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DIFFRACTION RADIATION BY A LINE CHARGE MOVING PAST A COMB:
A MODEL OF RADIATION LOSSES IN AN ELECTRON RING ACCELERATOR
" R. D. Hazeltine and M, N. Rosenbluth

The Institute for Advenced Study
Princeton, New Jersey 08540

and
A. M. Sessler
Tlawrence Radiation Laboratory
University of California.

Berkeley, California 94720,

April 23, 1970
ABSTRACT

“ A_¢a1cu1atiQn is given of the radiatéd energy loss from a charged
fod which moves at constant speed past an infiniﬁe sét of parallel semi-
infinite.conducting plates of infiniﬁeé&mal thickness, with the rod taken
parallel ‘to and at a fixed distance from the plété;edges; The problem
is analjzed ﬁsing the Wieher-Hopf technique, and'thé resultingbformulas
- are evaluated analytically in the limits of high rod speed and low rod

speed, and compared with numerical eveluation over the full range of

speeds .
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I. INTRODUCTION
'.:“AnAelectron ring accelefator.aéceleratés:héavy ions by traﬁping
the iéné in the potential weil associatéd with a compact ring of relativ-
istic electfons, and then'agcelerating the electrons by means of externally
applied fields.® Tt is cleaf that the highly éharged electron ring will;
while béing accelerated, radiate strdﬁgly.becauSe-of its motion past the
conducting surfaces of thevacceléfation column. Cbnsideréble theorétical '
effortbha%'been:devoted to determiﬁing the exteﬁt of this radiation; more
than a aézen different calculations having been repérté_d.2
The crucial poiht is the dependencé df the ring radiaﬁion, at
ultrarelativisfic speeds, uﬁon ring speed. If, for example, the
radiation Vere to increase with increasing speéd then the efficiehcy of
.an eléctron ring accelerator would decfease with increasing energy and
there would result--in practicé-—an upper limiﬁ to the energy of the
“accelerator. Thus the vefy development of electron ring accelerators
hinged upon demonstration that they would not be limited by radiation
lqss at high energies.

It is easy to estimate the radiation due to acceleration of the

electron ring and to see that--at least in the relativistic limit--it is

quite small. The radiation which is not small is the diffraction radiation
due to ﬁhe motion of the ring near conducting surfaces. Crudely speaking,
one could say that image charges ére”being accelerated and hence there ié
radiatioﬁ. It suffices to calculate the energ& radiaﬁed by a ring moving
at constant speed. | |

| If the ring is approximated by a charge Q, then the net energy'

gain per unit length of the structure'can be written in the form
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For a charge moving at constant speéd, A is prdportional to-the externally

applied fiélds‘invthe'structure(and is, clearly,‘the eﬁergy gain for an
iﬁfiniﬁé%imal charge. The term BQ2 .is, by superposition, independent
‘of the-é#ternal fields on the structure. Thus it may be calculatéd for
an unexéiééd struéture. It is simply the radiafed energy loss of‘a
charge'-Q; moving atbéonstant_speed through the-structure. The conéider;
able theoreticél'effort, ment ioned above; has béen devoted to determiniﬁg
B Which'is; cleafly, a fuhction only of charge speed and the geometry
of the accelerating structure.

The simplest model which has been considered‘is that of abcharge
passiné fhﬁéugh a closed cylindrical cavity. The radiation loss into the
cavity_wéé found to ingrease with increasing 7, where ¥y = [1 —(VE/E
‘and v'.ié_ﬁhe éharge-speed ahd c the‘speed of light.j”"

| &it was suggested by Kolpakov ahd Kotov fhat a’reasonable
approXimaﬁion to a cavitj Wiﬁh'entrance and exit ﬁbﬁts Wili omif
the radiation for modes with waveléngths  less than the port dimensidns.
The radiatibn loss is then’fouﬁd to be | ¥ ~ independent ét large 7 .h'

A wave—diffraction model was employed by Lawson to study,‘more
carefully; the short waveieﬁgth'modes which were eliminated in the
Kolpakov—Kotov approximation. . Lawson found that they contributéd'énergy
loss which increasgd as yl/é at large 7 , and this result was obtained
independently by Courant.5’6 | |
. There remained the possibiiity that the radiation.loss to an

infinité periodic array was quitevdifférent from the loss to a single

-cavity. Voékresenskii and Bolotovskii had derived an expression for the

o -1/2
2 %
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‘energy loss by a charged rod moving paét a periodic_array ofvsemi—infinite

planes,7 which they subsequently employed to Showithat asymptotically the
o ' 8
radiation varied as l/? at large 7. A y-independent asymptotic depend-

ence was bbtained by Kuznetsov and Rubin.9 Numerical evaluation of the

Vbskresenskll-Bolotovskll formula gave energy loss which fitted rather

Well--up to Yy = 300 --g 7 /é dependence‘lo

Thus it seemed likely that‘theré wasn't a practical limit to the
energy:of aﬁ electron fing accelefatora—at.least'hp until exceedingly high
energies-—and development prdgrams pressed ahead in four different
laboratoriés. There remained, however, .the qﬁestion of reconciling the
numerical results with the asymptotic eval{)atio_ns,_.and this task is
accomplished in this paper.

.Aiso; clearly, the radiation loss had to be evaluéted for
structures which approximate actual acceleration columns. Keii has
studied, numerically, a periodic array of cylindriéal éavities connected
by beam‘pipes.ll His analysis--in contrast with thé work on the planar
problemé;must be cut fo at short wavelengths._ He finds energy loss
which is’ Y —independent, for large 7¥. The négleét of small wavelengﬁhé
is supported by a numerical indication of conVergenées, and also by the
resultqubtained in this paper. The differeﬁce between ;;1/2 . |
and ‘70 dependence, at large 7y, is presumably a result of‘infinite
transverse structure dimensions vs finite tfansverse dimensions. Energy
balance arguments, presented in Appendix B, show that‘in a finite structure
the energy loss can not decrease with increasing vy . |

Still outstandlng at the present time, are results for periodic

structures of finite length and for slightly'imperfect structures.

Efforts are, however, being put into these problems.12 Rigorous analytic
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results for periodic, finite transverse dimensional structures, would be
‘most valuable, and hence worth the considerable effort ﬁhey prbbably will
demand. |
| Spécifically, in.thié paper we compute the radiative energy loss
frbm a éharged rod which moves at constant speed bast an infinite set of
parallel ‘semi-infinite conducting plates. The plates are uniformly
spaced a disténce 27T, apart, and the rod moves in the direction of
their common normal at a.distance Xq below the piatesf edges; as
depiéted in Fig. 1. We take the y direction as-being perpendicular tb
the plaﬁe'of the figure; note that all fields and currents may bé assumed
to be indépendent of y. |

Radiation problems with this boundary configuration were apparently

=

first considered by-Carlsdn and Heins. However, the work of ﬁhese authors,
and sdmé.iater studies by Heins,lLL did not consider our ﬁarticular form of
radiatiné'éource, and did not have occasion to cémpuﬁehenergy lgsggg;yﬂé;
prdblemvidéhtical with ours was énélyzéd ﬁ&lVoskfeSenSKii aﬁd Bofolovskii.
Despite this analysis, there are two reasons for reconsidering the_problem
here. Tirst, as already stated, the work of Botolovskii and Voskresenskii
is in<c6nfliqt with the numerical evaluations.;o Secondly, 1t would be
’ desiraﬁle-to have expressions for the energy loss, wvalid in the limiting
regimes 6f low and ulﬁrarelativistic rod speed, in which the dépendegce
upon rod speed and geometrical parameters is transpareht, and from which
numerical results readily may bé obtained.

It is to this second task, i.e., the asymptotic evaluation of

the energy loss, that our primary attention will be devoted. This is

accomplished in Secs. 3 and 4. We first of all, however, derive in

7,8

AN
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Sec. 2 the_formal solution'ﬁo the bbundary valﬁe?prbblem, both iﬁ-order
to corfeéﬁ an error in Ref. 7T and for the éake_of cbmpleténeés. Finally,
the modifications required to treat a slightly:different situation, in
which the chafged rod is,replaced by a moving cﬁrreﬁﬁ, are briefly
: considered in Appendix A. | | |
| :Tﬁé main results of Qur'analysié‘are the.fbrmal:expression of
- Eqs. (34) and (36), .the asymptotic formula of E@s; (64) - (67), and the
low-speed formula of Eq. (71) with Eq. (586) (and Fié. S)TQnd Eq. (98).
Cbmparisoﬁ 5etweenvthe asymptotic formulas, which have a‘domihant 7-1/2
‘dependénce; and direct numerical evaiuation of Egs. (34) and (36) is
presénted in Fig..h.f The results for a current'cérrying rod are given

in (A.8.).éa..ri$1 (A.9).
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2. SOLUTION TO THE BOUNDARY VALUE PROBLEM

It follows from’ Maxwell s equations that the electric fleld

'EEQ and current den31ty J satisfy

- g FE .
gx(gx-&):-uﬁ&--g—?.’ @)

(We uée.Gaussian units but set the light speed c¢ = 1.) . Here:the left-

hand side is

.—<?§ + WY ,f;) = '-Vefcf;{r Y(kp) .

But the charge density p satisfies Op/dt + VeJ = 0, so that, by

differentiating Eq. (1) with respect to’time, we may obtain an equation

in which b does not appear:

~ o

o/
& ko
™o} 20y
| W

5-5 [ vgé 3 §] b [y(tl?-Jl) -

Q/

It suffices to solve the x component of this equation;

e 2 .2 | 2 o 2
N A A ]8 =lm[a S a__g__)
ot [at? ESE Ve 3z 27 \af ot

(2 )

)

Here the unknowns are é;x and the induced surface current J_, since

Jz is given in terms ‘of the motlon of the charged rod. In fact,

rod has speed v and charge per unit 1ength q .

J, = av 5(x + xO) 5(z - vt) .

if the

(1)

&,
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We have in-addition the boundary condition that :ézk vanish on the
surface of each (infinitely conducting) plate,
E)X\ = 0, X.">‘O: (5)
' z=2nnkL S '
from WhiChirelation, together with the obvious fact that
= 0, ‘ : x <0, - (6)

g4
SV

z=2nnl

it is evidentbthat our problem is amenable to the Wiener-Hopf technique.
Mdre specifically, the situation here differs from the usual
Wiener-Hopfvprdblem only -in the periodicity of the mixed boundary

conditions (5) and (6). This difference is conveniently dealt with by

vhoting the'symmetry

e 1 omnL | | |
‘ 'E-X(Z,t). = 'S:X(Z + 2mnl, t + - ) . (7)
which sﬁgéests for- Ei the appropriately modified Fourier representation

@ 00

E = El}? Z dw exp [iw(% -~ t)] einz/L Vgn(x,.a)) .

X
n=-0 - ' (8)

- Here and below; w should be assumed to have a smallkpositive imaginary

part, so that only outgoing waves are obtained.. The currents, which

possess the same symmetry, (7), as é;x’ may be similarly expressed:

J
X

]

E m .
2nL J(x,rz'- vt) j;ﬁ © ®(z - 2mnlL)
- —

n=-Q

il

S ®

1 ' ./ . /2 inz/L

o g | .dm J(x?w) exp[mw(v - t)le s
=©® T-oo - o : : :

+(9)
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. Z inz/L o
= — N 6 &) io{— -~ ’ © e
Jz 5 dw q 0 (x +Axo)exp[1o(v t)] e (lO)

Upon substituting these representations.into Eq. (3) we find that é;n

and - J must satisfy

r2 21 2 | -
(9 LR (0_-1 n . ORI B bing,
i S;~ + w: - % + I.) } E;h(x,w) = oo+ N J(X,w):+ - §no
The boundary conditions (5) and (6>,now take the form
\/ E o) = o, x >0,  (2)
ey
jkw) = 0, x < o. (13

The system (11) - (13) may be solved'byf-essentially--the“~”4“
conventionalHWiener-Hopf technique.l5 We first Foﬁrier-transform in - x,

according_to the convention

Flk) = ax £(x) e

" and note that Egs. (12) and (13) imply analyticity properties for the

transformed functions. Thus Eq. (11) becomes’

2 2\ o o bwoo2 2y o g L My
'(an + k )al(k’w) = - ;_(-D— ((D -k ) J_(k:w) - - 6n0 ik e Jv
(14)

‘"where -

Sf(xi+'x0).
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1/2
}3 (15)

KA {(%0 . %>2 o2 J

is defined to have a positive real part. The subscript on 3_ serves

 to remind us that this function must, by Eq. (13), be analytic (in k)

_in the half-plane Im(k) < 0. Similarly Eq. (12) implies that the

function -
B, (k) = ‘Z £ (k)
-0
is analytic for Im(k) > 0. ‘But, from Eq. (1L4),
| ik S
A : . o~ 5 o
B.(x) = -2 ke MY a6 A vw, e
| K=+ Q. -
-0
where
@
S 1 | - -
v =) g (17
Ay K+ .
-

f
~

so that both the unknown functions J_ and E+ vmay be determined from
their analyticity properties, as follows. We suppose there exist

functions V (k) and V_(k) such that

(1) V+(k)[V_(k)} is analytic and nonzero in the half-plane
~ Im (k) >0 [Im(x) < OJ.

(ii) = Both the V;(k) have at most polynomial growth for large k.

(111) v (x) v_(x) = V().

We will compute the V;(k) exﬁlicitly below; for the present it suffices

to note that they have the asymptotic beha#ior

V;(k) ~ k'l/2 for k- o, Im(k) 2 0, . (18)_
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and that ﬁhey evidently allow us to rewrite Eq. (16) in the form

N\

E+(k) V ) lmlq keikx'o o 1 Ll-T[l ( ) . ( )
W(k'l_ao L k+ia) V(&) - e K- o ) (k- lo‘OJ k)V_(k

(19)

Since.t‘hezleft~ (right)-hand side of ;this equation is analytic in the
upper- . (lower) -half k~plane, it deflnes, by analy'tlc continuation, an
entire functlon That the entire functlon must be a polynomlal--of

degree one at most--follows from Eg. (18) and the fact that, for physmally
acceptable fields and currents, vE+ must vanish for large "k .

‘Thus we have, in particular P

iw Ay + Ak

T -
o B2 Pk - 1)V ()

(20)

The constants Ao ‘and Al are easily determlned We recall that o

has a small p081t1ve imaginary part, so that Eq. (20) 1s consisterit with
_'l:he aha.lytiéity property of '3 only 1f A + Alk B(k + w); and the .
left- hand s1de of Eq. (19) may be evaluated at k = i, to yield

0%

Eniq e 1

B = -
v (w + iao) V+(1 Olo)

Finally ‘bhen, using Eq. (14),

: ikxo
<;:fn(k"b) - - Lm; %0 kee 2
: R +a
%o
, 2mig e (k + w)

(@ + 100)7, (10 (& + & ®)(x - sa)v_(k)

(21)
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 We recognize the first term here as the“infihite'space solution. Hence the

x component of ﬁhat field, 55; , Which arises purely from the surface

]

currents in the plates, is given by Eq. (8) and

m .
L . %o ikx
E (xo) - + 8] a—2 -
“sn : . . . ,

(o + 1ozo)V+(1ao)(k raf )k - 1ao)v (k)

(22)
Note that, for x < 0, the integral over k is entirely trivial. 1In
particular
A -(oz0+ocn)xo

B (@ - i) .
Ssn(-xo,w) = - % ( .e - n . (23)
. W + 1ao)v+(;ao)ozn(ozo + ozn)v_(-lozn)

:ﬁWe_have now solved Egs. (3) - (6), except for the‘determination
lof V+‘ aﬁd V_.. We will not exaﬁine the field structﬁre here, but will
restrict bur.attention to computing the rate of eﬁergy loss, W, to thé

_Vplates; This quantity must equal the power needed ﬁ>move the charged

rod through the field due to the plates:

_4/fJZ éfgz(x,z,t)dx d;.

W

- av & (=g vt,t) . o ()

Note that at any point not on the plates V - é;g = 0, so that for such-
points the-Foufier components [in the representation of the form (8)] of
ézéz may easily be related to those of éﬁéx. -In this way Eq. (2L4)

becomes
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. av g«\-m—- < in‘vt/L a . :
eex ) | ®e mw Gl @)
; . - L)

Of primary interest is the time-averaged energy loss, to which only the
n=20 ‘term in Eq. (25) contributes. We denote the -average energy loss

_per ‘plate by q-U , that is,

o L
us L 4w L0 yrap .
2 T | |
qv T~ oo »
. e 0
Equations (23) and (25) give:
o %
s g @ 5 Eolxpe)
’ J
o)
A w 200X .
_ miL aw e 00 (o-iay) 1
2 w 0ty (o + u107 :V;(n3O)V_(-nJO)
o : e . Lo (26)

' We now turn our attention to the explicit Wiener-Hopf factorization

13,14

of V(k);: This may be accomplished by a conventional procedure. e

first,offail decompose each term of the right-hand side of Eq. (17) into

partial fractions (k % iozn)'l. Using then the identity

7

n ctn ma = vz\ (n + a)-l, we find
V(k) o nL sin EKI(a? - k2)1/2 ) .
-, 2 2 1/2 . ' 1/25 r 1/2]
2@ -0 {‘3 @B e 24 (2 2B
(27)
15 '

 But

3
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. 1/e ©,
sin EﬂL(&?-- kg) o ' 1 - hl?(a? - k?) ]
EﬂL(dg-- kg 1/2 » 'Azi : ' n® 'j
_ 3
L/ oL [ [ IAVER i2kL/n
= i[f[ (-1 =)<k +1 {(QL) - t e
:1 g
| ”:3‘/ oL n 2 El/gl -12KL/n
Sl A B £
n=l ' 3 : - (28)

1i2kL/n .
_Where the T 1ie . factors have been inserted so as to make each

infinite product converge separately. In a similar manner we obtain

- T /2 17 i 1/21
2 sin TEL-{Q S0P o) |sinan 2 (@ - K)o
_ v tv ]
o - Ll _ i2kL/n
=2 7L (k + yzo) (-1) (H) (k + 1an)(k + 1a_h)e

0o

~7

|

n=1

S e ‘ -i2kL/n

X (k - mdo) /I\{’ (-1)(=) (k - 1an)(k - 1a_n)e : .
(29)
Upon substituting the representations (28) and (29) into Eq. (27), one

may by inspection obtain a factorization
"N N~ ..
(k) = V, (k) V_(k)

in which the factors
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| - k+i{(2£ﬂ)2”fw2j 0
Y ) - X I/T ( nd - - J (30)
£ ik + 1ao5 5 7 (x+ 10 )k + 1o )
n=1 n -n
and
- 11/2
| | ® k-1 {(gf)g - a?,g
V) = ey | (- o)
- Ak - i, n=i ( L (k - ia )k - 1a_n)

'clearly have the desired analytlclty propertles These factors are,

howeven unsatlsfactory because they are not polynomlal bounded for large

16
k. In fact

~ t 2ikL
v.(k) ~ 2

-

k12, kK~ o, In(k)2Z0.
- - (32)
: [The'relatioh (32) can be seen to follow from Egs. (30) and (31) by noting

the identity

-z/n » | cz'}“l

B L+ &/n)le = | T(z) ze " |

‘no ' | : -
) S ' ;z Z-% ' V . . 17 - .
and recalling that T'(z) ~ e = z for large z.”'] A proper choice
for the 'V¥(k) is obviously

’ 7 ' iy 'kL ~ V ) .

v (k) = 2%t v, (x), » (33)

which functions clearly héve the asymptotic behavidr we anticipéted in
(18).
‘We substitute the results (30) - (33) into Eq. (25), and obtain
for the aVefage energy loss per plate (per unit chargefsqpared) the

expression
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(0 0]
_ " ; )
5 . enl Ca ] " 3- QlexO ! (w -1 ao)
Covr T " P{ vy j(w+ioco7'
T =00 '
B R IDICA a_ ) 5
d f /2% 2n
- + ] (‘1‘1‘“)2 e B
{ eb
| AN
2,-1/2 |
Here 7y 1is the relativistic factor (1 - v") . and we have noted,

“from Eg.f(l5), that Gy = le/vy .

integrationvvariable by AN =

-

Tt is convenient to replace the

wlL/v , and to introduce the abbreviation

,.?(557)' = exp ‘fE l%l tn'2
o r | 1/2} p ' 1/2
; e {7‘ + | (a-n)? - xevgl j{m + [(n-i_-}\.)e - xzvg] }
X i =L va y : )
g P ' o , \1/2
n=1 n {2 7}\'_ + (n2 -M A2 o }
o | (34)
Then
T N N S A - 1]
_ eni Moaxo |- o YN - 1
vo- =55 an A ep12l)\.| LVl (yvx+1|x|> P2(>\.,7)
| - (35)

Recalling now that ® --and hence A\ --is to

a small positive imaginary part, we find that
This guarantees that U is real and positive;

Eq. (35) in the more éonvenient form’

be considered as having
*
P(-Ny) = P (n7).

and allows us to rewrite
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- : i X, 1 o
U = -1 l;n i+ i/vy>f an exp[ Egjlﬁ(%.,V) .- (36)

The'integral in Eq. (36) has been evaluated numerically with the help

of Esther-Schroeder.lO The remainder of this feport will be devoted .to an
analytlc evaluatlon of U, for each of the two llmltlng situations
> l and y =1, Spec1flcally, in the case of large 7y we will
derive'a closed form asymptotic expression which‘is correct tO'[b/(y-B/g).'
‘In the opp031te llmltlng case our expression for U will: 1nvolve a very
ea311y (but nonanalytlcally) evaluated 1ntegral and will be correct to
. (Ey(V’).A In both cases a systematic means of obtalnlng more eccurate
exﬁress;ons will be clear, but the labor seems unjustified, especially

5sincevour'results compare well with the numerical evaluation.
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3, ENERGY LOSS FROM AN ULTRARELATIVISTIC ROD
Considering first the case of large 7, we begin with the
observation that
P(N, o) = 1, _ _ (37)

as is evident from the definition, Eq. (34). Thus our procedure will

be to let

11

20 7) = 2 B0, 7). (38)

and expand
| | 2 3 |
E? = 1+ 2z + ET + %T + e (39)

Our first task, then, is to derive a sufficiently accurate expression
for z. The definition, Eq. (38), may be substantially simplified if

we’use-Eq; (57)‘to.write
POy 7) = POy )P0y ) . S (%)

Oné term in the logarithm of Eq. (39) is

A
o ' 1/2’1 1/2
Y A ST IRE Y i SR
| , I |
) 1
= sinh

n\e n, 11/2 ~’
(G -]
and the other terms may be treated similarly. We find

F(3) | (41)

where
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1 1 1
+ sinhvl

-7( ¢2 _ 24 )1/2 2 ¢2‘+ 2¢ )1/2

' F(¢) = sinh T

2
y (- w2

- sinh

Bécause_éfvK. (56)_we may restrict our attention to Re(A) > 0.

Recalling our convention Im(M\) > O, we see that the relevant singularities

of F(ﬁ)_=occur in the upper-haif g = (n/N)-plane, at

/2

, 1 :
__¢,.: 1+ (1 - 1/72) + 10,

S 1)

¢= 2_(1,_1/72) s 0,
4 = 10,

- ¢  = 2+10 .

These are all branch-points; we choose the the cuts of F(ﬁ) for
Re(p) > 0 to extend upwards as indicated in Fig. 2. It is easily

. verified that

PRee) . _
o _m 2N : - : ‘
dn F(3) = S~ 2. B _ S - (83).
O .
Using also the relation
. | :
2 n A
»,,vj{: F(3) = T ap F(P) ctn o , |
= N , C

in which the path C = Cl + 02 remains below the branch-points of F

as in Fig. 2, we find

(1)
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bl >

a () (cta b + 1) + T 4 F(B)(ctn o - 1).
ST o % - (15)
We now observe that there will be contriﬁutions to Eq. (45) from the
region ﬁ S 1/72 only if x/72 = n for soﬁe’integer n ; “Since
such contributions will be weighted by e,7 in our formuwla (36) for
. U, they @ay clearly be neglected in ﬁhe present:larée-.y 'analysis.
Hénce‘we éllow ClA and C2 to coalesce onto the real -axis up to some
point & ;'whére we choose & =2 1/72. vNext, we take advantage of the
fact ﬁhat (ctn ﬁ%b * i) becomes exponentialiy small in the limit
¢ g * iqo; by deforming the rest-éf the contour C2 into the lower-
‘ﬁalf>plane, and‘by "wrapping" the contour c, ‘arbund the branch cuts in

the usual way. The result of these mutilations is to leave Eq. (45) in

the form

e
bl

(ctn o\ + 1) F(B) ap + ‘% _ (ctn - i)F(f)ap

z(\)
' I+ 1T : 1T

v oon | F(dad

v

which is conveniently decomposed as follows:
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200 = 300 ¢ om0 2,0, (46)
zl(x) - % (ctn md + 1) F(B) ap , (47)
I
zg(x) 'E'. _le (ctn o + 1) sin'h-v:L 7%2 2— u)l/g ap
II
- 17\: é (ctn ﬂ?\fé - i) s1nh (fég Q_M)l/vé d
1T ‘
- 2N !( inh™t 2 ag , - . (L8)
T |
z.(N) = = (ctn o f + 1) £(p) djé + 2 ; (ctn ﬂMé - 1)f(jé Sé
S 1 1 : ,
, - ‘ . - - S
+ 21 £(p) ap, (x9)
IV |
v}heré  -. o
| A 1 - 1
f(gS) E‘ sinh + sinh 7(,62' X 2¢)l/2 .(50)

The conﬁoﬁrs

Y - 2p)?

I - IV are depicted in Fig. 3.

' We re-emphasize that the error in Eq. (46) corresponds to an
error 1n U which is expdnentially small; up to this point, no serious

approximations have been made. Now, however, we commit ourselves to
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keeping only @/(‘7-5/2) terms in Eq. (36), which then becomes .
. ) . . 2 ' 3 ~
_ Ly 2i %o o z .z -2
U = -_Im,37 (1 - - an gxp[-e o n) (; t2 ot 5Tt 3T ) + 6977 ) .
, . _ o
(51)

[we antiéipate here that 1z = {9/(7-1/2-).] The c_Qritri_butlion from  z to

1
Eq. (51) is easily disposed ‘of. Consider
_ o kg 21 , [ 0 }
Ul = ’%‘ _Im > (1 - 7 ) . N exp| -2 Ty A zl
o« = F(B) \ : == : - (52)
4 2Xo : : B
_ I m=1 F - 2nim [é | .
where we have used the identity
etn X = 2 N AT 2 NT o om), (53)
2 Y ) i / -
[ A~ R .
n=1 -

in which the d-function terms are here irreleva’r_lt,:to. explicitly perform
the integral over A . Since || is not 'sm'all__v,on the path I, it is

clear 'Ehat -
oL g -2

The higher-order terms in z, may be similarly treated, and we conclude

1

that, in our approximation, the term z

1 may be omitted from Eq. (lL6)
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_ Wiﬁh regard to Zss we observe first of'allethat %he definition

(LB) is equivalent to o
-ioo |

ctn.ﬂx¢.siph—; _;(¢2_% u)l[é -ap » e(54)

P

“ico
where the. path lies to the left of ‘all poles of ctn n%ﬁ except the one
at ﬁ 0. Hence we may evaluate the’ 1ntegral in Eq. (5&) in terms of
principal,value and pole contributions in the usual way; s1nce ﬁheiintegrand
is ddd.inj ﬁ, the principal valué vanishes and we are lefﬁHyith the semi-

residue

RS N 1
z, = sinh- Y | | |
‘ i‘. . _ ‘ S R ' ‘
= 5+ -6’/(7 5., - o (55)
The calculation of vzj [Eq. (49)] is more complicated. lt,is"'
helpful to observe first, from Eq. ‘(51), that a term inf z5 of the
B. can contrlbute to U 'at most a term- of order 7@ B (its 

‘ form h i
contrlbutlon w1ll be smaller if the term is purely real) .Thus we may

drop‘sueh terms whenevere a + B\< - 5/2; Wlth’thls 1n mlnd we expand

(50):

Il

) = £°(h) + fl<z$.>-'+ (9@53/2) o 06)

where

0 ' 'v -1 o, ; - a0, o
£ (f) = ‘sinh " —— + sinh - , (57)
e -7<2¢>172 ST e
B | C1/2 ‘
.l{. 5 Y

(59)
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The error in Eq. (56) would contribute to z. a term of order X‘5/£7-l

5

and, byddur3remarks above, may be ignored. To compute the contribution

to z

3
formulation, Eq. (Lk):

. 0 o : »
- from 7, it is simplest to revert from Eg. (49) to our earlier

@ 00

e o) fe'e} r b
N ! Lo« i) |
=24 5 - @g(ﬁ) el
~ el o At A
@
o-3/2 ,3/2 N s
3 3 1-1) R
Y
n=1
{® . v
: I 1 1 -1 i
+ 2 dn { sinh - - + sinh
y(en/NYE 5 en/n)? »(20/n) 2

- . 59)
) 1/2 :
y(@n/N)S
Here we have expanded »sinhfl X =X -_(x3/6) + éazxi). The error term
in Eq. (59) is again irrelevant and the last integral vanishes identicallyj
as may be verified by integrating by parts twice. There remains

: : /2 | 3/2 '
.9 :\/?.(; L 1) g(%) (;) ] (2\251) 6(3/2) 33-— ;o (60)
- | 18

wherei £ is_the Riemann zeta function.'




to. Egs. (MQ) and (58), this is

1

Ceh- o UoRL-19793

-:Finally we must compute the contributioﬂ‘tbvtz of .fl. iAcdording

3

(l - 1) };/ (ctn nk¢ + 1) ¢l/2 d¢

 (ctn o - 1672 o
h 2 T h
. s ]
e | MRt (61)
. v }, A

-

By the nature of the path'IV the lest term here is-é?%%/75) and may be

neglected the ~other terms may be integrated expllcltly by means of

then

for

(53) (1n which again the functlons do not contrlbute) We have

} (1 - i 1)x / , enlxné 1/2
.3 \! 2 7 j Z ﬁs db

n=1
-joo - ® 'l
N N7 o
. B T eninnd ¢1/2 ab
fos
0 n=1 J
_;(1 - i [OO ' -2nxhy'- 1/2
J o
o -1/2 . \
(@ -i) A £ :
= == 3/2) . | ~ (62)
BFJE; x 7 '
Eguations (60) and (62) wovide a sufficiently accurate expression

z; = z50 +'z5l . This result, together with Eq. (55), is now of

re
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course to be substituted into Eq. (51).. Thus, after performlng the

'elementary 1ntegrat10n over %, we find that the average energy loss

per plate is
o 3/2 (2
qu - 2 §(1/2 - 2§L Y’ 7-1/2_+ qe[l.; § éi/z) ( 2§L ) EEL )1
VE 0 ' 0 ) 0
R { & 3/2) §(1/2) =i
P 2 O
J . .
N 3 Ve orl, 2nL\ -5/2
- —— t(1/2 } .
= { (_/_)_+, ( )

N (63)
Recall that 2nL is the actual distance between plates. We'introducé

the abbreviation

bv'E 2nL/xO 3

and evaluate 9'the numerical coefficients in Eq. (63), which then becomes

U = a 7-1/2 f byt o4 é 7-3/2 . &6e), (6L)
with ° ﬂ

e T o516 2, o - (69)

b T p(l - 0.339%) » | | | (66)

e ¥ pl/2 (0.462 - 0.516p + 0.078k%) . ‘ ~ (67)
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CIn Flg 4 evaluation of Eg. ._(61+)-'-for.nthifee"fvalﬁes,ch Ne) -—1s -
.pre'sentiea":; and compared with numerical ‘evalu;at,'ieri_ of Eq. (36). The accuracy |
of >»the ’-aemﬁpfotie vf'orinulas-—even. to ¥ as low jéa,j's'-E;O-’:—was,' of course,

' unexpected
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L. ENERGY LOSS FROM A SLOW ROD-
We now turn our attention to the case in which » 1is close to 1.
Tt is cénvenient.toAbegin agéih with our exact formula (36), but here we
will alﬁéys drop terms of order Vj. 'The small velocity limit ié
analytically somewhat awkward because of the férm of 1lim Re(P).
Equatidn:(Bh) gives |
o on 2 LM o S
PA1) = e /]T/ 2 -n (68)
n=1 | .
where {X] is the largest integer lesslfhan N. On the other hand we
will find that o | |

Im[fg(%97)j = C??Vg) P o vx0, - | v (69)
" from which it.foliows in_pérticﬁlar'that we ma& appfogimate

”’Im(rg) x  2 }2($,1) Iu(4n P) ;. - R -» (70)
Similaf1y ¢x§andiné

11 -i/vw 5.2 5
- TNy T 1+2iv -5V + éa?vj) s |
where the v term is irrelevant in view of Eq. (69), we find that

Eq. (36) may be written in the form

U = ,SK(V‘UO + Ui) + é}?va) , B o (1)
Q0 : C v
Uy = a e (a1, | (72)
0
o -
U, = an e-nx EQ(%,l) Im(4n P) . ' v (73)
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'Hei‘e of éourse‘ K = 2xO/L' » and we need. evaluate. Im(Zn P) only to
lowest _ordér.

We consider first U,. The definition (72) may be rewritten as

0 ,
) e o) 1 ’ . o ) . .
'Uo ) ) Jj ax e-K(m+X) Pg(m+X: 1) . ; (%)
S m=0 “0 v ‘
Hom Eq. (68),
o L : N

‘ ;’" 2m + 2x - 1 \ .
-2(1_n+x)£n 2 : s

!
1

where 'the second factor is the usual binomial coefficient. Introducing

the quantity
2 = %: e-x/e )
we have ' S _ | '
rl _ 0. /2m+2x—l '
U, = j ax 7% 2 2" , . (76)
s ’ - ‘ O ‘ ‘ !Il-——O_ ‘ n . o
. \\‘ . . - -
The sum of squares may be rewritten as the square of a sum by means of

the artifice

00/ - fPm+2x -1 : ’(’2]1 © m/?_m + 2% -
m=0: ‘L m “ o ‘<0 m=0 \ m

CPlm+x, 1) = e i I | (75)

\\.\“-—y '
T ™o i
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We denote the sum on the right-hand side by S(x,6), so that

S p | o .

e : 2x 1 ,

‘.UO_.—j axz i ae Is(g,e)_} . {78)
' 0 0

By the binomial theorem and Cauchy's theorem,

-i@; 2m+2x-1
1 ie aw W \
5(x0) =z ) () w1 (07 ) ,(79)

where ﬁhe:intégratioﬁzcontour must enclose the origin of the w plane in
‘such a way as to includé only the pole at w = 0. We choose it to be

a c1rc1e w1th radlus only sllghtly less than l/h _ Thé series is now

) . 6o
w - (w +ze ») :

W= S Zeiev + }.(l-l;zej@)l/zf
2 -2 .

‘and by:pur contour choice only the smaller of these is enclosed. Since

'geometrlc and ea31ly summed

- 5(x,8) -=.'2_H o~ <

The integfand here has poles at

the intégrand is otherwise analytic inside the contour,

Yox-1
| (1 1, . .o /2 .
o l-2x = - =(1 - bz e
R =) lg., 2
5(x,0) = <? e ) (1 - bz eie)l/2 fJ' ) (51)

It is now convenient to replace 2z by

':?. = Lz =' e-K/2
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%

so that upon substituting Eq. (81) into Eq. (78) we have

A 2n I | v

o1 2x 1 2-lx |
Up = Ej dx w5 d® u :
' 6] ' 0 -
p .
o {l - (1 --uele l/g}gx . [ - (1 - ueuie)l/e}ex—l
(1 - uej,'e)l/2 (1 - ue"j'e)l/2

Notice that X appears now only in exponents, SO that the x-integration
could readlly be performed. However, we defer this step in order flrst
to simplify’the integral over © . To this end we replace the integration |

variable by y = ele , Whence

-1

(- w2 @ w2

o =%J . uz.(l-x).
f | 1/ | e / }}25"1 . E
tl - (1 - uy) {i} - (1 - u/y | f I i
¢ L J . (83) |

Here the contour is the unit circle. The integrand has branch points at

y =0, u,'l/u, @ . Since it is evident from Eq. (82) that the 1ntegrand

is contlnuous throughout the domain of 1ntegratlon, no branch cut can
cross the contour. Thus the branch-points at O and u must be v : ¥l
connected by a cut, and'weYShrink the contour to surrouuqﬂtuis cut. in

the obvious way. On the new contour y is real and Q-§ y-§_u SO thet

1 - u/y)l/2 is always imaginary. ‘Weuﬁhus make the further substitution
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and obtain

‘ ' ,n/2
. A 2(1-x)
UO = I dx u _ dQ
o
- .- 2x-1-
_ {1 - (1 = W cost G)ljtiv(l - 1 tan ©)
X > 2 /2
(L -~ u" cos”™ &)
/2 L2 8
o ae .. u_e  cos 6
R e TS 5 172 PEPRE
' ~-nf2 . (1 - u- cos” ©) 1 - (L -~y cos” @)

1- (i - u.2~cos2 6)1/2' |a
X dx — — . (84)

ie :
0 e u cos &

Performing the x integral ve find, after some simple manipulations

1 /2 v (1 - W cos 6)1/2 - i tan 6 1 : ,
U = I cae —7 S E—
0  hx : IR - 1/2 ' =L _ 1 e
-2 o (17-AU? cosg'ﬁ) cosh " Qcos B 7

85)
This form may be further simplified if we observe that

-1itan e - TS N
ve -

(- W cos” 8)
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Hence the tan 6 term in Eq. (85) may be integrated by parts; we thus

find its contribution is equal to that of the other term. We have then,

finally,
e n/e ae
o - A
0 21
' 7/2  cosh™ —E— _ 16
‘ : u cos B
g -1
1 ﬂ/2 cosh — & cis ) ‘ y
= = ae . : . (86)
7 2 .
i (cosh-l —1 ) o+ & ’ o
“0 u cos 9 -

This integral is easily evaluated numerically; a plot of Uo(u) is given in
- Fig. 5. It has been checked-—approximately--by eXtrapolations of numerical

evaluations of Eq. (36).

. The asymptotic forms of U for large and small & = 2xO/L are

0
eaéily'determined. 'Considering first the case of large K 5 ﬁe_note
that cdshil —L _ ~ _ fn 2u cos 6, for "ﬁ‘# O . Hence in this
~ . ucos e o L T

limit

S 1 1 : L : ,

~ . = = e ; >
Yo Z Tnu x5’ Xg > L. (67

" On the other hand, for & small and ® S =/k,

-1 1 (L. 212 e n e u
co§h Teos 8 (k + ) for | ko Q{ 8 < nf/h,

. s0 thﬁt'thé main contribution;tb the integral in Eq. (86) comes from the

lower end-point. It is in fact clear that if we choose O 'to be

proportional to, but larger than, nl/g, the small & form of UO will

follow the small & form of
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~n/2,  eospl 1
-1 - : u cos O
= o 5 ae
o -1 1 2
‘5. g (cosh —— ) + 8
. -1
'ﬁr/z 4o L+ sin @ | /2
1 cos O 1 1 dae
v = - = lde + =
T 1+ sin © 2 5 20 ' 27 °]
<8 '{-Zn ____Ei___:) + e g . s
: cos © : J
o (88)

Here we have set u ¥.1_ in the integrand (since 62‘2v62 > k ) and

isolated the singuiar part*of UO

(u=1). Now letting & @ nl/z become

arbitrarily small we find

Uy < omgp me, )
. x . N
1 0 o
R IR % <L, (89

since the first integral in Eq. (88) remains finite as © — O .

In order to evaluate U, [ef. BEq. (73)], we first note from

Eq. (3L4) that for small v

1

Im(4n P)

Imi z;z _ In % + {(n - h)ei- A?VEE
.2 2 ]l/ezl

- r
fn {1+ {(% -1) -« | J (91)

&
B

since, as we have'remafked, it suffices to compute Ui

_ We now set. A= m + X, but heré,.unlike the case of Eq. (74), we choose

to lowest order.

lxl 'S :% . Then
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B

' Cy1/2ld
Im(4n P). .= Im 4n }; -+-i[v2 - 522'- 1)2 } ? (%R)

| &= | "
. 1/é‘ .
= @(l‘f"v-'xl>[*’2-(m’ix>}, ’ )

where © 1is the usual Heaviside function: it is equal to one (zero)

when itS}a;gument_is positive (negative). Equation (73) has become

® n 1/2

m+ x ’
L= -N .

where n = mv/(1 - v). Because of the exponertial factor in the

integraﬁd,-we may assume 1 is small. It follows that to lowest order

Ul'_z’-'}m e "KM Pe(m,l)‘ | .[vg_( = _)2]' Cax . ()

m+x 7
m=1 -M < '
The integral is (11/2)111‘v2 + C??vj),_whence
. . 2 : - 2 '
Ul = -5 v Se e Koo g (m,l') . o : (96)
. = - : o

Here we have included the m = 0 term--which clearly doeé not contribute

--so that the sum may be recognized from Eq. (79):
@ _ ' X .
- - 2
: E e P (m,1) = é-l; de |s(0,8)|" .

m=0 . o

U. = : | ax e_K(m+X) Pg(m+x,l) {ve - (= X )2 } P (94)A
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We have thus merely to repeat the procedure of Egs. (74)-(84) above,

setting everywhere x = O. The result is

;1
7]

where K:.is the complete elliptic integral of the first kind. The

-
’identity-?-
K(k)

in whiéh_ E 1is the complete elliptic integral of the second kind,

K

final:pgr-.g"i‘{;es S 3 - - -
R < jg(———/g—’ - K(e-*‘/%1 L e

;l ) ?;'i 1- e-

Using known19 properties bf the functioﬂs' E and K, we find

that U

l: vanishes exponentially for large «. , while
-Ul = F —K- for k~=0. | (99)
Combining now Egqs..(71), (86),and (98), we conclude
. /2 : cosh-l(‘giié—-) | -£/2 / §
U = 8 [  ae . cos © 5 — o Ble " Y_K) - (™" d)J |
0 cosh™t ( QEZE—-) + toe
. cos © )

+@<{v5) . ~ (100)
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APPENDIX A: THE CASE OF A MOVING CURRENT

,'Qﬁ; analysis is very easily carfied over to the solution of a
slightl& different problem, namely, that in which the moving rod'has ﬁo
net cﬁarge,-but carries>a current in the y diréétion. In this Appendix
we briefly outline the necessary modifications to the arguments and
results‘présented above. | |

'~The1essential4differende betﬁeen the two proBlemé is that in
the movihg current case, the relevant‘component@of the field is gi B
and thi§ function satisfies an equation significantly Simplef'than that
[Eq. (3)i for é;x in the moving charge case.\ In fécﬁ we have?no& to

solve

+ - §é§/ = lhx S_X ’ | (A.1)

where ‘éiy’ satisfies the usual boundary condition (5) and

J = qv" 8(x + xg) Bz - vt) + J

y (A‘v.2 )

sy
Here xo and v are as in Fig. l; and v' 1is the y-direéted vélocity,
aésociated with the given current, of the charge per unit length gq .
[The q in Eg. (A.2) has the same numerical value as that in Eq. (U4),

in so far as the positive charge carried by a ring in an electron ring

accelerator is small compared to the negative charge.] The unknown current

in the plaﬁes is sz; we note that it may be represented in the same
form [Eq. (9)] as Jx in the previous problem, and that its transform

also satisfies Eq. (13).
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Thus Eq. (A.1) differs in structure from Eq. (3) only in having
somewhat fewer derivatives, and the Fourier transform procedure of
Egs. (8) - (17) may be carried through with only mihor»changes. In
this way we obtain the analogues of Eq. (14):
oikx
2 2 Y gv' o =70
. = . . 3 . 8 ) . )
(x + qn_) dfn(k’w) hnybq_ + hﬂy@ — %0 © s (A.3)
and of Eq. (19):
ikx

Lo gqv! e -
v V+(k + 1a0)

7 (k- o) -
+. .

(A.4)

= bniw)_ V_(x - i) -
: Héfe of ééurse the uhknowhsA E+ and 3_.'have differentbphysical
.meaningsvfrom the moving charge case: they refer to y comppnents rather
than i'components of the field and current. More significantly, the
absence in Eq. (A.L4) of the factor (k?}-ia?) on the right-hand side
allows us.to cbnclude, by the ﬁsual Wiener-Hopf'argument, that both
sides must equal a constant [rather than, as in the case of Eq. (19),

a first-degrée polynomial]. The constant may bé evaluated as usual by

settingv k = iao ; thus 3_ is determined, and Eq. (A.3) yields

ikx
e

: o o~a x|
gv' w e
£ (xo) = - . - dk , (A.5)
sn vag V. la) (k- 1) V() - ) ,.
where the subscript s again indicates that we have omitted the infinite

space solution.

Finally we compute the time-averaged energy loss per plate:
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. T |
o ) . 1
ot = - ?-g—Ii Tlimoo T at [ dx dz g - SS , (n.6)

where QO is of course the given current, and we use a prime to

distinguish the energy loss in the moving current case. Equation (A.5)

yields, in the usual way,

© 2x -

Ut = -l ,v'2 v Im an expl - 5—9 AJ P?'()\.,y) s " (A.T7)
A _

where P(A,7) is defined by Eq. (34).
 Comparing the exact Egs. (36) and (A.7), we observe that the

relation betWeen U' and U is analytically very simblé;'in particulér,

both qﬁantities involve the éame.integral. It follows that our asymptotic

evaluatigns of U need be only trivially modified. |
 VSpecifically, in the ultrarélativistié'case we find

[remember. ¥ = (1 - vi2)l/2] |

u' =} Q'gfg[a' 7-1/2 + b 7—1 +c' 7'5/2 + Ca?y;aj] s v' (4.8)

'wher.e.v' ' : ' % .

3/2 §

0.516 o',

a' = a

-p(1 + 0.3390) (A.9)

o
il

c' = pl/2 (0.462 + O.516p + 0,078hp2)§

and we recall o = QﬂL/xO . Notice the surprisingly similarity
between ' b', ¢' and b, ¢ [cr. Egs. (65) - (67)].
Note that if we accelerate a rod in the z direction, then the

N nomentum (V'y) is invariant. Hence if the rod before acceleratién
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(y = 1) is relativistic, then v'y = 1, and we may expect the radiation
due to the y current to equal that from the charge in the limit

y >> lv.‘- _ )

In the case of small v , Eq. (A.7) implies

Ul = Byt U+ G2y (A.10)

where Uy ~ is given by Eq. (98).
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APPENDIX B: ENERGY BALANCE ARGUMENTS |

‘In this appendix we presenf arguments which'yield a lower limit
to the amount of diffraction radiation produced by'a'chﬁrge, Q, passing
at constanf speed, v, through an accelerating Structure of finite
dimensiqnéf  The discussion is oﬁly bafély novel; related arguménts have
been made by Eberhard Keil, John LaWSon; and others.

The.net energy gaih'iﬁ traﬁersing.the structufé; AU, may, for an

electromagnetically linear device, be written in the form:

AU:AQ_-BQQ. ' (B.1)

The coefficient A is proportional to the applied field:

peg B0 e

D

where E:g'is the field, in the absence of the-éharge:_Q,'measured at
some referencé position. The coefficient B 1is the quantity we wish to
bound.

' The accelerating structure has a total stored energy, W, prior

to the'intrOduction of the charge Q, which is proportional to fig:"

vo= ok £ . (8.3)
Clearly by energy conservation B
AU £ W, o o (B.4)

which implies, by Egs. (B.1), (B.2), and (B.3):

B>%@_§Ew§>‘.v,' | (B,

td
\JI

Q
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Teking the maximum of the right-hand side of Eq. (B.5), yields the limit:

B > et | AR - (B.6)

Physically, it is clear that 'kw ié finité, and it is also clear
that tﬁereféxist accelerating sﬁrucfures for which kE is nonzero. 1In
particular, even for extreme relativistic particlés an efficient accel-
erationhcolumn can be designed; i.e., kE need‘ggg decrease with

increasing 7y , where

y = - (R

For thééé structures——which are Jjust the strucfurés of physical interest
--it fOliOWS, from Eq. (B.6), that B can not decrease without limit |
with inéréasing Y . The restriction to electromagnetically linear
structures is not a severe restrictibn; one can, fbr example, imagine
disconnecting a structure ffom the--generally nbnlinéaf-épower sﬁpplies

after it has been excited.
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FIGURE CAPTIONS

Rod, plates, and coordinate system. The 6rigin is at the edge

- of .one of the plates.

Fig. 2.
Fig. 3.

Fig. k..

Fig. 5.

_in terms of the'relativistic’factor y= (1 - v

Branch cuts and integration contours in the complex ﬁ plane.
Transfotmed integration contours. | |

Energy loss pér plate, per square of thé unit chérge rer unit
length on the rod, as a fUnctién of rod spéed, V, expressed
2);1/2. The
sblid iines are the asymptotic évaluation of Eq. (64) and the

dashed lines are the numerical evaluation of Eq. (36).  Curves

are presented--as indicated on the figufe—-for three values of

= gnL/xO’ which span the range of practical interest.

The integral U,, defined in Eq. (86), as a function of

-xo L

u=e . To lowest order in rod speed, v,. the energy

- loss per plate, ber sqﬁare of the unit charge per unit length

on the rod, is given by U = 8xvU,,.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with

respect to the accuracy, completeness, or usefulness of the informa-

. tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages

resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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