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Mixtures of genotypes increase 
disease resistance in a coral nursery
Anya L. Brown1,8*, Dagny‑Elise Anastasiou2, Monica Schul3, Sophia MacVittie2,4, 
Lindsay J. Spiers5,6, Julie L. Meyer3, Carrie Manfrino2 & Thomas K. Frazer7

Marine infectious diseases are a leading cause of population declines globally due, in large part, 
to challenges in diagnosis and limited treatment options. Mitigating disease spread is particularly 
important for species targeted for conservation. In some systems, strategic arrangement of 
organisms in space can constrain disease outbreaks, however, this approach has not been used in 
marine restoration. Reef building corals have been particularly devastated by disease and continue 
to experience catastrophic population declines. We show that mixtures of genotypes (i.e., diversity) 
increased disease resistance in the critically endangered Acropora cervicornis, a species that is 
frequently targeted for restoration of degraded reefs in the broader Caribbean region. This finding 
suggests a more generalized relationship between diversity and disease and offers a viable strategy 
for mitigating the spread of infectious diseases in corals that likely applies to other foundation species 
targeted for restoration.

Infectious diseases in marine organisms are notoriously difficult to  diagnose1, and options for treatments in the 
field are limited and labor  intensive2–5. Thus, disease spread can quickly outpace treatment and lead to population 
decline or loss. There is a pressing need, therefore, to develop and implement strategies that can mitigate disease 
spread within affected populations. A promising approach relies on harnessing the ecological and evolutionary 
processes that influence disease transmission within and across populations. For example, in agricultural and 
small-scale experiments with Daphnia, intraspecific genotypic diversity can constrain disease spread when geno-
types with varying resistances are grouped  together6,7. These findings have profound, although untested, impli-
cations for restoration of marine species that are vulnerable to diseases with few treatment options, like corals.

Coral reefs have been decimated by coral  diseases8–10, particularly in the Caribbean. The highly transmissible 
white band disease (WBD)11, for example, led to the near complete collapse of dominant reef-building Acropora 
cervicornis and Acropora palmata coral  populations8,12. More recently, stony coral tissue loss disease (SCTLD) 
threatens the existence of numerous other reef-building corals around the  Caribbean10,13,14. While the etiology 
of SCTLD is still unknown, the application of antibiotics has been effective at a colony  scale15–20, but cannot 
keep pace with continued infections and reinfections on the reef scale. Marked coral population declines and 
localized extinction have led to increased global efforts to restore degraded tropical reefs that often involve coral 
 nurseries21.

Coral nurseries support the asexual propagation of fast-growing species such as the Caribbean staghorn coral, 
A. cervicornis, and provide fragments to replenish coral depauperate  areas21–23. Multiple genotypes are reared 
in nurseries to support adaptation to future environmental  conditions23. However, ocean nursery-reared corals, 
like wild corals, are subject to disease  outbreaks24. Within a species, colonies vary in their innate immunity to 
 diseases25, yet the role of this variability on disease spread within and across populations is poorly understood.

To evaluate how genotypic diversity affects the spread of disease, we tracked an outbreak of white band disease 
in a coral nursery of the endangered coral species, A. cervicornis12 over 5 months. We monitored 650 coral frag-
ments attached to support structures (frames). Some frames harbored coral fragments originally from a single 
donor colony (single genotype) and other frames were comprised of fragments from multiple donor colonies 
representing different genotypes (mixture of genotypes)26,27. We tracked the presence of disease on each frag-
ment, across all frames, over five months and related disease prevalence on frames to diversity (mixed vs single 
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genotypes on a frame). We found mixtures of genotypes on frames led to resistance of the infectious white band 
disease in this nursery population harboring endangered A. cervicornis.

Results
Disease prevalence peaked in mid-July (July 19), coincident with increasing water temperatures, and waned by 
the end of September 2019 (Figs. 1, S1).

Coral colonies arranged on frames with only one genotype were significantly more likely to be diseased dur-
ing the peak period July (July 19) compared to frames harboring mixed genotypes (mean ± standard error for 
single genotypes: 43% ± 0.06 versus mixed: 26% ± 0.07% on July 19, Fig. 2a, Model 1,  Date2 × Diversity, p < 0.001, 
Table S2). Complete colony mortality was relatively low (less than 25%), although all diseased colonies showed 
substantial partial mortality.

Furthermore, when we compared only the genotypes found on both single and mixed frames, our results 
revealed intraspecific differences in disease susceptibility (Fig. 2b–f). For one genotype (G), disease prevalence 
was low (< 20%), regardless of whether corals were on frames with mixtures of genotypes or their own genotype, 
indicating that this genotype was disease resistant (Fig. 2a, Model 2, Diversity × Genotype ×  Date2 p < 0.001, 
Table S2). Conversely, the susceptible genotype colonies (R,Y,B) were 1.5–2× as likely to be diseased or die on 
single genotype frames than on mixed genotype frames (Figs. 2b–d, S3). One genotype appeared to be highly 
vulnerable no matter which frame type it was on (Fig. 2f, Genotype K), as it showed high disease prevalence on 
both single and mixed genotype frames.

Discussion
We documented lower disease prevalence on frames with mixed genotypes compared to frames with single 
genotypes. We suggest intraspecific differences in susceptibility led to these emergent population and frame-level 
disease progression differences on mixed and single genotype frames. Because A. cervicornis is known to vary in 
 susceptibility24 and resistance to  WBD25,28,29, it is likely that host genotypic, immunological, or microbial vari-
ation may lead to differences in disease susceptibility and contribute to the population-level disease resistance 
we observed. For example, the resistant genotype (G) has been previously shown to associate with a different 
dominant microbial variant (Candidatus Aquarickettsia) than the susceptible genotypes (e.g., R and Y)30, which 
may play a role in differences in susceptibility, as suggested for other areas of the  Caribbean31. Indeed, our results 
suggest that emergent population disease resistance is mediated by colony differences in disease resistance and 
susceptibility, which may, in turn, be mediated by key microbes.

Importantly, these results show that disease transmission is lowered on mixed frames, reducing disease spread 
to highly vulnerable individuals. Thus, some of the corals that are vulnerable to disease can be “rescued” by resist-
ant genotypes (i.e., Fig. 2c–e), likely because resistant genotypes prevent the transmission of the disease between 
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Figure 1.  Mean ± standard error (SE) of the proportions of fragments in the nursery assigned to each health 
category over time. Images show the appearance of corals in each category, with healthy corals showing no 
apparent signs of disease (outlined in orange corresponding to the orange points); diseased corals showing 
sloughing of tissue and a bright white skeleton left behind the lesion (outlined in gray corresponding to the gray 
points); and dead corals showing bright white skeletons with no tissue present and growth of algal turf (outlined 
in black corresponding to the black points).
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fragments. In fact, when the resistant genotype (G) was present on a frame, disease prevalence (both within a 
genotype and a frame as whole) tended to be lower than on other mixed genotype frames when the resistant 
genotype was absent (Figs. 2 and S2). Frames that lacked the known resistant genotype (4 mixed genotype frames) 
or contained the highly susceptible genotype (K) tended to have higher disease prevalence, indicating (a) disease 
resistance is rare, (b) there may be a threshold in which the presence of a disease resistant genotype no longer 
resists disease, and/or c) there are some highly susceptible genotypes that amplify disease. These hypotheses 
require further testing. In general, on mixed frames, corals from resistant genotypes rescue disease-vulnerable 
genotypes. The maintenance of the susceptible genotypes in the population allows for a broader suite of geno-
types to remain in the genetic pool, which increases adaptive resilience to changing environmental conditions 
beyond  disease23. Our results also highlight that because disease resistance is a cryptic and rare  trait32, increasing 
genotypic diversity in nurseries increases the likelihood of diluting the  disease33.

This finding has important implications for wild coral populations, particularly those that already exhibit 
low numbers of colonies and reduced genetic  variability34. Specifically, our results suggest that the prevalence of 
disease will increase across the Caribbean as genotypic diversity is lost and the likelihood of the diluting effects 
of resistant genotypes are diminished. Residual populations although comprised of disease resistant genotypes 
may lack the full complement of genetic traits necessary to support selective processes that give rise to adapta-
tion and  evolution23.

Our work adds to the literature suggesting that diversity can reduce the spread of infectious diseases by 
distributing pathogens across non-viable hosts, i.e. a dilution  effect35. Low genetic diversity has been correlated 
with increased disease  prevalence35–38 for  mammals39,40,  frogs41,  invertebrates7,42, and  plants6,43,44. We suggest the 
linkage between diversity and disease is even more general than we have previously realized. Here, we highlight 
this relationship in a marine system: between an infectious disease and mixtures of genotypes in endangered 
corals. The ecological and evolutionary phenomena that underpin our findings for A. cervicornis have broader 
conservation consequences, and we suggest incorporating aggregations of diverse genotypes when restoring 
corals, and other marine species, particularly those vulnerable to infectious diseases.

Methods
Nursery design. We monitored 650 individual corals in an ocean-based nursery offshore of the Central 
Caribbean Marine Institute (CCMI) on Little Cayman Island, Cayman Islands. The nursery was at a depth of 
18 m. This nursery supplies coral colonies for re-populating nearby reefs, similar to many other coral nurseries 
around the Caribbean and the  world21–23,45. In general, nurseries rely on repeated fragmenting of corals to cre-
ate numerous clones from a single donor colony. The resulting coral fragments are then suspended in the water 
column on structures within the nursery and allowed to grow before being placed on reefs, a process referred 
to as  outplanting21. Corals in the CCMI nursery were attached to PVC frames using monofilament line that was 
secured with crimps. Frames were 3-m wide and 1.5-m high. The structures were anchored using ropes tied to 
cinderblocks and held upright by empty plastic jugs partially filled with compressed air. Frames were ~ 1–3 m 
away from any other frame (see Fig. S2).
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Figure 2.  Prevalence of disease Mean ± standard error (SE) of disease prevalence across (a) all frames, and 
by genotype (b) “G” (c) “Y”, (d) “R”, (e) “B”, (f) “K”. Point colors represent mixed (purple) and single (yellow) 
genotype treatments. Genotype G (plot b) and Genotypes Y, R, and B (plots c–e) are the resistant and vulnerable 
genotypes, respectively. Genotype K (plot f) is highly vulnerable.
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Because genotypic diversity is critical for populations to adapt to changing conditions, multiple genotypes 
(i.e., fragments from multiple donor colonies) are grown in nurseries to enhance genetic diversity of outplanted 
colonies and improve resilience of local populations. The CCMI nursery was established in 2012, and it started 
with five fragments collected from five colonies at three locations around Little Cayman Island. After collection, 
the donor colonies were determined to be genetically distinct via Genotyping by Sequencing (GBS) to produce 
single nucleotide polymorphisms (SNPs)26. These colonies were color coded and denoted by abbreviations: Blue 
(B), Green (G), Red (R), Yellow (Y), Black (K). These colonies also show genotypic variation in  growth27 and 
microbial communities (from colonies in the G, Y and R genotypes)30. We collected nine additional fragments 
from isolated colonies in nine locations in 2016. We consider these fragments different genotypes based on 
colony isolation and the high degree of small-scale genetic diversity reported for A. cervicornis23,26,46. Thus, the 
nursery was considered to contain 14 genotypes at the onset of the disease (see Table S1 for names and which 
frames genotypes were on).

We arranged fragments on either mixed (n = 13) or single genotype frames (n = 17), with ~ 30 cm between each 
fragment. Each frame contained 5–50 corals (Fig. S2, Table S1). Each of the single genotype frames was populated 
by one of the original 5 genotypes. Mixed frames contained 3–8 genotypes per frame. The genotypic identity 
of individual colonies suspended on the frames was tracked with colored beads threaded on the monofilament 
above the crimp used to secure the fragment on the frame (Fig. S2, Table S1). Here, we used the abbreviations 
of the colors for simplicity.

Disease monitoring. Starting in spring (May) 2019, while on a routine cleaning of the nursery, divers 
noticed sloughing of tissue along disease fronts that progressed toward the tips of the fragments. The symptoms 
of the disease characterized it as an acute tissue loss syndrome that matched the descriptions of White Band Dis-
ease Type I and rapid tissue loss  disease4, which visually are both identified as White Band  Disease47 or WBD. We 
also recovered putative WBD pathogen Vibrio harveyii in diseased  tissues48 (Schul et al. in review). Previously, 
this disease was implicated in decimating populations of the critically endangered coral, A. cervicornis. WBD 
is highly infectious, and can spread through coral-coral contact as well as through waterborne  transmission11.

We began monitoring the disease on 17 May 2019 and ceased on 29 September 2019. Weekly, divers moni-
tored each of the fragments in the nursery, visually assessing their health status. The health of the different frag-
ments was recorded as: Healthy (no disease apparent), Diseased (presence of disease identified by sloughing 
tissue), or Dead (bright white skeleton with no tissue and presence of small filamentous turf algae, Fig. 1). When 
we observed recovery of diseased fragments, characterized by tissue growing onto a dead skeleton, the status of 
the colony was revised to “Healthy.” Across the whole monitoring period, 70% of colonies (453) in the nursery 
showed signs of disease during two or more sampling events. Complete coral mortality was relatively low (less 
than 25%), although all diseased corals showed substantial partial mortality. Nearly 500 colonies (more than 
75% of the nursery) recovered or were unaffected by the disease.

Analysis
To model the prevalence of disease on frames containing mixed vs single genotypes across all of the fragments 
in the nursery, we applied a mixed effects binomial model calculated in R (v 4.0.0) using  glmTMBB49, and car 
 packages50 on the counts of disease versus the counts of not diseased (healthy and dead) corals. The model 
treated Diversity as a fixed effect (colonies on a single or mixed genotype frame), Date (date of sampling) as 
a quadratic fixed effect to capture the dynamics of the disease, and a random intercept for the frame sampled 
(Model 1:  Date2 × Diversity + Density + (1|Frame)) to account for the repeated sampling of fragments on frames, 
and effects associated with the frame. We also included an interaction term, expecting the number of diseased 
corals to change over time, and that this would depend on whether corals were on single versus mixed frames. 
We included density of corals on the frame as a fixed effect. Assumptions were tested by simulating and testing 
the outliers of the residuals of the binomial model (DHARMa package).

To understand the interactive effects of genotype and diversity, we also applied a model to the data for the 
five genotypes that were present on both single and mixed frames. This model included Diversity as a fixed effect 
(single vs mixed); Genotype as a fixed effect (B, R, K, Y, and G), a quadratic fixed effect for Date (Model 2:  Date2 
× Genotype × Diversity + Density + (1|Frame)), and a random intercept for the frame sampled, again accounting 
for the repeated sampling of the frames. We also included density as a fixed effect.

Data availability
The datasets generated during the current study are available in the Dryad repository: Brown, Anya et al. (2022), 
CCMI nursery coral disease 2019, Dryad, Dataset, https:// doi. org/ 10. 25338/ B8F643. The code is available 
at: https:// github. com/ anyab rown/ coral_ nurse ry_ disea se_ frames
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