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An Energy-Based Analysis Framework for Soil Structure
Interaction Systems

Han Yanga, Hexiang Wanga, Boris Jeremića,∗

aDepartment of Civil and Environmental Engineering, University of California, Davis, CA, USA

Abstract

Presented is an energy-based analysis and design framework for soil structure interaction
system. Theoretical formulation based on thermodynamics and engineering mechanics
for calculating energy dissipation in soil and structural elastic plastic finite elements is
presented and discussed. The importance of incorporation of plastic free energy, that
ensures nonnegative incremental energy dissipation, also known as the second law of
thermodynamics, is emphasized. For application to practical engineering problems, the
presented framework is implemented in the Real-ESSI Simulator and visualized using
ParaView. In order to illustrate the proposed framework, a practical model composed of
a reinforced concrete frame structure, underlying soil, and soil-foundation interface is
developed and analyzed. Elastic-plastic material model and viscous, Rayleigh damping
parameters are calibrated to represent typical realistic cases. Spatial and time distribu-
tion of energy dissipation density is analyzed and discussed. Locations with high plastic
energy dissipation, used as a proxy for material and structural damage are identified.
In addition, locations of high plastic energy dissipation within soil and soil-foundation
interface, that are used to dissipate seismic energy before it reaches structure, are also
identified. Influences of input seismic motion scale and design variation on system
performance are investigated. It is shown that traditional displacement-based design
parameters, such as peak displacement and maximum interstory drift ratio, could un-
derestimate the change of system performance when different seismic motion scale or
structural design are used.

1. Introduction

The use of energy dissipation, as well as other energy-based parameters, is gaining
popularity in design of structures and soil structure interaction (SSI) systems. As pointed
out by Papazafeiropoulos et al. [36], the traditional force-based and displacement-based
design concepts only focus on the peak responses of a structural system, while the
loading history is usually not taken into account. During an extreme loading event,
such as an earthquake, structures are exited by a number of cycles of loadings and are
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continuously damaged throughout the loading history. Unlike force or displacement,
that generally fluctuate during cyclic loading, energy dissipation continuously accu-
mulates with a nonnegative rate as material is being damaged. Energy dissipation is,
therefore, more suitable to be used as an effective design parameter in seismic design
of soil structure systems.

When the concept of energy-based design (EBD) was first proposed, the avail-
able computational power for engineering design was rather limited. Energy analysis
methods were developed for single degree of freedom (SDOF) and multiple degree of
freedom (MDOF) systems [59, 60, 50, 30, 45, 49]. The simplification of realistic soil
structure systems to SDOF or MDOF systems has been widely used in the field of civil
engineering, and carried out in more recent studies related to EBD [31, 10, 34, 33, 36].
Noted EBD approaches have been fairly successful, and many were adopted in actual
designs and design codes.

With the development of modern computers and modern computational programs,
it is now feasible to model components and complete SSI systems with much higher
fidelitymodels. Highfidelity numericalmodeling and simulation tools, such as theReal-
ESSI Simulator [25] used in this study, are capable of modeling the nonlinear, inelastic
behavior of complete earthquake soil structure interacting (ESSI) systems. Material
models and finite elements for different components of an ESSI system, with various
levels of sophistication, have been developed and widely used [27, 32, 40, 18, 58, 44].
Using modern, available modeling and simulation techniques, modern EBD can be
improved to a new level of accuracy and efficiency.

Figure 1 illustrates processes and mechanisms of the propagation and dissipation of
seismic energy, from earthquake source to location of the soil structure system. Upon
reaching the site, only part of the mechanical energy carried by the seismic waves flows
through the local SSI system, and leads to the dynamic responses of soil and structure.
Another part of the input mechanical energy is reflected back and propagates outside
of the local domain of interest. This phenomenon is usually referred to as radiation
damping. Obviously, the mechanical energy is not transformed into other energy forms,
and no change of entropy happens during this process. Therefore, the energy loss due
to radiation damping is considered separately from other physical energy dissipation
mechanisms.

Within the local SSI system, seismic energy is dissipated due to material inelasticity
in soil, structure, and foundation-soil interface zone, viscous coupling between soil
grains and pore fluids, and energy dissipators placed in the building or foundation. In
addition to the physical dissipative processes, algorithmic damping [4] is frequently
used to achieve stable simulation result in numerical studies. As pointed out by Yang
et al. [57], these energy dissipation mechanisms model fundamentally different physical
ormathematical phenomena, and do lead to different system responses. It is important to
model each energy dissipationmechanismby following proper physics andmathematics.

Material inelasticity leads to plastic energy dissipation, also known as hysteretic
energy or hysteretic energy dissipation. Plastic energy dissipation is directly related to
material damage, and thus often used to evaluate design safety. Correct modeling of
plastic energy dissipation requires consideration of plastic free energy, which is related
to the internal structure, or fabric, of inelastic material. Early work published by Farren
and Taylor [16] and Taylor andQuinney [47] identified the role of plastic free energy and
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Fig. 1. Seismic energy propagation and dissipation, from source to local site.

plastic energy dissipation in material deformation and damage. More theoretical and
experimental studies on this topic include those by Ziegler and Wehrli [61], Collins and
Houlsby [15], Rittel [37], Rosakis et al. [38], Feigenbaum and Dafalias [17], Veveakis
et al. [51], Yang et al. [54], and Yang et al. [56].

When modeling a realistic SSI system, each component should be modeled with a
appropriate material model (sand, clay, rock, steel, concrete, isolator, damper, or other
soil and structural material) that was developed using proper theoretical framework and
assumptions. Many of the traditional, still popular soil models simply neglect plastic
free energy. This neglect leads to a common misconception about plastic work and
plastic energy dissipation. Collins and Kelly [14] analyzed a family of soil models,
including Mohr-Coulomb, original Cam Clay, modified Cam Clay, using the thermo-
mechanical theory. Feigenbaum and Dafalias [17] presented a new interpretation of
the pressure-independent, vonMises type material models under the thermomechanical
framework. Yang et al. [56] proposed an energy dissipation computation approach for
the pressure-dependent, Drucker-Prager plasticity models.

For the modeling of structural component, for example beam-column elements and
wall elements, nonlinear fiber section technique developed by Spacone et al. [44] has
beenwidely used. A number of fibermaterialmodelswere developed to be used together
with fiber section. The uniaxial steel model originally developed by Menegotto and
Pinto [32] and later extended by Filippou et al. [18] is capable of capturing the nonlinear
hysteretic behavior and isotropic strain-hardening effect of steel. Some popular choices
for uniaxial concrete models include those developed by Kent and Park [27], Scott et al.

3



[40], and Yassin [58]. The formulations of plastic energy dissipation for the previously
mentioned models were presented by Yang et al. [55].

The second energy dissipation mechanism, viscous damping, is the result of dis-
sipative interactions between solids and viscous fluids in a SSI system. In order to
obtain reliable simulation results, both natural viscous damping, caused by structure
vibration through the air or water, and artificial viscous damping, from viscous damper
and dissipator, need to be properly modeled. Caughey damping [11], as well as its
special case, Rayleigh damping, is usually used to model viscous damping. As pointed
out by Hall [20], Rayleigh damping can cause unrealistically high damping forces, if
the damping parameters are not chosen properly.

The last energy dissipation mechanism, numerical, algorithmic damping, does not
represent any physical process, however it is used in time integration algorithms to
achieve stable, converging simulation results. Newmark family algorithms [35, 23, 13]
are the most commonly used time integration schemes. Traditionally, these algorithms
were considered to conserve the total mechanical energy of simulated system for some
combination of the integration parameters, for example by choosing γ = 0.500 and
β = 0.250 for Newmark algorithm. Krenk [28] found that the Newmark algorithms
could lose their energy conserving properties for geometric nonlinear problems, contact
problems, and large time step simulations. A few energy conserving time integration
algorithms [41, 8, 19, 28]) have been developed to address this issue. Nonetheless,
the Newmark algorithm is still a popular choice and has proven to be reliable for finite
element (FE) simulations.

The theoretical and computational basis for each energy dissipation mechanism was
laid out in a series of publications [54, 57, 55, 56]. As a next step, presented here is a
modernized EBD framework that incorporates previously developed methods. Using
this framework, the energy dissipation due to different dissipative mechanisms are
continuously computed throughout the simulation. More importantly, the distribution
of energy dissipation density in space in time, within the model can be analyzed and
used to identify zones with large viscous damping or significantmaterial damage. These
results can be directly used in the evaluation and optimization of engineering designs.

The following section summarizes the formulations for energy dissipation due to
material inelasticity, Rayleigh damping, and algorithmic damping. Next, a SSI system
consisting of a 4-story 4-bay frame structure, underlying soil, and the interface zone
between footing and soil is modeled and analyzed. The energy dissipation results of
the model under various loading conditions are presented and discussed, in order to
illustrate the application of the proposed EBD framework.

2. Energy Computation Framework

Significant amount of potential energy is released at the earthquake source, fault
when the earthquake initiates [3]. Mechanical energy from this release propagates as
seismic waves. During the wave propagation process, majority of the released energy
is dissipated, due to various mechanisms, and also spreads to the earth’s crust. Only
a small percentage of the released seismic energy reaches the local site of interest
on or close to the surface. As shown in Figure 1, the presented framework focuses
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on modeling the transformation and dissipation of seismic energy that reaches an SSI
system on or close to the ground surface.

The incremental form of energy balance for a dynamic inelastic system can be
expressed as

∆EI = ∆EK + ∆DV + ∆WM (1)

where the right hand side of Equation 1 is the increment of input energy ∆EI , and the
three terms on the left hand side of Equation 1 are the increment of kinetic energy ∆EK ,
the increment of viscous energy dissipation ∆DV , and the increment of material work
of the system ∆WM . Equation 1 can be derived from the general equation of motion for
dynamic inelastic systems, as was shown by Yang et al. [57].

It is noted that all equations in thiswork are presented in their incremental form. This
is because the proposed equations are implemented in a FE modeling and simulation
platform, Real-ESSI Simulator [25], that is based on time-domain, incremental analysis.

The incremental material work ∆WM component can be further decomposed into
specific energy terms that are related to different energy dissipation behavior of inelastic
materials:

∆WM = ∆ES + ∆EP + ∆DP (2)

where ∆ES is the incremental elastic strain energy, ∆EP is the incremental plastic free
energy, and ∆DP is the incremental plastic energy dissipation.

Computation of plastic free energy and plastic energy dissipation for various in-
elastic material models is challenging. This is due to to the fact that many commonly
used material models were developed based on force-displacement or stress-strain re-
sponses, without much consideration of energy dissipation behavior. The following
section presents a series of energy computation formulation for inelastic solid, beam-
column element, and contact/interface material models. The computation of viscous
energy dissipation and the effects of numerical damping are also discussed. Some of
the equations and derivations presented below were developed in full detail in previous
studies [54, 57, 55, 56].

2.1. Plastic Energy Dissipation
Incremental material work equation 2 can be rewritten in a local form, that yields

the equation for plastic energy dissipation density:

Φ = σi j∆εi j − σi j∆ε
el
i j − ∆Ψ

pl = σi j∆ε
pl
i j − ∆Ψ

pl ≥ 0 (3)

where Φ is the incremental plastic energy dissipation density, σi j is the stress tensor,
∆εi j is the incremental strain tensor, ∆εeli j is the incremental elastic strain tensor, ∆ε pli j

is the incremental plastic strain tensor, and ∆Ψpl is the incremental plastic free energy
density. It is worth pointing out that, according to the second law of thermodynamics,
the incremental plastic energy dissipation density should always be nonnegative during
any time period. The violations of this lawwere observed in a large number of published
papers, and continues to emerge in more recent publications.

For material models developed based on the classic small deformation elastoplas-
ticity theory, the stress σi j , total strain εi j , elastic strain εeli j , and plastic strain ε pli j are
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readily defined. These tensors can be directly obtained from constitutive level algo-
rithms and used in energy computations during numerical simulations. On the other
hand, the plastic free energy density Ψpl was not defined for many inelastic material
models when they were developed. Since each model features specific assumptions, the
computation of plastic free energy and plastic energy dissipation must be tailored for the
each corresponding model. In what follows, presented is the theoretical formulation of
plastic free energy and plastic energy dissipation for different types of material models
that are frequently used in a practical SSI analysis.

2.1.1. Von Mises Plasticity for Pressure-Independent Solid
Von Mises elastic-plastic model is one of the simplest yet effective constitutive

models for pressure-independent materials. It is commonly used in a SSI models for
metal components as well as for total stress analysis of saturated soil. The yield function
of von Mises plasticity is expressed as

f =
√

(si j − αi j )(si j − αi j ) −

√
2
3

k (4)

where si j = σi j − (1/3)σkk is the deviatoric part of the stress tensor, αi j is the back
stress tensor defined as the center of yield surface in stress space, and k is the size of
yield surface in stress space. The variables αi j and k are known as the internal variables
in classic plasticity theory.

To model the cyclic nonlinear post-yield behavior, vonMises plasticity is often used
together with Armstrong-Frederick kinematic hardening [5]. The nonlinear evolution
of the back stress tensor αi j is defined incrementally as

∆αi j =

[
2
3

hami j − crαi j

√
2
3

mrsmrs

]
∆λ (5)

where mi j is the normalized plastic flow direction tensor, ∆λ is the scalar loading
index that equals to the magnitude of incremental plastic strain, and ha and cr are the
nonnegative hardening constants.

For von Mises plasticity model with Armstrong-Frederick kinematic hardening, the
incremental plastic free energy density is written as

∆Ψ
pl =

3
2ha

αi j∆αi j (6)

Detailed derivation and discussion on Equation 6 were presented earlier by Yang et al.
[54]. Plastic energy dissipation can then be calculated by substituting Equation 6 into
Equation 3.

2.1.2. Drucker-Prager Plasticity for Pressure-Dependent Solid
Drucker-Prager type plasticity is used to model pressure-dependent materials, for

example soil, in an SSI system. It was shown by Yang et al. [56] that Drucker-Prager
plasticity with associated plastic flow rule is thermodynamically inappropriate as the
incremental plastic work, defined as σi j∆ε

pl
i j , is always zero. In addition, Collins and
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Houlsby [15] pointed out that non-associated plastic flow rule appears naturally for a
pressure-dependent frictional material. Thus, the Drucker-Prager plasticity referred to
in this paper is non-associated, that is, the plastic flow direction is not normal to the
yield surface in stress space.

The general form of Drucker-Prager yield function is

f =
√

(si j − pαi j )(si j − pαi j ) −

√
2
3

kp (7)

where p = −(1/3)σkk is the mean stress, or hydrostatic pressure, applied on the
material. Note that in Drucker-Prager plasticity, the internal variables k and αi j are
dimensionless, while they have the dimension of stress in von Mises plasticity.

Armstrong-Frederick nonlinear kinematic hardening is considered again, in a slightly
different form, to accommodate Drucker-Prager plasticity:

∆αi j =

(
2
3

hamdev
i j − crαi j

√
2
3

mdev
rs mdev

rs

)
∆λ (8)

where mdev
i j is the deviatoric part of the normalized plastic flow direction tensor mi j .

For non-associatedDrucker-Prager plasticitymodelwithArmstrong-Frederick kine-
matic hardening, the incremental plastic free energy density is written as

∆Ψ
pl =

(
3

2ha
αi j∆αi j − mvol

ii ∆λ

)
p (9)

where mvol
i j is the volumetric part of the normalized plastic flow direction tensor mi j .

Note that the main differences between Equation 9, for Drucker-Prager plasticity, and
Equation 6, for vonMises plasticity, are the pressure dependency and an additional term
for volumetric plastic flow. Details on Equation 9 were discussed in detail by Yang et al.
[56]. After plastic free energy is obtained, the plastic energy dissipation is calculated
by substituting Equation 9 into Equation 3.

2.1.3. Steel Fiber Material for Beam-Column
For moment frame structures, beam-column elements are usually used for modeling

and simulation. Fiber section method developed by Spacone et al. [43] is one of the
most popular and effective approaches to model the nonlinear/inelastic behavior of
beam-columns. Uniaxial fiber materials are used to represent the concrete and/or steel
rebars on a section. It is noted that fiber section method makes an assumption that only
normal stress is present within a section. In other words, fiber section method is strictly
applicable for pure bending and normal force loads, neglecting any influence of shear
forces. However, fiber method is regularly applied to frame structural model, and it
does perform well, particularly for slender beam-column elements, where influence of
shear forces and shear deformation is not significant.

The energy computation approach for uniaxial steel and concrete fibers developed
by Yang et al. [55] is used in this study. Key aspects of this approach are summarized in
this section. Note that all the variables, including stresses and strains, in this section, are
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scalars as the fiber material model is uniaxial, hence it represents relationship between
uniaxial stress and uniaxial strain.

The uniaxial steel model used in this study was developed by Menegotto and Pinto
[32] and extended by Filippou et al. [18]. As shown in Figure 2, this model is capable
of capturing the nonlinear hysteretic behavior and isotropic strain-hardening of steel.
The constitutive behavior of the steel fiber is defined as
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Fig. 2. Constitutive model of the uniaxial steel fiber material.

σ∗ = bε∗ +
(1 − b)ε∗

(1 + ε∗R)1/R (10)

with
ε∗ =

ε − εr
ε0 − εr

; σ∗ =
σ − σr

σ0 − σr
(11)

where parameter b is the strain-hardening ratio, εr and σr are the strain and stress at the
point of strain reversal, ε0 and σ0 are the strain and stress at the point of intersection of
the two asymptotes, and parameter R is the curvature parameter that governs the shape
of the transition curve between the two asymptotes.

According to Yang et al. [56], the incremental plastic free energy density is defined
as

∆Ψ
pl =

1
2

[
(σ + σr ) ∆ε +

(
εpl − εr

)
∆σ

]
(12)

where εpl is the plastic strain defined as εpl = ε − σ/E0. The incremental plastic
dissipation density is then obtained as

Φ =
1
2

[(σ − σr )∆ε − (ε − εr )∆σ] (13)

It is important to point out that Equations 12 and 13 ensures that the incremental plastic
dissipation is nonnegative, satisfying the second law of thermodynamics.
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2.1.4. Concrete Fiber Material for Beam-Column
Concrete and steel fibers are used to model a reinforced concrete beam-column

section. The concrete material model used in this study was proposed by Yassin
[58]. As shown in Figure 3, this model is capable of modeling the cyclic hysteretic
behavior and damage effects in concrete. It is noted that the full formulation of this
model is somewhat convoluted, especially when considering cyclic behavior. Thus only
equations that are pivotal for energy computation are shown here.
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Fig. 3. Constitutive model of the uniaxial concrete fiber material.

The compressive envelope curve of this model is based on the work of Kent and
Park [27] and Scott et al. [40]. The monotonic compressive behavior of the model is
defined as

If 0 ≤ εm ≤ εcs : σm = fcs

[
2
(
εm
εcs

)
−

(
εm
εcs

)2
]

(14)

If εcs < εm ≤ εcu : σm =
εm − εcs
εcu − εcs

( fcu − fcs) + fcs (15)

If εm > εcu : σm = fcu (16)

where εm is the maximum compressive strain of the material in its loading history, σm

is the maximum compressive stress in loading history, fcs is the maximum compressive
strength, εcs is the concrete strain at compressive strength, fcu is the ultimate (crushing)
strength of the concrete material, εcu is the concrete strain at ultimate strength, and Ein

is the initial concrete tangent stiffness that can be calculated from Ein = 2 fcs/εcs . The
loading history variables εm and σm serve as internal variables in this model. Note that
the material constants fcs , εcs , fcu , and εcu are provided by the users, and should be
determined from experiments.

The cyclic behavior of the model is tied to a stress state where all reloading paths
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intersect. The stress and strain at this reloading intersection are given as

εr =
fcu − λEinεcu

Ein(1 − λ)
(17)

σr = Einεr (18)

where λ is another material constant that is related to the ultimate strength fcu and
crushing strain εcu of the concrete. As shown in Figure 3, the unloading path consists
of two linear sections that depend on the current strain ε and current stress σ, as well as
the internal variables εm and σm. From the functions that define the two sections, the
stress and strain at the slope change location on the unloading path is calculated from
the following equations:

εk =
σ + 0.5Er εt − Einε

0.5Er − Ein
(19)

σk = 0.5Er (εk − εt ) (20)

where

Er =
σm − σr

εm − εr
(21)

εt = εm −
σm

Er
(22)

The computation of energy dissipation follows two assumptions that are consistent
with experimental observations on concrete material:
• Plastic energy dissipation is significant during initial monotonic loading, espe-
cially if the applied strain exceeds the material strength.
• Plastic energy dissipation also happens during subsequent cyclic loading, only if
the stress reaches an upper bound of cyclic stress during reloading [55].

The incremental plastic free energy density is calculated from

∆Ψ
pl =

1
2

[
σk (∆εpl − ∆εt ) + ∆σk (εpl − εt )

]
(23)

The incremental plastic energy dissipation is then

Φ = σ∆εpl +
1
2

[
σk (∆εt − ∆εpl) + ∆σk (εt − εpl)

]
(24)

where the plastic strain εpl is defined as εpl = ε − σ/Ein. Note that Equations 23 and
24 are simplified forms of the corresponding equations provided by Yang et al. [55].

2.1.5. Soil-Foundation Interface Material
The soil-foundation interface is a thin layer of soil that is adjacent to the founda-

tion. The contact/interface bears large normal and shear stresses and exhibits different
constitutive behavior than the soil that is further away from the foundation. Significant
seismic energy often dissipates within the interface zone before reaching the structure.
It is therefor necessary to include the modeling of energy dissipation for soil-structure
interface zone within the energy analysis framework.
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The interface material model used in this study was developed by Sinha and Jeremić
[42]. The stress-based interface model is capable of modeling the normal, axial non-
linear response when the gap is closed. Normal, axial response also allows for gap to
open, through material nonlinear response. It is important to note that gap opening is
modeled using material nonlinear response, essentially material loosing stiffness when
gap opens. Shear, tangential behavior is modeled using frictional slip, with a a number
of different material models controlling such inelastic shear behavior. The 3D version
of the material model features one normal, axial direction that is perpendicular to the
interface surface and two shear directions that are orthogonal to the normal direction.

As note above, the normal behavior is nonlinear elastic with no tensile capacity.
The normal stress σn and normal stiffness kn are defined as

σn = kie−Sr ε ε (25)
kn = kie−Sr ε (1 − Sr ε ) (26)

where ki is the initial normal stiffness between soil-structure interface, Sr is the stiffening
rate, and ε is the penetration or normal strain. Note that a maximum normal stiffness
kmax
n is applied as a limiting case in order to avoid numerical instability.
The shear component of the interfacemodel follows the elastoplastic theory. In order

to make the interface shear behavior pressure-dependent, the elastic shear stiffness kt
is related to the normal stress σn. For a given normal stress σn, the shear stiffness kt is
defined as

kt = kt0
σn

σp0
(27)

where σp0 is the constant reference stress of 101.3kPa and kt0 is the shear stiffness
at the reference normal stress. The yielding, slipping condition is determined by the
following yield function

f =
(
τ1
σn
− α1

)2
+

(
τ2
σn
− α2

)2
= 0 (28)

where τ1 and τ2 are the shear stress components and α1 and α2 are the corresponding
back stress components. The evolution of back stress is of a nonlinear Armstrong-
Frederick hardening type that is given as

∆α1 = kt∆γ
p
1 −

kt
µr
|∆γp |α1 (29)

∆α2 = kt∆γ
p
2 −

kt
µr
|∆γp |α2 (30)

where γp1 , γ
p
2 are the plastic parts of the shear strains, µr is the residual, or peak

normalized shear stress, and |∆γp | is the magnitude of the incremental plastic strain
defined as |∆γp | =

√
∆γ

p
1 ∆γ

p
2 .

The energy calculation for the interfacematerial was presented by Sinha and Jeremić
[42] based on the work by Yang et al. [54]. Since the normal behavior of the material
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model is nonlinear elastic, the plastic energy dissipation results from the frictional
slipping in the shear directions. The incremental plastic free energy density is given as

∆Ψ
pl =

1
kt

(α1∆α1 + α2∆α2) (31)

The incremental plastic energy dissipation is then calculated from

Φ = (τ1∆γ
p
1 + τ2∆γ

p
2 ) − ∆Ψpl (32)

2.2. Viscous Damping
Besides plastic energy dissipation, viscous damping is another physical form of

energy dissipation within an SSI system. In current practice, viscous damping is
commonly modeled using Rayleigh damping, due to its simplicity and effectiveness.
The incremental energy dissipation caused by viscous damping ∆DV , from Equation 1,
can be calculated using the equation given by Yang et al. [57]

∆DV = Ci j u̇ j∆ui (33)

where Ci j is the damping matrix and ui is the generalized displacement vector. A
damping matrix of the Rayleigh type can be written as

Ci j = aM Mi j + aKKi j (34)

where aM and aK are the damping coefficients, Mi j is the mass matrix, and Ki j is
the stiffness matrix. Note that the stiffness matrix used to construct the damping
matrix is usually the initial tangent stiffness matrix. Since the mass matrix and initial
stiffness matrix in finite element analysis are both constant, Equation 34 indicates that
the damping matrix Ci j is constant through the entire simulation.

When proper values of parameters are used, Rayleigh damping can provide con-
trolled velocity proportional damping for a prescribed frequency range [4]. Hall [20]
presented the equation used to compute the damping constants

aM =
4ξω̂R

1 + R + 2
√

R
(35)

aK =
4ξ

ω̂(1 + R + 2
√

R)
(36)

where ξ is the desired damping ratio, while ω̂ and Rω̂ define the prescribed frequency
range. As pointed out by Hall [20], the damping ratios can be unrealistically high
for the eigen-modes outside the prescribed frequency range. It is thus noted that
Rayleigh damping should always be used with damping coefficients that are calculated
for appropriate damping ratio and frequency range.

2.3. Numerical Damping
For time domain FE simulations, numerical, algorithmic damping is almost always

present Due to system discretization, both in space and time, spurious high frequency
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motions are introduced into FE models and continue to grow as the simulation ad-
vances [4, 24]. The purpose of numerical damping is to damp out these unrealistic high
frequency motions, so that the actual system response can be accurately captured.

It is important to realize that a high level of numerical damping reduces system
response at all frequencies. Unrealistically high levels of numerical damping have
been seen in quite a number of publications and presentations, if this information was
even provided. For nonlinear inelastic systems, numerical damping helps to achieve
stable and converged simulation results. However, numerical simulation results with
inappropriate numerical damping are not reliable, and could lead to incorrect results,
thus affecting conclusions.

From the perspective of energy analysis, numerical damping reduces the total me-
chanical energy in the simulated system. This is acceptable if the amount of energy
loss caused by numerical damping is small enough to keep the system response unaf-
fected. For the Newmark algorithm used in this study, numerical damping is excluded
if the Newmark parameters are set to γ = 0.500 and β = 0.250 [24, 24]. Yang et al.
[57] demonstrated that the amount of energy dissipation caused by numerical damping
quickly increases as the Newmark parameters become larger. In one case of wave prop-
agation in elastic-plastic media, when the Newmark parameters were set to γ = 0.550
and β = 0.276, the input energy was mostly dissipated by numerical damping, while
the effects of material inelasticity and viscous damping were overshadowed. It is thus
advisable to perform a sensitivity study or effects numerical damping has on a analysis
results, and to keep in mind that the original purpose of numerical damping was to
reduce high frequency modes introduces in the FE model by the discretization process.

3. Numerical Examples

The presented EBD analysis framework has been implemented in the Real-ESSI
Simulator [25], a software, hardware and documentation system for high fidelity, high
performance, time domain, linear or nonlinear/inelastic, deterministic or probabilis-
tic, FE modeling and simulation (http://real-essi.info). All aforementioned
material models, elements, damping types, and solution schemes that are necessary
for analyzing a SSI system are available in Real-ESSI Simulator. The energy analy-
sis results can be directly visualized using ParaView [6], with appropriate plugins, as
described at http://real-essi.info, so that analysts can use energy dissipation
information to assess their designs.

In this section, a practical SSI model composed of a moment frame structure, foun-
dation and the underlying soils, is analyzed to illustrate the presented EBD framework.
A variation of input motion intensities as well as foundation design variations are con-
sidered. Through the comparison between different cases, the effectiveness of using
energy dissipation in engineering designs will be highlighted.

3.1. Modeling and Simulation Details
An overview of the SSI model is shown in Figure 4. The main components of the

model are:
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Fig. 4. Numerical model of the reinforced concrete frame, inelastic soil, and frictional interfaces.

1. A reinforced concrete frame that is modeled using beam-column elements, that
are developed using previously discussed steel and concrete fibermaterialmodels.
Frame model is constrained to the loading plane, it is a 2D frame model. The four
story, four bay frame shown in Figure 5 is based on one of the code-conforming
designs by Haselton et al. [21].

2. The underlying soil that is modeled using standard 27-node-brick elements con-
strained to deform in the loading plane.

3. The underlying soil is modeled using Drucker-Prager inelastic material model
with Armstrong-Frederick kinematic hardening.

4. The interfaces between soil and foundation is modeled using the nonlinear, stress-
based, frictional slipping contact/interface elements.

5. A layer of Domain Reduction Method (DRM) elements, for applying earthquake
loading [9], is modeled using 27-node-brick elements and linear elastic material.

6. A few damping layers outside of the DRM layer, to absorb the very small outgoing
waves, representing radiation damping from oscillations of the structure, are used,
with progressively increasing Rayleigh damping.
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Fig. 5. Geometrical details of the reinforced concrete frame.

3.1.1. Material Parameter Calibration
The steel and concrete material parameters are calibrated using a comprehensive

study by Haselton et al. [21], where both experimental and numerical results of a
reinforced concrete frame building were presented. Note that Haselton et al. [21] also
used fiber section technique and the same material models for steel and concrete as in
this study. The parameter calibration results for the uniaxial concrete and steel materials
under cyclic loading are shown in Figure 6. A satisfyingmatch between the cyclic beam-
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Fig. 6. Parameter calibration result for the uniaxial fiber materials under cyclic loading.

column section, material behavior from Real-ESSI simulation and Haselton et al. [21]
are noted.

Soil beneath structural foundation was chosen to be represented by the Sacramento
River sand. The experimental results of Sacramento river sand conducted by Lee and
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Seed [29] have been used to calibrate and validate constitutive models in a number of
studies [7, 46, 12]. In this paper, the drained triaxial test results of Sacramento river sand
under confining pressures of p0 = 290kPa, p0 = 590kPa, and p0 = 1030kPa are used to
calibrate constitutivemodel parameters. Figure 7 shows the experimental and numerical
drained triaxial test results on Sacramento river sand. It is observed that the volumetric
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Fig. 7. Comparison between experimental and numerical drained triaxial test results on Sacramento river
sand. Experimental data after Lee and Seed [29].

strain behavior and deviatoric stress response of the numerical tests correspond well
with those from the physical experiments. For the calibrated parameters, the numerical
model shows good overall performance and particularly good performance for the
samples under low confining pressure. When the confining pressure is relatively high,
the numerical results are still acceptable, especially for small strains.

The calibrated material model parameters are summarized in Table 1.

Table 1. Material model parameters used in this study.

Steel Fiber Concrete Fiber SoilConfined Unconfined
σy (MPa) 500 fcs (MPa) -44.82 -34.47 ρ (kg/m3) 2000
E0 (GPa) 200 εcs -0.0028 -0.0025 E (MPa) 150

b 0.001 fcu (MPa) -8.96 0.0 ν 0.3
R 18.0 εcu -0.028 -0.004 k0 0.107

cR1 0.925 λ 0.08 0.08 ha (MPa) 45
cR2 0.15 fts (MPa) 4.0 4.0 cr 300

a1, a3 0.0 Et (GPa) 2.0 2.0 ξ 0.7
a2, a4 55.0 kd 0.9

Analysis of eigen frequencies of the reinforced concrete frame shows that the first
three eigen frequencies of the frame are fN1 = 1.598Hz, fN2 = 4.984Hz, and fN3 =
9.426Hz. Due to stiffness reduction caused by material inelasticity/nonlinearity, these
eigenfrequencies are expected to decrease if the imposed motion is large enough to
cause yielding within structural components.
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3.1.2. Seismic Motions
For seismic motion application, DRM proposed by Bielak et al. [9] is used in this

study. DRM is probably the best method currently available and used to apply seismic
motion to SSI model [26, 2]. The main advantages of DRM are the computational
efficiency and versatility, in the sense that it can be used for almost any type of SSI
system and motion. DRM is further combined with the analytic solution for plane
waves in layered half space [48, 22] to develop the wave potential-domain reduction
method [53] that is used in this study.

One of the motions used in this study is a wavelet, a so called Ormsby wavelet
motion [39, 1]. Figure 8 shows the input Ormsby motion displacements at earthquake
source. The peak ground displacement at source is 0.012m. The angle of inclination of
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Fig. 8. Input Ormsby wavelet motion, displacements at the depth.

a plane wave propagating toward surface is 15◦. The motion frequency content starts
at f1 = 1Hz, with a constant frequency content between f2 = 2Hz and f3 = 3Hz, and
ends at f4 = 1Hz. Figure 9 shows surface, free field acceleration resulting from applied
displacement signal at the depth, that is shown in Figure 8.
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Fig. 9. Ormsby wavelet motion, surface accelerations.
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3.1.3. Rayleigh Damping
Rayleigh damping is applied to the model to simulate viscous damping in the SSI

system. As pointed out by Yang et al. [57], viscous damping and material inelasticity
model fundamentally different physical energy dissipation mechanisms, thus should
not be used interchangeably in SSI modeling. In other words, one should not use
high viscous damping with linear elastic material to model nonlinear/inelastic material
behavior. In this study, Rayleigh damping is used to represent the physical viscous
coupling between structure/soil and fluids.

The choice of Rayleigh damping parameters depend on the natural frequency of
the structure model and the frequency range of the input ground motion. According
to Hall [20], it is common practice to set the lower limit of damping range according
to the model’s fundamental frequency. The upper damping limit is then controlled by
parameter R in Equation 36, and is chosen by considering the modes that are likely to
be excited by the input motion.

In this case, the fundamental frequency of the frame model is fN1 = 1.598Hz.
Considering the frequency reduction due to structural system nonlinearity, the lower
limit of damping frequency is set to flowN1 = 1.0Hz. As mentioned earlier, the
first two eigen-modes of the model could be excited by the input motion shown in
Figure 8. Thus, the parameter R is chosen to be 5.0 so that the upper limit of damping
frequency is 5.0 Hz, which is slightly larger than the second eigen-frequency of the
model. Note that this set of parameters ensures that the damping ratios within the
prescribed frequency range are nearly constant. This is necessary in order to avoid the
unrealistic over-damping issue mentioned before.

The magnitude of Rayleigh damping is controlled by the damping ratio ξ in Equa-
tion 36. The damping ratios of frame and soil are set to 2% and 5%, respectively. Since
the purpose of this numerical example is to illustrate the presented energy analysis
framework, typical values of damping ratio for structure and soil are chosen.

3.2. Benchmark Case Analysis
3.2.1. Dynamic Response of the Model

Figures 10 and 11 show the horizontal displacement and acceleration responses of
the top floor and bottom, foundation level of the structure. From the displacement time
history, permanent deformations at the top and bottom of the frame are observed. This
is expected due to structure and soil yielding and foundation-soil interface slipping.
Significant structural response is observed between t = 5s and t = 8s. The peak
horizontal displacement at the top is umax = 0.057m, and the peak acceleration is
ümax ≈ 1.2g. Both peaks are recorded at time t ≈ 6s. It is interesting to note an
acceleration peak of over üpeak = 2.5g at the bottom of the structure, at time t ≈ 6s.
This is explained by slip and stop of the foundation-soil interface, that generates high
acceleration response at that one time instance.

According to response plots in the frequency domain, two peaks, at about f = 1Hz
and f = 3Hz are observed the displacement and acceleration responses at the top of
frame. Considering the stiffness reduction due to structural nonlinearity, these two
frequencies probably represent the first two eigenfrequencies of the yielding reinforced
concrete frame ( fN1 = 1.60Hz and fN2 = 4.98Hz).
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Fig. 10. Horizontal displacement response at top and bottom of the structure.
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Fig. 11. Horizontal acceleration response at top and bottom of the structure.

One commonly used design parameter in structural engineering is the interstory drift
ratio (IDR). Figure 12 shows the IDR time history and maximum IDR at different story
levels. Peak IDR values happen at around t = 6s, the time when peak displacement
and acceleration are recorded. Similar to displacement response, permanent IDR is
observed at the end of simulation. Story 3 has the largest maximum IDR among the
four floors. Maximum IDR of the frame is just over 0.8%, and that is well within design
requirement.

The analysis of traditional design parameters shown above are mostly focused on
the peak response of the system. However, as pointed out by Papazafeiropoulos et al.
[36], the loading history and accumulated damage are also very important, perhaps
even more important. As will be discussed next, energy dissipation analysis is capable
of tracking continuous material yielding and damage in SSI system.
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Fig. 12. Interstory drift ratio results.

3.2.2. Energy Dissipation Analysis
Figure 13 shows the distribution of plastic energy dissipation density evolving

with time. Note that for interface elements between foundation and soil, with very
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Fig. 13. Distribution of plastic energy dissipation density evolving with time.

small volume, small spheres are used to represent those elements in energy dissipation
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visualization. At time t = 5s, as shown in Figure 13(a), before any significant seismic
motion excites the frame, there is no plastic dissipation in themodel. After that, between
time t = 5s and time t = 8s, plastic dissipation continuously accumulates within the
frame, underlying soil, and soil-structure interface zone.

Figure 13, shows that plastic dissipation in frame elements is concentrated around
the connections between beams and columns. It is interesting to note that significant
plastic dissipation is accumulated in the top two floors, while the lower floors experience
almost no dissipation. One EBD strategy proposed by Papazafeiropoulos et al. [36]
is to strive for uniform energy dissipation distribution between the floors so that the
strength of all materials can be fully utilized. According to this criterion, the first-floor
columns and beams are too stiff/strong compared with the structural elements at higher
floors. Of course, this conclusion applies for given seismic loading, and it is possible
that other seismic, or other static and/or dynamic loads might excite first floor structural
elements more, thus making current design more well balanced.

Plastic dissipation in surface soil is mainly concentrated near the foundations. Large
amount of plastic dissipation is observed near the left footing. This is likely due to the
first significant peak of the input ground motion, and the wave traveling at an angle of
15◦ from left. Another interesting observation is that the damage zone in soil penetrates
to some depth. This indicates not only large localized deformation around footing,
but also significant settlement accumulated throughout the soil layer. Note that the
settlement of the left footing is 25% larger than that of the right footing. The correlation
between plastic dissipation in soil and foundation settlement shows another possible
application of the proposed EBD approach.

After identifying zoneswith large amount of plastic dissipation, indicating structural
damage and soil densification, it is interesting to investigate the accumulation of energy
dissipation at specific locations. Figure 14 shows the evolution of plastic dissipation
density at the locations A through K, marked in Figure 13 (a). For all locations, the
rise of plastic dissipation happens at time t = 6s. This is the time when the peak
displacement response is observed in Figure 10. Notice that the dissipation density at
interface locations are two magnitudes larger than that at frame or soil locations. This is
expected since the interface zone has much larger localized deformations, i.e. frictional
slipping, that lead to highly concentrated energy dissipation. In addition, interface zone
features fairly small volume, hence dissipation density is high.

Besides energy dissipation density at various locations, the total energy dissipation
due to different dissipation mechanisms within soil, structure, and soil-foundation
interface can also be analyzed. Figure 15 shows time histories of energy dissipation
due to different mechanisms in various parts of the SSI model. Despite the high density
dissipation values, as seen in Figure 14, the total plastic dissipation in contact/interface
zone is smaller when compared with other energy dissipation terms. This is due to
the small volume associated with the interface zone. According to Figure 15, the total
energy dissipation in frame due to material inelasticity and viscous damping reach
similar values at the end of simulation. For soil, on the other hand, viscous damping
dissipates more energy than plasticity. It is important to note that this is due to the
choices made about Rayleigh damping ratios for frame and soil. Chosen damping
rations, chosen as 2% and 5% for structure and soil, respectively, were probably too
high. Physically, plasticity and damage are the main energy dissipation mechanisms
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Fig. 14. Evolution of plastic dissipation density at various locations.
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Fig. 15. Total energy dissipation due to different mechanisms in various parts of the SSI model.

for any significant seismic response of soil structure systems. Hence, for seismic
motions chosen here, energy dissipation due to plasticity should be higher then energy
dissipation due to viscous damping. Higher values for viscous damping, as chosen
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in this example, are usually used when no inelastic deformation, and hence no plastic
dissipation, is considered. Alternative results, with smaller viscous damping for soil
and structure, presented next, will illustrate further illustrate this.

It should also be noted that only the soil within two meters (2m) of foundation
is considered when calculating total energy dissipation in Figure 15. As indicated in
Figure 13, energy dissipation also exists in soil volume at deeper depths. In fact, if the
entire soil volume is considered, energy dissipation in structure and interface elements
would be relatively very small, as soil will dissipate largest amount of energy due to its
large volume.

3.3. Influence of Rayleigh Damping
As discussed earlier, the choice of Rayleigh damping parameters could change

the dynamic response and energy dissipation of a SSI system significantly. In this
section, the Rayleigh damping ratios ξ for frame and soil are reduced to 0.4% and
1%, respectively. The frequency coverage, defined by parameters R and ω̂, remains
unchanged.

Figures 16 and 17 show the horizontal displacement and acceleration responses of
top floor and foundation level of the structure.
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Fig. 16. Horizontal displacement response at top and bottom of the structure when Rayleigh damping ratios
ξ for frame and soil are reduced to 0.4% and 1%, respectively.

Compared with Figures 10 and 11, the displacement and acceleration responses
increase when Rayleigh damping ratio is decreased, as expected. This is especially
notable in the FFT spectrum where the peak at 3Hz becomes much more prominent.
However, the increase is not as large as it might have been expected, with a five
times decrease in viscous damping. This is due to the fact that with reduced viscous
damping, more realistic energy dissipation mechanics, the plastic energy dissipation in
soil, interfaces and structure, dissipated much more energy, and thus balanced energy
dissipation between viscous and plasticity energy dissipation.

Figure 18 shows the time histories of energy dissipation in the SSI system when
Rayleigh damping ratio is reduced. The amounts of energy dissipation due to plasticity
in soil, structure, and interface elements all increase considerably, as noted previously.
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Fig. 17. Horizontal acceleration response at top and bottom of the structure when Rayleigh damping ratios
ξ for frame and soil are reduced to 0.4% and 1%, respectively.
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Fig. 18. Total energy dissipation due to different mechanisms in various parts of the SSI model when
Rayleigh damping ratio is reduced.

Since plastic dissipation in structure leads to material damage, it is important to choose
Rayleigh damping parameters carefully in order to obtain proper information state of
the structure after seismic event.

3.4. Influence of Input Ground Motion
The influence of input ground motion on SSI system response and energy analysis

is investigated in this section. Figure 19 shows the displacement responses of the
frame due to different scaling of input motion. As expected, the peak displacements
at the top and bottom decrease when scaled down motions are used. The relationship
between the magnitude of input motion and the displacement response of the frame is
nonlinear, as expected. In difference from full, benchmark case response that featured
significant permanent deformation at the frame bottom, scaled down motions do not
produce permanent deformation, as shown in Figure 19 (b).
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Fig. 19. Horizontal displacement response using benchmark and scaled down input motions.

Figure 20 shows the maximum IDR results for different scaling of input motion.
The maximum IDR response shows more nonlinearity of the SSI system, especially
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Fig. 20. Maximum IDR results for different scaling of input motion.

for higher floor levels. It is interesting to note that the distribution of maximum IDR
along story level changes when the input motion is scaled. For the benchmark case, the
maximum IDRs at the third and fourth stories are very close. On the other hand, for the
case with 50% scaled input motion, the max IDR at the third floor is clearly larger than
that of the fourth floor.

Figure 21 shows the evolution of plastic dissipation density at three locations, frame
location C, soil location G, and interface location K, for three different input motion
scaling. At all three locations, in frame (C), soil (G), and contact/interface (K), plastic
dissipation density increases considerably, nonlinearly when the input motions are
scaled up. Quantitatively, taking frame location C as an example, the plastic dissipation
density increases more than 10 times when the input motion is doubled. At interface
location K, there is no dissipation accumulated at all when the motion scale is equal to
or less than 50% of that in the benchmark case. This points out to no frictional slipping
between foundation and soil for the two smaller input motions.
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(b) Soil location G
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Fig. 21. Evolution of plastic dissipation density for different input motion scaling.

Comparing Figure 19, Figure 20, and Figure 21, it is shown that energy dissipation
is more sensitive to the change in input motion magnitude than peak displacement or
maximum IDR. For the SSI example analyzed in this study, if displacement or IDR is
used as the design parameter to evaluate damage or collapse risk, one may draw the
conclusion that the frame structure suffers 2 or 3 times more damage when the seismic
motion entering the system becomes twice as large. However, according to the energy
dissipation analysis, the actual structural damage could be 10 times more severe.

3.5. Influence of Foundation Type
It is common to have multiple preliminary designs for an engineering project, and

then choose the best one by comparing their performances. One possible design change
for SSI system is the change in the type of foundation. In this section, the influence of
foundation type on SSI performance is analyzed. As seen in Figure 4, the benchmark
case has separate, spread foundation underneath each column. For comparison, a case
with continuous, slab foundation is analyzed as well.

Figures 22 and 23 show the displacement responses andmaximum IDR results of the
frame with different foundation designs. The displacement responses and IDR results
show differences between the two foundation types. The peak horizontal displacement
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Fig. 22. Horizontal displacement responses for different foundation types.
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Fig. 23. Maximum IDR results for different foundation types.

and maximum IDR of the third story, that has the largest IDR, reduce less than 10%
when the foundation design is changed from spread to continuous, slab foundation.
It appears that, according to this result, the change of foundation type does not have
significant influence on structural performance for this SSI model.

Figure 24 shows the distribution of plastic energy dissipation for the two cases with
different foundation types. Visible differences in plastic dissipation density can be
observed in the frame, soil, and interface elements. For continuous, slab foundation,
more energy is dissipated in the soil and soil-foundation interface before reaching the
structure. This means that less dissipation, or material damage, is accumulated within
the frame elements, as can be observed in Figure 24. Please note that the same scale is
used for energy dissipation density color in both figures, in order to visually compare
dissipation. For example, for a spread foundation case, Figure 24(a), more dissipation
is observed in columns on third and fourth floor, in comparison with slab, continuous
foundation case, as seen in Figure 24(b).

For quantitative analysis, evolutions of plastic dissipation density at frame location
C, soil location G, and interface location K, (see Figure 13 for locations), is presented
in Figure 25. At location G, in the soil, there is almost 3 times more energy dissipation
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(a) Separate foundations (Benchmark) (b) Continuous foundation

Fig. 24. Distribution of plastic energy dissipation for different foundation types.
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(b) Soil location G
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Fig. 25. Evolution of plastic dissipation density at locations: soil K; interface G; and structure C, for different
foundation types, benchmark/spread and continuous/slab foundation.

accumulated at the end when a continuous, slab foundation design is used, as opposed
to spread foundation. At interface location K, the increase of plastic energy dissipation
is approximately 40% with a change from spread to slab foundation type. More
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importantly, at location C, in frame, energy dissipation is reduced by 50% when slab
foundation design is used as opposed to the spread foundation.

By comparing traditional design parameters, such as peak displacement or maxi-
mum IDR, with energy analysis results, it is clear that the former tends to underestimate
the variation in system performance when evaluating design changes. This is especially
true if seismic performance is the main concern. The source of such underestimation
can be largely attributed to the fact that traditional, displacement-based design concepts
focus on peak response, while EBD follows accumulated material damage and system
performance as a time history throughout the entire loading event.

4. Conclusions

Presented was an energy-based design (EBD) framework for SSI system that was de-
veloped based on thermodynamics and engineeringmechanics based energy analysis for
soil, interfaces and structural components. Traditional force-based and displacement-
based design concepts mainly focus on peak response rather than loading history. Thus,
for cyclic loads, seismic loads for example, traditional analysis methods cannot ac-
count for the continuous accumulation of material damage. On the other hand, energy
dissipation can be directly related to damage, hence it is more effective as a design
parameter. Existing EBD approaches usually simplify realistic SSI system to simple
multiple degree of freedom (MDOF), or even single degree of freedom (SDOF), mod-
els. The proposed EBD framework makes use of advanced modeling and simulation
techniques with accurate energy dissipation calculations. Such advanced modeling and
simulation techniques, together with energy analysis, can provide more accurate and
detailed information regarding system performance and safety.

A full earthquake soil structure interaction (ESSI) modeling and simulation that
properly models all the components, including earthquake, soil, structure, and soil-
foundation interface elements is available and should be used to improve safety and
economy of infrastructure objects. The theoretical formulation and computational
procedure for calculating energy dissipation in various practical soil and structural
material models and finite elements were developed based on the first and second
laws of thermodynamics. Presented in this paper was a summary of key theories and
formulations that were presented in a series of previous publications [54, 57, 55, 56].

The presented EBD analysis approach is implemented and available within the
Real-ESSI Simulator [25] for FE modeling and simulation. Visualization of energy
computation results is available within ParaView [6], by using pvESSI plugin, as
described in the Real-ESSI documentation http://real-essi.us/. Using above
numerical tools, the proposed EBD framework can be effectively used for realistic
ESSI system modeling with a number of different soil structure systems, The spatial
distribution of energy dissipation density, that evolves in time, can be directly analyzed,
visualized and used in design and assessment of infrastructure objects.

In order to illustrate the EBD framework, a practical SSI model composed of a
frame structure, underlying soil, and soil-foundation interface was analyzed. Material
model parameters were calibrated to represent realistic soil and structural materials.
An Ormsby wavelet motion was applied to the model using wave potential function
and DRM [48, 22, 9, 52]. Full elastic-plastic response of soil, interfaces, and structural

29

http://real-essi.us/


elements was modeled in order to account for displacement proportional, plastic en-
ergy dissipation. Rayleigh damping was used to model viscous, velocity proportional
damping, energy dissipation in analyzed SSI system.

Traditional design parameters such as displacement and IDR for the benchmark,
spread foundation case were briefly discussed. Distribution of time evolving plastic
energy dissipation was presented in detail. Spatial locations with high accumulated
plastic dissipation were identified in frame, soil, and soil-foundation interface. In
addition that, time histories of plastic dissipation density at various locations were used
to analyze the ESSI system and to make recommendations for alternative design.

Interesting observations on ESSI response were made based on comparing differ-
ently scaled seismic motions and foundation type variations. It was shown that when
the input motions were scaled up two times, the peak displacement and maximum IDR
of the frame increased 2 to 3 times, while the plastic energy dissipation density at a
frame location increased more than 10 times. Similarly, when the foundation type was
changed from spread to slab foundation, the peak displacement and maximum IDR de-
creased less than 10%, however the plastic energy dissipation density at locations within
structure was reduced by 50%. These observations indicate that displacement-based
design parameters might underestimate the change in ESSI system performance when
used to evaluate the influence of input motion scaling or design variation. It was also
illustrated how the proposed EBD framework be used in improving safety and economy
of infrastructure objects.
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