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Topological materials discovery has emerged as an important frontier in condensed matter physics.
While theoretical classification frameworks such as topological quantum chemistry have been used
to identify thousands of candidate topological materials, experimental determination of materials’
topology often poses significant technical challenges. X-ray absorption spectroscopy (XAS) is a
widely-used materials characterization technique sensitive to atoms’ local symmetry and chemical
environment; thus, it may indirectly encode signatures of materials’ topology. Moreover, as a
local structural probe, XAS is known to have high quantitative agreement between experiment and
calculation, suggesting that insights from computational spectra can effectively inform experiments. In
this work, we show that XAS can potentially uncover materials’ topology when augmented by machine
learning. Using the computed X-ray absorption near-edge structure (XANES) spectra of more than
10,000 inorganic materials, we train a neural network classifier that predicts topological class directly
from XANES signatures with F1 scores of 89% and 93% for topological and trivial classes, respectively,
and achieves F1 scores above 90% for materials containing certain elements. Given the simplicity of
the XAS setup and its compatibility with multimodal sample environments, the proposed machine
learning-empowered XAS topological indicator has the potential to discover broader categories of
topological materials, such as non-cleavable compounds and amorphous materials, and may further
inform a variety of field-driven phenomena in situ, such as magnetic field-driven topological phase
transitions.

Keywords: machine learning, topological materials, X-ray absorption spectroscopy

I. INTRODUCTION

Topological materials are characterized by a topolog-
ically nontrivial electronic band structure from which
they derive their exceptional transport properties [1–6].
The prospect of developing these exotic phases into use-
ful applications has garnered widespread efforts to iden-
tify and catalogue candidate topological materials, evi-
denced by the emergence of numerous theoretical frame-
works based on connectivity of electronic bands [7–13],
symmetry-based indicators [7, 14–21], electron-filling con-
straints [7, 22, 23], and spin–orbit spillage [24–26]. These
frameworks have facilitated the prediction of over 8,000
topologically non-trivial phases [27–34], a vast unexplored
territory for experiments. This is strong motivation to
develop complementary experimental techniques for high-

∗ These authors contributed equally to this work.
Corresponding author: nandrejevic@alum.mit.edu

† Corresponding author: chr@seas.harvard.edu
‡ Corresponding author: mingda@mit.edu

throughput screening of candidate materials. Current
state-of-the-art techniques such as angle-resolved pho-
toemission spectroscopy (ARPES), scanning tunneling
microscopy (STM), and quantum transport measurements
are commonly used to detect topological signatures, but
a few limitations remain: Methods like ARPES directly
probe band topology but are surface-sensitive and thereby
place strict requirements on sample preparation and the
sample environment, limiting the range of experimentally
accessible materials [35, 36]; transport measurements,
on the other hand, can be performed on more versatile
samples but can be more difficult to interpret. Neither ap-
proach yet fully meets the demands of a high-throughput
classification program.

Machine learning methods are increasingly being
adapted to materials research to accelerate materials
discovery [37–44] and facilitate inverse design through
high-throughput property prediction [45–47]. Several re-
cent studies have proposed data-driven frameworks for
predicting band topology from structural and compo-
sitional attributes [48, 49] and quantum theoretical or
simulated data [50–53]. At the same time, machine learn-
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FIG. 1. Exploratory analysis using principal components and k-means clustering. (a) Decision boundary visualizations
of classifications by unsupervised k -means clustering for selected elements. As detailed in the main text, the k -means clustering
is performed on the subset of principal components accounting for at least 80% of the explained variance of spectra for a
given element. The clusters are visualized along the first (x-axis) and second (y-axis) principal components in the scatter
plots. Scattered points are colored according to their true class: topological (orange) or trivial (blue). The background is
shaded according to the cluster-assigned class. The principal components exhibited three typical patterns: (row I) imbalanced
classification in favor of topological examples, (row II) relatively balanced classification of topological and trivial examples, and
(row III) no apparent clustering by class. (b) Confusion matrices of representative examples in each of rows I, II, and III.

ing methods are being adopted to automate and improve
data analysis for a broad range of experimental techniques
[54–60]. Importantly, machine learning presents a poten-
tial opportunity to not only accelerate data analysis, but
to derive useful information from complex data in the
absence of reliable theoretical models, or to extract new
insights beyond traditional models.

In this work, we develop a classifier of electronic band
topology using materials’ X-ray absorption spectra. X-ray
absorption spectroscopy (XAS) is widely used to charac-
terize the chemical state and local atomic structure of
atomic species in a material. This technique is suitable
for the study of highly diverse samples and environments,
including noncrystalline materials and extreme tempera-
tures and pressures [61]. As a bulk probe, XAS also places
few constraints on surface quality and sample preparation.
The X-ray absorption near-edge structure (XANES), de-
fined within approximately 50 eV of an XAS absorption
edge, provides a specie-specific fingerprint of coordination
chemistry, orbital hybridization, and density of available
electronic states. However, despite the rich electronic
structural information contained in XANES spectra, the
lack of a simple analytic description of XANES has com-
pelled largely qualitative treatment of this energy regime,
with individual spectral features attributed to properties
of the electronic structure through empirical evidence

and spectral matching [62]. As a result, machine learn-
ing methods have been introduced to automate the es-
timation of materials parameters such as coordination
environments [55, 63–66], oxidation states, [63, 66], and
crystal-field splitting [67] from XANES and other core-
level spectroscopies, and even enable direct prediction of
XANES spectra from structural and atomic descriptors
[68–70]. Here, we propose that machine learning models
can be used to extract other hidden electronic properties,
namely the electronic band topology, from XANES signa-
tures and thereby serve as a potentially useful diagnostic
of topological character. In particular, we develop a ma-
chine learning-enabled indicator of band topology based
on K-edge XANES spectral inputs, which correspond to
electronic transitions from the 1s core shell states to unoc-
cupied states above the Fermi energy. First, we summarize
the data assembly procedure, which consists of labeling
the database of computed XANES K-edge spectra [71]
according to topological character using the catalogue of
high-quality topological materials predicted by topologi-
cal quantum chemistry (TQC) [27, 34]. We then conduct
an exploratory analysis of topological indication for the
K-edge XANES spectra of different elements based on
principal component analysis (PCA) and k-means cluster-
ing. Finally, we develop a neural network (NN) classifier
of topology that synthesizes insights from XANES signa-
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tures of all elements in a given compound. Our classifier
achieves F1 scores of 89% and 93% for topological and
trivial classes, respectively. Materials containing certain
elements, including Be, Al, Si, Sc, Ti, Ga, Ag, and Hg, are
predicted with F1 scores above 90% in both classes. Our
work suggests the potential of machine learning to un-
cover topological character embedded in complex spectral
features, especially when a mechanistic understanding is
challenging to acquire.

II. DATA PREPARATION AND
PRE-PROCESSING

XAS data were obtained from the published database
of computed K-edge XANES spectra [71] and additional
examples distributed on the Materials Project [72–75],
which are computed using the FEFF9 program [76]. The
materials from the XANES database were then labeled
according to their classification in the database of topo-
logical materials [27, 34], which is based on the formalism
of TQC [7]. The classifications in the TQC database are
based on structures from the Inorganic Crystal Structure
Database (ICSD) [77], and the ICSD identifier was used
to associate topological class labels with entries in the
XANES database. We note that the crystal structures
in the two databases are not strictly identical, and ICSD
identifiers are associated with structurally-similar Mate-
rials Project entries according to pymatgen’s Structure-
Matcher algorithm [74, 75]. In rare cases, multiple ICSD
identifiers corresponding to different topological classi-
fications were associated with the same set of XANES
spectra. Because small discrepancies between the ICSD
and Materials Project structures could lead to different
topological classification for some materials close to a
phase transition, all multiply-labeled examples were re-
moved from the dataset. The materials data were further
refined based on availability of both high-quality topolog-
ical classification and spectral data, resulting in 13, 151
total materials considered: 4, 957 topological (∼ 38%)
and 8, 194 trivial (∼ 62%). Here, high-quality is defined
following Ref. 27, which considers only materials with
well-determined structures and excludes alloys, magnetic
compounds, and certain problematic f -electron atoms.
Additionally, entries with spectra containing unphysical
features such as large negative jumps were discarded. The
materials in the final dataset are structurally and chemi-
cally diverse, representing 200 of 230 spacegroups and 63
different elements, with primitive unit cells ranging from 1
to 76 atoms and up to 7 unique chemical species. The rep-
resentation of different elements among topological and
trivial examples is shown in Fig. S1(a-b). Data were sub-
divided into training, validation, and test sets according
to a 70/15/15% split. While samples were randomly dis-
tributed among the datasets, an assignment process was
developed to ensure balanced representation of each ab-
sorbing element and topological class within each dataset.
Specifically, the fraction of topological insulators (TI),

topological semimetals (TSM) and topologically trivial
materials represented in compounds containing a certain
element was balanced as shown in Fig. S1(c). For each
example, the computed K-edge XANES spectra of each
absorbing element were interpolated and re-sampled at
200 evenly-spaced energy values spanning an energy range
of 56 eV surrounding the absorption edge. The spectra
were standardized separately for different absorbing ele-
ments, which consisted of centering the mean of spectral
intensities over each energy range, and scaling by the
average intensity standard deviations.

III. RESULTS

A. Exploratory analysis

Prior to training the neural network classifier, we con-
ducted an exploratory analysis of the assembled XANES
spectra to estimate the separability by topological class
exhibited by different elements. For all examples contain-
ing a given element, we performed a principal component
analysis (PCA) on the high-dimensional spectra and sub-
sequently carried out unsupervised k -means clustering on
a subset of principal components of the training set. The
number of retained principal components was selected to
retain at least 80% of the explained variance of spectra
for a given element. Results of the clustering analysis
for a selection of elements are shown in Fig. 1. The
decision boundary between the two clusters identified by
k -means clustering, projected along the first two principal
components, lies at the intersection of the blue (triv-
ial) and orange (topological) shaded regions in Fig. 1a.
Since k -means clustering is not supervised by the true
topological class of each example, cluster assignment was
performed by solving an optimal matching problem that
finds the pairing between clusters and topological classes
that minimizes the number of misclassified examples, cor-
rected for class imbalance. The examples from all three
datasets (training, validation, and testing) are plotted as
scattered points in the low-dimensional space and colored
according to their known topological class. Additional
visualizations are shown in Fig. S2. A quick survey of
these results reveals a number of elements for which the
classification accuracy of topological and trivial examples
is imbalanced, and a few for which the classification ac-
curacy is more balanced between the two classes. We
correlated these observations with the decision boundary
visualizations and noted three distinct patterns in the
result of our unsupervised clustering. For some elements,
nearly all topological examples were segregated within a
single cluster (row I of Fig. 1). This led to a strong score
for topological examples but weaker score for trivial ones
for elements such as Ti, Ge, As, and Sb. Other elements
like Ga, In, Sn, and Ta exhibited more balanced classifica-
tion accuracies between the two topological classes (row
II of Fig. 1). On the other hand, there were a number of
unsuccessful examples of alkali and alkaline earth metals
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FIG. 2. Data structure and model architecture. (a) A schematic of the full XANES spectrum for a representative sample
in the dataset, showing the signatures from different absorbing elements on an absolute energy scale. For a given material, the
inputs to the NN classifier consist of one-hot encoded atom types (left) and XANES spectra (right) for all absorbing atoms. (b)
Schematic of the neural network architecture predicting the (binary) topological class using spectral and atom-type inputs.
Spectral and atom-type inputs are individually embedded by fully-connected layers before performing a direct product between
corresponding spectral and atomic channels. These composite features are aggregated for a given material and passed to a final
fully-connected block to predict the topological class.

for which clustering of the data did not appear coincident
with topological class (row III of Fig. 1). Given that
the feature transformations performed in our exploratory
analysis were element-specific, the potential to discrimi-
nate data between the two classes is encouraging. This
also suggests a possible advantage of synthesizing infor-
mation of all constituent atom types in a given compound
in order to improve prediction accuracy.

B. Network architecture optimization

The NN classifier inputs consist of the set of XANES
spectra and atom types of each absorbing atom in a given
material, as shown in Fig. 2a, where atom types are en-
coded as one-hot feature vectors with a one at the index
equaling the atomic number, and zeros elsewhere. The
core–electron binding energy increases substantially with
increasing atomic number, ranging from 284 eV for the
C K-edge to 115,606 eV for the U K-edge [78], and thus
representing the XANES spectra of all absorbers on a
continuous energy scale would be either poorly resolved
or exceedingly high-dimensional (Fig. 2a). Separating
the spectral and atom type information at the input fa-
cilitates the construction of element-specific channels and
allows us to retain the spectral energy resolution. In
addition to enabling the synthesis of information from
different absorbers, a neural network comprises more com-
plex, non-linear operations than PCA and thereby has
the capability to learn more expressive representations of

the input data. The network architecture is illustrated
in Fig. 2b. Fully-connected layers first operate on each
spectral and atom-type input to obtain intermediate rep-
resentations, termed the spectral and atom-type embed-
dings, respectively. The embedded spectra are assigned to
element-specific channels through a direct product with
the corresponding atom-type embedding. These compos-
ite features are subsequently added for a given material
and flattened to a single array, which is passed to another
series of fully-connected layers that output the predicted
binary topological class. Due to moderate class imbal-
ance, samples were weighted to add greater penalty to
the misclassification of topological examples.

C. Machine learning model performance

Fig. 3 summarizes the performance of the trained NN
classifier. The receiver operating characteristic (ROC)
curve, which indicates the tradeoff between true and
false positive rates, is shown in Fig. 3a. We use three
different metrics in assessing the quality of prediction:
recall, precision, and F1 score. These metrics are defined
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as

recall: r =
tp

tp + fn
, (1a)

precision: p =
tp

tp + fp
, (1b)

F1 score: F1 = 2
p · r
p+ r

, (1c)

where tp and tn denote the number of true positive and
true negative predictions, and fp and fn denote the num-
ber of false positive and false negative predictions of a
given class, respectively. The NN classifier achieved F1

scores of 89% and 93% for topological and trivial classes,
respectively. We compare these results to the performance
of a traditional support vector machine (SVM) operating
on one-hot encoded atom types only (denoted SVM-type)
and on a concatenated array of spectra for all atom types
(denoted SVM), as shown in Fig. 3b and c. The average
performance of the PCA and k-means clustering approach
across all elements is also included for reference. Note
that the concatenated feature vector input to the SVM
contains zeros in place of spectra corresponding to ele-
ments not contained in the compound. We find that both
the NN and SVM classifiers based on XANES spectral
inputs outperform the baseline model relying on atom
types alone, suggesting that XANES spectral features
provide meaningful insight to topological indication. To
maintain the same number of neurons between SVM-type
and SVM models, the SVM-type inputs were copied 200
times (the length of the spectral inputs) to construct the
input features, which led to a combined increase of 5% in
the F1 scores compared to a minimal SVM-type model
reported in Fig. S4a for comparison. The NN further im-
proves upon the SVM model predictions, particularly in
the precision of topological classification which increased
by 4%. We note that the NN with both spectral and
atom-type inputs achieves a combined improvement of
∼ 7% in the F1 scores compared to a NN model of similar
size operating on atom-type inputs alone (Fig. S4a). Ad-
ditional details about the reference models are provided
in the Supplementary Information. Finally, we compute
the average metric scores obtained by the NN classifier
individually for each absorbing element, shown in Fig. 3d
and e for topological and trivial examples, respectively.
Corresponding results for the SVM model and additional
plots for the NN classifier are shown in Fig. S4 and
Fig. S6, respectively.

IV. DISCUSSION

Our results indicate that the NN classifier enables
higher and more balanced predictive accuracy over the
PCA and k-means clustering approach for a majority
of elements, including significant improvement for alkali
metals. Certain elements are better indicators of one class
over another; for instance, the alkali metals and halogens

TABLE I. Predictions on mislabeled Weyl semimetals

Material Spacegroup Predicted class

TaAs 109 Topological

NbAs 109 Topological

NbP 109 Topological

WTe2 31 Topological

Ag2Se 17 Trivial

LaAlGe 109 Topological

Ba7Al4Ge9 42 Topological

Cu2SnTe3 44 Topological

BiTeI 143 Trivial

Al4Mo 8 Topological

KOs2O6 216 Topological

Zn2In2S5 186 Trivial

appear to serve as somewhat poor indicators of topologi-
cal samples but are well-predicted in trivial compounds.
A possible explanation for this is that the elements in
these columns rarely contribute to frontier orbitals (va-
lence and conduction bands) in materials, and are thereby
poor indicators of topology. Certain transition-metal el-
ements, such as Cr, Co, Ni, Tc, and Rh, also exhibit
imbalanced accuracy in the prediction of trivial and topo-
logical classes. This is most likely due to the overrepre-
sentation of topological examples containing Cr, Co, Ni,
and Rh (Fig. S5c), since accurate prediction of topo-
logical compounds is prioritized during training. Tc is
the least abundant element in the dataset (Fig. S1a and
b), which accounts for the model’s weak performance
on Tc-containing compounds. However, further investi-
gation of the relevant spectroscopic features – whether
pre-edge, edge, or post-edge – in connection with the
corresponding electronic transitions (e.g. 1s → 3d) may
be useful to better understand performance barriers for
transition metals. Finally, we comment on the compara-
tively low precision obtained for topological over trivial
examples, 86% and 95%, respectively. While the higher
false positive rate of topological materials may suggest
additional model improvements are needed, it may also
indicate missed topological candidates. In fact, since the
TQC formalism considers only the characters of electronic
bands at high-symmetry points, it may incorrectly classify
certain Weyl semimetals with topological singularities at
arbitrary k-points [27]. In particular, we identified 12
experimentally-verified [5] or theoretically-predicted Weyl
semimetals [79] that are labeled as trivial in the TQC
database, 9 of which we correctly predict as topological
using our NN classifier (Table I). Thus, the potential
presence of topological singularities not considered in the
TQC formalism might account for some loss of precision
in the classification of topological examples. We do note
that the success of the neural network classifier can be
attributed significantly to the presence of particular ele-
ments; further work is being pursued to more accurately
decouple this contribution from that of more subtle varia-
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FIG. 3. Neural network (NN) classifier performance. (a) The receiver operating characteristic (ROC) curve showing the
tradeoff between true and false positive rates for the NN model. The area under the curve (AUC) for each dataset is noted in
the legend. (b-c) Comparative plots of the overall recall, precision, and F1 scores for (b) topological and (c) trivial examples
obtained using different methods discussed in the main text. (d-e) Element-specific F1 scores for (d) topological and (e) trivial
examples. Each element’s entry lists its atomic number, atomic symbol, and F1 score. Elements with no score listed were not
present in the dataset.

tions in the XAS spectral features for a given absorbing
element.

V. CONCLUSION

We explored the predictive power of XAS as a po-
tential discriminant of topological character by training
and evaluating a neural network classifier on more than
10, 000 examples of computed XANES spectra [71] la-
beled according to the largest catalogue of topological
materials [27, 34]. A number of important extensions are
envisioned for this work, such as its application to exper-
imental XANES data, incorporation of a multi-fidelity
approach to favor experimentally validated examples [80],
expansion of the energy range to the extended X-ray
absorption fine structure (EXAFS) regime, and inquiry
into the detailed contribution from spectral features for
individual elements. Our results demonstrate a promis-
ing pathway to develop robust experimental protocols for
high-throughput screening of candidate topological ma-
terials aided by machine learning methods. Additionally,
the flexibility of the XAS sample environment can further
enable the study of materials whose topological phases
emerge when driven by electric, magnetic, or strain fields,
and even presents the opportunity to study topology
with strong disorder and topology in amorphous materi-
als [81, 82]. Thus, machine learning-empowered XAS may

be poised to become a simple but powerful experimental
tool for topological classification.

VI. METHODS

Data processing The computed XANES spectra of
each absorbing atom were interpolated and re-sampled at
200 evenly-spaced energy values. Each XANES spectrum
spanned an energy range of 56 eV, and spectra from the
same absorbing atom were co-aligned using the calculated
absolute energy scale. Spectra of the same absorbing
atom were standardized by centering the mean of the aver-
age intensities over the sampled energy range, and scaling
by the mean of the standard deviations in intensity values.

Machine learning Principal component analysis and
SVM model implementation and training were carried
out using the scikit-learn Python library [83]. The neural
network models presented in this work were implemented
in Python using the PyTorch [84] and PyTorch Geometric
[85] libraries. The atom-type embeddings were obtained
using a single fully-connected layer with 93 input and
output neurons. The spectral embeddings of the original
200-feature spectra were obtained using a series of two
fully-connected layers with 256 and 64 output neurons,
respectively, each followed by a dropout layer with
a rate of 0.5 and a ReLU activation. The composite
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embedded features had dimensions of 5952 and were
passed to a second series of two fully-connected layers
with 256 and 64 output neurons, respectively, each
followed by a dropout layer with a rate of 0.5 and a ReLU
activation. A final, sigmoid-activated, fully-connected
layer was then used to output the scalar prediction. The
models were trained on a Quadro RTX 6000 graphics
processing unit (GPU) with 24GB of random access
memory (RAM). Optimization was performed using the
Adam optimizer to minimize the binary cross-entropy loss.
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[13] D. Călugăru, A. Chew, L. Elcoro, N. Regnault, Z.-D. Song,
and B. A. Bernevig, General construction and topological
classification of all magnetic and non-magnetic flat bands,
arXiv preprint arXiv:2106.05272 (2021).

[14] R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, The
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a b

c

FIG. S1. Element and topological class frequencies in the dataset. (a) The total number of topological samples across
training, validation, and testing data containing each element. Each element’s entry includes its atomic number, atomic symbol,
and number of samples, and is colored by the number of samples. (b) The total number of trivial samples by element. Elements
with no counts listed were not present in the dataset. (c) The fraction of topological and trivial samples, by element, in
the training, validation, and testing sets. The data subdivision reflects a balanced representation of absorbing elements and
topological class across the datasets. TI and TSM denote topological insulators and topological semimetals, respectively.
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a b

c d

e f

FIG. S4. Support vector machine (SVM) model performance. Element specific (a-b) F1 scores, (c-d) recall, and (e-f)
precision for topological (left column) and trivial (right column) examples, respectively. Elements with no score listed were not
present in the dataset.
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FIG. S5. Additional model performance metrics. (a) Comparative plots of the overall recall, precision, and F1 scores for
(left) topological and (right) trivial examples obtained using only atom-type inputs. As noted in the main text, augmented
inputs consisting of 200 copies of the one-hot encoded atom types were passed to the SVM to maintain the same number of
neurons between SVM-type and SVM models. In the barplots shown, SVM and SVM-aug. refer to SVM models operating on
the original and augmented atom-type inputs, respectively. NN-aug. refers to the neural network model without the spectral
embedding layers; instead, the direct product is performed between the atom-type embedding and an array of ones equal in
length to the spectral embedding vector. Dashed gray lines indicate the scores of the full NN model reported in the main
text. (b) Representative training history of the full NN model, indicating the loss and accuracy at the early stopping point
determined using the validation set (black dashed lines). (c) Ratios of topological to trivial examples present in the dataset for
each absorbing atom, highlighting the overrepresentation of topological examples containing certain transition metals.

a b

c d

FIG. S6. Neural network (NN) classifier recall and precision. Element specific (a-b) recall and (c-d) precision for
topological (left column) and trivial (right column) examples, respectively. Elements with no score listed were not present in the
dataset.
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