

 , Bromberg-Martin Task

0.7 0.1

0.1 0.7

 , Our Task

(2.27)

where Rik is defined as the probability of reward for block state si and choice ck.

On each trial, the ideal observer model selects the choice with the highest expectation of reward

based on its belief about the current block state given the choice and reward history. The expecta-

tion of reward ρl(t+1) for choice l on trial t+1, given the entire reward history r(1 : t) and choice
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history c(1 : t) up until trial t is given by

ρl(t+ 1) =

2∑
i=1

RilP (s(t+ 1) = si|r(1 : t), c(1 : t))

=

2∑
i=1

2∑
j=1

RilP (s(t+ 1) = si|s(t) = sj)P (s(t) = sj |r(1 : t), c(1 : t))

=
2∑

i=1

2∑
j=1

RilTjiP (s(t) = sj |r(1 : t), c(1 : t))

(2.28)

where l can be either 1 (left choice) or 2 (right choice) and P (s(t) = sj |r(1 : t), c(1 : t)) is the proba-

bility of being in block state sj on trial t given the entire reward and choice history up to and includ-

ing trial t. Equation 2.28 tells us that estimating the block state probability P (s(t) = sj |r(1 : t), c(1 : t))

will provide us with an estimate of the expected reward for a given choice on trial t+ 1 as Ril and

Tji are already known. Using Bayes’ theorem, we can estimate the block state probability as

P (s(t) = sj |r(1 : t), c(1 : t)) =
P (r(t)|r(1 : t− 1), c(1 : t), s(t) = sj)× P (s(t) = sj |r(1 : t− 1), c(1 : t))∑2
j=1 P (r(t)|r(1 : t− 1), c(1 : t), s(t) = sj)× P (s(t) = sj |r(1 : t− 1), c(1 : t))

(2.29)

The first term in the numerator of the right hand side of Equation 2.29, P (r(t)|r(1 : t− 1), c(1 : t), s(t) = sj),

is the probability of receiving reward r(t) (1 if rewarded and 0 if unrewarded) on trial t given the

current choice c(t) = ck, the block state sj , and the reward history r(1 : t − 1) and the choice

history c(1 : t− 1) up to trial t− 1. Because the past history of rewards and choices does not affect

the reward probability once the block state is known, this can be rewritten as

P (r(t)|r(1 : t− 1), c(1 : t), s(t) = sj) = P (r(t)|c(t) = ck, s(t) = sj)

= R
r(t)
jk (1−Rjk)

1−r(t)
(2.30)

The second term in the numerator of the right hand side of Equation 2.29, P (s(t) = sj |r(1 : t− 1), c(1 : t)),

is the probability that the current block state is P (s(t) = sj |r(1 : t− 1), c(1 : t)) given the reward
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and choice history. This can be rewritten as

P (s(t) = sj |r(1 : t− 1), c(1 : t))

= P (s(t) = sj |r(1 : t− 1), c(1 : t− 1))

=
2∑

m=1

P (s(t) = sj |s(t− 1) = sm))× P (s(t− 1) = sm|r(1 : t− 1), c(1 : t− 1))

=
2∑

m=1

TmjP (s(t− 1) = sm|r(1 : t− 1), c(1 : t− 1))

(2.31)

In the second line above, the dependence on c(t) has been removed because the choice on the current

trial, in the absence of reward information on the current trial, does not provide any additional

information about the current state beyond that provided by the past reward and choice history.

Combining Equations 2.29-2.31, the block state probability on the current trial t can be written

in terms of the known reward probabilities, known state transition probabilities and the previous

block state probability as

P (s(t) = sj |r(1 : t), c(1 : t)) =

∑2
m=1R

r(t)
jk (1−Rjk)

1−r(t)TmjP (s(t− 1) = sm|r(1 : t− 1), c(1 : t− 1))∑2
j=1

∑2
m=1R

r(t)
jk (1−Rjk)1−r(t)TmjP (s(t− 1) = sm|r(1 : t− 1), c(1 : t− 1))

(2.32)

The above equation allows us to estimate the current trial block state probability P (s(t) = sj |r(1 : t), c(1 : t))

recursively, since it can be expressed in terms of the previous trial block state probability P (s(t− 1) = sm|r(1 : t− 1), c(1 : t− 1))

and other known constant terms. This combined with the known reward and block transition prob-

abilities allows the model to select the optimal choice according to Equation 2.28.

Q-Learning model To simulate trial-by-trial, model-free performance of the tasks, we used a

Q-learning model in which the value of the chosen action is updated on each trial as follows:

Qright(t+ 1) =


Qright(t) + α(r(t)−Qright(t)), if c(t) = right

Qright(t), if c(t) = left

Qleft(t+ 1) =


Qleft(t), if c(t) = right

Qleft(t) + α(r(t)−Qleft(t)), if c(t) = left

(2.33)
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where Qright is the value for the right choice and Qleft is the value for the left choice. t is the

current trial and α is the learning rate, which was set to 0.612 per trial. r(t) is the outcome of

trial t (1 for reward, 0 for no reward). Q-values for each choice were initialized to 0. The outcome

r(t) was determined based on the reward probability for choice c(t) given the block. Choice was

simulated using a softmax equation such that the probability of choosing right or left is given by,

P (c(t) = right) =
exp(βvalueQright(t) + βstayIright(t))

exp(βvalueQleft(t) + βstayIleft(t)) + exp(βvalueQright(t) + βstayIright(t))

P (c(t) = left) =
exp(βvalueQleft(t) + βstayIleft(t))

exp(βvalueQleft(t) + βstayIleft(t)) + exp(βvalueQright(t) + βstayIright(t))

(2.34)

where βvalue is the inverse temperature parameter, which was set to 0.99. βstay is a parameter

accounting for how likely mice were to repeat their previous choice, which was set to 0.95. Ileft/right

is 1 if that action (i.e. left or right) was chosen on the previous trial and 0 otherwise. Parameters for

the Q-learning model were fit in [182] to the behavior of mice in which dopamine neuron activity

was recorded in [26].

Comparison of RPE at block reversals RPE for both the ideal-observer model and the Q-

learning model (Supplementary Figure 2.21) was defined as the difference between the experienced

reward r(t) and the expected reward for the chosen action (ρchosen(t) for the ideal-observer model

or Qchosen(t) for the Q-learning model) as follows:

RPEIdealObserver = r(t)− ρchosen(t)

RPEQ−learning = r(t)−Qchosen(t)
(2.35)

To identify RPE signatures of model free versus model based performance of the two tasks, we

compared the RPE from the ideal-observer model and the Q-learning model on trials around block

reversals. Specifically, we compared the RPE from the two models on the first trial of a block with

the RPE on the second trial of a block when the choice on trial 1 was different from the choice on

trial 2. This means that any changes in RPE from trial 1 to trial 2 were inferred because the new

action-outcome relationship for the choice made on trial 2 had not been explicitly experienced in

the new block.
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2.5. Supplementary Materials

PVT, Paraventricular nucleus of the thalamus

CM, Central medial nucleus of the thalamus. 

PT, Parataenial nucleus of the thalamus

IAD, Interanterodorsal nucleus of the thalamus

MD, Mediodorsal nucleus of the thalamus

PCN, Paracentral nucleus of the thalamus

ACA, Anterior cingulate area

PL, Prelimbic area

ORB, Orbital area

ILA, Infralimbic area

A/P 2.1mm

A/P 1.9mm

A/P 2.0mm

A/P 1.7mm

A/P 1.5mm

A/P -1.5mm

A/P -1.2mm

A/P -0.7mm

A/P -1.0mm

A/P -0.2mm

500um diameter GRIN lens

a b

Figure 2.8. Locations of GRIN lens implants. Related to methods. (a) Schematic of coronal

sections along the anterior/posterior axis (A/P, numbers relative to bregma) with recording locations of 7

PL-NAc mice. Red lines indicate bottom of lens implant. (b) Same as a except location of 9 mTH-NAc

recordings.
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Figure 2.9. Mice in the PL-NAc and mTH-NAc imaging cohorts have comparable behavior.

Related to Figure 2.1 and methods. (a) Top, coefficients from logistic regression to predict choice

(see Figure 2.1) from PL-NAc imaging cohort (n=7 mice). Bottom, same except coefficients from mTH-

NAc imaging cohort (n=9 mice). Both cohorts use choice and outcome information from previous trials to

predict the current choice. Regression coefficients between the two cohorts are not significantly different for

any trials back for either rewarded or unrewarded trials (P>0.01, unpaired, two-tailed t-test of regression

coefficients across mice at each trial back, n=7 and 9 mice for PL-NAc and mTH-NAc, respectively). (b)

Stay probability following rewarded (blue or orange) and unrewarded (grey) trials for PL-NAc (top) and

mTH-NAc (bottom) cohorts. Both cohorts have a significantly higher stay probability following a rewarded

trial (PL-NAc: P=0.00008; mTH-NAc: P=0.00003, paired, two-tailed t-test comparing stay probability on

rewarded and unrewarded trials across mice, n=7 and 9 mice for PL-NAc and mTH-NAc, respectively). (c)

Probability of a left or right lever press following a reversal from a left-preferring to right-preferring block of

mice from the PL-NAc (top, n=7 mice) and mTH-NAc (bottom, n=9 mice) cohorts. Both cohorts display a

qualitatively similar change in choice behavior following a block reversal. In all panels, data are represented

as mean ± SEM across mice.
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Figure 2.10. Simulated neural activity to illustrate the ability of the encoding model to

successfully relate neural activity to the appropriate behavioral event. Related to Figure 2.2

and methods. (a) Simulated neuron that is responsive only to the ipsilateral lever press. (b) Trial-by-trial

heatmap of a simulated neuron that has increased activity time-locked to the ipsilateral lever press. In the

data, there was a correlation between the time of lever press and the time of the CS, which produced a time-

locked response to the CS, even though the neuron did not respond to that event. Left, activity heatmap

aligned to the time of an ipsilateral lever press (dashed blue line) sorted by the time of the subsequent

CS presentation (green dots). Right, activity heatmap is aligned to the time of the CS (dashed green

line),ordered by the time of the preceding lever press (blue dots). (c) Average activity across trials of the

example simulated neuron in b aligned to the lever press, left, and CS presentation, right. Unlike the idealized

case in a, when the timing of task events is maintained from the real behavior, the temporal correlations

result in a bump in activity aligned to the CS (right plot). Note that this bump in activity is generated

entirely by the correlation in event times, since this simulated neuron only had activity in relation to the lever

press (and not the CS presentation). (d) Response kernels for lever press, left, and CS, right, derived from

the encoding model used to attribute the neural response of individual task events. The model successfully
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recovers the fact that neural activity in this simulated neuron is related to the lever press and not the CS.

(e) Heatmap displaying the average activity from a population of 278 simulated neurons that respond to

either the ipsilateral or contralateral lever press, but not the other events. Each neuron responds to the lever

press, with a randomly assigned response latency from -1 to 3s. While the strongest average time-locked

response is to the ipsilateral or contralateral lever presses, there are visible responses to the other task events

as a consequence of the correlation between task events resulting from their temporal proximity. (f) Same

as e except heatmap displays the response kernels derived from the encoding model. The model successfully

discovers the underlying structure of the data (i.e., that responses are driven by the lever press).
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Figure 2.11. Lack of correlation between recording locations relative to Bregma and choice

/ outcome decoding. Related to Figure 2.3. (a) Top, correlations between choice decoding accuracy

using recorded PL-NAc activity and, in order, the anterior/posterior (A/P), medial/lateral (M/L) and

dorsal/ventral (D/V) recording locations relative to Bregma (see Supplemental Figure 2.1 for schematic

of recording locations; recording locations were aligned to the Allen atlas using the Wholebrain software

suite (http://www.wholebrainsoftware.org/) of [165]; see Methods for details, n=6 mice). Bottom, same as

top except correlation between recording location and outcome decoding accuracy using PL-NAc activity.

(b) Same as a except decoding accuracy for choice (top) and outcome (bottom) determined using recorded

mTH-NAc activity (n=9 mice). All p-values are calculated from Pearson’s correlation coefficient; none are

significant at the P<.05 level after correction for multiple (6) hypotheses using Bonferroni correction.
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Figure 2.12. Choice-selective sequences in PL-NAc neurons without peak-normalization.

Related to Figure 2.4. Heatmap demonstrating sequential response of choice-selective PL-NAc neurons

to the ipsilateral and contralateral lever press (n=92 neurons from 7 mice). Similar to Figure 2.4b-c, but

time-locked, trial-averaged GCaMP6f fluorescence is not normalized by the peak response to the lever press

and is taken from all trials.

91



0 2 4 6

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

10

20

30

40

10

20

30

40
0

1

2

3

0

1

2

3

unshuffled
shuffled

unshuffled
shuffled

PL-NAc choice-selective sequence
unshuffled data

ipsilateral press contralateral press

PL-NAc choice-selective sequence
shuffled data

mTH-NAc choice-selective sequence
unshuffled data

mTH-NAc choice-selective sequence
shuffled data

ch
oi

ce
-s

el
ec

tiv
e 

PL
-N

Ac
ne

ur
on

s 
(s

or
te

d 
by

 ti
m

e 
of

 p
ea

k 
ac

tiv
ity

)

0

1

 peak-norm
alized G

C
aM

P6f

0

1

 peak-norm
alized G

C
aM

P6f

0

1  peak-norm
alized

G
C

aM
P6f

ipsilateral press contralateral press

ipsilateral press contralateral press ipsilateral press contralateral press

0

1  peak-norm
alized

G
C

aM
P6f

-2 0 2 4 6-2 0 2 4 6-2 0 2 4 6-2

0 2 4 6-2 0 2 4 6-2 0 2 4 6-2 0 2 4 6-2

G
C

aM
P6

f rid
ge

/G
C

aM
P6

f ba
ck

gr
ou

nd
G

C
aM

P6
f rid

ge
/G

C
aM

P6
f ba

ck
gr

ou
nd

time from lever press (s) time from lever press (s)

time from lever press (s) time from lever press (s)

a cb

d e f
ch

oi
ce

-s
el

ec
tiv

e
m

TH
-N

Ac
 n

eu
ro

ns
(s

or
te

d 
by

 ti
m

e 
of

 p
ea

k 
ac

tiv
ity

)

ch
oi

ce
-s

el
ec

tiv
e

m
TH

-N
Ac

 n
eu

ro
ns

(s
or

te
d 

by
 ti

m
e 

of
 p

ea
k 

ac
tiv

ity
)

ch
oi

ce
-s

el
ec

tiv
e 

PL
-N

Ac
ne

ur
on

s 
(s

or
te

d 
by

 ti
m

e 
of

 p
ea

k 
ac

tiv
ity

)

Figure 2.13. The calculated ridge-to-background ratio of PL-NAc neurons supports the

presence of sequences. Related to Figure 2.4. (a) Sequential activity of PL-NAc choice-selective

neurons. Similar to Figure 2.4b-c, the heatmap is ordered by the time of peak activity time-locked to

the ipsilateral (left column) and contralateral (right column) lever press of each neuron, but instead of

cross-validation, activity is averaged across all trials. Red trace represents the borders of the one-second

window around the peak defined as the ‘ridge’. Activity at all other surrounding timepoints is considered

the ‘background’. (b) Same as a for data that is shuffled by temporally shifting the GCaMP6f fluorescence

trace across a recording session separately for each neuron by a random number of frames, chosen from a

uniform distribution. Ordering by the time of peak activity generates spurious sequential activity across

the diagonal in shuffled data. (c) Calculated ridge-to-background ratio of PL-NAc neurons using unshuffled

(blue) and shuffled (grey) data. A ratio is calculated for each individual neuron and the average of these

ratios across all neurons displayed in the heatmap is shown. The ratio calculated from unshuffled data

is significantly larger than that from the shuffled data (P<0.0001, comparison between unshuffled data
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and distribution of 500 shuffled iterations). Error bars for shuffled data indicate one standard deviation.

(d-f) Same as a-c but ridge-to-background is calculated using mTH-NAc neural recordings. Similar to PL-

NAc, the ratio calculated from unshuffled data was significantly larger than that from the shuffled data

(P<0.0001). However, when comparing across the populations, the ridge-to-background calculated using

PL-NAc neurons (3.06±0.12, mean±sem, n=92 neurons from 7 mice) was significantly larger than that

using mTH-NAc (2.42±0.12, mean±sem, n=42 neurons from 9 mice; P=0.004: unpaired, two-tailed t-test

comparing ratio between PL-NAc and mTH-NAc neurons).
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Figure 2.14. mTH-NAc choice-selective neurons display sequential activity that is less con-

sistent than PL-NAc. Related to Figure 2.4. (a) Top; average GCaMP6f fluorescence of three

simultaneously imaged mTH-NAc choice-selective neurons with different response times relative to the lever

press. Error bars are s.e.m across trials. Bottom, heatmaps of GCaMP6f fluorescence response across trials
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to ipsilateral (orange) and contralateral (grey) lever presses. (b,c) Heatmaps of choice-selective mTH-NAc

neurons’ peak-normalized GCaMP6f responses to lever press (n=42/256 neurons from 9 mice). Each row

is the average GCaMP6f fluorescence time-locked to the ipsilateral (left column) and contralateral (right

column) lever press for a neuron, normalized by the neuron’s peak average fluorescence. In b (‘train data’),

heatmap is generated using a randomly selected half of trials and ordered by the time of each neuron’s peak

activity. In c (‘test data’), the peak-normalized, time-locked GCaMP6f fluorescence from the other half of

trials was used while maintaining the order from ‘train data’ in b. Compare to PL-NAc data in Figure 2.4b-c.

(d) Correlation between the time of peak activity using the ‘train’ (horizontal axis) and ‘test’ (vertical axis)

trials for choice-selective mTH-NAc neurons. While mTH-NAc choice-selective neurons also show significant

correlation between ‘train’ and ‘test’ trials (R2 = 0.51, P = 5.5×10−4, n=42 neurons from 9 mice), this cor-

relation is significantly lower than that of PL-NAc (comparison with data in Figure 2.4d; P=0.005, Z=2.81,

Fisher’s R-to-Z transformation, comparison of correlation coefficients derived from comparing peak activity

between ‘test’ and ‘training’ data from PL-NAc versus mTH-NAc). (e) Average choice decoding accuracy of

the mice’s choice on the current (orange), previous (grey) and next trial (black) as a function of GCaMP6f

fluorescence throughout the current trial. GCaMP6f fluorescence is taken from 100 random selections per

mouse of 10 simultaneously imaged mTH-NAc neurons (each trial’s activity is adjusted in a piecewise linear

manner relative to the median time of the nose poke, lever press and next trial nose poke, see Methods for

details). Data are represented as mean ± SEM across mice (n=9 mice). Red dashed line indicates median

onset of reward consumption. * indicate significant decoding accuracy above chance, P<0.01, two-tailed,

one-sample t-test across mice.

95



-2 0 2 4 6 8 10

0.5

0.6

0.7

0.8

 
PL

-N
Ac

 c
ho

ic
e

de
co

di
ng

 a
cc

ur
ac

y

nose
poke

lever
press

reward
consumption

next trial
nose poke

Decoding of choice two trials 
in the past using PL-NAc activity

time, adjusted relative to median event times (s)

trials 1-5
trials 6-10
trials 11-15

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3 4 5 6
time from lever press (s)

0

0.5

1

1.5

m
ea

n 
z-

sc
or

ed
 G

C
aM

P6
f

PL
-N

Ac
 re

sp
on

se

ipsilateral press
in ipsilateral block

-2 -1 0 1 2 3 4 5 6
time from lever press (s)

0

0.5

1

1.5

m
ea

n 
z-

sc
or

ed
 G

C
aM

P6
f

PL
-N

Ac
 re

sp
on

se

ipsilateral press
in contralateral block

trials 1-5
trials 6-10
trials 11-15

-2 -1 0 1 2 3 4 5 6
time from lever press (s)

m
ea

n 
z-

sc
or

ed
 G

C
aM

P6
f

PL
-N

Ac
 re

sp
on

se

0

0.5

1

1.5

2

2.5

trials 1-5
trials 6-10
trials 11-15

-2 -1 0 1 2 3 4 5 6
time from lever press (s)

m
ea

n 
z-

sc
or

ed
 G

C
aM

P6
f

PL
-N

Ac
 re

sp
on

se

trials 1-5
trials 6-10
trials 11-15

exam
ple positive

corr. neuron
exam

ple negative
corr. neuron

g

h

4%1%

n=92

95%

no correlation

positive
negative

Correlation between trial number
and PL-NAc neuron response

fe

10
20
30
40
50
60
70
80
90

0

1

2

3

4 0.19 0.51

0.54

0 2 4 6-2 0 2 4 6-2
early 

tria
ls

middle tri
als

late tri
alsGC

aM
P6

f rid
ge

/G
Ca

M
P6

f ba
ck

gr
ou

nd

0 2 4 6-2 0 2 4 6-2 0 2 4 6-2 0 2 4 6-2
time from lever press (s) time from lever press (s) time from lever press (s)

ipsilateral press
(n=51 neurons)

10
20
30
40
50
60
70
80
90

10
20
30
40
50
60
70
80
90

early trials
(first third of session)

middle trials
(second third of session)

late trials
(last third of session)

contralateral press
(n=41 neurons)

ipsilateral press
(n=53 neurons)

contralateral press
(n=39 neurons)

ipsilateral press
(n=44 neurons)

contralateral press
(n=48 neurons)

10
20
30
40
50
60
70
80
90

0 2 4 6-2 0 2 4 6-2 0 2 4 6-2 0 2 4 6-2 0 2 4 6-2 0 2 4 6-2
time from lever press (s) time from lever press (s) time from lever press (s)

ipsilateral press
(n=48 neurons)

10
20
30
40
50
60
70
80
90

10
20
30
40
50
60
70
80
90

early trials
(first third of block)

middle trials
(second third of block)

late trials
(last third of block)

contralateral press
(n=44 neurons)

ipsilateral press
(n=47 neurons)

contralateral press
(n=45 neurons)

ipsilateral press
(n=46 neurons)

contralateral press
(n=46 neurons)

0

1

2

3

4 0.20 0.98
0.21

early 
tria

ls

middle tri
als

late tri
alsG

Ca
M

P6
f rid

ge
/G

Ca
M

P6
f ba

ck
gr

ou
nd

a

b

10
20
30
40

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6-2 0 2 4 6-2
time from lever press (s)

ipsilateral press
(n=25 neurons)

early trials
(first third of block)

middle trials
(second third of block)

late trials
(last third of block)

contralateral press
(n=17 neurons)

ipsilateral press
(n=26 neurons)

contralateral press
(n=16 neurons)

ipsilateral press
(n=26 neurons)

contralateral press
(n=16 neurons)

10
20
30
40

0 2 4 6-2 0 2 4 6-2
time from lever press (s)

10
20
30
40

0 2 4 6-2 0 2 4 6-2
time from lever press (s)

10
20
30
40

0 2 4 6-2 0 2 4 6-2
time from lever press (s)

ipsilateral press
(n=22 neurons)

early trials
(first third of session)

middle trials
(second third of session)

late trials
(last third of session)

contralateral press
(n=20 neurons)

ipsilateral press
(n=30 neurons)

contralateral press
(n=12 neurons)

ipsilateral press
(n=26 neurons)

contralateral press
(n=16 neurons)

10
20
30
40

0 2 4 6-2 0 2 4 6-2
time from lever press (s)

10
20
30
40

0 2 4 6-2 0 2 4 6-2
time from lever press (s)

0.91 0.41

0.31

0.76 0.40

0.27

0

0.5

1

1.5

2

2.5

3

3.5

4

early 
tria

ls

middle tri
als

late tri
als

early 
tria

ls

middle tri
als

late tri
alsG

Ca
M

P6
f rid

ge
/G

Ca
M

P6
f ba

ck
gr

ou
nd

G
Ca

M
P6

f rid
ge

/G
Ca

M
P6

f ba
ck

gr
ou

nd

c

d

PL
-N
Ac

m
TH

-N
Ac

ne
ur

on
ne

ur
on

ne
ur

on
ne

ur
on

0

1

Z-scored G
C

aM
P6f

0

1
Z-scored G

C
aM

P6f

0

1

Z-scored G
C

aM
P6f

0

1

Z-scored G
C

aM
P6f

ipsilateral press
in ipsilateral block

ipsilateral press
in contralateral block

Figure 2.15. Trial number within a block, and two-trial-back choice, are not strongly encoded

by PL-NAc activity. Related to Figure 2.4. (a) Left, heatmaps of Z-scored GCaMP6f activity from 92

choice-selective PL-NAc neurons averaged across the first, middle and last third of trials of each block. Right,
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calculated ridge-to-background ratio derived from average activity from each third of trials within a block.

Data are represented as mean ± SEM across neurons (n=92 from 7 mice). No significant changes are observed

in the ratios calculated across a block, suggesting that the strength of sequences is not modulated by block

trial number (P>0.05, paired, two-tailed t-test). (b) Same as a except data is split into the first, middle and

final third of the entire recording session. (c,d) Same as a,b except activity is of mTH-NAc choice-selective

neurons. (e) Decoding accuracy for the mice’s choice two trials back using activity from 10 simultaneously

recorded PL-NAc neurons. Unlike choice decoding on the current and previous trial (Figure 2.4e; blue and

black traces, respectively), PL-NAc activity is not able to accurately decode choice from two trials back after

correcting for cross-trial choice correlations (see Methods for details) at any time point in the trial (P>0.05

for all time points: one-sample, two-tailed t-test across mice comparing decoding accuracy with chance rate

of 0.5). (f) Proportion of PL-NAc choice-selective neurons whose activity is significantly positively (blue,

n=4 neurons) or negatively (red, n=1 neuron) correlated with the number of trials into a block (P<0.01).

Significance was determined by comparing the calculated correlation coefficient of each neuron to a null

distribution of 500 correlation coefficients generated using GCaMP6f signal circularly shifted by a random

integer, to control for slow drift in the data. R-values were calculated using the maximum GCaMP6f activity

from 2s before to 6s after the time of lever press for the first 15 trials in a block. Using the same criteria, no

mTH-NAc neurons were significantly correlated, either positively or negatively with trial number in a block

(P>0.05). (g) Left, average activity of the negatively correlated PL-NAc neuron in response to an ipsilateral

lever press at various trials in an ipsilateral block, where the ipsilateral lever had a higher probability of

reward and, thus, the value of the ipsilateral lever increases as a function of trial number. Right, average

activity of the negatively correlated PL-NAc neuron in response to an ipsilateral press in a contralateral

block. (h) Same as g except for an example of a positively correlated PL-NAc neuron.
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Figure 2.16. Alternative model architectures used to implement synaptic plasticity model.

Related to Figure 2.5. (a-f) Alternative models constructed using known circuit architecture. All models

except a,d generate an RPE signal by providing a ‘fast excitatory’ and ‘slow-inhibitory’ value pathway to

the VTA dopamine neuron population. Note that all model variants rely on choice-selective sequences in

PL-NAc to bridge the beginning of the action sequence and outcomes across time. For all model variants,

GABAergic, glutamatergic and dopaminergic projections are denoted as red, blue and green, respectively.

Brain region abbreviations are: prelimbic cortex, PL; nucleus accumbens, NAc; ventral pallidum, VP; ventral

tegmental area, VTA; lateral habenula, LHb; rostromedial tegmental nucleus, RMTg. (a) In this model, the

delay and inversion of the value signal is accomplished through a second VP neuron. These two VP neurons

converge onto a third VP interneuron to generate an RPE signal in VP, as has been observed by [183].

(b) In this model, the fast excitatory pathway is generated via a direct projection of NAc neurons onto the

VTA GABA neuron while the slow inhibitory pathway passes through the VP before synapsing onto a VTA

GABA neuron. (c) Similar to b except that the slow inhibitory pathway contains an additional VP neuron,

which accomplishes the sign inversion and delay assigned to a VTA GABA neuron in b. Since the models

in b prescribe a role for the observed NAc-D1R projections to VTA GABA neurons, they produce negative

value signals in VTA GABA neurons, whereas only positive value signals have been observed experimentally

in identified GABA interneurons in the VTA [99]. (d) In this model, a negative reward prediction error is

calculated in the LHb using glutamatergic projections from the VP [184], inversion and delay in the value

signal from local inhibitory LHb neurons to produce an inverted RPE, which is then transmitted to the
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VTA via the RMTg [54, 185]. (e) To account for previous work describing direct projections from NAc

D1R neurons to the VTA [164,170,186], this alternative model architecture has NAc neurons projecting

directly to the VTA, skipping the VP. In this model, the timing difference needed to compute an RPE signal

is generated through the activity of fast ionotropic GABA-A receptors (solid red trace), which have been

shown to preferentially express in NAc-VTA GABA interneuron projection postsynaptic densities [187],

while activity of metabotropic GABA-B receptors (dashed red trace), which are preferentially expressed

in the postsynaptic densities of NAc-VTA DA projections [187], generate the slow-inhibitory pathway.

Notably, without this differential expression of GABA receptors in the DAergic and GABAergic populations

of the VTA, this model architecture would fail to produce an RPE signal, as it would instead generate

a fast-inhibitory and slow-excitatory signal in the VTA DA neuron population. (f) Multiple studies have

implicated D2-R expressing MSNs as playing a critical role in reversal learning in multiple mammalian

species [188,189,190,191,192,193]. Thus, in this model we account for the possibility that the reversal

behavior in our task is mediated specifically by changes to synaptic weights from PL to D2-R-expressing

NAc MSNs. This model assumes the opposite dopamine-mediated plasticity rule (LTD rather than LTP)

than the previous models.
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Figure 2.17. Reward prediction error (RPE) encoding observed in recorded dopamine (DA)

activity is similar to that produced by our synaptic plasticity and neural dynamics models.

Related to Figures 5 and 6. (a) Mean bulk GCaMP6f fluorescence from VTA-NAc DA terminals in

response to a conditioned stimulus signaling reward (CS+, data taken from ( [26], n=11 recording sites).

Note that terminal fluorescence recordings are presented here to more accurately reflect the signal that

downstream NAc neurons are receiving in our model. (b) Same as a except DA fluorescence in response

to the conditioned stimulus signaling an unrewarded trial (CS–). (c) Coefficients from a multiple linear

regression in which outcome is predicted using mean DA fluorescence signals from 0.2-1.2s relative to the

time of CS presentation across current (“0”) and multiple previous trials (see shaded region in a,b), similar

to Figure 2.5g,l,q and Figure 2.6e. The positive coefficient for the current trial and negative coefficients

for previous trials indicate the encoding of an RPE. (d) Same as c, but also including coefficients from the

synaptic plasticity model (red, same coefficients as Figure 2.5g) and the neural dynamics model (black, same

coefficients as Figure 2.6e), to allow direct comparison. Error bars in all panels represent s.e.m across 11

recording sites.
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Figure 2.18. Synaptic plasticity model using sequential PL-NAc but not early-only or mTH-

NAc activity correctly modulates activity in NAc projection neurons and VTA GABA in-

terneurons. Related to Figure 2.5. (a) Heatmaps of average activity relative to the time of the lever

press for NAc projection neurons in the PL-NAc model (Figure 2.5c). Top, middle and bottom heatmaps are

the average activity across the first, fifth and fifteenth trial of each block, respectively. Each column is the

average activity across trials from different block/press combinations. For each subplot, neurons 1-184 are

left-preferring and neurons 185-368 are right-preferring. The activity of these left- and right-preferring NAc

neurons increases throughout a block of their respective lever preference. In contrast, their activity decreases

throughout a block opposite to their lever preference. (b) Average activity of VTA GABA interneuron from

synaptic plasticity model using PL-NAc activity as input on left (black) or right (red) trials. Activity is

relative to the time of the lever press across the first, fifth and fifteenth trials of a left-preferring (left column)

or right-preferring (right column) block. Similar to a, throughout a left block (left column), the activity on

left press trials increases from the first to fifteenth trial while the activity on right press trials decreases.

The opposite pattern is seen for left and right press trials throughout a right block (right column). (c,d)

Same as a,b except NAc and VTA GABA interneuron generated using mTH-NAc as input to the synaptic
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plasticity model. (e,f) Same as a,b except NAc and VTA GABA interneuron from the early-only control

synaptic plasticity model.
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Figure 2.19. Laser stimulation affects trial initiation times in both PL-NAc and mTH-NAc but

does not affect behavior in control mice that do not express opsin. Related to Figure 2.7. (a)

Schematic of trial structure and time of optical stimulation. “trial initiation” time is defined as the latency

between the start of the trial and the mouse entering the central nose poke. (b) Left, distribution of trial
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initiation times following stimulation trials (blue) and non-stimulation trials (grey) in PL-NAc ChR2 mice.

Blue and grey vertical lines indicate median initiation times for stim and non-stim trials, respectively. Right,

same only effect of current trial stimulation on trial initiation times. Previous trial stimulation resulted in

significantly longer trial initiations in PL-NAc ChR2 mice than no-opsin control mice (P=3.46x10-7, p-value

from the ‘opsin group X previous trial stimulation’ interaction term of a mixed effects model used to predict

latency times of PL-NAc and control mice, fit using the fitglme function in MATLAB; see Methods for

additional model details). In contrast, current trial stimulation had no significant effect on initiation times

(P=0.95, same test as above except p-value is that of the interaction term of ‘opsin group X current trial

stimulation’), an expected result as the start of stimulation was contingent on the mouse performing a nose

poke. (c) mTH-NAc ChR2 mice had significantly longer trial initiation times following optical stimulation

than no-opsin control mice (P=2.34 × 10−4, p-value from the ‘opsin group X previous trial stimulation’

interaction term of a mixed effects model used to predict latency times of mTH-NAc and control mice) but

no effect of current trial stimulation was observed (P=0.74, same test as above except the p-value is that

from the ‘opsin group X current trial stimulation’ interaction term). (d) Same as b,c except latencies from

no-opsin control cohort. (e) Surgical schematic of no-opsin control cohort. Optical fibers were implanted

into the NAc. (f) Optical fiber tip locations of no-opsin control cohort (n=8 mice). (g) Unlike PL-NAc ChR2

expressing mice (Figure 2.7f-h), neither current nor previous trial stimulation changed the stay probability

in control mice following rewarded (P=0.52: previous trial stimulation; P=0.24: current trial stimulation;

paired t-test) or unrewarded trials (P=0.52: previous trial stimulation; P=0.47: current trial stimulation;

paired t-test). (h) Likewise, stimulation from multiple trials back had no effect on choice (P>0.05 for all

trials back, t-test across mice’s laser x choice interaction term coefficients). Data in g,h are represented as

mean ± SEM across mice, n=8.
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Figure 2.20. Effect of PL-NAc optogenetic stimulation in two cohorts. Related to Figure 2.7.

(a) Schematic of optical stimulation parameters for cohort 1. On 10% of unrewarded trials, optical stimulation

began when the mouse entered the central nosepoke and ended 1s into the intertrial interval (ITI), which

began at the end of the 500ms CS– tone. On 10% of rewarded trials, stimulation began with nose poke

and ended after the mouse left the reward port. (b) Schematic for cohort 2. Unlike cohort 1, optical

stimulation ended on the same timescale on both rewarded and unrewarded trials, 1s after the end of CS

presentation. (c) Logistic regression model similar to that in Figure 2.1e demonstrating the effect of PL-NAc

stimulation on lever choice in cohort 1 mice (n=10 mice, see Methods for model details). Rewarded trials

with stimulation one and two trials back decreased stay probability compared with rewarded trials without

stimulation. Stimulation had an opposite effect on unrewarded trials, for which there was an increase in

stay probability following stimulation one trial back compared to trials without stimulation. (d) Same as c

except data from cohort 2 (n=4 mice). Effect of optical stimulation of PL-NAc neurons was qualitatively

similar across the two cohorts. Data in c,d are represented as mean ± SEM across mice.
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Figure 2.21. Similar RPE signatures for ideal observer and Q-learning simulation during

reversal learning. Related to Figure 2.5 and Methods. Given previous evidence that dopamine

signals can reflect knowledge of task structure [181,194], we used modeling to gain insight into how clearly

RPE in the probabilistic reversal learning task (a bandit task) can indicate the use of model-based inference

of block reversals for different reward probability structures. This was done by simulating task performance

using an ideal observer model with knowledge of the block structure, and a Q-learning model which did not

have information about the block structure (see Methods for more details). (a-d) To confirm that our ideal

observer simulation captured a previously reported RPE signature of model-based block reversal inference,

we first simulated behavior of 100,000 trials of a task similar to that used in [181]. (a) In this task, one option

was rewarded 100% of the time while the other was never rewarded, and the identity of the high probability

choice randomly reversed with a probability of 0.05 on each trial. (b) Example performance of the ideal

observer simulation (top) and the Q-learning simulation (bottom). Choice is determined by the difference

between expected reward for the available actions, ρ, for the ideal observer and the difference between the

action values, Q, for the Q-learning simulation (these values are plotted in grey). (c) To evaluate RPE

signatures of model-based block reversal inference, we compared the estimated RPE (experienced reward
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minus expected reward for the chosen action) on trial 1 and trial 2 of the new block. The RPE on trial 2 was

low for the high probability choice in the new block even without direct experience of that action-outcome

pairing. This means that the ideal observer infers the block reversal, so the new, not yet experienced reward

contingency is expected and the RPE is low. (d) In contrast, because the Q-learning model only updates

the value of the chosen action, on trial 2, when the simulation is rewarded for the previously low-probability

choice, the reward remains unexpected and the RPE is high. e-i) Simulated performance of 100,000 trials

using the reward probabilities from this study. (e) The high probability action was rewarded 70% of the time

while the low probability action was rewarded 10% of the time and the blocks reversed according to the same

rule as in a. (f) Example performance of the ideal observer (top) and the Q-learning (bottom) simulations in

this task. (g) To determine whether there is a strong qualitative RPE signature of block reversal inference in

this task, we compared RPE on the 4 possible trial-1 types to RPE on the subsequent rewarded switch trials

(i.e. choice on trial 2 was different than trial 1, meaning that any changes in RPE must be inferred). We

focus on rewarded trials to aid comparison with reward responses recorded in dopamine terminals during this

task [26]. In this case, inference of the block reversal is not obviously reflected in the RPE, since the RPE for

a given action on trial 1 and trial 2 are similar (comparing the same color bars for rewarded actions on trials

1 and 2). This is because, even though the ideal observer updates the predicted reward for both the chosen

and unchosen actions, when reward delivery is probabilistic, predicted reward remains moderate for both

actions and RPE changes only subtly. (h) Same as in g for the Q-learning simulation. As expected, RPE

looks very similar on trial 1 and trial 2 for a given rewarded action because the Q-learning simulation does

not update the value of the unchosen action on trial 1. (i) Consistent with the results from both simulations,

GCaMP6f zscored dF/F from dopaminergic axons in the NAc recorded in [26] is also very similar for a

given rewarded action on trial 1 and trial 2. Note that the mice did not make all possible choices in this

task, so some trial types are missing. The simulations also rarely made these choices (e.g., switch following

a rewarded new high probability choice). Error bars in c-h are SEM across block transitions. Data in i are

represented as mean ± SEM across 11 recording sites)
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CHAPTER 3

SARS-CoV-2 Omicron Spike Simulations: Broad Antibody

Escape, Weakened ACE2 Binding, and Modest Furin Cleavage

This chapter appears as an article [195] published in Microbiology Spectrum 2023. This work was

done in collaboration with M. Zaki Jawaid, R. Mahboubi-Ardakani, Richard L. Davis, Daniel L.

Cox.

3.1. Introduction

The omicron variant of the SARS-CoV-2 virus was first detected publicly in Nov 2021 [196], and

traced back to variants which appeared in mid 2020. Because the variant contains a large number

of mutations relative to the original strain, including three relevant regions of the viral surface spike

protein (the receptor binding domain (RBD), the furin cleavage domain (FCD), and the n-terminal

domain (NTD)), the variant is of great concern. According to current GISAID data, the global

infection landscape is almost exclusively dominated by omicron sub-variants, particularly BA1,

BA2, and BA2.12.1, with recent emergence of BA4 and BA5 [197].

The fitness of a particular variant depends upon several factors. First, strong binding to surface

receptors is of critical importance, and the SARS-CoV-2 RBD binds with high affinity to the

angiotensin converting enzyme 2 (ACE2) protein on human cells [198]. This contrasts with likely

weaker binding of coronaviruses associated with the common cold such as OC43 which binds more

weakly to sialic acid groups on the cell [199]. Second, escaping the background antibody (Ab)

spectrum can confer relative fitness over the dominant variant. Third, efficient membrane fusion

and transmission is apparently strongly regulated by the FCD, where cleavage can arise both by

furin and by transmembrane serine proteases, especially TMPRSS2 [200]. It has been shown,
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for example, that ferrets inoculated with a WT SARS-CoV-2 with the FCD deleted can become

infected but fail to transmit to other ferrets [201]. The delta variant in cultured cells containing

endogenous levels of ACE2 and TMPRSS2 has shown significantly enhanced fusion of the viral

membrane with the cell membrane [200]. The high viral load of the delta variant has been clearly

associated with the mutation P681R of the FCD [202] and has led to the current dominance of

SARS-CoV-2 sequences worldwide prior to the omicron emergence [203].

Given the time lag in carrying out protein synthesis, structure determination of bound complexes,

determining protein binding affinities, and measuring viral neutralization by Abs for new variants,

there is clearly a role for rapid computational studies that can assess the differences of new variants

relative to background variants as they arise.

In this paper, we point out here that computational ab initio molecular dynamics studies of omicron

subvariants RBD-ACE2, RBD-antibody (AB), FCD-Furin, and NTD-antibody are consistent with:

1) robust antibody escape in all regions compared to wild type (WT) and delta, 2) FCD binding

to furin intermediate between WT and delta, and 3) weaker binding to the ACE2 than WT or

delta. The Ab escape can confer transmissibility advantages for a population with a prevalent

delta variant Ab spectrum, but the weaker binding to ACE2 and modest enhancement of furin

binding are likely to lead to weaker transmissibility than delta. Due to the high degree of similarity

in the RBD and NTD regions of the BA2, BA2.12.1, BA4, and BA5 variants, we present simulation

results and subsequent comparisons for WT, delta, BA1, and BA2 variants. For reference, the BA2

RBD is identical to BA2.12.2 RBD with the exception of one mutation (L452Q), the BA4 and BA5

RBD with the exception of residues 486 and 493. The NTD of BA2, BA2.12.2 are identical, while

BA4 and BA5 NTD has an additional couple of deletions compared to BA2 NTD. The FCD for all

the aforementioned omicron variants are identical.

At the time of writing, the current global infection landscape is dominated by BA2 (24%), BA2.12.2

(13%), BA4 (4%), and BA5(38%) [197]. This work uses ColabFold’s [204] implementation of

AlphaFold-Multimer [205] to generate structures for FCD-furin binding.
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3.2. Results

3.2.1. Binding Strengths: HBond and Binding Free Energy

Before discussing our results, it is important to contextualize what a single HBond difference makes.

From earlier work, it has been estimated that a single Hbond in a beta sheet is stabilized by 1.6

kcal/mole [206]. At room temperature (RT = 0.59kcal/mole), therefore, using this as a baseline

estimate, we would reduce KD by a factor of exp(1.6/.59) ≈ 14 for a single bond, and, e.g., in the

case of the 4 Hbond difference for furin binding of the delta FCD over the WT FCD, we would have

a reduction of KD by ≈ 5× 104, clearly much stronger binding. We are intending the use of these

numbers only for characterizing the significance of the HBond count for energetics and affinity, not

to be taken as quantitatively accurate estimates since HBond energetics depend sensitively upon

context.

Our main results for interfacial HBonds for the structures of Fig 3.1 are summarized in Fig 3.2.

We find somewhat weaker binding to the ACE2 receptor compared to both WT and delta, which

should moderate infectivity, and significant antibody escape of the BA1 and BA2 for all three

regions (Class I, Class III, and NTD) considered, with the exception of RBD-P4A1 binding for

BA2 compared to WT (but still weaker than delta). This escape is measured by the reduction in

hydrogen bond count between the antibodies and the spike protein.

For the FCD-Furin binding, six residues fit into the binding pocket, which we argue elsewhere to

begin with residue 681 for WT, alpha, and delta [207]. For omicron, we consider the possibility of

leading with the N679K mutation or P681H mutation and denote N679K leading furing binding as

”Omicron Alt” in Fig 3.2. The P681H mutation leading is the same as the alpha variant. We see

that the expected binding to the FCD is at best the same as the alpha variant, and significantly

less than the delta variant.

For the omicron RBD-ACE2 runs, as alluded to above, we carried out additional simulation time

for 30 ns vs 10 ns, and we found significantly decreased variability for the last 20 ns. In comparison
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Figure 3.1. Structures of WT spike protein complexes studied A) ACE2
(red)-RBD (blue) binding (PDB 6m0J). B) Binding of RBD (red) to Class I Ab
C1A-B12 (binds in ACE2 interface region; heavy chain green, light chain cyan, PDB
7KFV) and Class III Ab CR3022 (binds away from ACE2; heavy chain magenta,
light chain yellow, PDB 6YOR). C) Binding of NTD to 4A8 Ab (heavy chain green,
light chain cyan, PDB 7C2L). D) Binding of FCD (blue) to furin (red). Blowup
highlighting position of fifth residue R5 (R685 for WT SARS-CoV-2) with proximate
aspartic acid residues D151, D199 of the furin enzyme. All AlphaFold PDB files are
provided in the Supplementary Material.

with WT, for both the full 30 ns and last 20 ns the p-value is smaller than 0.0001 indicating extreme

statistical significance.

For differences between measured Hbond counts, we provide all p-value pairs in Fig 3.2, together

with 95% confidence intervals.

The binding energies from the GBSA analysis of molecular dynamics equilibrium conformations

are shown in Fig 3.3. The same PDBs are utilized. Evidently the trend of binding energies tracks
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Figure 3.2. Interfacial hydrogen bonds between proteins for WT, delta,
BA1, and BA2. All bars represent 95% CI. A-E) BA1 and BA2 variants par-
ticipate in significantly fewer interactions than WT and Delta for the simulations
shown, with the exception of Delta and BA2 in E). All pairwise p-values in Figs.
2A-E are p < 0.0001 (highly significant), with the exception of the aforementioned
Delta vs. BA2 pair in E) (p = 0.19, not significant), the BA1 vs. BA2 pair in
B) (p = 0.82, not significant), the WT vs. Delta pair in C) (p = 0.09, not sig-
nificant), and the BA1 vs. BA2 pair in D) (p = 0.01, significant). F) FCD-Furin
Hbond interactions. All omicron variants participate in slightly higher interactions
that WT but less than Delta. We also consider the possibility of the FCD for the
omicron variants starting at 679K in Omicron (Alt). All pairwise p-values in F are
p < 0.0001 (highly significant). All PDB files are referenced in the methods section
and provided in the repository referenced in the supplemental material.

well with the easier to estimate interfacial HBond count, with the exceptions of the ACE2-omicron

RBD binding.
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However, it is very clear that the confidence intervals in Fig 3.3 are relatively larger and overlap

more than those from Fig 3.2. The primary reason is in the number of measurements. Because we

can draw on large numbers (order hundreds) of simulation snapshots to analyze HBond counts, the

error bars are smaller than for GBSA calculations for which time constraints have allowed only 10

snapshots for each interface.

3.2.2. Mutations leading to Ab Escape and weaker ACE2 binding

Fig 3.4 illustrates the key mutations leading to differences in binding for the delta and omicron

variants relative to WT.

ACE2 For ACE2 binding, these mutations weaken the ACE2 binding for omicron relative to WT:

1) K417N removes the K417(RBD)-D30(ACE2) salt bridge. 2) Q498R removes hydrogen bonding

between the glutamine side chain and K353 of the ACE2 driven by R-K Coulomb repulsion. 3)

Y505H removes hydrogen bonding between the Y505 sidechain and the E37 sidechain of ACE2

where the Y505 O acts as a donor. On the other hand, the S477N mutation of omicron enhances

bonding relative to wild type, the Q493R mutation enhances the binding to the E35 and D38 acidic

residues of ACE2, and the N501Y mutation enhances binding relative to WT. As discussed, the net

effect is reduced number of interfacial hydrogen bonds overall. A qualitative picture is provided in

Fig 3.4a, while numerical values for detected residue pairs are provided in Supplementary Tables

3.1-3.4.

Class I Abs For Class I antibodies, the following mutations are critical to reducing binding strength

of omicron: For binding to P4A1, 1) the Y455 binding to Y33.HC of the Ab heavy chain (HC) is

removed. 2) The Q493K, G496S, and Q498R mutations lead to removal of bonds with E101.HC,

W32.LC of the Ab light chain, and S67.LC. 3) The Y505H mutation removes bonds to S93.LC. For

binding to C1A-B12, 1) the K417N mutation removes a salt bridge to D96.HC, a side chain bond to

S98.HC, and weakens a side chain bond to Y52.HC. 2) The mutations Q493R, G496S, and Q498R

remove bonds to R100.HC, S30.HC, and S67.HC. 3) The N501Y and Y505H mutations weaken

bonds in the 501-505 region to G28.LC, S30.LC, and S93.LC. A complete list of detected residue
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Figure 3.3. GBSA Binding free energy estimate in kcal/mole between
proteins for WT, delta, BA1, and BA2. All bars represent 95% CI. A-F)
MM/GBSA binding free energy estimates correlate strongly with the number of
Hbonds in Fig 3.2 with the exception of the RBD-ACE2 interactions. All PDB files
are referenced in the methods section and provided in the Supplementary Material.
p-values for all pairs in A-F are < 0.001 with the following exceptions: A) WT vs.
Delta (p = 0.053, not significant), WT vs. BA1 (p = 0.022, significant), Delta vs.
BA1 (p = 0.44, not significant), Delta vs. BA2 (p = 0.007, significant), and BA1
vs. BA2 (p = 0.08, not significant). B) WT vs. Delta (p = 0.053, not significant),
Delta vs. BA2 (p = 0.0013, significant), BA1 vs. BA2 (p = 0.0024, significant). C)
WT vs. Delta (p = 0.096, not significant), WT vs. BA2 (p = 0.0036, significant),
Delta vs. BA2 (p =0.23, not significant) D) WT vs. BA1 (p = 0.0049, significant),
WT vs. BA2 (p = 0.75, not significant), E) WT vs. Delta (p =0.21, not significant),
WT vs. BA1 (p = 0.0033, significant), WT vs. BA2 (p = 0.44, not significant),
Delta vs. BA1 (p = 0.0026, significant)

pairs are provided in Supplementary Tables 3.5-3.12. Fig 3.4b shows binding changes relative to

WT for C1A-B12.
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Class III Ab For the Class III antibody CR3022, the most noticeable differences compared to WT

are 1) the absence of binding at N370 to Y27.HC. This appears to be driven by the hydrophobic

substitution S371L, which pulls the asparagine at 370 out of bonding distance from Y27.HC. 2)

Weakened bonding of T385 to S100.HC. A complete list of detected residue pairs are provided in

Supplementary Tables 3.13-3.16.

NTD Ab For the NTD Ab 4A8, we find that the notable differences of omicron compared to WT

are 1) weakened binding at 145-152 presumably due to the deletion at 142-145 relative to WT, and

2) significantly weakened bonding at 246-254 driven by the EPE insertion at 214 and the deletion

at 211. Both the 142-145 deletion and the 211 deletion with EPE insertion disrupt the epitope

positionings at 145-152 and 246-254 respectively. A complete list of detected residue pairs are

provided in Supplementary Tables 3.17-3.20. Fig 3.4c shows binding changes relative to WT for

Ab 4A8.

3.2.3. Mutations in the FCD

The FCD (also known as the S1/S2 cleavage site) of SARS-CoV-2 differs from that of SARS-

CoV-1 by a polybasic insertion beginning at P681 [208]. Successful cleavage of this region by

the Furin enzyme is associated with increased cell to cell and viral transmission in vitro [209].

Furthermore, the polybasic insertion at the FCD has been shown to confer SARS-CoV-2 with a

selective advantage in lung cells and primary human airway epithelial cells [201].

Due to the absence of structural data for the FCD, as well as the FCD-Furin bound complex, there

are limited computational studies of the binding domain. This is because the FCD belongs to a

rapidly fluctuating random coil region of the protein which has not been resolved by structural

probes (see, e.g., Ref [210], PDB structure 7A94, for which residues 677-688 are unresolved).

Additionally, there are no bound Furin-FCD structures available due to furin rapidly cleaving the

protein at this domain.

For the generic 681-686 sequence of the FCD, our simulations show that the most critical residue

appears to be the 685. In the WT, the arginine is able to form a salt bridge in the interior pocket
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A)
B)

C)

D)

Figure 3.4. Overview of binding changes for delta and omicron variants
relative to WT Color coding is the same for all charts. For the FCD to furin
binding, R1-R6 correspond to 681-686, except for the alternate omicron sequence
679-684. For clarity, RBD binding to P4A1 and CR3022 Abs are not shown. Full
residue interaction tables measured by average hydrogen bound strengths are pro-
vided in the Supplementary Material.

with D199 of the furin, and bond additionally with S146, W147, D151, A185, and S261. This

tendency is illustrated in Fig 3.4d. These bonds are all strengthened for delta and omicron. For

the alternate KSHRRA sequence of the omicron, beginning at 679, the position of the arginine

in the binding pocket allows only the salt bridge formation with D199. The FCD sequences for

the omicron subvariants BA1, BA2, BA2.12.1, BA4, and BA5 are identical and are therefore not

differentiated for this part of the study.

As shown in Fig 3.5, we observe that the binding strength, which is determined to a large degree

by the binding of the fifth residue of the FCD, correlates inversely with the root mean square

fluctuation (RMSF) of the backbone Cα of the first FCD residue at 681. This suggests that locking

the 681 Cα as happens for P681R is a key to lowering the fluctuation spectrum of the 685 residue
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allowing for stronger binding at this site. Evidently, the gain in binding enthalpy offsets any

advantages in conformational entropy for the FCD.

Figure 3.5. Correlation of FCD-furin interfacial HBond count with
RMSF of first residue in FCD The higher the RMSF of the first residue in
the FCD, the harder it is to bind to the furin, especially for the critical fifth residue
which inserts into the furin pocket as shown in Fig 3.1D. R1 is residue 681 for all but
the alternate omicron sequence which starts at residue 679. Full simulation data
(RMSF/D) is provided in the respository link of the Supplemental Material. All
p-values for HBond counts between pairs are reported in Fig 3.2. The equation of
the regression line is Hbonds = −6.7 ± 0.7(RMSF ) + 20.1 ± 0.9, with regression
coefficient R2 = 0.98 and is probably negative with p = 0.01 (significant)

In a separate work, we test the FCD-Furin binding for over 80 observed and unobserved se-

quences [207]. We find that among all candidate viral sequences studied, delta is near the very

top binding strength within statistical accuracy. The binding strength of several rare sequences

match delta within statistical accuracy, as well as some unobserved sequences. Of these, we find
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that the sequences resulting from P681K (KRRARS) or P681S (SRRARS) mutations in the FCD

could, in theory, match delta’s binding strength for the FCD-Furin binding. All current omicron

variants (BA1-BA5) have P681H [197]. All FCD-Furin hydrogen bonds observed in simulations

are summarized in Supplementary Tables 3.21-3.24.

The HBond differences between different FCD sequences are all extremely statistically significant

(p < 0.0001).

3.3. Discussion

We find weaker binding of the omicron RBD to the ACE2 as measured by HBond counts, with

mixed results for GBSA binding energy. In contrast, a number of other theory papers predict

stronger ACE2-RBD binding for omicron [211,212,213,214,215,216], but a free energy (alchem-

ical) perturbation analysis of the bound structure predicts weaker binding [217]. The free energy

perturbation analysis shares with our work a simulation starting with the observed ACE2-RBD

WT structure followed by mutations. In contrast, the other theory approaches separately relax the

RBD with mutations and utilize other approaches like docking [212] to bind to the ACE2.

In the Supplementary Figure 3.6, we display the correlation between interfacial RBD-ACE2 H-bond

counts and GBSA binding energy for the variants included here as well as six additional variants.

The correlation excluding the BA.1 and BA.2 variants is strong, with an R2 coefficient of 0.85. The

high GBSA binding energies for BA.1 and BA.2 suggest an overestimate of binding in the approach,

with the largest single contribution at the Q493R residue which contributes -12.7 Kcal/mole for

BA.2, versus -5.3 Kcal/mole for the WT RBD. Given our experience of strong correlations of

H-bond counts with GBSA energies for antibody and furin binding as well, we believe this does

represent an overestimate of binding free energy for the omicron variants.

Since first posting our work, a number of experimental papers have emerged demonstrating ex-

plicitly weaker binding of omicron RBD to ACE2 [218], weaker RBD binding and fusogenicity

(consistent with weaker furin cleavage) [219,220], and weaker expression in lung tissues (though
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stronger in bronchial tissue [221]). These offer support for the predictions here. A surprise from

fusogenicity studies, which reflect directly on the furin mediated cleavage at the FCD, is that omi-

cron is 5-10 times weaker than WT or delta at yielding syncytia [219,220]. If there is a kinetic

competition between sequence binding involving the N679K and P681H mutation to get the fifth

residue into the deep furin pocket, there could be a strongly reduced cleavage and fusogenicity.

On the other hand, a study examining furin mediated cleavage directly on larger peptides than

those considered here found that omicron led to more rapid furin cleavage than WT or delta, and

that this was associated with the N679K mutation as the differences largely vanished between

the three variants with this mutation [222]. Elsewhere, we have shown that the longer peptides

can bind in a reverse orientation, and this rationalizes the difference between the variants [207].

Clarification will come with more experimental studies, including furin-FCD binding studies on the

minimal six residue peptides considered here.

The binding strength of Furin to the FCD appears to correlate well with the fluctuations of the

initial residue at 681. The lower the fluctuation of the backbone carbon, the lower the fluctuation

of the backbone carbon for residue 685, which dominates the bonding to the furin. The P681R

mutation provides the lowest Cα RMSF observed amongst the four FCD examples considered here,

and the alternate K679 starting point for omicron provides the largest Cα RMSF.

The lower severity of omicron versus delta may be related to the Furin Cleavage Domain. It has

been shown that this insertion is critical to the higher transmissibility of SARS-CoV-2 [201,223]

over SARS-CoV-1, and that the mutations P681H for the alpha and omicron variants and P681R

for the delta variant play a large role in increased transmissibility of the variants over the wild type

(WT) [202]. After initial binding to the human ACE2 protein, Furin protease cleavage breaks the

spike to facilitate cell wall fusion [202] and viral reproduction. The stronger the furin-FCD HBond

binding, the more efficient the fusion at the molecular level, and ultimately, higher viral load on

the host. If the omicron acquired the P681R mutation over the P681H one, the combined antibody

escape and enhanced fusion would be highly concerning.

We note that furin is not the only human enzyme which plays a role in spike cleavage, and potential

pathogenicity of the virus. Notably, inefficient binding of omicron to the TMPRSS2 compared to
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delta appears to explain the lower fusogenicity of omicron in lung epithelial cells while having

comparable replication in upper respiratory cells that do not express TMPRSS2 [224]. It has also

been shown that the metalloprotein enzyme ADAM10 which is expressed in lung tissues facilitates

syncytia formation [225].

From an evolutionary perspective, deep mutational scan data for every point mutation of the RBD

shows that few mutations lead to enhanced binding, and for the ones that do the effect is modest,

while reduced binding by mutation can be dramatic [226]. This suggests that ACE2 binding is

already near optimal for the WT RBD. The huge number of RBD mutations that effect antibody

escape for omicron inevitably drive the virus away from this optimal binding. Similarly, for the

FCD, we find here and elsewhere that the binding is near optimal for the delta variant [207]. Other

mutants are more likely to be suboptimal or deleterious to fusion as has been observed.

In summary, a consistent picture of omicron in comparison to the delta strain is emerging. Hos-

pitalization data points to higher disease transmissibility but lower severity for the omicron strain

compared to delta [227]. Our simulations see lower interfacial HBond counts for omicron for

known RBD and NTD binding regions consistent with this, as well as weaker ACE2 binding and

furin binding than the delta variant. Against an immunity background tuned to the delta vari-

ant, omicron variants are more transmissible, and subsequent mutations in BA.2, BA.5 will lead

to higher transmissibility against an omicron (BA.1) tuned immunity background. Experimental

studies of the binding of the RBD to ACE2 and the correlation of fusogenicity with furin bind-

ing offer support these predictions as noted above, but more direct experiments are necessary to

confirm the predictions here.
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3.4. Methods

3.4.1. Molecular Models

A summary of all the mutations in the RBD and N-terminus of the spike protein for the four

variants presented here is found in Supplementary Table 3.25.

We drew our starting structures for RBD-ACE2 binding from the PDB file [228]. For Class I ABs,

which bind in the same region of the RBD as the ACE2, we used C1A.B12 (PDB:7CJF [229]) and

7KVF P4A1 (PDB:7KVF [230]) (P4A1), while as a representative class III Ab that binds to the

RBD away from the ACE2 interface, we used CR.3022 (PDB:6YOR [231]). For an NTD-Ab we

used 4A8 (PDB:7C2L [232]).

The antibodies chosen do not comprehensively portray all neutralizing Abs for the SARS-CoV-2

spike, but are representative of the spectrum of antibodies that neutralize the SARS-CoV-2 virus.

This study does not account for t-cell binding sites [233]. Fig 3.1 shows the structures of the

different complexes studied in this paper.

3.4.2. Molecular Dynamics

To simulate the protein-protein interactions, we used the molecular-modelling package YASARA [234]

to substitute individual residues and to search for minimum-energy conformations on the resulting

modified structures of the complexes listed in Supplementary Table 3.26 (hydrogen bonds) and

Supplementary Table 3.27 (binding energy estimates). For all of the structures, we carried out an

energy-minimization (EM) routine, which includes steepest descent and simulated annealing (until

free energy stabilizes to within 50 J/mol) minimization to remove clashes. All molecular-dynamics

simulations were run using the AMBER14 force field with [235] for solute, GAFF2 [236] and

AM1BCC [237] for ligands, and TIP3P for water. The cutoff was 8 Å for Van der Waals forces

(AMBER’s default value [238]) and no cutoff was applied for electrostatic forces (using the Particle

Mesh Ewald algorithm [239]). The equations of motion were integrated with a multiple timestep

of 1.25 fs for bonded interactions and 2.5 fs for non-bonded interactions at T = 298 K and P = 1
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atm (NPT ensemble) via algorithms described in [240]. Prior to counting the hydrogen bonds and

calculating the free energy, we carry out several pre-processing steps on the structure including

an optimization of the hydrogen-bonding network [241] to increase the solute stability and a pKa

prediction to fine-tune the protonation states of protein residues at the chosen pH of 7.4 [240].

Insertions and mutations were carried out using YASARA’s BuildLoop and SwapRes commands

[240] respectively. Simulation data was collected every 100ps after 1-2ns of equilibration time, as

determined by the solute root mean square deviations (RMSDs) from the starting structure. For

all bound structures, we ran for at least 10ns post equilibrium, and verified stability of time series

for hydrogen bond counts and root mean square deviation (RMSD) from the starting structures.

Because of concerns about the validity of short time simulations, and more variability for the weaker

binding for the omicron RBD-ACE2 complexes, we ran for 30ns postequilibration in those cases.

The hydrogen bond (HBond) counts were tabulated using a distance and angle approximation

between donor and acceptor atoms as described in [241].

Note that in this approach, salt bridges of proximate residues, are effectively counted as H-bonds

between basic side chain amide groups and acidic side chain carboxyl groups.

We provide all molecular dynamics simulation analysis, including PDB snapshots, RMSD/F, as

well specific residue-residue Hbond interactions for all 24 of our simulations in the supplemental

material. Net hydrogen bond counts are summarized in Supplemental Tables.

3.4.3. Endpoint Free Energy Analysis

We calculated binding free energy for the energy-minimized structure using the molecular mechan-

ics/generalized Born surface area (MM/GBSA) method [242,243,244], which is implemented by

the HawkDock server [245]. While the MM/GBSA approximations overestimate the magnitude of

binding free energy relative to in-vitro methods, the obtained values correlate well with H-bond

counts. For each RBD-ACE2, RBD-AB, and NTD-Ab binding pair we average over ten snapshots of

equilibrium conformations. For each FCD-furin pair, we average over five snapshots of equilibrium

conformations.
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3.4.4. Use of ColabFold/AlphaFold for Furin cleavage domain

Due to the absence of structural data for the FCD-Furin bound complex, we model the FCD-

Furin bound structure using the heterocomplex prediction method known as AlphaFold-Multimer

[35,205] as implemented within ColabFold [204] to predict the best bound structure to the furin

enzyme of the six residue FCD from the WT protein. We inferred the ordering of this sequence by

comparison with a very similar six residue peptide inhibitor of furin with the sequence RRRVR-

aminomethyl-benzamidine (RRRVR-amba) [246]. In this case the backbone of the WT FCD aligns

well with that of the inhibitor, but the fifth arginine enters a furin pocket while the amba enters

the furin pocket for the inhibitor. The serine is in proper cleavage position for furin. The delta and

omicron structures were then obtained by mutation from the predicted WT FCD-furin structure. In

a separate work, we present a complete description of the use of ColabFold/AlphaFold for modeling

the FCD-furin binding as well as simulation results of over 60 observed FCD sequences for SARS-

CoV-2 and other commonly observed coronaviruses [207]. In this study, we limit our FCD-Furin

binding focus to sequences from WT, delta, and omicron variants.

All PDB files generated using AlphaFold as well as the simulated data associated with them are

provided in the supplemental material.

3.4.5. Statistical Analysis

We computed the statistical significance of pairwise differences using GraphPad unpaired t-test.
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3.5. Supplementary Materials

All PDB files for simulations and AlphaFold files for the structures here can be found in the link

https://drive.google.com/drive/folders/1d3H4hA4j6L4ICdXrzrswhkz0F2z0ak2W?usp=sharing

Figure 3.6. Correlation of HBonds and Binding Free energy The solid cir-
cles are from simulations (left to right) Delta RBD-ACE1, WT RBD-ACE2, N439K
RBD-ACE2, L452R RBD-ACE2, N501T RBD-ACE2, Beta RBD-ACE2, V367F
RBD-ACE2, Alpha RBD-ACE2. The solid line is a regression fit to those 8 points
(H − Bonds = −0.2415∆GB − 7.09 which has a regression coefficient R2 = 0.85.
Open circles are BA.2 (left) and BA.1 (right).
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Detailed list of Hbond pairs

The following tables show Hbond pairs and their detection ratios for our simulations. The Hbond

pairs are counted using a distance and angle approximation as described in methods.

The bond detection ratio is defined as n/N , where n is the number of snapshots in which the labelled

Hbond is detected, and N is the total number of snapshots. Therefore, a bond detection ratio of 1

means that the corresponding bond was detected in every single snapshot of the simulation.

WT RBD ACE2 Bond detection ratio

A475
Q24.A 0.0625
S19.A 0.596

G446 Q42.A 0.187
G476 S19.A 0.005
G496 K353.A 0.927
G502 K353.A 0.980

K417
D30.A 0.384
H34.A 0.221

N487
Q24.A 0.557
Y83.A 0.980

N501
K353.A 0.052
Y41.A 0.129

Q493
E35.A 0.855
H34.A 0.043
K31.A 0.543

Q498
D38.A 0.293
K353.A 0.596
Q42.A 0.028

R403 H34.A 0.004

S477
Q24.A 0.005
S19.A 0.139

T500
D355.A 0.365
N330.A 0.019
Y41.A 0.317

Y449
D38.A 0.05
Q42.A 0.21

Y505
E37.A 0.36
R393.A 0.01

Table 3.1. HBond Pairs for WT RBD-ACE2 simulation.
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Delta RBD ACE2 Bond detection ratio

A475
Q24 0.095
S19 0.754

G446 Q42 0.498
G496 K353 0.706
G502 K353 0.948
K417 D30 0.806

N487
Q24 0.507
Y83 0.915

N501
K353 0.014
Y41 0.076

Q493
E35 0.768
H34 0.024
K31 0.445

Q498
D38 0.028
K353 0.735
Q42 0.009

S477 S19 0.005

T500
D355 0.27
N330 0.062
Y41 0.502

Y449
D38 0.924
Q42 0.379

Y453 H34 0.066

Y505
E37 0.829
R393 0.043

Table 3.2. HBond Pairs for Delta RBD-ACE2 simulation.
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Omicron BA1 RBD ACE2 Bond detection ratio

A475
Q24 0.037
S19 0.893

G502 K353 0.968
H505 K353 0.068
N417 H34 0.006

N477
Q24 0.025
S19 0.993

N487
Q24 0.262
Y83 0.875

R403 H34 0.012

R493
E35 1.281
H34 0.225
K31 0.006

R498 Q42 0.056

S496
D38 0.862
K353 0.012

T500
D355 0.443
N330 0.112
Y41 0.206

Y449 D38 0.212
Y453 H34 0.031
Y501 D38 0.019

Table 3.3. Bond Pairs for Omicron BA1 RBD-ACE2 simulation.
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Omicron BA2 RBD ACE2 Bond detection ratio

A475
Q24 0.074
S19 0.880

G502 K353 0.955
H519 D615 0.004

N477
Q24 0.024
S19 0.885

N487
Q24 0.333
Y83 0.910

R493

D38 1.686
E35 0.766
H34 0.024
K31 0.004

R498 Q42 0.248

T500
D355 0.631
N330 0.069
Y41 0.134

Y453 H34 0.084
Y473 E23 0.004
Y489 Q24 0.004
Y501 K353 0.064

Table 3.4. Bond Pairs for Omicron BA2 RBD-ACE2 simulation.
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WT RBD C1A-B12 Bond detection ratio

A475
N32.H 0.911
T28.H 0.65

D420 Y58.H 0.821
G476 T28.H 0.228
G496 S30.L 0.553
G502 G28.L 0.894

K417
D96.H 0.992
S98.H 0.667
Y52.H 0.691

K458
S30.H 0.041
S31.H 0.098

L455 Y33.H 0.943
N460 G54.H 0.065

N487
G26.H 0.496
R94.H 1.049

N501 S30.L 0.211

Q493
R100A.H 0.935
Y100B.H 0.016

Q498
S30.L 0.268
S67.L 0.472

R403
I92.L 1.398
S93.L 0.008

R457 S53.H 0.951
S477 G26.H 0.065

S494
R100A.H 1.659
Y32.L 0.041

T415 Y58.H 0.041
T500 G28.L 0.024
V503 Q27.L 0.138
Y421 G54.H 0.374

Y453
G99.H 0.967
Y32.L 0.878

Y473
S31.H 0.846
S53.H 0.008

Y489 R94.H 0.024

Y505
D1.L 0.041
S93.L 0.528

Table 3.5. HBond Pairs for WT RBD-C1A-B12 (7KFV) antibody simulation.
Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the light
chain.
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Delta RBD C1A-B12 Bond detection ratio

A475
N32.H 0.65
R94.H 0.056

G496 S30.L 0.427
G502 G28.L 0.517

K417
D96.H 0.979
S98.H 0.566
Y52.H 0.678

K458
S30.H 0.014
S31.H 0.014

L455 Y33.H 0.881
N460 G54.H 0.664

N487
R94.H 1.552
Y102.H 0.441

N501 S30.L 0.573

Q493
R100A.H 0.399
Y100B.H 0.042
Y32.L 0.035

Q498
S30.L 0.035
S67.L 0.413

R403
I92.L 1.455
S98.H 0.077

R457 S53.H 0.643

S477
E 1 .H 0.007
G26.H 0.294

S494
R100A.H 0.049
Y32.L 0.049

T415 Y58.H 0.028

T500
G28.L 0.182
Q27.L 0.014

Y421
G54.H 0.413
S53.H 0.035

Y453
G99.H 0.58
Y32.L 0.252

Y473 S31.H 0.979
Y489 R94.H 0.035
Y495 Y32.L 0.322

Y505
Q27.L 0.119
S93.L 0.266

Table 3.6. HBond Pairs for Delta RBD-C1A-B12 (7KFV) antibody simulation.
Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the light
chain.
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Omicron BA1 C1A-B12 Bond detection ratio

A475
N32.H 0.917355
T28.H 0.066116

D405 S93.L 0.008264
G502 G28.L 0.809917
H505 Q27.L 0.082645
K478 E 1 .H 0.024793
L455 Y33.H 0.991736

N417
Y33.H 0.066116
Y52.H 0.132231

N460
G54.H 0.438017
G55.H 0.082645

N477
G26.H 0.760
T28.H 0.049

N487
G26.H 0.016
R94.H 1.636
Y102.H 0.190

Q474 S31.H 0.008
R403 I92.L 1.677
R408 Y58.H 0.008
R457 S53.H 0.553
R493 Y100B.H 0.082
R498 S30.L 0.107
S494 R100A.H 0.082
S496 R100A.H 0.363
T415 Y58.H 0.165
V503 Q27.L 0.008

Y421
G54.H 0.719
S53.H 0.016
Y33.H 0.231

Y449 R100A.H 0.008
Y473 S31.H 0.933
Y489 R94.H 0.024
Y495 Y32.L 0.049
Y501 S30.L 0.008

Table 3.7. HBond Pairs for Omicron BA1 RBD-C1A-B12 (7KFV) antibody sim-
ulation. Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the
light chain.
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Omicron BA2 C1A-B12 Bond detection ratio

A475

N32.H 0.908602
R94.H 0.010753
S31.H 0.010753
T28.H 0.139

G502 Q27.L 0.752
K458 S31.H 0.032
L455 Y33.H 0.973
N417 Y33.H 0.005
N460 G54.H 0.698
N477 G26.H 0.526

N487
G26.H 0.053
R94.H 1.639
Y102.H 0.209

R403
I92.L 0.924
S98.H 0.521

R405
D 1 .L 0.478
Y94.L 0.139

R457 S53.H 0.021

R493
S31.L 0.010
Y32.L 0.478

R498
G28.L 0.032
S30.L 0.118
S67.L 0.016

T500 G28.L 0.784

Y421
G54.H 0.424
S53.H 0.091
Y33.H 0.220

Y453 G99.H 0.032

Y473
S31.H 0.817
S53.H 0.021

Y495 Y32.L 0.010
Y501 I29.L 0.021

Table 3.8. HBond Pairs for Omicron BA2 RBD-C1A-B12 (7KFV) antibody sim-
ulation. Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the
light chain.
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WT RBD P4A1 Bond detection ratio
A475 I28.H 0.667

N32.H 0.755
D420 S56.H 0.892
G496 S30.C 0.873
G502 G28.C 0.598
K417 E101.H 0.039

Q100.H 0.912
K458 S30.H 0.176

S31.H 0.52
L455 Y33.H 0.824
N460 G54.H 0.422
N487 G26.H 0.461

R97.H 1.48
N501 S30.C 1.167
Q493 E101.H 0.647
Q498 S67.C 0.569
R403 N92.C 1.843
R457 S53.H 0.196
S477 G26.H 0.343
T500 G28.C 0.01
V503 Q27.C 0.01
Y421 G54.H 0.667
Y453 E101.H 0.882
Y473 S31.H 0.853
Y489 R97.H 0.049
Y495 W32.C 0.843
Y505 S93.C 1

Table 3.9. HBond Pairs for WT RBD-P4A1 (7CJF) antibody simulation. Here,
‘H’ are residues from the heavy chain and ‘L’ are residues from the light chain.
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Delta RBD P4A1 Bond detection ratio

A475
I28.H 0.725
N32.H 0.804

D420 S56.H 0.912
G496 S30.L 0.922
G502 G28.L 0.627

K417
E101.H 0.363
Q100.H 0.951

K458
S30.H 0.186
S31.H 0.422
S53.H 0.02

L455 Y33.H 0.745
N460 G54.H 0.402

N487
G26.H 0.5
R97.H 1.52

N501 S30.L 1.343
Q493 E101.H 0.167
Q498 S67.L 0.529
R403 N92.L 1.794
R457 S53.H 0.265
S477 G26.H 0.265
V503 Q27.L 0.01

Y421
G54.H 0.559
S53.H 0.039

Y449 S31.L 0.01
Y453 E101.H 0.853
Y473 S31.H 0.814
Y489 R97.H 0.029
Y495 W32.L 0.843
Y505 S93.L 1

Table 3.10. HBond Pairs for Delta RBD-P4A1 (7CJF) antibody simulation. Here,
‘H’ are residues from the heavy chain and ‘L’ are residues from the light chain.

134



Omicron BA1 RBD P4A1 (7CJF) Bond detection ratio

A475
I28.H 0.790
N32.H 0.856

D420 S56.H 0.950
G416 S56.H 0.011

G502
G28.L 0.093
S30.L 0.016

H505
G28.L 0.027
W32.L 0.254

K458
S30.H 0.082
S31.H 0.121
S53.H 0.005

L455 Y33.H 0.022

N417
Q100.H 0.723
Y33.H 0.961

N460
G54.H 0.232
G55.H 0.027
S56.H 0.055

N477 G26.H 0.950
N487 R97.H 1.419
Q474 S31.H 0.027
R403 N92.L 0.939
R457 S53.H 0.718
R493 E101.H 0.933

R498
S30.L 0.027
S67.L 0.033

T500 S30.L 0.027
V503 Q27.L 0.005

Y421
G54.H 0.403
S53.H 0.033
Y33.H 0.480

Y453 E101.H 0.624
Y473 S31.H 0.453
Y489 R97.H 0.071
Y501 W32.L 0.071

Table 3.11. HBond Pairs for Omicron BA1 RBD-P4A1 (7CJF) antibody simula-
tion. Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the light
chain.
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Omicron BA2 RBD P4A1 (7CJF) Bond detection ratio

A475
I28.H 0.678218
N32.H 0.816832

A520 T393 0.00495
D420 S56.H 0.886139

E516 ND N394 0.00495
G502 G28.L 0.985

H505
N92.L 0.044
Q27.L 0.128

K458
S30.H 0.019
S31.H 0.123

L455 Y33.H 0.079
N405 N92.L 0.108

N417
Q100.H 0.821
Y33.H 0.905
Y52.H 0.039

N460
G54.H 0.311
S56.H 0.029

N477
F27.H 0.004
G26.H 0.514

N487
G26.H 0.034
R97.H 1.569
Y107.H 0.005

Q474 S31.H 0.005

R403
E101.H 1.524
N92.L 0.113

R457 S53.H 0.272
R493 E101.H 0.915
T500 S30.L 0.292

Y421
G54.H 0.658
S53.H 0.019
Y33.H 0.084

Y453 E101.H 0.099

Y473
S31.H 0.698
S53.H 0.064

Y489 R97.H 0.054
Y501 S31.L 0.727

Table 3.12. HBond Pairs for Omicron BA2 RBD-P4A1 (7CJF) antibody simula-
tion. Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the light
chain.
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WT RBD CR3022 Bond detection ratio
C379 I102.H 0.932

D428
S32.L 1.429
S33.L 0.91
Y31.L 0.023

F374 K74.H 0.008
F377 Y52.H 0.932

G381
I102.H 0.91
Y38.L 0.985

H519 N35.L 0.098

K378
D55.H 0.902
E57.H 0.857

K386
D107.H 0.895
E61.L 0.812

N370 Y27.H 0.707
S366 Y27.H 0.008

S383
S100.H 0.511
T104.H 0.241

T376 D55.H 0.218

T385
Q 1 .H 0.008
S100.H 0.902
Y32.H 0.045

T430
S33.L 0.143
Y31.L 0.113

Table 3.13. HBond Pairs for Omicron BA1 RBD-CR3022 (6YOR) antibody sim-
ulation. Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the
light chain.
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Delta RBD CR3022 Bond detection ratio
C379.E I102.H 0.935
D389.E T59.L 0.153

D428.E
S32.L 0.089
Y31.L 0.048

F374.E K74.H 0.008
F377.E Y52.H 0.96

G381.E
I102.H 0.935
T104.H 0.008
Y38.L 0.984

H519.E N35.L 0.032

K378.E
D55.H 0.815
E57.H 0.855

K386.E
D107.H 0.758
E61.L 0.871
Y55.L 0.048

L517.E
N35.L 0.919
S33.L 0.863

N370.E G28.H 0.185
Q414.E E57.H 0.008
S375.E K74.H 0.04

S383.E
S100.H 0.331
T104.H 0.089

T376.E D55.H 0.016

T385.E
D107.H 0.056
Q 1 .H 0.081
S100.H 0.524

T430.E S33.L 0.927
V382.E T104.H 0.032
Y369.E Q 1 .H 0.065
Y380.E E57.H 0.137

Table 3.14. HBond Pairs for Delta RBD-CR3022 (6YOR) antibody simulation.
Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the light
chain.
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Omicron BA1 CR3022 (6YOR) Bond detection ratio
C379 I102.H 0.971

D428
S32.L 1.482
S33.L 0.352
Y31.L 0.115

F377 Y52.H 0.949

G381
I102.H 0.719
Y38.L 0.812

H519 N35.L 0.115

K378
D55.H 0.834
E57.H 0.784

K386
D107.H 0.748
E61.L 0.755
Q 1 .H 0.007

L517 N35.L 0.007

N370
G28.H 0.014
Y27.H 0.244

N388
Q 1 .H 0.021
Y55.L 0.007

S366 Y27.H 0.165

S383
S100.H 0.899
T104.H 0.028

T376 D55.H 0.187

T385

Q 1 .H 0.100
S100.H 0.460
T31.H 0.064
Y32.H 0.035

T430 S33.L 0.071

Table 3.15. HBond Pairs for Omicron BA1 RBD-CR 3022 (6YOR) antibody sim-
ulation. Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the
light chain.
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Omicron BA2 CR3022 (6YOR) Bond detection ratio
C379 I102.H 0.968
D428 S32.L 0.819
F375 K74.H 0.021
F377 Y52.H 0.936
F515 S33.L 0.010

G381
I102.H 0.856
Y38.L 0.984

H519 N35.L 0.015

K378
D55.H 0.856
E57.H 0.691

K386
D107.H 0.898
E61.L 0.824

L517
N35.L 0.632
S33.L 0.989

N370 Y27.H 0.25
N388 Y55.L 0.015
S366 Y27.H 0.164
S383 S100.H 0.872

T385
S100.H 0.005
Y32.H 0.010

T430 S33.L 0.425

Table 3.16. HBond Pairs for Omicron BA2 RBD-CR 3022 (6YOR) antibody sim-
ulation. Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the
light chain.
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WT NTD 4A8 Bond detection ratio

K147
E72.H 0.703
L29.H 0.673
L32.H 0.446

K150

D55.H 0.03
E54.H 0.079
P53.H 0.01
Y111.H 0.04

K97 D107.H 0.099

L249
A103.H 0.05
V102.H 0.693

N149
D55.H 0.465
E54.H 0.069
P53.H 0.663

N99 P106.H 0.366

R246
E31.H 0.02
G26.H 1.396

S247 Y27.H 0.614
S254 E 1 .H 0.158
S98 D107.H 0.228
T250 T105.H 0.01
W152 Y111.H 0.307

Y145
E31.H 0.327
T30.H 0.743

Y248 E31.H 0.99

Table 3.17. HBond Pairs for WT NTD-4A8 (7C2L) antibody simulation. Here,
‘H’ are residues from the heavy chain and ‘L’ are residues from the light chain.
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Delta NTD 4A8 Bond detection ratio
A292 D290 0.017
D290 R273 0.017
D294 S297 0.05
H146 T30.H 0.008

K147

E72.H 0.125
L29.H 0.45
L32.H 0.583
T30.H 0.025

K150

D55.H 0.008
E54.H 0.6
P53.H 0.033
Y111.H 0.017

N148 D55.H 0.167
N149 D55.H 0.708
P295 T299 0.042

Q14

E 1 .H 0.117
G26.H 0.183
S75.H 0.017
T28.H 0.025

R246 E31.H 1.8
S247 G104.H 0.008

S254
E 1 .H 0.008
Y27.H 0.008

S297 C291 0.008
S297 D294 0.183
W258 E 1 .H 0.017
Y145 Y111.H 0.05

Y248
E31.H 0.917
G104.H 1.483

Table 3.18. HBond Pairs for Delta NTD-4A8 (7C2L) antibody simulation. Here,
‘H’ are residues from the heavy chain and ‘L’ are residues from the light chain.

142



BA1 NTD 4A8 Bond detection ratio

K147

E72.H 0.540
L29.H 0.338
L32.H 0.048
S33.H 0.008

K150
E54.H 0.169
P53.H 0.016
Y113.H 0.008

K97 D107.H 0.169
L249 V102.H 0.943

N149
D55.H 0.096
E54.H 0.048
P53.H 0.669

N99
D107.H 0.016
P106.H 0.419

R246

E31.H 0.169
G26.H 0.056
T100.H 0.008
Y27.H 0.016

S247 Y27.H 0.016

S254
N58.L 0.032
Y54.L 0.024

S98
D107.H 0.217
P106.H 0.056

T250
A103.H 0.088
G104.H 0.161

W152
D107.H 0.008
T105.H 0.153
Y111.H 0.008

Y248 E31.H 0.088

Table 3.19. HBond Pairs for Omicron BA1 NTD-4A8 (7C2L) antibody simulation.
Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the light chain.
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BA2 NTD 4A8 Bond detection ratio

K147.A
E72.H 0.675
L29.H 0.682
L32.H 0.299

K150.A
E54.H 0.274
P53.H 0.21
Y111.H 0.013

K97.A D107.H 0.038

L249.A
G104.H 0.389
V102.H 0.395

N148.A D55.H 0.006

N149.A
D55.H 0.471
E54.H 0.013
P53.H 0.408

N99.A
D107.H 0.019
P106.H 0.076

R246.A
E31.H 0.115
G26.H 0.503
T28.H 0.013

S247.A Y27.H 0.471

S254.A
E 1 .H 0.459
S61.L 0.07

S98.A D107.H 0.153
W152.A Y111.H 0.115

Y145.A
E31.H 0.363
T30.H 0.841

Y248.A
E31.H 1
G104.H 0.146
Y27.H 0.019

Table 3.20. HBond Pairs for Omicron BA2 NTD-4A8 (7C2L) antibody simulation.
Here, ‘H’ are residues from the heavy chain and ‘L’ are residues from the light chain.
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FCD Furin Bond detection ratio

P1
E123 0.026
E150 0.043
V124 0.184

R2

D157 1.473
E129 0.885
G158 0.061
Y201 0.745

R3
D151 0.228
E150 0.921
G148 1.771

R5

A185 0.921
D151 0.017
D199 1.263
P149 0.087
S146 0.798
S261 1

S6
H87 0.315
N188 0.324
S261 0.140

S6 H87 0.008
S6 N188 0.008

Table 3.21. HBond Pairs for WT (PRRARS) FCD-Furin simulation.
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Delta FCD Furin Bond detection ratio

R1

D152 0.309
D157 0.097
E123 0.085
E150 0.036
G122 0.012
T155 0.533

R2

D157 1.412
E129 0.891
G158 0.006
Y201 0.8

R3
E150 1.648
G148 1.733

R5

A185 0.909
D151 1.867
D199 1.442
S146 0.964
S261 0.382
D199 0.006

S6

H87 0.406
N188 0.606
S261 0.564
T258 0.242

S6 H87 0.018
S6 S261 0.018
S6 N188 0.018

Table 3.22. HBond Pairs for Delta (RRRARS) FCD-Furin simulation.
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BA1, BA2 FCD (HRRARS) Furin Bond detection ratio

H1
E123 0.05
E150 0.007
G122 0.021

R2

D157 1.773
E129 0.05
G158 0.085
Y201 0.816

R3
D151 0.383
E150 1.326
G148 0.922

R5

A185 1
D199 1.794
P149 0.22
S146 0.879
S261 1.702

S6
H87 0.894
N188 0.106
S261 0.007

Table 3.23. HBond Pairs for BA1, BA2, FCD-Furin simulation.

BA1, BA2 Alternate FCD (KSHRRA) Furin Bond detection ratio
A6 N188 0.583

H3
E150 0.259
G148 1.878

K1

D121 0.094
E123 0.554
E150 0.518
G122 0.014
V124 0.072

R4
D46 1.712
H87 0.101
S261 0.029

R5

A185 0.022
D151 0.014
D199 1.504
S146 0.849
S186 0.058
S261 0.05
T202 0.05
T260 0.007
Y201 0.007

S2
E129 0.108
V124 0.014

Table 3.24. HBond Pairs for alternate BA1, BA2, FCD-Furin simulation.
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empty NTD (1-300) RBD (300-540) FCD (679-685)
Delta T19R, G142D,

E156G, ∆157-158
L452R, T478K P681R

Omicron BA1 A67V, ∆69-70,
T95I, G142D,
N211I, ∆212,
ins214R

G339D, R346K,
S371L, S373P,
S375F, K417N,
N440K, G446S,
S477N, T478K,
E484A, Q493R,
G496S, Q498R,
N501Y, Y505H

N679K, P681H

Omicron BA2 T19I, L24S,
∆25-27, G142D,
V213G

G339D, R346K,
S371F, S373P,
S375F, T376A,
D405N, K417N,
N440K, S477N,
T478K, E484A,
Q493R, Q498R,
N501Y, Y505H

N679K, P681H

Table 3.25. Spike Protein Mutations relative to WT (Wuhan-Hu-1) in the N-
terminal domain (NTD), receptor binding domain (RBD), and the Furin Cleavage
Domain (FCD) [247].

Bound Pair WT Delta BA1 BA2
RBD-ACE2 8.71 ± 2.03 10.57 ± 1.46 7.17 ± 1.48 7.08 ± 1.47

RBD-C12.B1A 19.23 ± 1.87 14.94 ± 2.61 11.27 ± 1.71 11.33 ± 1.81
RBD-P4A1 17.76 ± 2.01 17.61 ± 2.03 12.17 ± 2.45 14.06 ± 2.07

RBD-CR3022 12.58 ± 1.82 12.22 ± 1.59 10.81 ± 1.97 11.31 ± 1.45
NTD-4A8 9.62 ± 1.78 7.48 ± 1.49 4.84 ± 1.63 7.84 ± 2.47
FCD-Furin 10.73 ± 1.73 15.36 ± 1.88 12.05 ± 1.68 8.65 (Alt) ± 1.59

Table 3.26. Interfacial hydrogen bonds (with standard deviations) between pro-
teins for WT, delta, and omicron.

Bound Pair WT Delta BA1 BA2
RBD-ACE2 -67.42 ± 7.47 -72.10 ± 4.91 -73.97 ± 6.81 -78.64 ± 6.39

RBD-C12.B1A -77.9 ± 8.00 -70.31 ± 8.41 -47.62 ± 5.78 -57.64 ± 6.29
RBD-P4A1 -115.91 ± 7.01 -110.21 ± 7.51 -73.71 ± 5.43 -106.62 ± 5.43

RBD-CR3022 -95.41 ± 2.51 -111.70 ± 7.80 -82.36 ± 10.26 -94.46 ± 9.38
NTD-4A8 -88.9 ± 17.9 -81.1 ± 5.7 -65.2 ± 12.2 -93.67 ± 6.33
FCD-Furin -83.6 ± 8.4 -117.3 ± 4.8 -93.2 ± 3.8 -63.5 (Alt) ± 3.6

Table 3.27. MM/GBSA Binding Energies (with standard deviations) in kcal/mol
between proteins for WT, delta, and omicron.
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CHAPTER 4

Computational Study of the Furin Cleavage Domain of

SARS-CoV-2: Delta Binds Strongest of Extant Variants

This chapter appears as a preprint at biorxiv [248] and is undergoing the peer review process at the

time of writing. This work was done in collaboration with M. Zaki Jawaid, Sofia Jakovcevic, Jacob

Lusk, Rustin Mahboubi-Ardakani, Nathan Solomon, Georgina Gonzalez, Javier Arsuaga, Mariel

Vazquez, Richard L. Davis, and Daniel L. Cox.

4.1. Introduction

While the spike protein of the SARS-CoV-2 virus is similar to SARS-CoV-1, a key difference is

a polybasic insertion beginning at P681 in the spike protein [249]. It has been shown that this

insertion is critical to the higher transmissibility of SARS-CoV-2 [201,223] over SARS-CoV-1, and

that the mutations P681H for the alpha and omicron variants and P681R for the delta variant play

a large role in increased transmissibility of the variants over the wild type (WT) [202]. Similar

polybasic furin cleavage domains (FCDs) occur in other human coronaviruses OC43, HUK1, 229E,

MERS, and NL63 [250], and in many other viruses including H5N1 influenza [251].

The FCD of SARS-CoV-2 has not been well studied for at least two reasons. First, the FCD belongs

to a rapidly fluctuating random coil region of the protein which has not been resolved by structural

probes (see, e.g., Ref. [210], PDB structure 7A94, for which residues 677-688 are unresolved) .

Second, because the furin rapidly cleaves the protein at this domain, there are no bound structures

available. The absence of structural data has limited computational studies of the binding domain.
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A number of small peptides that can act as furin inhibitors have been studied elsewhere. It is

known that the four amino acid inhibitor RVKR, suitably terminated, is a potent inhibitor of furin

activity [252]. Right handed hexa-arginine and nona-arginine peptides are potent inhibitors of furin

also [253]. Additionally, the peptide Arg-Arg-Arg-Val-Arg-4-aminomethyl-benzamidine (RRRVR-

Amba, I1 peptide) [246], is similar to the delta variant FCD RRRARS, and binds to furin with

pM affinity. This leads to the conjecture that the FCDs of SARS-CoV-2 and other coronaviruses

may bind in similar fashion to the furin enzyme. For SARS-CoV-2, the insertion that begins with

P681 for the WT, alpha, delta, and omicron variants commences a six residue sequence (through

686) that hijacks the furin enzyme from its useful physiological functions to assisting the virus. We

have focused on several six amino acid FCDs for SARS-CoV-2 and other viruses.

In the absence of structural data for the FCD, we turned to the deep learning based AlphaFold

program [35]. We used AlphaFold Multimer [205], as implemented within the ColabFold en-

vironment [204], to generate candidate structures for the FCD-furin complexes. We find that

AlphaFold accurately predicts the furin structure and the backbone of the bound furin-I1 structure

(Fig 4.1A,B), so it is natural to attempt binding to the FCD, shown for WT in Fig 4.1C. We have

used AlphaFold Multimer as the only way to generate a de novo structure for the WT FCD to furin

binding. With this hypothesis, we can either generate de novo structures from AlphaFold Multimer,

or assume the WT is well represented by the AlphaFold candidate structure, and mutations from

that structure can be used to assess the binding of the FCDs for variants and other viruses. We

simulate these structures with molecular dynamics to assess equilibrium binding strength, char-

acterized by two quantities, interfacial hydrogen bonds between the furin and FCD (FCD-furin

HBonds), and Generalized Born Surface Area (GBSA) binding energies. The AlphaFold approach

reaches different conclusions about the FCD-furin bound structure than an earlier approach based

upon docking [254]. That binding should determine cleavage rates is reasonable within a Michaelis-

Menten analysis given that the cleavage sites are identical for most of the sequences (between R

and S). We explain this in the supplemental material.

In the I1 sequence, the sixth (Amba) residue, a nonstandard amino acid, binds most strongly to

furin as we discuss below. When we mutate that nonstandard residue to the structurally similar

tyrosine, the binding pocket is occupied by the arginine at sequence position 5. Accordingly, we
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hypothesize that insertion of the residue at position 5 into the furin S1 pocket is the most important

for FCD binding to furin. We confirm this hypothesis by simulating dozens of observed sequences.

In 93% of observed SARS-CoV-2 FCD sequences starting from aligned position 681, the fifth amino

acid is arginine.

Figure 4.1. A) Comparison of structure of furin from Ref. [246] and PDB file
6EQX with the structure from AlphaFold [35] using the ColabFold environment
[204]. Clearly, the agreement is excellent (RMSD of 1.79Å). B) Comparison of
structure of furin with RRRVR-Amba inhibitor from Ref. [246] with structure gen-
erated for the similar sequence RRRVRY by AlphaFold Multimer [205] using Colab-
Fold [204]. The Amba is buried in the furin S1 pocket [246] for the inhibitor, while
AlphaFold predicts burial of the R at position 5. The backbone RMSD between
the I1 and RRRVRY peptides is 2.77Å . C) Predicted structure by AlphaFold Mul-
timer [205] for the WT PRRARS sequence of SARS-CoV-2 compared to Furin-I1
structure. D) Close up of binding pocket for fifth residue of PRRARS (WT FCD).
Furin backbone in yellow, FCD backbone in green, R5 from FCD is blue, D258,D306
from furin in red.
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We obtain a number of important results. First, per Fig 4.2, the delta variant has the strongest

binding of existing extant SARS-CoV-2 variants, and only two rare or unobserved FCD sequences

bind as strongly within statistical accuracy. This dominance of the delta variant FCD extends to

other coronaviruses and the H5N1 influenza virus. Second, as made clear in the heat map of Fig 4.3,

the most important residue is the fifth, which binds in the S1 pocket of furin [246] containing two

aspartic acid residues. In particular, this pocket matches structurally to arginine better than lysine

as discussed below. Third, we find that there is mechanistic predictive power in three quantities

that help explain the differences between delta and other variants and viruses: (1) the strength of

the binding strongly correlates inversely with the root mean square fluctuation (RMSF) of the first

residue. This suggests that the more the backbone outside the pocket fluctuates, the less likely the

arginine at position 5 can bind well to the furin. (2) The number of FCD-furin hydrogen bonds

between residue 5 and the furin strongly predicts the total binding strength, even though it only

represents a plurality of the HBonds. (3) The maximum mean number of FCD-furin HBonds for a

given number of basic residues peaks at 15.7 hydrogen bonds for 4.06 basic residues.

4.2. Results

To avoid confusion between the conventional N-to-C terminal sequence numbering of peptides

and proteins vs. the reverse numbering used in the Furin Data Base (FurinDB) [255] and other

references [246,252,253], we will refer to the FCD residues as positions 1-6, which for all viral

sequences considered here will correspond to the FurinDB notation P5-P4-P3-P2-P1-P1’, with the

cleavage site between P1 and P1’. For example, in the WT SARS-CoV-2 FCD sequence PRRARS,

the R at position 5 corresponds to P1, the S to position P1’. We will note the FurinDB identification

parenthetically.

We first applied AlphaFold [35] through the ColabFold [204] environment to examine how well we

could match the folded structure of furin. The result is shown in Fig 4.1A. The AlphaFold structure

for furin matches that from the PDB entry 6EQX [246] to within a root mean square deviation of

1.79Å. Next, we included the furin inhibitor RRRVR-4-aminomethyl-benzamidine (RRRVR-Amba)
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Figure 4.2. A) FCD-furin hydrogen bond counts between furin and SARS-CoV-2
binding sequences at 681-686 of the spike protein. The first four bars are prevalent
forms (WT, delta, omicron/alpha, and alt omicron where we assume the sequence
starts at position 679. The blue sequences are rare but observed in the GISAID [256]
database; of these HRRARN and SRRARS bind as strongly to furin with in sta-
tistical accuracy as the delta sequence (RRRARS). The two unobserved sequences
require double base mutations from existing extant codons, but bear watching be-
cause of their strong binding to furin. B) FCD-furin hydrogen bond counts between
furin and other viruses. The SARS-CoV-2 delta variant shows the strongest binding
of any human coronavirus and exceeds the H5N1 influenza cleavage site.

from Ref. [246] into the AlphaFold Multimer program [205], but because we could not enter the

nonstandard residue Amba into the AlphaFold search we substituted tyrosine, which is similar

to Amba away from the side chain terminus. As shown in Fig 4.1B, this produces a structure

substantially similar to furin with bound RRRVR-Amba, except that the S1 pocket, which binds

the position 6(P1) Amba nonstandard residue, accepts the position 5(P2) arginine for RRRVRY.
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In essence, the Y for Amba substitution shifts the sequence to P5-P4-P3-P2-P1-P1’. The RMSD

deviation of the RRRVR-Amba backbone from the RRRVRY backbone in the binding position

is 2.77Å, which is relatively small and reasonable given the different placement of the Amba vs.

arginine in the S1 pocket.

This sequence is very similar to the SARS-CoV-2 delta sequence commencing with arginine at 681,

namely, RRRARS. It is known that the furin cleaves between the arginine at 685 and serine at

686. Hence, we hypothesize that the fifth residue(P1) enters the furin S1 pocket. When we utilize

AlphaFold Multimer to explore the binding of the WT sequence (beginning at 681) PRRARS, we

do find that the fifth arginine(P1) enters the furin S1 pocket, and binds strongly to two aspartic acid

residues at positions 258 near the pocket entry, and 306 at the interior end of the pocket (Fig 4.1D).

We note that the last arginine in the RVKR sequence of Ref. [252] also has close proximity to D258

and D306. The RMSD deviation of the RRRVR-Amba backbone from the PRRARS backbone of

the FCD for SARS-CoV-2 from AlphaFold Multimer is 4.1Å. This is not surprising given the large

sequence difference.

Arginine is particularly well suited for this binding, with its three side chain nitrogens in contrast to

the single nitrogen in lysine. A lysine at the fifth position (P1) is only able to bind to the D306. Of

all 62 observed sequences identified from GISAID for SARS-CoV-2, 58 have an arginine at position

5 (P1). For the other human coronaviruses, four (MERS, OC42, HUK1a,b) have an arginine at

this position. NL63 and 229E have serines at this position, and the H5N1 flu has lysine.

There is also a strong bias towards a hydrophobic residue at position 4(P2) in the SARS-CoV-2

sequences. Alanine arises there in 46 of 62 sequences, and valine in 4 of 62. The alanine side chain

carbon is within 5Å of side chain carbons on W147 and L120 from the furin in the delta structure.

Of the other viruses, MERS and 229E have valine at position 4, while the others have arginine

(OC43, HUK1a,b) or serine (NL63) at this position. The H5N1 flu has lysine at this position.

Given a starting structure, we can simulate and measure characteristics of the binding, such as

counting FCD-furin HBonds, calculating the binding energy of the complex, or measuring the

interfacial surface area, defined as half the difference between the solvent accessible surface area

of the separated furin and FCD vs the solvent accessible surface area of the complex. We utilize
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the YASARA molecular modeling program [234], simulating each bound FCD-furin complex for at

least 10 ns past energy minimization and equilibration. We then count interfacial protein hydrogen

bonds using the criteria outlined for YASARA [241]. For computing the binding free energy, we use

the Generalized Born Surface Area (GBSA) endpoint free energy calculation from the HawkDock

server [245]. Because the binding interface is tight, there is essentially no water entry between

the peptide and furin. As shown in the supplemental information, we obtain a strong correlation

between the GBSA binding energy and the FCD-furin HBond count (Fig 4.5). For the rest of this

paper, we shall use the FCD-furin HBond count as a proxy for binding strength. Note that in this

approach, salt bridges of proximate residues, are effectively counted as H-bonds between basic side

chain amide groups and acidic side chain carboxyl groups. Hence, the R685 residue of the spike

protein FCD forms a salt bridge with the D306 residue of the furin protein, but this is counted in

FCD-furin HBonds in this approach.

Figure 4.3. Heat map of interfacial hydrogen bonds from furin to the six residue
peptide by residue number (vertical) for various observed SARS-CoV-2 along with
two unobserved, and for other human coronaviruses and H5N1. Clearly, the key
residue for binding is the fifth.

We have used AlphaFold as the only way to generate a candidate structure for the binding of the

WT peptide to furin. With the other sequences we have a choice of using AlphaFold or using the

mutation approach within YASARA. We generally find that there are small differences in favor of

the mutation approach as we discuss in detail in the supplemental information (Fig 4.6).

We have surveyed a total of 62 observed six member SARS-CoV-2 furin FCD sequences at 681-

686 for this paper drawn from from the GISAID database [256,257,258], out of which the delta
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sequence RRRARS is the top binder to within statistical significance. Those used in this paper are

acknowledged in the Supplementary Materials. Fig 4.2A shows the FCD-furin HBond counts for

the prevalent 681-686 sequences WT(PRRARS), delta (RRRARS), and omicron/alpha (HRRARS).

We have also included KSHRRA as an alternate omicron sequence in view of the N679K mutation.

Additionally, we include seven observed but rare sequences found from GISAID chosen either

for their frequency of occurrence or their high FCD-furin HBond count. Finally, we include two

sequences (PRRDRS and KRRARS) which can be arrived at by two base mutations from either

the WT or delta variants. The prevalent codon at position 684 cannot swap by a single base

to obtain D, and the prevalent codon at position 681 cannot swap by a single base to obtain K.

By performing pairwise t-tests within GraphPad, we find that the FCD-furin HBond count for

the delta variant sequence binding to furin exceeds all but one of the observed sequences with

statistical significance (p < 0.05) or extreme (p < 0.0001) statistical significance, and differences

are statistically insignificant in comparison to the observed SRRARS and unobserved PRRDRS

and KRRARS sequences (p > .1 for each).

A similar picture emerges compared to other human coronaviruses and the H5N1 flu as shown in

Fig 4.2B. The candidate sequences for OC43, NL63, HUK1a,b, 229E, and MERS were obtained

by homology alignment of the spike proteins using BLAST [259]. The FCD-furin HBond count

difference between the delta variant and these viral sequences is extremely significant (p < 0.0001).

We note that the binding is strongest for the cold viruses HUK1a,b and OC43.

To assess the importance of the different residues in the six member peptide to binding strength,

we analyzed the hydrogen bonding patterns in detail. We display a heat map in Fig 4.3 for

many of the sequences shown in Fig 4.2. We find in nearly every case that the strongest binding,

representing a significant plurality of the binding strength, is for the position 5(P1) residue, with

arginine the preferred amino acid there. Notably, the H5N1 sequence with a K at position 5, and

the trial sequence PKKAKS where all arginines are replaced by lysines, fare poorly at position

5(P1) compared to the other sequences.

In searching for an understanding for these observations, we have uncovered three correlations,

two of which that can independently explain nearly 50% of the variation between SARS-CoV-2
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sequences and separately between viruses. First, by examining the root mean square fluctuation

of the backbone C-alpha of the first residue (P5), compared to the FCD-furin HBond counts of

the observed sequences with at least 50 appearances in the GISAID tables for SARS-CoV-2, we

see in Fig 4.4A that this backbone fluctuation correlates inversely with the binding strength with

a linear regression coefficient of R2 = 0.53. Fig 4.4B shows the correlation between the FCD-

furin HBond count and the RMSF of the first alpha carbon (CA) atom for delta, the six other

human coronaviruses with homology in this region, and the H5N1 flu virus. The linear regression

coefficient is r2 = 0.49. The best fit slope of -2.74±1.25 FCD-furin HBonds/Å is less than that for

SARS-CoV-2 (-4.33± 1.54 FCD-furin Hbonds/Å), but the difference is statistically insignificant.

Second, by examining the number of FCD-furin HBonds associated with the residue at position

5(P1), we observe (Fig 4.4C,D) that there is a high degree of correlation with the total FCD-furin

HBond count. For the observed higher frequency furin binding sequences, the best fit slope is

1.41±.38 with R2 = 0.59, and for comparison of delta to other viruses, the slope is similar 1.77±.51

with R2 = 0.66. Third, as shown in Fig 4.4E, the number of basic residues (H,K, or R) in the

six residue sequence helps determine the maximum number of FCD-furin HBonds. Fitting the

maximum envelope of the plot to a quadratic, as in Fig 4.4F, gives

Hbonds = −0.66(NB − 4.06)2 + 15.7 (4.1)

where NB is the number of bases. The nonlinear regression coefficient is R2=0.98. This suggests

that the maximum number of FCD-furin HBonds is 16, for four basic residues (as per the delta

variant), and to within statistical accuracy, no sequence exceeds delta in the number of FCD-furin

HBonds to furin.

4.3. Discussion

The most important results of this paper are: 1) by using AlphaFold Multimer [205] we have

validated by comparison to the binding of furin with a known six residue inhibitor, we are able to

predict bound structures for over 60 observed FCD sequences of SARS-CoV-2 (at residues 681-686

of the spike protein and two alternate sequences for omicron) and eight other viruses (six human
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coronaviruses (OC43, HUK1a, HUK1b, MERS, NL63, 299E), the H5N1 influenza, and Epstein-

Barr virus). From among these, the delta variant FCD of SARS-CoV-2 has the strongest binding

to furin within statistical accuracy, with 15.3 mean FCD-furin hydrogen bonds. 2) Within these

sequences we find selection for arginine at position 5 (P1), which fits into a furin S1 pocket having

aspartic acids at the entrance and within. The structure of arginine allows binding to both aspartic

acids, while lysine’s structure does not.

3) There is also bias towards a hydrophobic residue at position 4(P2) of the six residue FCD, which

appears to interface favorably with W147 and L120 of the furin. 4) We find that two features of the

sequences each predict about half of the binding strength: (i) the backbone fluctuation of the first

residue in the binding sequence correlates inversely with the overall binding strength as measured by

FCD-furin HBonds, and (ii) the number of hydrogen bonds associated with the binding of residue

5(P1) in the furin S1 pocket correlates positively with FCD-furin HBond count. This residue never

accounts for more than a plurality of the FCD-furin HBonds so it is somewhat surprising that

it correlates with the observed trend of binding. (iii) By considering the variation of the FCD

sequence with the number of basic residues, we conclude that no more than 16 FCD-furin HBonds

are possible, and within statistical accuracy delta achieves the maximum value. We conjecture that

the physical basis for this is a tradeoff between binding efficacy of the basic residues (especially

arginine) and Coulomb repulsion as more are added.

In preparing this for submission, we noted an article which directly measured furin cleavage rates

for 14 residue peptide designs and found that omicron was cleaved most rapidly [261]. We were

not able to reproduce this result for the usual orientation of the peptides bound to the furin, but

using AlphaFold we found that a reverse orientation was preferred for the 14 residue peptide, in

which the P6-P5 residues take the place of the P1-P1’ residues and vice versa. In this orientation,

the omicron sequence is preferred over wild type and delta, while both wild type and delta are

increased in stability with the N679K mutation. These results are presented in the supplementary

materials.

In conclusion, we find that spike FCD-furin binding depends critically upon insertion of arginine

in the fifth position (P1) of the FCD in a furin pocket that includes D258 at the opening and
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Figure 4.4. A) Correlation of the backbone fluctuation from Residue 1 of the se-
quence with the total number of FCD-furin HBonds between the binding sequence
and furin for SARS-CoV-2 sequences observed at least 50 times. B) Correlation
of the residue 1 backbone fluctuation with FCD-furin HBonds for delta and other
viruses. C) Correlation of the interfacial HBonds for Residue 5 with the total num-
ber of HBonds for observed SARS-CoV-2 sequences of A). D) Correlation of the
FCD-furin HBonds for Residue 5 with total number of FCD-furin HBonds for delta
and other viruses. E) The number of HBonds for a given number of basic FCD
residues plotted for 56 sequences. F) The maximum FCD-furin HBonds envelope as
a function of the number of basic residues. This is fit with R2=0.98 by Eq. (1) of
the main text. The sequences for the peak values are for 1-6 respectively: PRNSVY
(229E coronavirus), PRQARS (SARS-CoV-2), SRRARS (SARS-CoV-2), KRRARS
(SARS-CoV-2, unobserved), RRRRRD (Epstein-Barr, ref. [260]), RRRRRR (un-
observed).

D306 at the interior end. This prediction emerges uniquely from the application of AlphaFold

Multimer [205] to predict the bound structure, and contrasts with earlier work that employed

159



a docking program for interface prediction [254]. It is therefore critical to have experimental

structural biology test of this prediction.

Note that the omicron FCD sequence is the same as alpha, and alternate FCD sequences (KSHRRA,

beginning at K679, or QTQTKS, with K679 at position 5(P1)) have fewer FCD-furin HBonds

than any observed variants, consistent with the observed milder impact of omicron on the lungs

[195,219,220].

We conclude that it is quantitatively unlikely that any SARS-CoV-2 variant, or any other virus

can bind significantly more strongly to the furin protease than the delta variant. This is based

on a survey of a large number of observed SARS-CoV-2 spike sequences new SARS-CoV-2 spike

sequences not yet observed, other human coronaviruses, H5N1 influenza, and Epstein-Barr virus.

The basic model for viral infection is that after spike RBD binding to ACE2, furin cleavage at

the FCD regulates fusogenicity leading to syncytia and viral reproduction. Our theoretical studies

indicate that furin-FCD driven fusogenicity is at its worst with the delta variant among all observed

SARS-CoV-2 variants of interest or concern. Of concern and cause for caution are some rarely

observed or unobserved FCD sequences which could be just as consequential for furin cleavage as

delta (observed: SRRARS, RRRARN,HRRVRS; unobserved: PRRDRS, KRRARS).

Data Availability

The pdb files used/generated in this study are available in Google Drive, at the link: PDB Files.

A summary of all available hydrogen bond data and GBSA calculations is in an excel file available

in Google Drive, at the link FurinPaper - AvailableData.xlsx.

YASARA simulation files and AlphaFold result files for all the results presented here are available

upon reasonable request to the corresponding author.
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4.4. Methods

4.4.1. Molecular Models

For the furin structure and for furin binding to the inhibitor RRRVR-Amba, we used PDB entry

6EQX [246].

4.4.2. Sequence Alignment for Other Coronaviruses

To identify homology in the furin cleavage domain for the other coronaviruses OC43, NL63, 229E,

MERS, HUK1a, HUK1b, we utilized BLAST [259] at the National Center for Biotechnology In-

formation. We compared entire spike sequences and zoomed in on the furin cleavage domain based

upon the PRRARS sequence for SARS-CoV-2.

4.4.3. Genomic Data Set and Sequence Pre-Processing

We obtained SARS-CoV-2 sequences for this study from the GISAID database on Nov 11, 2020

[262]. Our data set contains FASTA files for every complete human SARS-CoV-2 nucleotide

sequence (from all geographical locations) available in GISAID between and 12/1/19 and 7/11/2021.

The sequences were then aligned using ClustalOmega with the default parameters [263]. We found

that ClustalOmega ran faster on our data set than common alternatives like ClustalW [264] and

MUSCLE [265].

After aligning the sequences, we extracted the spike protein by comparing the aligned sequence

with the NCBI’s SARS-CoV-2 reference sequence (NC 045512.2; “WT”) [266] and tabulated the

frequencies of different furin binding domain inserts.

The accession numbers and acknowledgments for the first of each 111 unique nucleotide sequences

referenced in this paper as they appear in GISAID are provided in the Supplementary Materials.
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4.4.4. Molecular Dynamics

To simulate the protein-protein interactions, we used the molecular-modelling package YASARA

[234] to substitute individual residues and to search for minimum-energy conformations on the

resulting modified structures of the FCD-furin. For all of the structures, we carried out an energy-

minimization (EM) routine, which includes steepest descent and simulated annealing (until free

energy stabilizes to within 50 J/mol) minimization to remove clashes. All molecular-dynamics

simulations were run using the AMBER14 force field with [235] for solute, GAFF2 [236] and

AM1BCC [237] for ligands, and TIP3P for water. The cutoff was 8 Å for Van der Waals forces

(AMBER’s default value [238]) and no cutoff was applied for electrostatic forces (using the Particle

Mesh Ewald algorithm [239]). The equations of motion were integrated with a multiple timestep of

1.25 fs for bonded interactions and 2.5 fs for non-bonded interactions at T = 298 K and P = 1 atm

(NPT ensemble) via algorithms described in [240]. Prior to counting the FCD-furin hydrogen bonds

and calculating the free energy, we carry out several pre-processing steps on the structure including

an optimization of the hydrogen-bonding network [241] to increase the solute stability and a pKa

prediction to fine-tune the protonation states of protein residues at the chosen pH of 7.4 [240].

Insertions and mutations were carried out using YASARA’s BuildLoop and SwapRes commands

[240] respectively. Simulation data was collected every 100ps after 1-2ns of equilibration time, as

determined by the solute root mean square deviations (RMSDs) from the starting structure. For

all bound structures, we ran for at least 10 ns post equilibrium, and verified stability of time series

for FCD-furin hydrogen bond counts and root mean square deviation (RMSD) from these starting

structure. Because of concerns about the validity of short time simulations, and more variability

for the weaker binding for the omicron RBD-ACE2 complex, we ran for 40 ns postequilibration in

that case.

The FCD-furin hydrogen bond (HBond) counts were tabulated using a distance and angle approx-

imation between donor and acceptor atoms as described in [241]. Note that in this approach, salt

bridges of proximate residues, are effectively counted as H-bonds between basic side chain amide

groups and acidic side chain carboxyl groups. Hence, the R685 residue of the spike protein FCD

forms a salt bridge with the D306 residue of the furin protein, but this is counted in HBonds in

this approach.
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Note that in view of the likely ambient pH for cell surface or endosomal furin cleavage, and the

polybasic environment of the FCD, we have assumed all histidines to be singly protonated at

the delta site. Choosing the epsilon site makes little difference. For the alpha sequence, doubly

protonated histidine binds more strongly, but for the alternate omicron sequence, there is little

difference among the three protonation states.

4.4.5. Endpoint Free Energy Analysis

We calculated binding free energy for the energy-minimized structure using the molecular mechan-

ics/generalized Born surface area (MM/GBSA) method [242,243,244], which is implemented by

the HawkDock server [245]. While the MM/GBSA approximations overestimate the magnitude of

binding free energy relative to in-vitro methods, the obtained values correlate well with H-bond

counts. For each RBD-ACE2, RBD-AB, and NTD-Ab binding pair we average over five snap-

shots of equilibrium conformations. For each FCD-furin pair, we average over ten snapshots of

equilibrium conformations.

4.4.6. Use of ColabFold/AlphaFold for Furin binding domain

Full details of this method are provided in [35, 204, 205]. In brief, we used the heterocomplex

prediction method known as AlphaFold-Multimer [35,205] as implemented within ColabFold [204]

to predict the best bound structure to the furin enzyme of the six residue FCD from the WT protein.

We inferred the ordering of this sequence by comparison with a very similar six residue peptide

inhibitor of furin with the sequence RRRVR-aminomethyl-benzamidine (RRRVR-Amba) [246]. In

this case the backbone of the WT FCD aligns well with that of the inhibitor, but the arginine

at residue 5 enters the furin S1 pocket [246] while the Amba enters the furin S1 pocket for the

inhibitor. The serine is in proper cleavage position for furin. Most other structures were then

obtained by mutation from the predicted WT FCD-furin structure.
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4.4.7. Statistical Analysis and Graphics

We computed the statistical significance of pairwise differences using the GraphPad unpaired t-test

calculator. Regression analysis for Fig 4.4, Fig 4.5 was carried out using the GraphPad Prism (v.

9) package. Structural images for Fig 4.1 were created in YASARA. Fig 4.2, 4.4, 4.5, 4.6 were

created with GraphPad Prism (v. 9). Fig 4.2 was created with Seaborn (v. 0.11.2), a Python data

visualization library.
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4.5. Supplementary Materials

Correlation of FCD-furin HBonds and MM/GBSA binding energy estimates

Fig 4.5 summarizes the correlation between FCD-furin HBonds and the MM/GBSA estimates for

binding energy in kcal/mole. Note that MM/GBSA usually overestimates binding energy strength

significantly but is good for producing binding energy trends. The regression coefficient is R2 =

0.61, and the best fit slope is -.107 Hbonds/(Kcal/mole) with 95% confidence intervals of -.110 to

-.1042. Clearly, the correlation is strong between FCD-furin HBonds and binding energy.

Differences between simulations with AlphaFold and mutation

While we must take the WT FCD-furin structure from AlphaFold [35,205], we can mutate using the

Swap command in YASARA from there to obtain other starting structures for molecular dynamics

simulations. In general, AlphaFold produces structures with slightly less binding strength than

mutating from the WT, with a few exceptions, the delta variant being one. This is demonstrated

for five sequences in Fig 4.6. Accordingly, because the resultant binding is stronger we have used

the mutant results where possible to provide a more accurate starting point for the equilibration

runs in molecular dynamics.

Examples of sequence frequency and codons

Fig 4.7 shows a table of FCD sequences used in the figures as well as one synonymous/silent

mutation based upon the consensus codons for WT, alpha, and delta. The last two entries are

for unobserved but potentially potent FCD sequences. Mutation to those would require two base

swaps from either WT or delta.

Michaelis-Menten Analysis and argument that binding dominates cleavage rates in the

low concentration regime

The following reaction scheme applies to the furin cleavage process, where P is the binding peptide,

F is the furin enzyme, and P1, P2 are the cleavage products:
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P + F
k+
⇌
k−

PF
kc−→ P1 + P2 + F (4.2)

If, per usual, we assume steady state for the bound complex, it is straightforward to show that the

rate of cleavage Vc is given by

Vc = kc[F ]0[P ]/(KM + [P ]) (4.3)

with [F ]0 the initial furin concentration, [P ] the concentration of furin binding polymer, and

KM =
k− + kc
k+

. (4.4)

In the low concentration limit of P , Vc ≈ kc[F ]0/KM . If kc >> k−, then Vc ≈ k+[F ]0, and since k+

depends upon the binding strength of P to F , the rate varies with the binding. If kc << k−, then

Vc ≈ kc[F ]0/KD where KD is the dissociation constant of P from F . Assuming kc independent of

P , then again we conclude that the binding strength determines the cleavage rate.

Analysis of length 14 residue peptide cleavage data

In Ref. [261], length 14 amino acid peptides with donor and acceptor fluorophores at the ends have

been used to study furin cleavage rates. The quenching of FRET signal between the fluorophores

is a proxy for cleavage.

This work found that among the original WT variant, delta, and omicron variants, that omicron

bound the strongest. Moreover, they found that the N679K mutation is critical, and that binding

of the WT and delta variants with this mutation leads to enhanced cleavage rates. This is in clear

conflict with predictions of this study on binding of six residue peptides.

Because the possibility exists that the flanking regions can affect the binding of the 14 residue pep-

tides to the furin cleavage region, possibly altering the relative stability, we carried out AlphaFold

and simulation studies on the peptides shown in Table 4.1.
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We found that four the 14 residue peptides, AlphaFold favored a 180o reverse of the binding to the

furin, with P6-P1’ being inverted to P1’-P6.

This is shown in Fig 4.8, compared with the conventional P6-P1’ binding of the six residue peptides.

When we simulate the WT, delta, and omicron variants in the original orientation (P6-P1’) we

find that the hydrogen bond counts track the six residue peptides with delta binding the strongest

and WT and omicron being indistinguishable statistically, as shown in Fig 4.9a. In each case,

approximately 3 interfacial hydrogen bonds are contributed from the flanking regions.

When we run the peptides in the reverse conformations, WT and delta bind more weakly than omi-

cron, which binds more strongly than in the original conformation by approximately two interfacial

hydrogen bonds, as shown in Fig 4.9b. Additionally, the binding strength of WT and delta variants

in this reversed orientation are enhanced by the N679K mutation present in omicron, though not

above omicron in contrast to the experimental cleavage rate measurements.

Besides the potential for reversal of the synthetic peptides with flanking regions, we note that the

binding of the P6-P1’ sequence in the actual protein can be very different than the 14 residue

peptides, because of the constraint to connect back to the full spike protein.

In Fig 4.10, we show the results of grafting the furin cleavage domain to the structure of Ref. [267].

Because the furin cleavage domain is not resolved structurally due to fluctuations, we grafted the

loop on with the bridge protocol of YASARA. The P5-P1’ sequence of the 14 residue peptides as

bound to furin (not shown) and of the in situ furin cleavage domain P5-P1’ sequence are highlighed

in magenta. It is clear that the constraint of attaching to the full protein denies the adaption of

the flanking regions to enhance the furin binding.

We conclude that (i) there is a high probability the 14 residue peptides reverse orientation relative

to the usual one in binding to furin, particularly for omicron, and (ii) that because of the in situ

constraints on the flanking regions, the smaller 6 residue peptides are likely to be more realistic

indicators of binding efficacy than observations on the 14 residue peptides.

168



Supplementary Figures and Tables

A table of the accession numbers and acknowledgments for the first of each 111 unique nucleotide

sequences referenced in this paper as they appear in GISAID can be found here.

Table 4.1. 14 residue peptides to compare with cleavage data

Peptide Sequence

WT TQTNSPRRARSVAK
delta TQTNSRRRARSVAK

omicron TQTKSHRRARSVAK
WT N679K TQTKSPRRARSVAK
detal N679K TQTKSRRRARSVAK

Figure 4.5. Correlation of FCD-furin HBond counts with MM/GBSA
Binding Energy FCD-furin HBond counts are estimates from YASARA [234,241]
simulations, while MM/GBSA Binding Energy comes from the HawkDock server
[245]. Regression analysis using GraphPad Prism 9 provides the straight line fit
(see text for details).
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Figure 4.6. Differences in equilibrated FCD-furin HBond counts between
AlphaFold generated starting FCD-furin structures and starting struc-
tures mutated from the AlphaFold WT structure In general, after equili-
bration the AlphaFold structures have slightly less binding strength, with a few
exceptions such as the delta variant where AlphaFold misses dramatically. For com-
parison, the p-values for AlphaFold vs mutant in this plot are RRRVRY- p=0.0035
(very significant); RRRARS (delta)- p¡0.000001 (extremely signficant); HRRARS
(alpha/omicron)- p=0.181 (not significant); PRRARY - p=0.00094 (very signifi-
cant); RRRDRY - p=0.0164 (very significant)

Figure 4.7. Examples of FCD sequences from GISAID for analysis here
with codons The observed frequencies of sequences between 12/1/19 and 7/11/21
appear at left, and the predominant codons for each position are tabulated. Row
4 shows a synonymous/silent mutation to the alpha variant, while the rest show
missense mutations. The last two sequences are unobserved (requiring double codon
swaps relative to either WT or delta) but bind as strongly to furin as the delta FCD.
Note that over this entire pre-omicron time frame that delta (RRRARS) has less
accumulated percentage of the sequences than WT (PRRARS) or alpha (HRRARS).
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Figure 4.8. Structure of peptides bound to furin Furin (gray) bound to six
residue peptide (magenta), Furin (cyan) bound to 14 residue peptide in reverse
conformation (red). The P1 arginines for each peptide are shown in van der Waals
sphere format. Image prepared by YASARA.
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Figure 4.9. Interfacial hydrogen bond counts of 14 residue peptides
bound to furin a) Results for ordinary P6-P1’ orientation. As for the six residue
peptides, the furin binds more strongly to delta, with statistical insignificance in
bond counts between omicron and WT. b) Results for reversed P6-P1’ orientation
suggested by AlphaFold. In this orientation, omicron binds the strongest, and binds
stronger than omicron in the normal orientation. The N679K label refers to mu-
tation of N679 to K for the WT and delta sequences. For each of WT and delta,
the binding is enhanced by this mutation, though the binding for WT and delta is
stronger in the normal orientation.
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Figure 4.10. Structure of 14 residue FCD in the spike protein vs. 14
residue peptide The SARS-CoV-2 spike protein is in blue. The 14 residue FCD
is shown in green as attached using the bridge feature of YASARA. The 14 residue
peptide mimicking the FCD as it would appear bound to the furin enzyme from
molecular dynamics simulations is shown in magenta. Clearly the constraint of
attaching the 14 residue FCD to the protein gives less conformational flexibility in
the binding region than when the ends are free.
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CHAPTER 5

Combining Different V1 Brain Model Variants to Improve

Robustness to Image Corruptions in CNNs

This chapter appears as an article [268] published in NeurIPS 2021 in the Shared Visual Rep-

resentations in Human and Machine Intelligence (SVRHM) workshop. This work was done in

collaboration with Joel Dapello, James J. DiCarlo, and Tiago Marques.

5.1. Introduction

Recently, convolutional neural networks (CNNs) have not only dominated several computer vision

applications [269,270,271] but have also surpassed human visual abilities in specific domains such

as object classification [272]. However, unlike humans, CNNs show a striking lack of robustness:

they are vulnerable to small perturbations optimized to fool them (adversarial attacks) [36,37,38];

and, perhaps more relevant for real-world applications, they struggle to recognize objects in images

corrupted with common noise patterns [39,40,41]. These two perturbation types expose different

aspects of robustness: models designed to better withstand one usually fail to generalize to the

other [44,51].

Recently, Dapello, Marques et al. observed that models that were more robust to adversarial

attacks had early stages that better predicted neuronal responses in the macaque primary visual

cortex (V1) [51]. Inspired by this, the authors developed a novel hybrid CNN, containing a model

of V1 as the front-end, followed by a trainable standard architecture back-end. This new model, the

VOneNet, was substantially more robust to adversarial attacks than the corresponding base-models

and rivaled more computationally expensive methods such as adversarial training. Surprisingly,

VOneNet models also showed small gains in robustness to common corruptions, with different
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variants of the V1 front-end leading to specific trade-offs in accuracy when considering all the

corruption types.

Here, we extend this last finding to make the following novel contributions. First, we adapt the

VOneNet model to the Tiny ImageNet dataset [273] and reproduce results from Dapello, Marques

et al., particularly the existence of specific trade-offs in dealing with common corruptions for several

variants. Then, we build a new model using an ensembling technique which combines VOneNet

models with different V1 front-end variants, eliminating trade-offs and showing a remarkable im-

provement in robustness to common corruptions (38% overall). Finally, we show that distillation

training is able to partially compress the knowledge in the ensemble into a single VOneNet model,

resulting in a compact architecture that improves over the baseline on all the corruption categories

(13% overall). Together, these results, demonstrate that by combining the specific strengths of

different neuronal populations in V1 it is possible to improve the robustness of CNNs.

Related Work

Common corruptions Several recent works have studied the robustness of CNNs against com-

mon corruptions [41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. The current state-of-the-art for common

image corruptions (DeepAugment+AugMix) [43] involves using an image-to-image network to add

perturbations to the input image combined with a technique that mixes randomly generated aug-

mentations. Other data augmentation techniques have also been shown to improve robustness. [44]

showed that augmentation with Gaussian noise or adversarial noise can significantly improve model

robustness. [45] apply Gaussian noise to small image patches to improve robustness. Gaussian

data augmentation, however, can impact clean image performance [44] and can cause models to

be vulnerable to low frequency corruptions [46]. [47] assemble common CNN techniques, including

knowledge distillation, into a single CNN to achieve improved performance on clean and corrupted

images. Other techniques to increase robustness involve using: anti-aliasing module to restore the

shift-equivariance [48], stylized images to increase shape bias [49] and stability training [50].

Biologically-inspired methods for improving robustness [51] showed that simulating V1 in

front of CNNs can substantially improve white box adversarial robustness with smaller gains in

the case of common corruptions. In a similar work, [52] replaced the first convolutional layer of a
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standard CNN by Gabor filters to improve robustness to noise. Other biologically-inspired works

to improve robustness include: regularizing CNN models’ representations to approximate mouse

V1 [54] and training to predict neural activity in V1 while performing image classification [55].

Ensemble and distillation Ensembling is a well-known machine learning technique to combine

smaller individual models into a larger model leading to superior performance compared to the

individual models in a diverse range of supervised learning problems [62,63,64,65,66,67], including

generalization to out-of-domain (OOD) datasets [274,275,276,277,278]. Knowledge Distillation

is a popular technique [68, 279, 280, 281, 282, 283, 284] to transfer the superior performance of

the ensemble (teacher) into a single smaller model (student). This technique has been shown to

improve the generalization ability of the student models [47,281,283,285].

5.2. Results

5.2.1. V1 model variants show performance trade-offs on different corruptions

VOneNets are CNNs with a biologically-constrained fixed-weight front-end that simulates V1 (the

VOneBlock) followed by a conventional neural network architecture [51]. The VOneBlock consists

of a fixed-weight Gabor filter bank (GFB) [53], simple and complex cell [57] nonlinearities, and

neuronal stochasticity (Fig. 5.1A) [58]. Here, we trained a VOneNet model for object classification

on the Tiny ImageNet dataset [273] using the ResNet18 [272] as the back-end architecture, which

we call the standard VOneResNet18 model. In addition, we created seven model variants by

removing or modifying one of the VOneBlock components (Fig. 5.1B, Table 5.1, Section 5.4.2.1).

All the variants’ back-ends, including the standard model, were optimized from scratch on Tiny

ImageNet following an identical training procedure (Section 5.4.3). We evaluated model robustness

using the Tiny ImageNet-C dataset [41] which consists of 15 different corruption types, each at five

levels of severity, divided into four categories: digital, weather, blur and noise (Section 5.4.1.2).

While all of the model variants were found to perform worse than ResNet18 on clean Tiny ImageNet

images, all of them were considerably more robust on at least one corruption category (Fig. 5.1C,
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Table 5.2). Still, no single variant outperformed ResNet18 in all four categories of image corruptions.

For example, the standard VOneResNet18 and Low SF variant were more robust than ResNet18 to

blur and noise corruptions but they performed worse on digital and weather corruptions. Similarly,

Mid SF and Only Simple variants were more robust than ResNet18 to all corruptions except for

weather corruptions. Furthermore, some model variants that outperformed other variants in all

four categories of corruptions performed worse on clean images. These results show that while

some variants of the VOneBlock lead to large gains in robustness for specific corruption types, this

comes with losses for others. This type of trade-off is present for all the variants analyzed (Fig.

5.1C, Table 5.2).

5.2.2. Ensemble of different VOneNet variants eliminates robustness trade-offs

We used a common ensembling technique of uniformly averaging the outputs (logits) of the VOneNet

variants described in the previous section to create the Variants Ensemble. The Variants Ensemble

not only outperformed all the variants but also performed on par with ResNet18 on clean images

(Fig. 5.2, Table 5.3). Remarkably, the Variants Ensemble was found to be substantially more robust

than ResNet18 in all corruption categories (and in 13 out of 15 individual corruption types, Fig.

5.5), showing that ensembling is able to combine the diverse strengths of the individual variants. As

a result, we developed a model that considerably outperforms ResNet18 in all corruption categories

(between 17% and 60% with 38% overall) without compromising on clean accuracy.

While diversity in the members of an ensemble has been found to be important to its generalization

ability [274,277,286,287], ensembles of networks with the same architecture that only differ in

their random initialization also improve robustness [275,276]. To test if the diversity in the variants

was critical for the observed gains, we created two Seeds Ensembles by combining eight different

seeds of the standard VOneResNet18 and of the ResNet18. The Variants Ensemble consistently

outperformed the other ensemble models on all the corruption categories (Fig. 5.2, Table 5.3). We

also compared Variants Ensemble to a popular defense method that uses Gaussian Noise Training

(GNT) as data augmentation [44]. We trained both ResNet18 (ResNet18-GNT) and standard

VOneResNet18 (VOneResNet18-GNT) with GNT, observing an increased robustness for noise and
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Figure 5.1. Different V1 model variants show distinct robustness trade-
offs. A The VOneBlock is a model of V1 with a GFB, a non-linear stage and
stochasticity generator. B Each VOneNet variant contains a different VOneBlock,
built by removing or modifying one of its components. Here, we used eight differ-
ent variants: standard VOneBlock, no neural stochasticity (No Noise), sub-Poisson
stochasticity (Low Noise), only low SF filters (Low SF), only intermediate SF filters
(Mid SF), only high SF filters (High SF), only simple-cells (Only Simple), and only
complex-cells (Only Complex). C Relative accuracy (normalized by the base model,
ResNet18) of the eight variants of VOneResNet18 for clean images and corruption
categories (see Table 5.2 for absolute accuracies).

blur categories (Fig. 5.2). However, models trained with GNT were significantly less robust than

Variants Ensemble in all categories of corruptions and performed worse on clean images.
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Figure 5.2. Combining different VOneNet variants with model ensem-
bling improves robustness to all corruption categories. Relative accuracy
(normalized by ResNet18) on clean images, all corruptions categories, and over-
all corruptions for the standard VOneResNet18, the Variants Ensemble, the Seeds
Ensemble, the ResNet18 Seeds Ensemble, and the ResNet18 and VOneResNet18
trained with Gaussian Noise augmentation (see Table 5.3 for absolute accuracies).

5.2.3. Training with distillation improves VOneNet robustness against

corruptions

While the Variants Ensemble is consistently more robust and has better clean accuracy than

any of the individual variants, it is also computationally more expensive. Knowledge Distilla-

tion can be used to compress the knowledge in an ensemble (teacher) into a single model (stu-

dent) [68, 280, 281, 282, 283, 284]. Using this technique, we trained a ResNet18, a standard

VOneResNet18 and a No Noise variant by distilling the Variants Ensemble into these three mod-

els (Section 5.4.3). Interestingly, distillation has little effect on the performance of the standard

ResNet18 and VOneResNet18 (Fig. 5.3, Table 5.4). While the first result using ResNet18 suggests

that the VOneBlock in the student architecture is critical for the success of this approach, the

latter implies that stochasticity undermines the ability of the student to distill the knowledge in

the teacher. Surprisingly, we observed consistent and considerable improvement in the performance

of the No Noise variant on clean images and all corruption categories (Fig. 5.3, Table 5.4). In fact,

the distilled version of the No Noise variant performed nearly as well as ResNet18 on clean images

(98% relative accuracy) and considerably outperformed ResNet18 in all categories of corruptions

(between 9% and 21% with 13% overall). Still, it failed to come close to the performance of the
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Figure 5.3. VOneResNet18 without stochasticity can partially compress
the knowledge in the Variants Ensemble with distillation. Relative accuracy
(normalized by ResNet18) on clean images and overall corruptions for VOneRes-
Net18 trained with and without knowledge distillation, the VOneResNet18 No Noise
variant trained with and without knowledge distillation, and ResNet18 trained with
knowledge distillation. In all distilled models the Variants Ensemble was used as
the teacher (see Table 5.4 for absolute accuracies).

much larger Variants Ensemble, showing that diversity at the level of the VOneBlock is required

for the gains observed before. Thus, we developed a VOneNet model that can partially compress

the knowledge in the Variants Ensemble, outperforming ResNet18 in all categories of corruptions

while maintaining clean accuracy.

5.3. Discussion

Developing models that are more robust to image perturbations and can better generalize to OOD

stimuli is a major goal in computer vision. Here, we built models that improve robustness to all

categories of common image corruptions without compromising on clean accuracy by combining

machine learning techniques (ensembling and distillation) and a biologically-constrained front-end

(the VOneBlock). While these models fail short of fully addressing the problem of robust general-

ization and employ techniques that are hardly biologically-plausible, this work demonstrates that it

is possible to combine the different advantages of specific V1 neuronal populations to build models

with considerable gains in robustness to common corruptions.

There have been extensive studies characterizing the different neuronal populations in primate

V1 [59,60,61,288]. However, there remains a significant gap in our understanding of the roles
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played by these various neuronal types in dealing with different image statistics. By simulating a

V1-like front-end whose components are mappable to the brain, Dapello, Marques, et al. took the

first steps to investigate the role of specific neuronal types in dealing with adversarial attacks and

common image corruptions [51]. Here, we build on their work by generating variants of additional

cell types and investigating their roles in robustness to multiple common image corruptions. Our

results demonstrate that different V1 cell types are vulnerable to different corruptions while confer-

ring benefits to others. For example, neurons with high peak spatial frequencies are important for

clean image performance but cause models to be more susceptible to blur and noise corruptions.

Interestingly, simple cells were found to be beneficial in all cases while complex cells increased vul-

nerability to all corruptions (although complex cells had been found to be beneficial for adversarial

robustness [51]).

Ensembling techniques constructed using diverse individual models have better generalization abili-

ties [274,277,286,287]. To our knowledge, this is the first study to leverage the different properties

of V1 neuronal populations to create diverse members of an ensemble. The gains achieved by the

ensemble are substantial with 38% relative improvement over all corruptions with same clean ac-

curacy. To contextualize these gains, GNT, a popular defense method, leads to only 11% better

accuracy to corruptions and decreases the clean performance by 6% in our experiments. Since

training-based defense methods can be applied to the individual variants, the performance gains of

the ensemble could potentially be stacked with other methods to achieve even better robustness.

Finally, while our ensemble is created simply by averaging the outputs of its individual members,

other more elaborate approaches can be used to optimally combine the individual models to further

improve performance.

Knowledge distillation has been shown to improve robustness to image corruptions [47,281,283,

285]. Here, we demonstrate that a V1-inspired CNN can lead to robustness gains through dis-

tillation. In addition, our results show that stochasticity in the student hinders robustness gains

through distillation. While we are aware of studies [285,289] that add noise to the teacher, labels,

or inputs to help improve distillation, this is the first study to report effects of neuronal stochasticity

in the student.
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Unfortunately, the models presented here remain far from perfect robust generalization. Still, fu-

ture work may expand on this work in multiple directions. For example, it remains to be seen how

different V1 neuronal properties interact to improve the network’s performance (e.g. high spatial

frequency-selective and simple cells). Future work may also explore the role of individual variants

and their interactions in the ensemble performance to develop even more robust and efficient en-

sembles. Furthermore, while the ensembling approach taken here to combine different V1 neuronal

populations is not biologically-plausible, other modeling strategies that more closely emulate brain

processing may produce similar outcomes. These could include cortical computations such as di-

visive normalization or gain-control mechanisms to combine the different V1 neuronal populations

and generate even stronger improvements in robustness. Additionally, while the improvements in

robustness suggest that these models may indeed be more aligned with primate vision, it remains

to be seen whether these models better approximate the primate ventral stream. Future work

may evaluate how well these models predict neuronal responses in multiple cortical areas and how

aligned their outputs are with object recognition behavior [290,291,292].
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5.4. Methods

5.4.1. Datasets

5.4.1.1. Tiny ImageNet

We used the Tiny ImageNet dataset for model training and evaluating model clean accuracy [273].

Tiny ImageNet contains 100.000 images of 200 classes (500 for each class) downsized to 64×64

colored images. Each class has 500 training images, 50 validation images and 50 test images. Tiny

ImageNet is publicly available at https://www.kaggle.com/c/tiny-imagenet.

5.4.1.2. Common Corruptions (Tiny ImageNet-C)

For evaluating model robustness to common corruptions we used the Tiny ImageNet-C dataset [41].

The Tiny ImageNet-C dataset consists of 15 different corruption types, each at 5 levels of severity

for a total of 75 different perturbations, applied to validation images of Tiny ImageNet 5.4. The

individual corruption types are: Gaussian noise, shot noise, impulse noise, defocus blur, glass

blur, motion blur, zoom blur, snow, frost, fog, brightness, contrast, elastic transform, pixelate and

JPEG compression (Fig. 5.4). The individual corruption types are grouped into 4 categories:

noise, blur, weather, and digital effects. The Tiny ImageNet-C is publicly available at https:

//github.com/hendrycks/robustness under Creative Commons Attribution 4.0 International.

5.4.2. Models

5.4.2.1. VOneNets

VOneNet Model Family VOneNets [51] are CNNs with a biologically-constrained fixed-weight

front-end that simulates V1, the VOneBlock - a linear-nonlinear-Poisson (LNP) model of V1 [56],

consisting of a fixed-weight Gabor filter bank (GFB) [53], simple and complex cell [57] nonlinear-

ities, and neuronal stochasticity [58]. For the standard model, the GFB parameters are generated
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Original Gaussian noise Shot noise Impulse noise

Defocus blur Glass blur Motion blur Zoom blur

Snow Frost Fog Brightness

Contrast Elastic trans. Pixelate JPEG comp.

Figure 5.4. Common image corruptions at Tiny ImageNet resolution. All
15 types of common image corruptions evaluated at severity = 3 for an image at the
resolution of Tiny ImageNet (64px). Picture of Milou (credits Tiago Marques).

by randomly sampling from empirically observed distributions of preferred orientation, peak spatial

frequency (SF), and size/shape of receptive fields [59,60,61], the channels are divided equally be-

tween simple- and complex-cells (256 each), and a Poisson-like stochasticity generator is used. Code

for the VOneNet model family is publicly available at https://github.com/dicarlolab/vonenet

under GNU General Public License v3.0.
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Adapting VOneNets to Tiny ImageNet To facilitate model development and evaluation, we

adapted the VOneNet architecture to the Tiny ImageNet image size and chose the ResNet18 ar-

chitecture [272] for the back-end. Specifically, VOneResNet18 is built by replacing the first block

(one stack of convolution, normalization, non-linearity and pooling layers) of ResNet18 [272] by

the VOneBlock and a trainable bottleneck layer. Due to the difference in input size (from 224px

for ImageNet to 64px in Tiny ImageNet), we made several modifications to the model architecture.

First, we set the stride of the convolution layer (GFB) at two instead of four such that the output

of the VOneBlock does not have a very small spatial map. We also adjusted the input field of view

to 2deg for Tiny ImageNet instead of 8deg for ImageNet to account for the fact that images in the

first represent a narrower portion of the visual space. This change resulted in an input resolution

- number of pixels per degree (ppd) - of 32 ppd for Tiny ImageNet which is similar to that of

ImageNet (28 ppd).

VOneResNet18 Variants We created seven VOneResNet18 model variants by removing or mod-

ifying one of the VOneBlock components (Table 5.1). Three variants targeted the GFB: one

with only low SF filters ( Low SF; SF < 2cpd), one with only intermediate SF filters (Mid SF;

2cpd < SF < 5.6cpd), and one with only high SF filters (High SF; SF > 5.6cpd). Two additional

variants targeted the nonlinearities: one with only simple-cells (Only Simple) and one with only

complex-cells (Only Complex). Finally, the last two variants targeted the stochasticity generator:

one with a sub-Poisson like (σ =
√
µ
2 ) stochasticity generator (Low Noise) and one without the

stochasticity generator (No Noise).

Table 5.1. Parameters of VOneBlock Variants.

Spatial Frequency Cell Types Stochasticity
Variant Name [cpd] [simple/complex ] [type]

VOneResNet18 0.5 - 11.2 256/256 Poisson
Low SF 0.5 - 2.0 256/256 Poisson
Mid SF 2.0 - 5.6 256/256 Poisson
High SF 5.6 - 11.2 256/256 Poisson

Only Simple 0.5 - 11.2 512/0 Poisson
Only Complex 0.5 - 11.2 0/512 Poisson
Low Noise 0.5 - 11.2 256/256 Sub-Poisson
No Noise 0.5 - 11.2 256/256 None
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5.4.2.2. ResNet18

We used a variant of the Torchvision implementation of ResNet18 [272] as the base model and as

the model back-end for the VOneResNet18. The original ResNet18 model, contains a combined

stride of four in the first block (two in the convolution layer and two in the maxpool layer) which

is the block replaced by VOneBlock in VOneResNet18. In order to maintain the size of the model

comparable to the VOneResNet18, we adapted the ResNet18 architecture so that it has a stride

of one in the first convolutional layer and kept the stride of two in the maxpool layer, resulting

in a combined stride of two in the first block which is the same as the VOneBlock. We found

that this variant of ResNet18 (58.93% accuracy) performed considerably better than the standard

Torchvision implementation of ResNet18 (50.45% accuracy) on clean Tiny ImageNet images after

training from scratch following an identical training procedure (Section 5.4.3).

5.4.2.3. Ensembles

Variants Ensemble We created this ensemble by uniformly averaging the outputs (logits) of

the eight VOneNet variants shown in Table 5.1. The variants were trained individually prior to

ensembling.

Seeds Ensemble We created this ensemble by combining eight different training seeds of the

standard VOneResNet18 model using the same approach as with the Variants Ensemble. The

different training seeds of the standard VOneResNet18 model were created by using different seeds

to instantiate the GFB parameters of the VOneBlock and then training the back-ends.

ResNet18 Seeds Ensemble We created this ensemble by combining eight different training

seeds of the ResNet18 model using the same approach as with the Variants Ensemble and the

VOneResNet18 Seeds Ensemble.
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5.4.3. Training

PyTorch version 1.9.0 was used. All models were trained on Google Colab which provided access

to 1 GPU (Nvidia K80, T4, P4 or P100) per session. The details of the training are described as

follows.

Preprocessing During training, preprocessing included scaling the images using a scaling factor

randomly sampled between 1-1.2, rotating the images using a rotation angle randomly sampled

between -30 to 30 degrees, shifting the images in the horizontal direction by a pixel distance

randomly sampled between -5% to 5% of the image width, shifting the images in the vertical

direction by a pixel distance randomly sampled between -5% to 5% of the image height, and flipping

the images horizontally with a random probability of 0.5. Images were normalized by subtraction

and division by [0.5, 0.5, 0.5]. For models trained with GNT [44], preprocessing involved an

additional step of adding Gaussian noise (standard deviation of 0.6) to 50% of all images. During

evaluation, preprocessing only involved image normalization, i.e. subtraction and division by [0.5,

0.5, 0.5].

Loss Functions For models trained without knowledge distillation, the loss function was given by

a cross-entropy loss between image labels and model predictions (logits). For models trained with

knowledge distillation, the loss function was given by a weighted average of two loss functions [68].

The first loss function with a weight 100 minimized the cross-entropy between the output probability

distributions (soft targets) of the distilled and the emsemble model. The soft targets for both those

models were computed using temperature 5. The second loss function with a weight 5 minimized

the cross-entropy between image labels and the distilled model predictions (logits).

Optimization For optimization, we used Stochastic Gradient Descent with momentum 0.9, a

weight decay 0.0005, and an initial learning rate 0.1. The learning rate was dynamically adjusted

by dividing it by 10 whenever there is no improvement in validation loss for 5 consecutive epochs.

All models were trained using a batch size of 128 images for 60 epochs.
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5.5. Supplementary Materials

Table 5.2. Absolute accuracies of ResNet18, standard VOneResNet18
and the seven additional variants on the 15 types of common image cor-
ruptions (averaged over perturbation severities).

Noise Blur

Clean Gaussian Shot Impulse Defocus Glass Motion Zoom
Model [%] [%] [%] [%] [%] [%] [%] [%]

ResNet18 58.9 19.8 23.2 21.9 14.5 20.0 20.5 16.6
VOneResNet18 52.3 28.7 32.7 26.5 16.9 19.8 22.3 18.8
Low Noise 54.4 27.1 31.5 25.6 16.9 20.3 22.4 18.6
No Noise 56.0 22.9 27.6 22.1 15.4 19.0 21.2 17.1
Low SF 39.0 31.2 32.8 29.9 33.4 32.5 33.8 34.3
Mid SF 49.3 31.1 35.1 28.1 29.2 28.7 33.8 33.7
High SF 54.6 24.9 29.0 24.8 13.9 18.0 18.8 15.5
Only Simple 52.8 31.9 34.9 29.1 19.3 21.2 24.5 21.4
Only Complex 47.9 23.7 27.0 22.3 12.8 15.7 16.3 14.1

Weather Digital

Snow Frost Fog Bright. Contrast Elastic Pixelate JPEG
Model [%] [%] [%] [%] [%] [%] [%] [%]

ResNet18 24.7 26.0 22.8 28.6 10.5 39.1 33.6 25.6
VOneResNet18 26.0 25.3 17.7 26.9 6.2 34.3 37.1 28.7
Low Noise 27.0 27.1 20.1 29.0 7.7 36.1 38.5 29.1
No Noise 27.7 28.0 22.4 28.8 9.2 36.1 37.3 27.4
Low SF 19.9 19.9 13.9 22.4 4.7 34.4 33.8 33.3
Mid SF 26.5 27.5 19.5 29.2 7.1 40.4 41.7 38.9
High SF 24.9 24.8 18.1 26.8 6.7 34.5 35.1 25.5
Only Simple 26.4 27.5 18.8 28.5 6.8 35.5 38.7 30.9
Only Complex 16.8 16.1 13.8 20.5 4.6 29.3 31.8 22.8
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Table 5.3. Absolute accuracies of ResNet18, standard VOneResNet18,
and the three ensemble models: Variants Ensemble, Seeds Ensemble and
ResNet18 Seeds Ensemble (averaged over perturbation severities).

Noise Blur

Clean Gaussian Shot Impulse Defocus Glass Motion Zoom
Model [%] [%] [%] [%] [%] [%] [%] [%]

ResNet18 58.9 19.8 23.2 21.9 14.5 20.0 20.5 16.6
VOneResNet18 52.3 28.7 32.7 26.5 16.9 19.8 22.3 18.8
Variants Ensemble 59.3 33.8 38.3 31.7 24.3 26.5 30.3 26.9
Seeds Ensemble 56.8 32.9 37.0 30.7 19.5 22.8 24.7 21.8
ResNet18 Seeds Ensemble 62.9 21.6 25.4 24.6 16.2 21.5 22.3 18.3

Weather Digital

Snow Frost Fog Bright. Contrast Elastic Pixelate JPEG
Model [%] [%] [%] [%] [%] [%] [%] [%]

ResNet18 24.7 26.0 22.8 28.6 10.5 39.1 33.6 25.6
VOneResNet18 26.0 25.3 17.7 26.9 6.2 34.3 37.1 28.7
Variants Ensemble 31.8 31.7 22.9 33.4 8.3 42.9 44.8 37.0
Seeds Ensemble 30.0 29.0 20.0 30.6 7.0 38.8 41.6 32.5
ResNet18 Seeds Ensemble 27.5 28.7 24.6 31.2 11.1 42.4 36.4 28.2

Table 5.4. Absolute accuracies of ResNet18, VOneResNet18, No Noise
variant, and the three distillation models: VOneResNet18-Distilled,
No Noise-Distilled and ResNet18-Distilled (averaged over perturbation
severities).

Noise Blur

Clean Gaussian Shot Impulse Defocus Glass Motion Zoom
Model [%] [%] [%] [%] [%] [%] [%] [%]

ResNet18 58.9 19.8 23.2 21.9 14.5 20.0 20.5 16.6
VOneResNet18 52.3 28.7 32.7 26.5 16.9 19.8 22.3 18.8
VOneResNet18-Distilled 51.9 29.1 32.9 27.0 17.4 20.4 22.8 19.3
No Noise 56.0 22.9 27.6 22.1 15.4 19.0 21.2 17.1
No Noise-Distilled 57.8 25.0 30.0 24.1 16.2 20.6 23.0 18.1
ResNet18-Distilled 58.5 20.2 23.8 22.5 15.5 19.2 20.8 17.5

Weather Digital

Snow Frost Fog Bright. Contrast Elastic Pixelate JPEG
Model [%] [%] [%] [%] [%] [%] [%] [%]

ResNet18 24.7 26.0 22.8 28.6 10.5 39.1 33.6 25.6
VOneResNet18 26.0 25.3 17.7 26.9 6.2 34.3 37.1 28.7
VOneResNet18-Distilled 26.4 25.8 18.0 27.0 6.5 34.9 37.5 29.3
No Noise 27.7 28.0 22.4 28.8 9.2 36.1 37.3 27.4
No Noise-Distilled 30.1 30.3 24.2 32.0 10.5 39.4 40.6 30.2
ResNet18-Distilled 24.9 25.7 22.1 27.8 9.9 38.8 33.2 26.0
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CHAPTER 6

Conclusion

This dissertation explores the intersection of machine learning (ML) and biology, demonstrating

how these fields can synergize to address complex challenges. It comprises a collection of three

studies that investigate the application of reinforcement learning (RL) in analyzing reward-based

learning in animals, the application of ML in deciphering the mechanisms of SARS-CoV-2, and the

application of biological principles to enhance CNNs. Each study contributes distinctively to the

broader theme of merging ML techniques with biological knowledge.

We start by delving into the study of RL mechanisms in animals, specifically examining how

neural circuits and neurotransmitter systems mediate reward-based learning processes. Through a

combination of experimental observations and computational modeling, we shed light on the crucial

roles played by the ventral striatum, the prefrontal cortex, and the ventral tegmental area in driving

these intricate learning processes. By combining the choice-selective sequential activity observed

in prefrontal cortical inputs to the striatum with known downstream circuitry, our models employ

dopamine-driven learning mechanisms to either induce rapid synaptic plasticity or to alter neural

dynamics. These models thus generate two hypotheses for the process by which animals learn to

associate actions with delayed rewards. This research enhances our understanding of the neural

basis of RL and illustrates how computational models can effectively fill the existing gaps in our

understanding of brain functionality and learning processes.

Transitioning to the field of virology, the second part of this dissertation offers a detailed compu-

tational study of the SARS-CoV-2 virus, focusing particularly on how its spike protein interacts

with host cells and evades the immune response. By employing molecular dynamics simulations

and the advanced deep learning tool AlphaFold2, we thoroughly analyze the binding characteris-

tics of key domains of the spike protein, including RBD-ACE2, RBD-antibody, FCD-Furin, and

NTD-antibody. We conduct a comparative analysis of the Omicron variants against the wild type
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and Delta variants, offering significant insights into the structural factors that influence the virus’s

ability to infect and evade immune responses. Further, our research delves deeper into the FCD of

SARS-CoV-2 and other related viruses, examining their interaction with the furin enzyme. Notably,

our findings reveal that the Delta variant demonstrates the strongest binding affinity to the furin

enzyme, and we identify crucial sequences, both observed and previously unobserved, that have

similar binding potentials. Collectively, our research provides a detailed understanding of SARS-

CoV-2’s mechanisms, significantly contributing to the global scientific community’s understanding

of SARS-CoV-2 and aiding in the development of effective strategies to counteract the virus.

In the final part of this dissertation, we investigate how integrating biological insights from the pri-

mary visual cortex into CNNs can improve robustness against image corruptions. We particularly

focus on VOneNet, a hybrid CNN model that draws inspiration from the V1 area of the primary

visual cortex. Our approach demonstrates the effectiveness of combining various V1-inspired vari-

ants to mitigate performance trade-offs across various corruptions. By employing ensembling and

knowledge distillation, we significantly enhance the model’s overall robustness and successfully

demonstrate how the knowledge from an ensemble of V1-inspired models can be compressed into a

single, more efficient model. Through this work, we not only advance the field of computer vision

but also highlight the potential of interdisciplinary research in leveraging biological principles to

overcome challenges in ML.

Overall, this dissertation represents a comprehensive exploration at the intersection of ML and

biology, offering new insights and methodologies that push the boundaries of both fields. Each

study in this dissertation contributes to a broader narrative: that combining machine learning

with biological understanding offers significant potential for deciphering the intricacies of both

living organisms and computational systems, paving the way for innovative solutions to complex

problems in these fields.
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Ž́ıdek, Russ Bates, Sam Blackwell, Jason Yim, Olaf Ronneberger, Sebastian Bodenstein, Michal Zielinski, Alex

Bridgland, Anna Potapenko, Andrew Cowie, Kathryn Tunyasuvunakool, Rishub Jain, Ellen Clancy, Pushmeet

Kohli, John Jumper, and Demis Hassabis. Protein complex prediction with alphafold-multimer. bioRxiv, page

2021.10.04.463034, 2021.

207



[206] Sheh-Yi Sheu, Dah-Yen Yang, H. L. Selzle, and E. W. Schlag. Energetics of hydrogen bonds in peptides.

Proceedings of the National Academy of Sciences, 100(22):12683–12687, 2003.

[207] M. Zaki Jawaid, A. Baidya, S. Jakovcevic, J. Lusk, R. Mahboubi-Ardakani, N. Solomon, G. Gonzalez, J. Ar-

suaga, M. Vazquez, R.L. Davis, and D.L. Cox. Computational study of the furin cleavage domain of SARS-

CoV-2: delta binds strongest of extant variants. bioRxiv, January 2022.

[208] Edward C. Holmes, Stephen A. Goldstein, Angela L. Rasmussen, David L. Robertson, Alexander Crits-

Christoph, Joel O. Wertheim, Simon J. Anthony, Wendy S. Barclay, Maciej F. Boni, Peter C. Doherty, Jeremy

Farrar, Jemma L. Geoghegan, Xiaowei Jiang, Julian L. Leibowitz, Stuart J. D. Neil, Tim Skern, Susan R. Weiss,

Michael Worobey, Kristian G. Andersen, Robert F. Garry, and Andrew Rambaut. The origins of sars-cov-2: A

critical review. Cell, 184(19):4848–4856, 2021.

[209] Guido Papa, Donna L. Mallery, Anna Albecka, Lawrence G. Welch, Jérôme Cattin-Ortolá, Jakub Luptak,
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