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RESEARCH ARTICLE
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Abstract

Rationale

Acute respiratory failure is a life-threatening clinical outcome in critically ill pediatric patients.

In severe cases, patients can require mechanical ventilation (MV) for survival. Early recogni-

tion of these patients can potentially help clinicians alter the clinical course and lead to

improved outcomes.

Objectives

To build a data-driven model for early prediction of the need for mechanical ventilation in

pediatric intensive care unit (PICU) patients.

Methods

The study consists of a single-center retrospective observational study on a cohort of

13,651 PICU patients admitted between 1/01/2010 and 5/15/2018 with a prevalence of

8.06% for MV due to respiratory failure. XGBoost (extreme gradient boosting) and a convo-

lutional neural network (CNN) using medication history were used to develop a prediction

model that could yield a time-varying "risk-score"—a continuous probability of whether a

patient will receive MV—and an ideal global threshold was calculated from the receiver

operating characteristics (ROC) curve. The early prediction point (EPP) was the first time

the risk-score surpassed the optimal threshold, and the interval between the EPP and the

start of the MV was the early warning period (EWT). Spectral clustering identified patient

groups based on risk-score trajectories after EPP.

Results

A clinical and medication history-based model achieved a 0.89 area under the ROC curve

(AUROC), 0.6 sensitivity, 0.95 specificity, 0.55 positive predictive value (PPV), and 0.95
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negative predictive value (NPV). Early warning time (EWT) median [inter-quartile range] of

this model was 9.9[4.2–69.2] hours. Clustering risk-score trajectories within a six-hour win-

dow after the early prediction point (EPP) established three patient groups, with the highest

risk group’s PPV being 0.92.

Conclusions

This study uses a unique method to extract and apply medication history information, such

as time-varying variables, to identify patients who may need mechanical ventilation for respi-

ratory failure and provide an early warning period to avert it.

Introduction

Acute respiratory failure (ARF) in children is a leading cause of morbidity and mortality [1–3].

Respiratory failure occurs when the body is unable to get enough oxygen into the blood from

the lungs or remove enough carbon dioxide from the blood. Acute respiratory failure is one of

the top reasons children are admitted to an intensive care unit [4]. Infants and young children

are at a higher risk of developing acute respiratory failure than adults for various reasons, such

as different mechanical, muscular properties, and lower reserves in their respiratory system

than adults. ARF can occur in children like in adults because of infections, asthma attacks,

neuromuscular conditions, congenital heart disease, airway obstruction, trauma, or are drug

related [2, 3, 5]. Pediatric acute respiratory failure symptoms include difficulty breathing,

rapid breathing, bluish skin, lips, and fingernails (known as cyanosis), and confusion [6].

Immediate treatment includes giving oxygen until the underlying cause is identified, and it

usually involves a gradual increase in respiratory support such as non-invasive ventilation and

ultimately intubation with mechanical ventilation. Asthma and airway reactivity are very com-

mon causes of ARF in children [1, 7]. For this condition, it is generally recommended to avoid

mechanical ventilation and treat it with non-invasive and other forms of respiratory support.

In addition, supplemental oxygen and non-invasive ventilation are adequate for many children

who have acute respiratory failure, but mechanical ventilation becomes necessary in severe

cases [8].

Invasive mechanical ventilation (MV) is used as a life-saving intervention for ARF, but this

carries a high risk of lung injury and intubation-associated infection [9]. More than half of

patients with ARF required MV [3]. A prior meta-analysis of twenty-nine studies reported an

incidence rate of 2.3% per 100,000 patient years and a mortality rate of 34% for pediatric acute

respiratory distress syndrome [6, 10]. Mechanical ventilation is an invasive process that

involves intubation with an artificial airway to connect to a ventilator [11]. Since a conscious

patient typically cannot tolerate intubation, mechanical ventilation necessitates sedation and

paralysis, which impairs the patient’s ability to interact or communicate. Alternations include

infective airway clearance, increased risk of nosocomial infections, the need for enteral feeds

via a tube or intravenous fluids, and general muscle wasting due to prolonged paralysis. A suf-

ficient early warning of a high risk of MV could help prescribe medical interventions to poten-

tially avoid the need for MV.

Unlike acute respiratory distress syndrome (ARDS) in adults, there are very few studies

focused on predicting ARF and the need for MV in children. The literature on MV prediction

is limited to specific patient populations requiring prolonged MV [12–16]. There are no exist-

ing studies that have been successful in predicting the need for MV in a general PICU
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population. Several scoring systems [17] that are based on specific physiologic or laboratory data

are used most frequently in intensive care units to predict general risk of organ failure, such as the

Sequential Organ Failure Assessment (SOFA) [18, 19] score or mortality, such as the Acute Physi-

ologic Assessment and Chronic Health Evaluation (APACHE) [20] score. The incorporation of

data from the Internet of Things (IoT) [21, 22], a network of physical objects with embedded sen-

sors and actuators that can collect and exchange data, can also be advantageous for these scoring

systems. The IoT can offer real-time analytics, automation, and monitoring for the equipment

and inventory as well as for the productivity and efficiency of staff and patients. However, none of

these scoring systems have been targeted to respiratory failure in pediatric patients [23].The Pedi-

atric Early Warning Score (PEWS) [24] is a frequently used scoring system in pediatric inpatient

medical units to identify patients at risk for patient deterioration, in contrast to many other scor-

ing systems adapted for children. Although the PEWS scoring system was designed for use on the

medical floor, researchers have also applied it to intermediate medical units. Since there are no

published early warning prediction models for children who need mechanical ventilation, the

PEWS scoring system was investigated using this dataset.

This study presents a novel approach for combining static and dynamic variables extracted

from electronic health records, including medication history, to create a prediction model for

identifying patients who are likely to receive MV due to ARF.

Methods

Data description

This retrospective, single-center study utilized electronic health record (EHR) data from

patients admitted to the Pediatric Intensive Care Unit (PICU) at Rady’s Children’s Hospital in

San Diego, California between 1/01/2010 and 5/15/2018. IRB approval was obtained from

Rady/UCSD. Only the research team had access to clinical data records to validate data for accu-

racy, once data was validated, only coded identifiers were used in the dataset. All patients aged 0

to 21 years with non-missing age, gender, weight, PICU length of stay (LOS), and at least one

recorded vital sign were included. This model was created using routine structured nursing and

respiratory therapy assessments, vital signs, medication administration records, respiratory sup-

port documentation, and labs (Fig 1). To make the prediction model more applicable, patients

with tracheostomy or cyanotic heart disease whose baseline oxygen saturation was less than

90% for at least 75% of the hospital stay were excluded. Also excluded were records in which the

first ventilator event was likely the result of a transcription error (manually verified) or insuffi-

cient ventilation information. Patients who received MV within 12 hours of PICU admission

were excluded because there was insufficient data prior to the onset of MV. To rule out non-

respiratory failure MV, such as elective procedures, MV patients were excluded whose discharge

diagnosis did not include at least one respiratory or cardiovascular diagnosis, or sepsis, or MV

duration was less than 12 hours, or MV onset occurred within 90 minutes of a documented

medical procedure/surgery. The absence of ventilation flowsheet information indicated that

patients were receiving only room air and did not need respiratory support (Fig 2).

Feature preprocessing for non-medication features

Since all the data extracted from electronic health records were recorded at non-uniform time

intervals, all features were resampled at every 5-minute intervals and carried forward until the

next observation. Categorical features were converted to one-hot encoded vectors, which

implies that if a categorical variable had N-discrete values, then each of those values were rep-

resented by N different binary variables. Numerical variables which vary with patient charac-

teristics such as age, height, weight, and gender, were standardized by converting to z-scores
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(z ¼ x� m
s

, z: z-score, x: raw value of variable, μ, σ: mean and standard deviation) using the Har-

riet Lane Handbook of Pediatrics’ range of normal values for individual physiologic variables

[24]. Height and weight features were then converted to z-scores and missing values of height

were replaced with z-score = 0. Even after carrying forward observations, there were still some

missing data, and some measurements, such as invasive lab tests, were not done often on

patients who were relatively stable. For an XGBoost model [25, 26], missing values were not

required to be imputed, but for the lasso-GLM model [27] model, missing values were replaced

with the median of the observed data for each variable across the training dataset.

Model based feature selection

One of the primary reasons for selecting XGBoost and lasso-GLM was that both can handle a

large number of features and automatically select a subset of features that yields the best

Fig 1. Dataset feature description. Each of the above feature labels can represent multiple measurements; for example, vital signs

can represent heart rate, respiratory rate, oxygen saturation, blood pressure etc. The orange box on the input and output rate

features indicates that the rate of inputs and outputs were calculated in a continuous manner using the preceding 6 hours.

https://doi.org/10.1371/journal.pone.0289763.g001
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classifier. Lasso-GLM (equivalent to a regularized logistic regression) introduces sparsity to

the set of features in the model through the addition of L1-norm (number of non-zero values)

of model coefficients to the objective function of a generalized linear model. XGBoost is a

non-linear ensemble decision tree-based method that sequentially grows decision trees with a

specified maximum depth and minimum weight for each child node. In each iteration, a new

decision tree is constructed using a subset of training data and a random subset of features,

with the goal of minimizing the sum of squared error between the known outputs and the

Fig 2. Flowchart of study inclusion-exclusion criteria.

https://doi.org/10.1371/journal.pone.0289763.g002
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expected model outputs based on previous iterations. The two parameters, maximum depth of

each decision tree and the fraction of features to subsample at each iteration, constrain the

XGBoost model to choose an even smaller subset from the randomly selected subset at each

iteration. XGBoost is known to be more resistant to model overfitting and feature multicolli-

nearity. As a result, while both XGBoost and lasso-GLM can automatically select the most rele-

vant features that would result in the best prediction model, they are more likely to select

different features due to differences in their underlying methodology, which is especially

noticeable when features are highly correlated. The only disadvantage is that while the features

chosen by these models are predictive, clinical causality may be confounded by other related

variables.

The final set of features used to develop and test the prediction models consisted of 188 fea-

tures derived from respiratory, cardiovascular, and neurologic nursing assessments, laboratory

test (blood gases, blood chemistry) flowsheets, as well as additional features from medication

records (Fig 1). Description of feature selection and processing are provided in S1 Fig 1, and

S1-1, S1-2 Tables in the S1 Appendix.

Medication based features

Two different strategies were used to harness medication-based features. The first strategy

used a standard method of using continuous-time binary indicators for each medication to

indicate whether or not it had been administered over the previous 6-hour period. Because

several periodically or continuously administered medications in the dataset were typically

prescribed in 4–6 hour intervals, 6-hour time windows were chosen. In order to use this

method, a subset of drugs were chosen based on whether those were given to at least 10% of

MV patients or whose prevalence for at least one dose per patient differed by more than 5%

points between the MV and no-MV group (see S1 Table 1 in S1 Appendix for the list selected

medications).

The second method for incorporating medication data not only relied on the medications

given at the same time instant but also the history of other medications given to each patient

with respect to the current time. To harness the medication history as features in the predic-

tion model, a novel application of a convolutional neural network (CNN) model was proposed

based on the network architecture introduced by Kim et al. [28, 29] to perform sentence classi-

fication for natural language processing applications. Fig 3 shows the architecture of the model

used in the study, which was very similar to the architecture proposed by Kim et al. [28] with

different number and sizes of convolutional filters. This model uses a fixed embedding layer,

followed by a single convolutional layer consisting of five 1-dimensional convolutional filters

each of dimension 4x20, 5x20, and 6x20, followed by max-pooling and then a drop-out layer

for regularization (prevents overfitting) and finally a soft-max layer, which produces a binary

output. The number of convolutional filters and the filter dimensions were chosen based on

optimal model performance obtained by training models with different combination of num-

ber and sizes of filters treated as tunable hyperparameters. The embedding layer in this model

takes in the medication history within the 6-hour period prior to a given time point in the

form of a sequence of medication names and actions such as “Medication-1 given medication-

2 given medication-1 rate changed medication-2 stopped” and maps this structured sentence

to a numerical vector, for example [0.01, 0, 0.5, 0.004, 0.6, 0.78, 0, 0.1, 0, 0]. There were a total

of 1436 unique medications found in the training set and the corresponding unique actions

used for these medications were “given”, “rate changed” and “stopped”. This allows the model

to represent words as numeric values that can be used as inputs by the convolutional layer

which trains itself based on the medication history provided and corresponding classification

PLOS ONE Predicting need for pediatric invasive ventilation

PLOS ONE | https://doi.org/10.1371/journal.pone.0289763 August 4, 2023 6 / 23

https://doi.org/10.1371/journal.pone.0289763


output provided as training data to the CNN model. The embedding layer used in the CNN

model is a fixed non-trainable layer, which used GloVe (global vector embedding) [30] to rep-

resent individual words as numerical vectors and therefore, a sentence was simply constructed

by concatenating the numeric representation for each word. The GloVe implementation from

Fig 3. Medication history-based feature computation model. (a) Medication history-based feature computation model (b) Use of medication history features

in the overall prediction model along with non-medication features.

https://doi.org/10.1371/journal.pone.0289763.g003
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the R package text2vec [31] was utilized. GloVe is an unsupervised representation learning

technique that uses the co-occurrence frequency for a pair of words which usually occur within

a specified distance from each other in a sentence (known as the context window size). The

dimension of word embedding produced by GloVe and the context window length are variable

parameters to be determined by user based on downstream tasks. Therefore, GloVe essentially

serves as a dictionary of words that is trained on a fixed corpus and is later used to map words

in its dictionary to numeric features of length specified by the embedding dimension. The

CNN model was trained with different values of embedding dimension and context window

length provided to GloVe and found that the model’s performance was relatively less variable

with respect to these parameters. The final set of parameters determined from hyperparameter

tuning were a context window size of 25 words and an embedding dimension of 10. Finally,

the entire history of medication up to the time of MV preparation for each target (MV) case

and the medication history during the entire length of stay (LOS) for each control (no-MV)

case were used as inputs and the binary outcome MV = 1, no-MV = 0 was used to train the

CNN. The CNN model thus obtained after 10-fold cross validation on the training set, was

used as a pre-trained model and the layer just before the binary output was used as learnt

representation of the medication history that could be used to derive multidimensional medi-

cation history features along with non-medication features for building the overall prediction

model using XGBoost. For generating medication history features at a given time, the sequence

of medications given, rate changed and stopped in the previous 6-hour window were collated

and passed through the trained CNN to obtain the medication history features a shown in Fig

3. Fig 3(B) shows how the medication history feature was used in conjunction with other fea-

tures at any given time.

Model building and evaluation

A set of four different models were trained using different set of input features:

• Model-A: It contains non-medication features and medication history features derived from

the pre-trained CNN described in the previous section.

• Model-B: It contains non-medication features and medication indicator features for medica-

tion listed in S1 Table 1 in S1 Appendix.

• Model-C: It contains only non-medication features

• Model-D: It contains only medication history features (included in Model-A).

The performance of the above models was compared and the performance of the two best

performing models among these were also compared by using two different machine learning

methods: XGBoost (extreme gradient boosting [25, 26] and lasso-GLM [27].

XGBoost was the default method for building prediction models to identify increased risk

for MV in PICU patients. A 30 minute time window prior to MV onset was labelled as the MV

preparation time during which hypnotics and anesthetics were routinely administered in prep-

aration for intubation and subsequent MV initiation. To avoid misidentification of physiologic

response to preparation for MV as a predictor, data collected between MV preparation and

MV onset times were excluded during training and testing phases.

The entire analysis was performed using R version 3.6.3 [32] and the R packages xgboost

version 1.0.0.2 [33] and glmnet version 3.0.2 [34] were used to implement XGBoost and lasso-

GLM models respectively. The R packages text2vec version 0.6 [35] was used to convert text to

numeric vectors and keras version 2.3.0.0.9000 [36] to train the CNN for extracting medica-

tion history features.
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Our training set was created by randomly selecting 80% of the patients stratified by MV out-

come, gender, age group, and non-invasive positive pressure ventilation status, and the remaining

20% were held out as test set at the onset of the study. All samples in the 12-hour period preceding

MV preparation from MV cases and an equal number of randomly selected samples from no-MV

cases from the training set were used to train the model. The model was then cross-validated on

the entire PICU course until MV preparation time for the MV group and the entire hospital

course for the no-MV group within the training set. During model training, XGBoost creates a

binary classifier that can distinguish samples from positive and negative classes. The correspond-

ing model output is the probability of the sample belonging to the positive class given the features

observed at a time point. This time-varying probability has been defined as the “risk-score”

throughout this study. The optimal threshold risk score was obtained from the receiver operating

characteristic (ROC) based on maximum F1 score [37].If the risk-score of the patient exceeded

the threshold at any time between time of PICU admission and MV preparation time, the binary

classifier generated a positive prediction for MV and a negative prediction if the risk-score of a

patient never exceeded the threshold during their LOS. The first instance where the risk-score

crossed the threshold was defined as the early prediction point (EPP) and the duration between

EPP and MV onset was defined as the early warning time (EWT).

Performance metrics

The performance metrics reported in the study to compare models were

• AUROC: Area under the receiver operating characteristic (ROC) curve

• AUPRC: Area under the precision-recall (PR) curve

• Sensitivity: Also known as recall or true positive rate. It is the ratio of true positives to the

number of observed positives.

• Specificity: Also known as true negative rate. It is the ratio of true negatives to the number of

observed negatives.

• Positive predictive value (PPV): Also known as precision. It is the ratio of true positives to

the number of predicted positives.

• Negative predictive value (NPV): It is the ratio of true negatives to the number of predicted

negatives.

• F1 score: It is defined as
2�sensitivity�PPV
sensitivityþPPV . F1 score is often used as a criterion for threshold selec-

tion from ROC for datasets with high class imbalance.

• Early warning time (EWT): Lead time between the time of early prediction and MV onset.

Statistical hypothesis tests

Wilcoxson rank-sum test and Kruskal-Wallis test were used for testing the association of con-

tinuous variables across categorical factors with 2 levels and more than 2 levels respectively.

For categorical variables, Fisher exact test was used to determine association with other cate-

gorical factors. Cochran-Armitage test was used to test the presence of linear trends in binary

variables across ordinal factors.

Risk grouping using spectral clustering

Spectral clustering [38] is an efficient, graph theory-based clustering technique that can iden-

tify clustering patterns in high-dimensional data by computing the eigenvalues of the
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adjacency matrix (also known as the similarity matrix) between each pair of data points. The

distance metric used to construct the similarity or adjacency matrix and the criteria used to

determine the number of clusters vary in scientific literature, but the overarching mathemati-

cal underpinning remains the same. Our analysis used a KNN (K-nearest neighbor) based

adjacency matrix and used the maximum eigengap criteria to determine number of clusters as

described by von Luxburg [38].

Since spectral clustering is an unsupervised clustering method, it was applied to the risk-

score trajectories within 0 to 6 hours from the time of early prediction within the training set

to generate different risk-groups based on the clustering labels. The stability of these clusters

was assessed on the training set by repeated subsampling of the training set without replace-

ment (bootstrapping) and computing the maximum Jaccard index between the cluster assign-

ments on each subset and the labels obtained on the entire training sample. The final

parameters obtained for model-A was K = 200 which yielded three distinct clusters with an

average Jaccard index> 0.9 from the stability analysis. The test set samples were finally

assigned new risk-group labels with the help of KNN using the training set cluster labels as ref-

erence. Similar clustering approach has been applied in prior studies on prediction of multiple

organ dysfunction [39] and septic shock [40] in pediatric population.

Feature importance

Two different feature importance metrics were reported in this study, including XGBoost’s

built-in model-based feature importance metric “gain” and “SHAP value”, a model-agnostic

metric for feature contribution or importance. These two are inherently very differently com-

puted and offer different perspectives on feature importance in a non-linear model like

XGBoost. While the gain metric provides an insight into which features had the highest mean

reduction in Gini impurity during the decision tree building process, it is not consistent and

non-comparable with other methods. On the other hand, SHAP values [41, 42] are a model-

agnostic consistent metric that can provide a quantitative measure of the expected value of dif-

ference in the predicted probability when a certain feature is present or missing given all other

features are observed. The global SHAP feature importance can be evaluated by averaging the

magnitude of SHAP values across all training samples for each feature. The most significant

advantage of SHAP is the local explanation of each prediction on new data used for testing, as

opposed to global feature importance metrics, which are computed solely on observed training

data. The absolute values of SHAP reflect the magnitude of the association with the target out-

come, and the sign indicates whether the association increases or decreases the odds of the out-

come. The average absolute SHAP values computed across training data is reported as a

general global feature importance metric.

Results

Study population characteristics

The retrospective dataset in this study had 14,192 PICU encounters. The final study population

after applying the inclusion criteria outlined in Fig 2 included 13651 PICU encounters (1176

received MV, 12475 did not, 8.6% MV prevalence). The baseline characteristics of the included

study population are shown in Table 1. The median age across MV cases was 1.2 years, com-

pared to 4.8 years (p-value <0.001 using Wilcoxson ranksum test) among those who did not

receive MV (no-MV). The median PICU LOS in MV cases was more than 6 times higher than

in no-MV cases (19.4 vs 3.1 hours, p-value <0.001 using Wilcoxson ranksum test). The pro-

portion of cases with non-invasive ventilation (NIV) prior to MV within MV cases was higher

than the proportion of NIV in no-MV cases (28.4% vs 10.7%, p-value<0.001 using Fisher
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exact test). The distribution of gender, race, and ethnicity were similar in MV and no-MV

groups.

Prediction model performance and selection

Models were created to test two different methods of incorporating medication data in addi-

tion to the clinical features. Model A used a combination of non-medication features (vitals,

lab results, input output etc.) along with medication history features derived from a pretrained

CNN. The CNN uses natural language processing to identify medication features such as

“change in dose” and medication grouping combinations rather assessing a single medication

independently (Fig 3). Model B utilized the same non-medication features as Model A but uti-

lized medication features based on binary indicators. Two models were developed—one with

no medication-based features (Model C) and one with only medication history features

(Model D)—to ascertain the role that medications play in the model. Although medication did

increase the positive predictability of MV, Fig 4 and Table 2 show that medication alone did

not outperform medication with assessment features.

Models A and B were trained using both XGBoost [25, 26] and Lasso-GLM [27, 43]. Of the

two, XGBoost had higher area under precision-recall curve (AUPRC) (A: 0.55 vs 0.52, B: 0.46

vs 0.4) and positive predictive value (PPV) (A: 0.54 vs 0.51, B: 0.45 vs. 0.4) (S1 Table 3 in the S1

Appendix). Examples of risk scores produced over time by Model A for MV and no-MV cases

are shown in Fig 5. The ROC and precision-recall (PR) curves for the two models are shown in

Fig 6. Models A and B achieved median [IQR] area under ROC (AUROC) 0.89[0.89–0.9] vs.

Table 1. Study population characteristics.

Characteristics All included PICU encounters

(N = 13651)

Received mechanical

ventilation?

p-value

True False

(N = 1176) (N = 12475)

Age* (years) 4.5 [1–12.2] 1.2 [0.2–9] 4.8 [1.1–

12.4]

<0.001

Length of stay* (days) 3.6 [1.7–7.8] 19.4 [11.7–

37.1]

3.1 [1.6–6.2] <0.001

Gender†

Male 7701 (56.4%) 627 (53.3%) 7074 (56.7%) 0.027

Female 5950 (43.6%) 549 (46.7%) 5401 (43.3%) 0.027

Race†

White 6454 (47.3%) 577 (49.1%) 5877 (47.1%) 0.2

Black 859 (6.3%) 60 (5.1%) 799 (6.4%) 0.079

Asian 713 (5.2%) 76 (6.5%) 637 (5.1%) 0.054

Pacific Islander 194 (1.4%) 34 (2.9%) 160 (1.3%) <0.001

Other 5431 (39.8%) 429 (36.5%) 5002 (40.1%) 0.016

Ethnicity†

Hispanic 6558 (48%) 533 (45.3%) 6025 (48.3%) 0.054

Non-Hispanic 7060 (51.7%) 643 (54.7%) 6417 (51.4%) 0.035

Other 33 (0.2%) 0 (0%) 33 (0.3%) 0.111

Non-invasive positive pressure ventilation (NIV)† (prior to MV or anytime for

non-MV cases)

1664 (12.2%) 334 (28.4%) 1330 (10.7%) <0.001

* Expressed as median [IQR] and p-values for these variables were calculated using Wilcoxson ranksum test.
† Expressed as N (prevalence in %) and p-values for these variables were calculated using Fisher exact test.

https://doi.org/10.1371/journal.pone.0289763.t001
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Fig 4. Performance metrics from 10-fold cross validation on training set using the tuned set of hyperparameters for XGBoost.

https://doi.org/10.1371/journal.pone.0289763.g004

Table 2. Performance metrics of models.

Performance metrics

using XGBoost

Model-A: Non-medication features

+ medication history features

Model-B: Non-medication features

+ medication indicator features

Model-C: Non-

medication features only

Model-D: Medication

history features only

AUROC 0.89 0.86 0.85 0.84

AUPRC 0.55 0.46 0.45 0.43

Sensitivity (recall) 0.47 0.43 0.47 0.56

Specificity 0.96 0.95 0.94 0.89

Positive predictive value

(precision)

0.54 0.45 0.42 0.33

Negative predictive value 0.95 0.95 0.95 0.96

F1 score 0.50 0.44 0.44 0.41

Early warning time*
(hours)

9.9 [4.2–69.2] 40.2 [11.0–134.3] 55.2 [14.1–151.1] 6.2 [3.6–38.3]

*Expressed as median [IQR]

AUROC: Area under receiver operating characteristic curve

AUPRC: area under precision-recall curve

https://doi.org/10.1371/journal.pone.0289763.t002
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0.86[0.85–0.87], AUPRC 0.52[0.51–0.56] vs 0.45[0.42–0.46] and PPV 0.51[0.48–0.53] vs. 0.4

[0.35–0.46] during 10-fold cross-validation on the training set (see complete cross-validation

performance metrics in Fig 4). Unless otherwise specified, the study’s final performance met-

rics apply to the held-out test set. All performance indicators for Models A, B, C, and D on the

test set are shown in Table 2. Model A had the highest AUROC (0.89), AUPRC (0.55), and

PPV (0.54). The EWT was 9.9[4.2–69.2] and 40.2[11.0–134.3] hours, respectively, for models

A and B.

Unless otherwise specified, all results in the subsequent subsections are based on Model A,

the model with the best overall performance.

Risk-based patient grouping

Natural groupings in the time-varying risk-score trajectories were observed after a patient

crossed the EPP (Fig 7). Within 0–6 hours after passing the EPP in Model A, three distinct

groups appeared using spectral clustering on the risk-score trajectories. These clusters were

named as the low, medium, and high-risk groups based on their average risk-scores at EPP.

The time-varying risk-scores across all positive predicted cases were less distinguishable 2–3

hours before EPP but showed a steady increase leading up to the time of prediction, and finally

Fig 5. Time evolving risk-score. Time evolving risk-score of (a) a patient who received mechanical ventilation (b) a

patient who did not receive mechanical ventilation.

https://doi.org/10.1371/journal.pone.0289763.g005
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Fig 6. (a) Receiver operating characteristic (ROC) curves, and precision-recall (PR) curves for model A and model B. Model A consisted of non-medication

features and CNN based medication history features. Model B consisted of non-medication features and medication indicator features.

https://doi.org/10.1371/journal.pone.0289763.g006

Fig 7. Risk groups obtained using K-NN classifier on test set using spectral clustering labels. Risk groups obtained using K-NN

classifier on test set using spectral clustering labels obtained on training data as reference. The risk scores in this figure were

generated from Model A. Solid lines represent the mean, and the shaded regions represent mean ± standard deviation across each

group.

https://doi.org/10.1371/journal.pone.0289763.g007
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diverged into three distinct risk groups (Fig 7). Although the high and medium risk groups

had consistently high risk-scores over time, the low-risk group had a significant decline in

risk-score within 6 hours after EPP. The PPV increased and median EWT decreased across the

low, medium, and high-risk groups (Table 3). Histograms of EWT for each risk group are

shown in S1 Fig 1 in the S1 Appendix. The high-risk group with the highest risk-scores had a

substantially higher PPV (0.92) as compared to other groups (0.55, 0.15) and the complete test

set (0.53).

Performance stratified by diagnostic categories

The prevalence of at least one recorded ICD diagnostic code was 55% across the included

PICU encounters (99.7% in MV, 50.8% in no-MV). Baseline statistics on diagnostic categories

are presented in S1 Table 4 in the S1 Appendix. The rates on incidence of diagnostic categories

across risk groups are presented in S1 Table 5 in the S1 Appendix.

Feature importance

XGBoost’s model-based global feature importance metric “Gain” and model-agnostic average

absolute SHAP (Shapley Additive Explanation) values evaluated on training data are presented

in Table 4. S1 Fig 1 in the S1 Appendix shows examples of local feature attributions using

SHAP values before and after EPP in an MV case. The five features with highest observed aver-

age SHAP values across positive predicted cases evaluated at EPP are, in rank order: IV rate,

age, PO rate, respiratory rate, and heart murmurs (S1 Fig 2 in S1 Appendix).

Model B variations

A longer EWT is often preferred by clinicians to have enough time to potentially alter a

patient’s clinical course. Since Model B had a considerably longer median EWT than Model A,

a subsequent analysis on variations of Model B was conducted to explore if it could improve

the overall positive predictive value, AUROC, and AUPRC. Two different prediction schemes

were tested: Model B1 with a dual threshold and Model B2 using a waiting period around the

EPP. The detailed performance of Models B1 and B2 are presented in the S1 Table 6 in S1

Appendix. Model B1 showed a marginal improvement over Model B in AUROC (0.88 vs 0.86)

and AUPRC (0.49 vs 0.46), but slightly lesser PPV (0.42 vs 0.45). The median EWT with the

dual-threshold method with 6-hour period between two thresholds (Model B1) was the highest

among all the variants of Model B (Model B: 40.25 hours, Model B1: 60.1 hours, and Model

B2: 59.7 hours).

Prediction with PEWS

Pediatric Early Warning Score (PEWS) [44] is a commonly used scoring system in pediatric

inpatient medical units to identify patients at risk for patient deterioration. This nursing and

respiratory therapist driven scoring system is based on a patients’ behavior (alert, irritable,

Table 3. Positive predictive values and early warning times across risk groups in test set.

Groups Number of positive predictions Positive Predictive Value (precision) Early Warning Time* (hours)

High risk group 49 0.92 6 [3.2–39.5]

Moderate risk group 106 0.57 21.3 [5.1–111.8]

Low risk group 52 0.12 43.8 [14.3–66.1]

*Expressed as median [IQR] across all true positives

https://doi.org/10.1371/journal.pone.0289763.t003
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baseline etc.), cardiovascular and respiratory findings such as heart rate, respiratory rate and

need for supplemental oxygen [45]. While PEWS was developed for use on the medical floor,

investigators have used this scoring system on intermediate medical units. Since there are no

published early warning prediction models, the PEWS scoring system was evaluated on the

Table 4. Global feature importance for the 20 highest ranked features across the training set computed using XGBoost gain metric and average absolute SHAP

value.

Feature rank Feature name Gain (XGBoost) Feature name Average |SHAP| value

Model-A (non-medication features + medication history features from pre-trained CNN)

1 IV rate 0.138 IV rate 0.438

2 Age 0.072 Age 0.293

3 medhist2 0.054 PO rate 0.250

4 medhist9 0.043 medhist2 0.194

5 medhist7 0.041 medhist12 0.149

6 HeartSounds.Murmur 0.037 HeartSounds.Murmur 0.145

7 PO rate 0.036 RightResponse.Brisk 0.144

8 medhist3 0.032 Bilirubin 0.140

9 Bilirubin 0.030 Height 0.124

10 Height 0.029 Resp 0.121

11 Resp 0.021 medhist7 0.116

12 Weight 0.018 medhist9 0.115

13 Carbon dioxide (blood) 0.018 medhist3 0.104

14 FiO2 0.018 Alkaline Phosphatase 0.104

15 Alkaline Phosphatase 0.017 FiO2 0.103

16 RightResponse.NotMeasured 0.016 RightResponse.NotMeasured 0.095

17 RDW 0.016 DBP 0.090

18 RespiratoryEffortORPattern.Tachypneic 0.016 Chloride 0.087

19 RightResponse.Brisk 0.015 PCO2 Venous 0.087

20 medhist12 0.015 RDW 0.079

Model-B (non-medication features + medication indicator features)

1 IV rate 0.192 IV rate 0.548

2 Age 0.082 PO rate 0.349

3 PO rate 0.064 Age 0.296

4 HeartSounds.Murmur 0.047 RightResponse.Brisk 0.178

5 Bilirubin 0.038 Bilirubin 0.157

6 Height 0.034 HeartSounds.Murmur 0.143

7 Resp 0.025 Height 0.140

8 RightResponse.Brisk 0.024 Resp 0.122

9 Alkaline Phosphatase 0.023 Chloride 0.112

10 RespiratoryEffortORPattern.Tachypneic 0.021 Alkaline Phosphatase 0.107

11 GCS Eye 0.021 RightResponse.NotMeasured 0.084

12 Weight 0.020 RDW 0.082

13 Chloride 0.020 DBP 0.081

14 Carbon dioxide (blood) 0.018 Calcium 0.080

15 Creatinine 0.018 PCO2 Venous 0.080

16 RDW 0.018 GCS Eye 0.079

17 RightResponse.NotMeasured 0.016 BUN by Creatinine ratio 0.072

18 FiO2 0.016 Creatinine 0.071

19 C-Reactive Protein 0.015 RespiratoryEffortORPattern.Tachypneic 0.071

20 RespiratoryEffortORPattern.Labored 0.015 State.Alert 0.069

https://doi.org/10.1371/journal.pone.0289763.t004
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dataset. The median [IQR] of maximum Pediatric Early Warning Score (PEWS) was 4 [3–5]

for MV cases evaluated until MV onset and 3 [2–4] during entire LOS among no-MV cases.

Maximum PEWS until MV onset achieved 0.6 AUROC, 0.13 AUPRC, and by using the opti-

mal threshold from training set, PEWS > 5 classifier yielded 0.39 sensitivity, 0.77 specificity,

0.13 PPV, 0.93 negative predictive value (NPV), 0.2 F1 score, and median [IQR] EWT of 33.7

[8.8–84.9] hours. Daily-PEWS (maximum PEWS over 24-hour intervals) predicted MV within

the following 24 hours with 0.67 AUROC, 0.02 AUPRC, and the classifier daily-PEWS > 6

yielded 0.15 sensitivity, 0.94 specificity, 0.03 PPV, 0.99 NPV, 0.05 F1 score and median [IQR]

lead time between MV onset and the first instance of PEWS>6 on the day prior to MV onset

was 25 [21–31.6] hours.

Discussion

Predictive performance of models

Predicting which patients are likely to need MV can be done using standard assessments that

are frequently recorded in PICU patients along with medication history. Based on several test

set performance metrics, Model A was found to be the best of the six proposed models. The

models show that for specific medications, convolutional neural networks are more predictive

than traditional binary indicators. Model C’s (which lacked any medication-based features)

PPV was the lowest of the models A through D, indicating that the medication data is a signifi-

cant predictor on its own. Additionally, even without any additional non-medication features,

Model D, which only uses medication history features, performed reasonably well. Based on

the combination or administration order of the given medications, a clinician can undoubtedly

infer the clinical state of a patient. For instance, a patient receiving a higher or more frequent

dose of a diuretic could infer the patient’s fluid status without any other clinical features. Since

the drug can also be used to treat high blood pressure, heart failure, improve urine output, etc.,

its presence alone is less beneficial. In contrast to using individual binary indicators, using the

natural language of medication history (increased, decreased, combination with other medica-

tions) better represents a patient’s clinical condition. The study found that Model A, which

incorporates clinical assessments and the natural language of medication histories, performed

the best. Regardless of EMR, Model D, which uses universal medication usage language, may

be adopted in the future by institutions and may provide enough positive predictive value to

assist clinicians in monitoring patients at risk for mechanical ventilation.

On Model A, XGBoost outperformed lasso-GLM in terms of AUPRC, PPV, and median

EWT. XGBoost, as a non-linear technique, also has the advantage of being able to discover

more complex non-linear relationships between predictors and outcomes, and unlike most

other methods, including lasso-GLM, it does not require explicit imputation of missing values.

To build each decision tree, XGBoost first uses information from the observed data. It then

assigns a default direction for missingness in each predictor at each split in order to minimize

training error [26]. XGBoost takes missingness into account at each decision branch, rather

than as a constant mean or median, resulting in a better fit in "messy" datasets.

Potential benefits of risk grouping

When the early prediction point (EPP) is reached, groups of patient subtypes emerged. The

spectral clustering of risk-score trajectories within a 6-hour period after EPP revealed low,

medium, and high-risk groups with an increasing trend in PPV. The mean risk-score trajec-

tory in the high and medium risk groups showed considerably higher risk-scores after EPP,

which could be indicative of sustained aberration from normal physiologic state among the

more severe cases. The low-risk group, on the other hand, had the highest number of false
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positives and a mean trajectory that gradually declined over time. The high-risk group had

>0.92 PPV, providing further confidence to the positive predictions. Bose et al. [39] and Liu

et al. [40] found similar distinct clusters of risk-score trajectories with corresponding different

positive predictive values/risk group for the prediction of multiple organ dysfunction and sep-

tic shock in PICU patients. The histogram of early warning time (EWT) across risk groups

revealed an inverse relationship between median EWT and group severity. Since clustering

was applied to 6 hours of continuously observed risk scores, a median EWT of 6 hours in the

high-risk group might only allow time to prepare for intubation. The proposed scheme not

only allows continued monitoring of patients who have been predicted to likely require MV,

but also assigns varying confidence levels on predictions based on PPV associated with that

risk group. Therefore, the risk grouping approach could significantly aid hospital caregivers in

triaging patients based on severity of illness and in efficient utilization of hospital resources for

patient management.

Association with diagnostic categories

Respiratory diseases, multiple organ dysfunction, sepsis, prematurity, immune system disor-

ders, and hematological/oncological disorders are the most common comorbidities associated

with ARF and ARDS in the pediatric population [46–51]. The study observed corroborating

evidence from statistically significant associations between MV and some of these diseases. In

high-risk groups, the following International Classification of Diseases (ICD-10) groups were

more prevalent: health services, cardiovascular, respiratory, congenital diseases, congenital

heart diseases, problems originating in the perinatal period, and respiratory failure. The pres-

ence of co-morbidities was linked to an increased risk of mechanical ventilation. Certain con-

ditions, such as congenital diseases, prematurity history, and even the presence of home

equipment (ICD-10- health services), were more common in the high-risk group. Chronic

conditions alone did not increase risk since hematologic condition or neoplasm were more

common in the low-risk group.

Global and local feature importance

Strikingly, 5 of the of the top 20 globally important features were medication history features.

This strengthens the rationale for using a language-processing model to depict medication his-

tory to improve the model’s predictive performance. The high concordance between the top

20 features from both methods indicates that the importance of global features is consistent

across the two methods. In addition, SHAP values can also explain local feature attributions

for individual predictions on test data.

Comparison with PEWS

PEWS is the most widely used scoring system for continuous assessment of subject’s inpatient

clinical status. A 2017 retrospective study by Dean et al. presented a classifier to predict the

occurrence of critical PICU interventions (intubation, high flow nasal cannula, NIV, ino-

tropes, and aggressive fluid administration) within 12 hours of PICU transfer based on

24-hour maximum modified PEWS with an AUROC of 0.88 and PEWS� 5 yielded 38% sen-

sitivity and 99% specificity in the general medicine subgroup of patients [52]. Lockwood et al.

evaluated AutoPEWS (an automated adaption of PEWS from EHR) predicted critical deterio-

ration events within the prior 24 hours with 0.78 AUROC [53]. However, in the dataset, both

maximum PEWS and daily-PEWS based classifiers had lower AUROC (0.6, 0.65) and very low

PPV (0.13, 0.02). This disparity in performance across PEWS-based classifiers could be attrib-

uted to differences in patient characteristics across studies, changes to PEWS evaluation
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criteria, and the fact that prior studies frequently evaluated PEWS only prior to PICU admis-

sion, whereas this study evaluated PEWS on patients who had already been admitted to PICU.

Dean et al. also reported the median[IQR] lead time between observed maximum PEWS and a

critical event was 2.0 [1.0–4.7] hours [52], which is substantially less than the EWT of Model A

(9.9 [4.2–69.2] hours) and also smaller than the EWT for the identified high risk group (6

[3.2–39.5] hours). This study found neither maximum PEWS nor daily-PEWS to be a strong

independent predictor of MV within the dataset.

Limitations

This study used clinical assessments and manually entered data fields in addition to automati-

cally imported discrete values such as vital signs. The use of human entered values can lead to

transcription errors and errors in accuracy of timing of events. Forty-five percent of all patients

had no available ICD-10 diagnostic codes in the retrospective dataset due to a change in billing

software. Thus, the association of various diagnostic categories with MV vs no-MV outcome

and across the stratified risk groups should be validated in future studies. Lastly, due to the sin-

gle-center retrospective nature of the study dataset, future multicenter prospective studies

would increase the applicability of these models on general PICU patient population across

diverse health systems.

Research contributions and conclusions

Most of the existing work on pediatric acute respiratory failure is focused on the prediction of

prolonged mechanical ventilation [13, 54–58] and risk factors associated with failure of non-

invasive ventilation strategies [3, 7–12]. However, no existing studies have developed a predic-

tion model for a general PICU population encompassing a wide range of comorbidities and

for all patients, irrespective of prior non-invasive ventilation status. Hence, this study was

aimed at creating a widely applicable model for making early predictions of the need for

mechanical ventilation in critically ill pediatric patients. The distinct advantages of the study in

comparison to prior studies are: (a) the continuous risk-score evaluation allows for continuous

monitoring of patient state; (b) EPP enables early alert for healthcare providers to prescribe an

appropriate treatment regimen based on the patient’s physiological state at that time; and (c)

the proposed risk stratification method would allow for identification of different risk groups

after observed EPP, which can help identify a high-risk subgroup that has an extremely high

likelihood of intubation.

Some of the common risk factors associated with failure of non-invasive ventilation in chil-

dren reported by prior studies [59–65] include higher FiO2, SpO2/FiO2 ratio, respiratory rate

oxygenation index (ratio of SpO2/FiO2 to respiratory rate), heart rate, respiratory rate, younger

age, and blood pH. The global variable importance of Model A also suggests corroborating evi-

dence that SpO2, FiO2, age, respiratory rate, tachypnea, etc. were among the top 20 predictors

of MV. The top predictors in Model A also had a good agreement with the important predictors

of ARF in adult COVID-19 patients, as reported by Ferrari et al. in their gradient boosting

machine (GBM)-based model [66]. Not many studies have reported medication-based strong

predictors of MV; one such study by Suessman et al. [63] showed that use of bronchodilators

was associated with a reduced incidence of intubation. The study has successfully demonstrated

that medical history features were important predictors of MV in the dataset, and the proposed

method of using medication history instead of indicator variables for individual medications is

an extremely valuable method to capture the physiologic state of a patient.

In conclusion, this study demonstrates that clinical assessments and medication history can

be effectively used to drive a machine learning-based prediction model aimed at detecting the
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need for MV early, with a median EWT of 9.9 hours. Furthermore, the risk grouping method-

ology can help with continuous patient monitoring and stratification of patients into sub-

groups to allow risk-based intervention.
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of prolonged mechanical ventilation in neuromuscular scoliosis surgery. J Pediatr Orthop B. 2008 Jul;

17(4):203–6. https://doi.org/10.1097/BPB.0b013e328301e962 PMID: 18525479

14. Mansbach JM, Investigators for the M 30, Piedra PA, Investigators for the M 30, Stevenson MD, Investi-

gators for the M 30, et al. Prospective Multicenter Study of Children With Bronchiolitis Requiring

Mechanical Ventilation. Pediatrics. 2012 Sep 1; 130(3):e492–500. https://doi.org/10.1542/peds.2012-

0444 PMID: 22869823

15. Luo H, Hong S, Li M, Wang L, Jiang L. Risk factors for mechanical ventilation in children with Guillain-
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