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ABSTRACT OF THE DISSERTATION

Biomedical Applications of Perturbation Monte Carlo Methods

By

Jennifer Nguyen

Doctor of Philosophy in Biomedical Engineering

University of California, Irvine, 2017

Professor Vasan Venugopalan, Chair

This dissertation is an exploration of a new phase function and polarization sensitive perturbation

Monte Carlo (pMC) method applied to a realistic tissue scattering model. This project is motivated

by the need to improve upon previous methods that screen for early dysplastic tissue changes

by optically probing suspicious regions. The majority of early dysplastic changes occur in the

epithelial layer of tissue. Common strategies for increasing collection of photons that have probed

shallow depths involve using short source-detector separations or using angled detector fibers.

Tracking the degree of depolarization is also helpful in differentiating between photons that have

probed deeper depths from others that have only probed shallow depths. Conventional Monte

Carlo simulations are often employed to solve the Radiative Transport Equation (RTE) and estimate

measured signals in problems with short source-detector separations or other atypical optical probe

geometries.

In the pMC method, one conventional Monte Carlo simulation is run with baseline optical proper-

ties. This results in a database of photon biographies which are then subjected to pMC equations

that allow for quick signal estimates to be obtained at perturbed model parameter values, bypass-

ing the need for another conventional Monte Carlo simulation to be run. Doing this eliminates

the need to do another Monte Carlo simulation to obtain reflectance estimates at slightly different

optical properties. In addition to the increase in computational efficiency, this method has other

xi



advantages that may be useful to researchers interested using optical probes to identify dysplasia

such as the ability to track polarization and the ability to account for changes in phase function.

This is useful since polarization is employed in several optical probes designed for detection of

dysplasia and the polarization state of collected photons is useful in obtaining additional informa-

tion on the medium and the nature of the light-tissue interactions of collected photons. The ability

to account for changes in phase function is also useful since changes in scatterer shape are asso-

ciated with changes in phase function. Together, this new pMC algorithm is fine-tuned to enable

other researchers to model reflectance changes for typical optical probe geometries optimized for

detection of dysplasia.
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Chapter 1

Introduction

Non-invasive (optical) quantification (or characterization) cell and tissue microstructure is a criti-

cal field of research that enables characterization of biological processes such as tumorigenesis and

clinical diagnosis of cancer. Although the Papanikolaou Smear (Pap Smear) has long been consid-

ered the gold standard procedure for cervical cancer diagnosis, there are a considerable number of

practical problems related to this procedure. The Pap Smear involves collection of cells from the

cervix followed by staining, creation of a smear of cervical cells, and inspection of the collected

cells under microscope. The anatomy of the area of cells to be sampled means that consistent

and reliable sampling is not guaranteed. Furthermore, colposcopically normal-appearing regions

of tissue may contain abnormal high-grade squamous intraepithelial lesions (HSILs). A possible

solution would be to take biopsies at several random locations, however this would increase patient

discomfort considerably while maintaining a low yield of HSILs.

Optical biopsy techniques, which utilize knowledge of tissue optical properties and non-ionizing

light to enable the operator to identify suspicious lesions, provide significant advantages over the

Pap Smear procedure. First, optical biopsy methods are non-invasive and utilize non-ionizing radi-

ation. This means that measurements can be repeated as many times as needed without increasing
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the risk of exposure or increasing patient discomfort. Second, these techniques may reduce the

complexity of measurement which can allow for a quick turnaround for a diagnosis. After a Pap

Smear, patients are required to return for a follow-up examinations and treatments; up to 70% of

inner city patients fail to return for the follow-up examination, so simplification of the screening

process can lead to improvements in patient care outcomes. Finally, these techniques allow for

quantification of both in vivo and in vitro biological samples, which enables a clinican to obtain

accurate information on a region of interest in the tissue in its pristine state.

Many groups have worked towards improving the optical biopsy to increase its adoption in clinical

practices. The Backman group developed the method of partial wave spectroscopy (PWS), which

provides insights into the statistical properties of the nanoscale architecture of biological cells

beyond what conventional microscopy, whose resolution is limited by diffraction of light, can

resolve [32]. PWS couples light transport theory with detection of back-scattered light from a

focused wave of broadband low-spatially coherent light. A statistical parameter Ld , which has

been shown to have high correlation to areas with suspicious lesions, is calculated from the image

of the backscattered light at each group of pixels. Backman’s group has tested this technique on

in vitro samples of colon, pancreas, and lung cells [33] as well as in vivo samples [9] and showed

that their constructed statistical parameter was significantly higher in tissue regions with cancerous

lesions. Backman has also developed a polarization-sensitive technique to differentiate between

photons of greater depth penetration (> 200 µm) and shallow depth penetration (∼ 100 - 150 µm)

[10].

Wax’s group has developed a method that uses angle-resolved scattering interferometric measure-

ments to resolve the size and shape of scatterers. This method has been tested in a polydimethyl-

siloxane and polystyrene optical sample [36] and demonstrated in an in vivo study focused on

diagnosis of Barrett’s Esophagus [34]. Sokolov’s group has developed a method that combines

detection of polarized light with angular and distal resolution to determine scatterer size charac-

teristics of size-dependent scattering at a specific depth within the epithelium. Analysis of the

2



scattering signal by use of Mie theory allows the extraction of scatterer size and key size distribu-

tion parameters for precancer detection.

The project that is discussed here is the result of a collaboration with Judith Mourant of Los

Alamos National Labs, a researcher interested detecting changes in subcellular microstructure re-

lated to dysplasia and correlating those to changes in reflectance/transmittance spectra. Like other

researchers in this field, she has employed probe geometries with small source-detector separa-

tion, angled probe fibers, and employed light polarization in order to better characterize cellular

microstructures and their reflectance signatures [21, 22, 19]. The use of these exotic probe geome-

tries precludes the use of the Standard Diffusion Approximation and other computationally inex-

pensive methods for modeling light-tissue interactions due to the short source-detector separations

involved and the asymmetrical geometry caused by the angled detector fibers. Because of this,

Mourant’s and other groups in this field have traditionally employed conventional Monte Carlo

methods in order to properly model light tissue interactions at this length scale [21, 18, 10, 24], a

computationally expensive task. The motivation for this project is to develop an algorithm that is

computationally efficient, accurate, and with useful features for other researchers in this field.

1.1 Objectives

In order to address the need for a computationally efficient yet accurate method of estimating re-

flectance, we introduce a novel method that applies perturbation Monte Carlo methods to the prob-

lem of predicting changes in reflectance measurements given changes in medium or tissue optical

properties. The perturbation Monte Carlo (pMC) method is well-established and has been applied

to a wide range of biomedical optics problems including: determination of layered tissue optical

properties [11, 29], tissue image reconstruction [35], optical tomography [15], and time-resolved

functional imaging [6, 7]. There are several features that are unique to the author’s implementation

of the pMC method, which may be useful to researchers interested in probing changes microarchi-
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tectural changes in tissue. First, this implementation of the pMC method is the first to be intimately

connected to subcellular microstructure and the concentrations of groups of scatterers in cells. Pre-

vious implementations of pMC have traditionally used bulk optical properties of the medium as

input parameters. The pMC method discussed in this dissertation is therefore capable of providing

insights into the light scattering mechanisms behind reflectance changes due to dysplasia or other

cellular processes. Second, the author’s implementation of perturbation Monte Carlo method is the

first pMC method that accounts for phase function differences as well as the first that allows for

the use of polarized light. The addition of polarization tracking and accounting of phase function

alterations can be useful for researchers interested in detecting dysplasia since changes in scatterer

sizes in tissue lead to changes in the phase function and/or changes in how the scatterers interact

with polarized light. Finally, the pMC method in this dissertation is formulated generally. This

means that other phase functions (e.g. Mie, T-matrix, Henyey-Greenstein) of interest can be em-

ployed. Together, these unique features of this dissertation’s pMC method provide a compelling

package for researchers interested in modeling dysplastic tissue changes, although there may be

many more applications that can benefit from the use of pMC.

1.2 Chapter Breakdown of Thesis

In chapter 2, the link between the solution to the radiative transport equation, conventional Monte

Carlo simulations, and the perturbation Monte Carlo method is explained. The scattering model

that describes distributions of scatterers present in tissue is also discussed as well as our treatment

of light polarization.

Chapter 3 of this thesis focuses on comparisons that were made between conventional Monte Carlo

and perturbation Monte Carlo predictions of reflectance. A standard for computational efficiency

is used to assess the computational gains made by perturbation Monte Carlo in estimates of re-

flectance. We also discuss the limitations of the perturbation Monte Carlo method.
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Chapter 4 of this thesis then focuses on our development of the differential Monte Carlo (dMC)

method to this problem. In order to test out dMC’s capabilities, we did a comparison between finite

difference methods for estimating the sensitivity of reflectance to parameters of interest, that we

call d-cMC, and dMC. We assess the limitations of the dMC method as well as determine factors

that affect dMC’s efficiency and the variance of its estimates.

Using the dMC estimates of sensitivity to guide our analysis, we then test dMC performance in

an inverse problem-solving setting in Chapter 5. Inverse problem solving, in this dissertation, is

defined as determining the values of certain parameters of interest (in our case, the mean radii

and number density of scatterer distributions) from a given set of measurements. We test the

method’s capabilities to optimize parameters given unpolarized reflectance measurements and po-

larized reflectance measurements. Our measurement set up is modeled after real life measurements

performed by our collaborator at Los Alamos National Labs. We also explore limitations of our

method in terms of parameter optimization.
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Chapter 2

Problem Definition and Perturbation Monte

Carlo Formulation

2.1 Light scattering model

We develop a perturbation Monte Carlo (pMC) computational framework for a tissue representa-

tion that models optical scattering using three log-normal distributions to represent the polydisper-

sity of the scattering medium[25, 18, 2, 27]. The pMC method introduced here can accommodate

any number (m) of scatterer groups with arbitrary distributions of scatterer size. The total scatter-

ing coefficient of the ith distribution, µs,i, is calculated using µs,i =
∫

Qscat(t)Na,i(t)Li(ri, t)dt where

Qscat is the scattering efficiency, Na,i is the product of number density and the scattering cross-

section of the particle, t is a particle radius, and Li is the ith log-normal distribution characterized by

its mean radius ri and standard deviation, σi: Li(ri, t) = exp
{
−(ln t− lnri)

2/(2σ2
i )
}
/(tσi

√
2π).

The scattering coefficient of the medium µs can be calculated by summing the contribution of

each distribution to the scattering coefficient µs =
m

∑
i=1

µs,i [28]. The phase function of each scatterer

population is calculated by integrating across radius values and using the log-normal distribution to
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Figure 2.1: A conceptual diagram of the pMC application to the light scattering model used in
this study. (a) Depiction of the light scattering model composed of three distinct distributions of
scatterers. The dotted blue and red plots represent perturbations in mean radius and number den-
sity while solid green, blue and red plots represent “baseline” parameter values. (b) A schematic
diagram of the source-detector configuration. (c) The top-down view of the probe. The yellow
circle represents the source and the circles with numbers inside represent the two detectors. See
Section 2.2 for probe details.

properly weight the phase functions that Mie Theory provides: fi(θ)=
1

µs,i

∫
fMie(t,θ)Qscat(t)Na,i(t)dt

where fi is the phase function of the ith distribution of scatterers, fMie is the phase function of a

mono-dispersed distribution of scatterers, and θ is the scattering angle. We approximate these

integrals for µs,i and fi using trapezoid rule integration with uniform grid spacing with the width

of the bin set at 0.001 µm for all three distributions.

Table 2.1 provides scattering parameters that approximate the contributions of protein complexes,

organelles, and nuclei present in epithelial cervical tissues based on previous experimental results

[18, 25]. These parameter values serve as baseline values in the pMC results presented in this

dissertation and are meant to model a class of problems (similar to the problem in [25]) in which

pMC application could potentially benefit forward and inverse radiative transport solutions.
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Table 2.1: Distributions of scatter sizes in the tissue model

i Average Size, ri ± σ (µm) Number Density, Ns,i (cm−3) nmedium nscatterer
1 0.03 ± 0.4 4 ×1013 1.33 1.46
2 0.45 ± 0.3 5 × 1010 1.35 1.40
3 4.8 ± 0.1 5 × 107 1.37 1.49

2.2 Measurement geometry

In this study we consider a probe with two detectors placed equidistant from a central source

fiber which detects either unpolarized or polarized reflectance. A probe schematic is shown in

Fig. 2.1(c). All detector fibers are angled at ω=20◦ relative to the outward pointing surface normal

and towards the source fiber. The distance from the center of any detector fiber to the center of

the source fiber is 550 µm and all the fibers are 480 µm in diameter. All fibers have a light cone

detection half angle of 21.7◦. The close source-detector separation and the angling of the detector

fibers towards the source fibers promotes photon trajectories that interact with scatterers located at

shallow depths.

2.3 The Connection Between the RTE and Monte Carlo Simu-

lations

In this section, we provide a brief exposition of several topics that establish a rigorous foundation

for the methods of this dissertation. A comprehensive discussion of this material can be found in

Section 3.3 of [31]. In biophotonics problems, the Radiative Transport Equation (RTE) is com-

monly used to describe interactions of light with tissue. Derivation of pMC equations requires

an understanding of the equivalence between the equation-based analytic model that describes the

physics and the probabilistic model that describes how to generate photon random walks and uses
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them to estimate the measurements desired.

Our initial objective is to connect the analytic/physical model that describes light transport in

tissue with the stochastic simulation model on which Monte Carlo methods are based. The time-

independent Radiative Transport Equation (RTE) is used to describe the interaction of unpolarized

light with tissue: We begin with the time-independent integro-differential form of the RTE:

∇Φ(r,ω) ·ω =−µtΦ(r,ω)+µs

∫
4π

Φ(r,ω′) f (r′,ω′→ ω)dω
′+Q(r,ω) (2.1)

where Φ is the photon radiance (#/area/sr), r is position, ω is a unit direction vector, µt is the

optical interaction coefficient, µs is the optical scattering coefficient, f is the single-scattering

phase function that scatters photons from ω′ to ω at r′, and Q is the volumetric source.

It is useful to convert the integro-differential RTE to the integral equation form when setting up

for the Monte Carlo (probabilistic) mode. The integral equation for the particle collision density is

[31]:

Ψ(P) =
∫

Γ

K(P,P′)Ψ(P′)dP′+S(P) (2.2)

where P = (r,ω) is a point in the phase space Γ and the collision density is:

Ψ(r,ω) = µt(r)Φ(r,ω) (2.3)

The kernel, K, describes both the positional and directional changes involved in scattering and

transporting photons at r′ with direction ω′ to r with direction ω. It is composed of the probability

density for scattering from ω′ to ω, f (ω′ ·ω), the probability µs(r′)/µt(r′) of scattering (rather than

absorption) at r′, and the transport kernel T .

K(r′,ω′→ r,ω) = f (ω′ ·ω)µs(r′)
µt(r′)

T (r′→ r,ω′) (2.4)

9



The transport kernel, T , in Eq. (2.4) describes transport of photons in the direction ω′ from r′ to r:

.

T (r′→ r,ω) = µt(r′)exp
[
−
∫

ω′·||r−r′||

0
µt(r′+ sω

′)ds
]

(2.5)

This formula for T allows for the optical coefficient, µt , to depend continuously along the path

from r′ to r, but if µt is regionwise constant, the integrals in the exponent simplify to d×µt , where

d is the distance from r′ to r. The function S is the density of first collisions and Eq. (2.6) shows

that S is obtained by transporting each photon along its initial direction ω from the physical source

Q to its collision location r:

S(r,ω) =
∫

T (r′→ r,ω)Q(r′,ω)dr′. (2.6)

Researchers are often interested in the reflectance or transmittance rather than the full RTE solu-

tion; this can be expressed as the integral:

I =
∫

Γ

g(P)Ψ(P)dP (2.7)

where g is a “detector function” that describes the spatial locations and the unit direction vectors

that characterize the physical detector, including its numerical aperture. For fiber-optic detectors

placed on the tissue surface at D :

g(P) =
∫
Γ

|ω ·ωn|ΞD(r)ΞN(D)(ω)drdω (2.8)

where P is a particle state characterized by the particle’s position and direction P = (r,ω) and ωn

is the unit outward normal vector on D. The Ξ functions are indicator functions that restrict the

integration to r ∈ D and ω ∈ N(D), the numerical aperture of the detector, respectively. Together,

Eqs. (2.2) – (2.7) form the analytic model of the problem.
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2.4 Random Walk Processes and Monte Carlo Methods

Monte Carlo methods constitute a broad class of algorithms that are characterized by the property

that they all involve drawing random samples from probability distributions. Statistical data are

collected from these samples and used to draw inferences about one or more problems under in-

vestigation. These problems may arise from a naturally stochastic process (as in the case of photon

transport through tissue) or not. Some examples of problems whose formulations are completely

deterministic are: 1. solve the matrix equation Ax = b where A is an n× n matrix, b is a known

n-vector; 2. estimate the value of the integral I =
∫
V

f (x)dx where f (x) is a known function of s

variables and V is a volume in IRs.

Our interest here is only in the naturally stochastic case of the interaction of light with tissue, as

described by the Eqs. (2.2)− (2.7). In fact, the prototype problem here is to estimate the value of

the integral I in Eq. (2.7), where the detector function g is known but the function Ψ is only known

to satisfy the transport equation (2.2). To this end we now describe the stochastic, or probabilistic

model needed to address such problems. For us, such a model will arise through a random walk

process.

2.4.1 Random Walk Processes and Model Equivalence

A random walk process provides the probability density functions that are used to launch photon

biographies, transport them from position to position and from one unit direction to another, and

terminate them. We define a random walk process using two sets of functions: { fn, pn}. The func-

tion fn(P1, ...,Pn) is the probability density of a random walk chain with the steps (P1,P2, ...,Pn);

f1 can also be thought of as a source function. pn(P1, ...,Pn) is the probability of terminating the

chain. The simplest such random walk process is the one that mimics the microscopic laws that

are implicit in the coefficients of the RTE (Eq. (2.2)): we call this the analog random walk process.
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The functions { fn, pn} that characterize the analog random walk process are:

f1(P) =
S(P)∫

Γ
S(P′)dP′

(2.9)

fn(P1, ...,Pn) = Π
n
i=2

[
K(Pi,Pi−1)∫

Γ
K((Pi,Pi−1)dPi

]
S(P1) n≥ 2 (2.10)

and

pn(P1, ...,Pn) = p(Pn) = µa(Pn)/µt(Pn) (2.11)

We see that the analog random walk process makes use of a normalized version of the source

function S (Eq. (2.6)) to identify the first collision point. At each collision point P=(r,ω) it decides

between absorption (with probability µa(r)/µt(r)), and scattering (with probability µs(r)/µt(r)).

In the event of scattering at a collision point, a new direction is selected from the pdf f and the

biography continues to a next collision making use of the transport kernel, T (Eq. (2.5)). This

process of alternately generating new collision locations, r, and new unit directions ω continues

until each biography terminates, either by absorption at some location or by permanently exiting

the physical region of interest. We introduce the sample space, B, whose elelements describe each

possible photon biography, from ”birth” to termination, either by absorption or by escaping the

region of interest permanently. It can be shown [30] that every random walk process induces a

probability measure M on the space B of all photon biographies b ∈ B. The space B has a very

useful decomposition:

B = ∪∞
k=1Λk +Λ∞ (2.12)
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where Λk is the set of all histories that terminate after k collisions. Provided that the linear integral

operator K is contractive (‖K ‖1 = sup‖Ψ‖1 6=0
‖K Ψ‖1
‖Ψ‖1

< 1), it can be shown [31] that M(λ∞) = 0.

So that:

∞

∑
k=1

M(Λk) = 1. (2.13)

where

M(Λk) =
∫

Γ

...
∫

Γ

fk(P1, ...,Pk)
k−1

∏
i=1

qi(P1, ...,Pi)pk(P1, ...,Pk)dP1...dPk (2.14)

and where qi is defined as 1-pi. There are several random walk processes that one may choose

from including: continuous absorption weighting, discrete absorption weighting, analog random

walk process. One may choose one random walk process over the other to obtain lower variance

estimates of I, and/or shorter simulation run times. More information on the various random walk

processes can be found in [14]. All the numerical experiments shown in this dissertation use

continuous absorption weighting, so we will discuss this in detail next. For continuous absorption

weighting,

f1(P) =
S(P)∫

Γ
S(P1)dP1

(2.15)

fn(P1, ...,Pn) =
n−1

∏
l=1

 K(Pl,Pl+1)

exp
[
−
∫ Pl+1

Pl
µa(s)ds

]
 (2.16)

pn(P1, ...,Pn) = p(Pn) = 0. (2.17)

These equations indicate that each photon is treated as a packet of photons and is assigned an ini-

tial weight W=1. To account for absorption, this packet is continuously de-weighted by a factor of

exp
[
−
∫ Pl+1

Pl
µa(s)ds

]
along its trajectory; absorption in continuous absorption weighting is forbid-

den. Continuous absorption weighting can also be interpreted as an application of Beer’s Law to a

packet of photons. Eq. (2.13) means that the number of collisions is finite with probability 1 and
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that calculations of infinite sums arising from the RTE converge. One such infinite sum that plays

a critical role in the theoretical analysis of RTE’s is the Neumann Series. In order to estimate the

integral

I =
∫

Γ

g(P)Ψ(P)dP (2.18)

where g is a “detector function” that describes the spatial locations and the unit direction vectors

that characterize the physical detector, including its numerical aperture. For fiber-optic detectors

placed on the tissue surface at D :

g(P) =
∫
Γ

|ω ·ωn|ΞD(r)ΞN(D)(ω)drdω (2.19)

where P is a particle state characterized by the particle’s position and direction P = (r,ω) and ωn

is the unit outward normal vector on D. The Ξ functions are indicator functions that restrict the

integration to r ∈ D and ω ∈ N(D), the numerical aperture of the detector, respectively. Together,

Eqs. (2.2) – (2.7) form the analytic model of the problem. The probability model consists of

three elements: the sample space, B, the probability measure M induced on B by the random

walk process { fn, pn}, and a random variable ξ : B→ R. This random variable designates the

contribution of every b ∈ B to the estimate of the integral (2.7). This contribution is commonly

referred to as the tally, or score associated with b. In the cases for which each biography b has

a weight, its tally is often taken as this weight. An example of a useful random variable is the

binomial estimator, ξ whose value on the photon biographies, b ∈ B , is:

ξ(b) =

 1 if b results in a detected photon

0 otherwise
(2.20)
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For these analog choices of the measure M and unbiased estimator, ξ, it is intuitively clear (and

rigorously shown in [31]) that

I =
∫

Γ

g(P)Ψ(P)dP =
∫

B
ξdM. (2.21)

The importance of Eq. (2.21) is that it establishes the equivalence of the analytic model, Eqs. (2.2)

– (2.7), and the probabilistic model (B , M, ξ). Eq. (2.21) may also be written

I = lim
k→∞

1
N

N

∑
i=1

ξ(Ci)dM(Ci) =
∫

B
ξdM (2.22)

where N the number of photon biographies that are generated. Using the expected value operator

E, we re-write the above equation as:

I = E [ξ] =
∫

B
ξdM (2.23)

where M is the probability measure induced by the random walk process and B is the sample space

of all photon biographies

2.5 Perturbation Monte Carlo

The primrary idea behind perturbation Monte Carlo, pMC, is to generate a single set of photon bi-

ographies according to the probability measure M and then define a new estimator that can be used

to estimate collected light intensity using the same photon biographies for different (perturbed)

conditions. For the perturbed conditions, Eq. (2.22) becomes Eq. (2.24)

Î = lim
k→∞

1
N

N

∑
i=1

ξ(Ci)dM̂(Ci) =
∫

ξdM̂ (2.24)
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A new estimator, ξ̂(bi) is then defined by

ξ̂(b f ) = ξ(b)
d̂M(b)
dM(b)

(2.25)

provided that the Radon-Nikodym derivative exists. This means that sets of M measure 0 also have

M̂ measure 0. Then

Î = lim
N→∞

1
N

N

∑
i=1

ξ̂(Ci)dM̂(Ci) =
∫

ξ
dM̂
dM

dM (2.26)

The interpretation of (2.24) is that the expected value of ξ̂ with respect to the baseline measure M

is identical to the expected value of the original variable ξ with respect to the modified measure

M̂., i.e. Î = I. It should also be noted that the quantity dM̂
dM is the Radon-Nikodym derivative. Here,

the application of the Radon-Nikodym theorem allows us to reweight the tally ξ in such a way that

we move from the model (ξ, M) to the equivalent model (ξ̂ M̂). Here we want to draw attention to

the benefits of using pMC to estimate detection in a physical system that has been perturbed - for

example cancerous tissue or precancerous tissue. The conventional way to do this is to generate

a new set of photon biographies in the system partially or entirely of tumor. Since the sampling

functions depend on the optical properties, the measure M̂ that is used to generate the biographies

in the tumorogenic system is different from the measure M used to generate the biographies in

the homogeneous system. If one is interested in estimating the detection in a family Mα of such

perturbed tissue systems one would need to generate a different set of biographies for each member

of the family. Calculating the photon trajectories for each precancerous and cancerous condition

could be a prohibitively costly process. Instead, with pMC a single set of biographies is generated

using the baseline measure M, and for each tumor condition the pMC estimator in Eq. (2.25) is

used to estimate the collected intensity, Eq. (2.26). The measure, M, is composed of the source

term multiplied by a kernel term for every collision, i.e. S(P1)K(P1 → P2)K(P2 → P3)... When

the source does not change, Eq. (2.27) holds, where j is the number of collisions undergone by a
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collected photon.

M̂α

M
=

(
K̂α

K

) j

(2.27)

For example, if M is the analog measure based on generating photon biographies by using the

source S and the kernel K, the simplest random variable ξ to use is the binomial estimator defined

in Eq. (2.20) that tallies 1 for every random walk w that is detected and 0 for all random walks that

are not. The transformation (2.20) can be thought of as reweighting of the tally for each random

walk w by multiplying the binomial baseline estimator, ξ, by dM̂α

dM . This means assigning an altered

weight when the analog random walk leads to detection, and 0 otherwise. dMα

dM is easily calculated

using the source Sα and kernel Kα that characterize the measure Mα :

ξα = ξ
dMα

dM
=


Sα

S ∏
j
l=1

Kα

K if random walk leads to detection

0 otherwise
(2.28)

This reweighting can be performed by a postprocessing algorithm that is quite inexpensive com-

pared to the cost of generating different photon biographies for each set of tissue conditions. Ex-

plicit formulas will be given in the next two sections that make these ideas concrete.

2.5.1 Distribution Selection Scattering Method vs. Composite Phase Func-

tion Scattering Method

For the studies shown in this dissertation, we developed two different methods to simulate the

phenomenon of scattering. These two methods of simulating scattering have different likelihood

functions and ultimately produce different estimators for the perturbed weight and sensitivity. One

of the scattering methods is called the Distribution Selection Scattering Method. In this method,

each photon only interacts with a single distribution of scatterers at each interaction. The probabil-

ity of interacting with the ith scatterer population is proportional to that distribution’s contribution
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to the scattering coefficient, i.e., P(Y = i) = µs,i/µs, where Y is a random variable that selects the

population for the scattering event. Given that the ith scatterer population is selected, the phase

function of the ith scattering distribution, fi, is then sampled for a scattering angle. A composite

scattering phase function is not constructed in this method. In the Composite Phase Function Scat-

tering Method, an overall phase function is constructed by calculating the weighted average of the

phase functions of each scatterer population, where the weights are based on each distribution’s

contribution to the scattering coefficient

f =
m

∑
i=1

µs,i

µs
fi (2.29)

where f is the composite phase function, fi is the phase function of the ith distribution, µs,i is

ith scatterer distribution’s contribution to the scattering coefficient and µs is the scattering coeffi-

cient of the entire medium and is the sum of the scattering coefficient contributions of all distri-

butions. This composite phase function is then sampled for scattering angles. While these two

scattering methods produce equivalent distributions of azimuthal scattering angles (as shown in

the appendix), the advantage of the distribution selection scattering method is that the calculations

involved with differential Monte Carlo are much simpler to execute. More detailed arguments for

using one scattering method over another scattering method are shown in the Appendix.

2.5.2 Perturbation Monte Carlo Method and Distribution Selection Scatter-

ing Method

In pMC, a set of photon biographies is generated by making use of the random walk process that

is designated for this purpose. As we explained in Section 2.2, a baseline set of Monte Carlo

biographies is a dataset consisting of the locations and unit incoming directions of each biography

at every collision point. The biography weights arriving at each collision point are also saved. The

probability measure, MCAW , on the space B of biographies is induced by the probability density
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functions that launch photons, transport them from collision to collision, and terminate them by

eventual exit from the tissue volume of interest. The biography weights account for the use of the

intercollision density. This measure is composed of the source term multiplied by the RTE kernel

inside the medium. In turn, the transport kernel is comprised of a product of the probability of

scattering, the phase function, and the intercollision density function. In the application of pMC,

each collision in the medium is reweighted at each scattering event to account for a change in the

medium’s optical parameters

ξ̂ = ξ
M̂(β)

M(β)
. (2.30)

Here ξ̂ is the perturbed weight, ξ, is the estimator or photon weight, M̂(β) is the perturbed prob-

ability measure on biography β and M(β) is the unperturbed probability measure on that same

biography. All hatted quantities in this paper are the perturbed versions of the unhatted quantities.

M̂(βn)

M(βn)
=

T̂
T

j

∏
l=1

K̂l

Kl
(2.31)

Here, Kl is the RTE kernel at the lth interaction with the medium, T is the transport kernel, and

ξ is an estimator which is typically associated with photon weight. The continuous absorption

weighting (CAW) random walk process is employed in all MC simulations in this study. In

continuous absorption weighting, photon termination by way of absorption is forbidden, the photon

is deweighted by the factor exp(−µas), and intercollision distances are sampled from µs exp(−µss)

where s is the pathlength between one collision and the next. As stated in a previous section, a

special scattering algorithm is employed in conjunction with CAW; the photon has a probability of
µs,i
µs

to interact with particles of the ith scattering distribution. Modifying the RTE kernel for CAW

from [14] to account for our new scattering algorithm, we obtain the RTE kernel

K =
µs,i

µs
fi(ω

′→ ω)exp(−µas)µs exp(−µss) (2.32)
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Combining (2.30), (2.31), and (2.32), produces

ξ̂ = ξ

(
µ̂s,1

µs,1

) j1( µ̂s,2

µs,2

) j2
...

(
µ̂s,m

µs,m

) jm
exp
[
−(µ̂s−µs)L

]
exp [−(µ̂a−µa)L]

j1

∏
l1=1

f̂l1
fl1

j2

∏
l2=1

f̂l2
fl2
...

jm

∏
lm=1

f̂lm

flm
(2.33)

where j1 is the total number of collisions experienced by the photon with respect to the first scat-

tering distribution, j2 is the total number of collisions experienced by the photon with respect to

the second scattering distribution, and so on... jm is the total number of collisions experienced by

the photon with respect to the last (the mth) scattering distribution of the light scattering model and

L is the total pathlength travelled by the photon in the medium.

2.5.3 Perturbation Monte Carlo Method and Composite Phase Function

Scattering Method

In application of pMC to simulations that involve the Composite Phase Function scattering method,

both the scattering coefficient and the phase function are perturbed. So, the corresponding K and

K̂ are:

K = f (ω′→ ω)µs exp(−µt l) (2.34)

K̂ = f̂ (ω′→ ω)µ̂s exp(−µ̂t l) (2.35)

Using Eqs. 2.26 and 2.27, the following estimator for the perturbed weight is derived:

ξ̂ = ξ

(
µ̂s

µs

) j+1

exp [−(µ̂t−µt)L]
j

∏
l=0

(
f̂l

fl

)
(2.36)
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where j is the number of collisions inside the medium, L is the total pathlength and f̂ is the

perturbed phase function. The phase functions, f and f̂ are functions of scattering angles θ and

φ. The exponent, j+1, accounts for the fact that the initial entrance into the medium is governed

by the transport kernel and by the probability of scattering rather than absorption µs(r′)/µt(r′).

Eq. (2.36) is correct for transport within the medium. However, when the last step is partly out of

the scattering medium, then Eq. (2.36) must be modified. The very last step of a photon transport

Monte Carlo simulation is different than the others in that the photon does not go from a point

to the detector surface, but rather from a point to any point on or inside the detector. Therefore

the transport kernel must be modified by a term, Ls, the distance from last scattering event in the

medium to the detector. Consequently, Eq. (2.36) becomes Eq. (2.37) where L is the distance

traveled from an entrance point on the scattering medium surface to an exit point on the scattering

medium surface.

ξ̂ = ξ

(
µ̂s

µs

) j

exp [−(µ̂t−µt)L]
j

∏
l=0

(
f̂l

fl

)
(2.37)

2.6 Polarization

This section outlines the necessary steps in accounting for polarization changes in a per photon

basis during our conventional Monte Carlo simulations. Polarization is handled in our simulations

using the stokes vector method. Polarized light transport is based on [1]. The polarization of the

photon is specified by a Stokes vector.



S0

S1

S2

S3


(2.38)
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The local coordinate system in which the Stoke’s vector is defined, is defined by the three vectors,

u prel, and b. These vectors are immediately rotated so that u points along the direction of the

photon entry. For a scattering event, defined by angles θ and ψ, the Stokes vector must first be

rotated into the scattering plane:



S0s

S1s

S2s

S3s


=



1 0 0 0

0 cos(2Ψ) sin(2Ψ) 0

0 −sin(2Ψ) cos(2Ψ) 0

0 0 0 1





S0

S1

S2

S3


(2.39)

where ψ is the angle of rotation. After a scattering event defined by scattering angles θ and ψ, the

new direction of photon travel in the reference frame defined by u, b, p is:

u′b = sin(θ)sin(Ψ)

u′p =−sin(θ)cos(Ψ)

u′u = cos(θ)

(2.40)

New p and b vectors are also calculated. First a rotation through ψ is performed which makes b′

perpendicular to the scattering plane. Finally the axes are rotated through θ, which results in

p′b =−cos(θ)sin(Ψ)

p′p = cos(θ)cos(Ψ)

p′u = sin(θ)

(2.41)

The axes are then rotated through θ which results in:

b′b = cos(Ψ)

b′p = sin(Ψ)

b′u = 0

(2.42)
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Finally, the vectors b′, p′ and u′ must now be transformed to the Monte Carlo coordinate system.

For example:

u′x = u′bbx +u′p px +u′uux

u′y = u′bby +u′p py +u′uuy

u′z = u′bbz +u′p pz +u′uuz

(2.43)

2.6.1 Phase Function Evaluations used by Perturbation Monte Carlo

For photon collection, three rotations are needed. First rotate through an angle psi so that b is in

the x-y plane. For pMC phase function evaluations during on photon biographies that followed

polarized light transport, we followed Ramella-Roman’s method of evaluating the phase function:

f (θ) = s11(θ). (2.44)

For the polarized phase function:

f (θ,ψ) = s11(θ)Io + s12 [Qocos(2ψ)+Uosin(2ψ)] . (2.45)

Here, s11 and s12 are elements of the Mueller Matrix obtained using the Mie scattering method or

some other method. During conventional Monte Carlo simulations, this phase function is rejection

sampled to obtain values of θ and ψ at each light-tissue interaction.
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Chapter 3

Forward Problem

3.1 Testing the pMC method

In this section, we examine the application of the phase function generalization of pMC to two

problems that feature spherical scatterers with no absorption. In the first, simpler problem, con-

centration, radius, and incident light wavelength is varied for a suspension of single size scatterers.

In the second problem, parameters of the tissue model in Table 2.1 are altered. In both cases

reflectance obtained from a series of classical Monte Carlo simulations (cMC) are compared to re-

sults obtained by pMC calculations using trajectories from a baseline MC simulation. To perform

the most stringent test of the range of parameters over which pMC is accurate, the whole tissue

is perturbed rather than just a small tumorigenic region. The scattering medium is assumed to be

semi-infinite with source and detector fibers, as described in Section 2.2, on top.

For all simulations, the Bohren and Huffman [3] implementation of Mie theory, which uses the in-

dices of refraction of the medium and the scatterers, the radius of the scatterers, and the wavelength

of light as inputs, was used to generate tables for the phase functions, f (θ) and f̂ (θ) for the full

range of θ values. These tables of 720 elements are used for rapid sampling of the phase function
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both in the cMC simulations and the pMC calculations. The pMC calculation uses unperturbed as

well as the perturbed scattering parameters These parameters as well as the saved trajectories are

used according to Eq. (2.37) to reweight the photons. A separate set of trajectories is used for each

collection fiber. Therefore, there are effectively four replicates of each pMC calculation.

The computers used for the simulations were: 1) 2× 2.66 GHz Quad-Core Intel Xenon processors

and 16 GB 1066MHz DDR3 RAM running Mac OS X 10.6.2; 2) 6 × 3.33 GHz Quad-Core Intel

Xenon processors and 32 GB 1333 MHz DDR3 RAM running Mac OS X 10.8.2; and all code was

compiled using gcc-4.2.
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Figure 3.1: Comparison of pMC estimates of reflectance with estimates of reflectance obtained
from independent cMC simulations when the radius of a single size distribution is perturbed. Error
bars are standard errors of the mean.

25



3.2 Results

3.2.1 The Simpler Problem: One Size of Scatterers
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Figure 3.2: Comparison of pMC estimates of reflectance with independent cMC simulations results
when the concentration of single size scatterers is perturbed. Each panel is for a different collection
fiber shown in Fig. 2.1. Error bars are standard errors of the mean.

Fig. 3.2 compares pMC and cMC results when the concentration of single size scatterers is per-

turbed. The parameter values for the baseline simulation were: the radius of the scatterers, r =

0.4475µm, the number density, Ns = 1.27× 1012 particles/cm3, the wavelength, λ = 620 nm, the

index of the medium was 1.332, the index of the scatterers was 1.390 and 20 million photons were

incident through the delivery fiber. Particle concentration was perturbed by ±25% for the pMC

calculations. Each cMC simulation took 10 min. and the pMC calculations took a total of ∼1 min

using computer 2. Consequently, the pMC results were obtained in 11 min., much shorter than

the 130 min. needed for the cMC calculations. The agreement between cMC and pMC results
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is quite good as seen in Fig. 3.2. By varying the concentration, the sensitivity of the perturbed

reflectance to the weight factors described in Eq. (2.37) are determined without the phase function

contribution.

Varying the radius, r, will vary the phase function along with µs. Fig. 3.1 shows the results of

varying r using the same baseline simulation used for Fig. 3.2. There is good agreement from

0.4175 to 0.4775 µm, with some variation in the pMC results at r = 0.4775 µm.
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Figure 3.3: Comparison of pMC estimates of reflectance with independent cMC simulations results
when wavelength is perturbed. The scattering particles had a radius of 447.5 nm. Each panel is for
a different collection fiber shown in Fig. 2.1. Error bars are standard errors of the mean.

Similar to varying the radius, varying the wavelength changes both the phase function and µs,

because the phase function and µs depend on the size parameter which is a function of wavelength

as shown in Eq. (3.1). In Fig. 3.3, pMC and cMC results are compared for varying values of

wavelength and constant values for other parameters. The parameters for the baseline simulation
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are the same as for Figs. 3.2 and 3.1. The agreement between pMC and cMC is excellent over the

range 580 nm to 650 nm. However, for wavelengths of 550 nm and below, the pMC calculations

underestimate the reflectance. Interestingly, large standard errors of the mean are not found in all

cases, e.g. the results for fiber 4 at 520 nm. At wavelengths above 650 nm pMC results for one fiber

overestimate reflectance while pMC results for the the other three collection fibers under estimate

the reflectance. Nonetheless, in most cases the standard error of the mean overlaps with the cMC

result. The cMC results are nearly the identical for each fiber. (When plotted on the same plot, the

symbols overlap.) The pMC results, however, show a different trend for each fiber in Fig. 3.3 as a

function of wavelength. The different trends for each fiber are due to the fact the pMC calculations

for each fiber use a different base set of trajectories.

size parameter = 2πrnmedium/λ (3.1)

To investigate further the effects of the phase function on the accuracy of pMC, simulations varying

lambda were run with scatterers of 100 nm in radius. Excellent agreement between cMC and pMC

was obtained as shown in Fig. 3.4. The baseline simulation used r = 0.100µm, Ns = 1.83× 1010

particles/cm3, λ = 620 nm, nmedium = 1.332 and nscatterer = 1.390. Twenty million photons were

incident for the baseline and cMC simulations.

The results of Figs. 3.2, 3.1, 3.3, and 3.4 can be placed in a broader context by examination of the

scattering parameters used in the simulations. Fig. 3.5 shows these scattering parameters plotted

versus the percent change in the varied parameter. When three sets of pMC simulations use the

same baseline simulation such as the simulations varying Ns, radius, and λ of the 447.5 nm radius

spheres, the parameters all overlap at the 0% point as in the top left graph for µs.

The reflectance results when Ns and radius were varied are quite similar as shown in Figs. 3.2,
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and 3.1. This similarity is because the scattering parameters for the two sets of simulations were

nearly the same. The range of µs values shown in the top left panel of Fig. 3.5 is nearly the

same. The anisotropy factor, g was 0.933 when Ns was varied from 0.927 to 0.939. Given these

similarities in scattering parameters it is not surprising that the results in Figs. 3.2 and 3.1 are

similar.

When λ is varied with r = 447.5 nm, the range of scattering coefficients, 78-153 cm−1 is slightly

larger than when radius is varied, 80-139 cm−1. If only wavelengths from 550 nm to 710 nm

are considered when λ is varied, then the variation in µs is slightly less than when radius is varied.

However, Fig. 3.3 shows that pMC and cMC results are not the same over theis range. Examination

of the bottom right panel shows that g is varying more when lambda is varied than when radius is

varied even when only the range 550 to 710 nm is considered. Not until the wavelength range is

reduced to 580 to 670 nm is the variation in g the same. This corresponds to the same range of

wavelengths over which good agreement is found between the cMC and pMC results in Fig. 3.3.

Clearly, the variation in g reduces the accuracy of the pMC results when g is large. However, if g

is smaller, a much bigger variation in g can be tolerated as can be seen for the results using 100nm

radius spheres in Fig. 3.4 and the bottom left panel of Fig. 3.5. Lastly, we note that variations in µ′s

are not a good predictor of the accuracy of pMC for this geometry where delivery and collection

fibers are close together. The top right panel shows that varying lambda resulted in the smallest

variation in µ′s, while varying the concentration resulted in the largest variation of µ′s.

3.2.2 A More Complex Problem: Three Lognormal Distributions of Radii

The tissue model described in Section 2.1 is used for these simulations, with the parameters for the

baseline simulation given in Table 2.1. As was done with the single size scatterers, concentration,

radii, and wavelength are varied. However, rather than varying the concentration and mean radius

of the entire suspension, the concentrations and mean radii of each distribution in Table 2.1 are
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Figure 3.6: The number density of each of the distributions in Table 2.1 is varied. a) Ns for the
smallest size distribution is varied. b) Ns for the middle size distribution is varied. c) Ns for the
large size distribution is varied. Errors are standard error of the mean. Only cMC results for fiber
1 are shown for clarity. Similarly, only pMC results for one or two fibers are shown.
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varied. Consequently all perturbations in parameters modified the phase function.

Fig. 3.6 shows how varying the number density of each distribution affects the fraction of collected

photons as well as the accuracy of the pMC results. Fig. 3.6a demonstrates that when the concen-

tration of the smallest distribution is varied by ± 50%, there is a large change in photon collection

efficiency and the pMC results are very accurate. When the concentrations of distributions 2 and

3 are varied, there is very little change in photon collection efficiency. For larger changes in con-

centration, the standard errors of the mean increase for pMC. pMC results are shown for two fibers

which are representative of the range of results obtained.
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Figure 3.7: The mean radii of individual groups of scatterers are perturbed; a) distribution 1, b)
distribution 2, and c) distribution 3 in Table 2.1. Only cMC results for fiber 1 are shown for clarity.
Similarly, pMC results are shown for only some fibers. The range of the ”Fraction of Photons
Collected” is different in panel a) from all other graphs of ”Fraction of Photons Collected”. The
error bars are standard errors of the mean.

In Fig. 3.7, the mean radii of each individual distribution was varied. Fig. 3.7a shows results
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for the variation of the smallest radius from a baseline value of 0.030 µm. The pMC and cMC

results overlap for all radii and results are quite accurate at the smallest radius used, r = 0.024

µm. Fig. 3.7b are results when the mean radius of the middle size distribution is varied from the

baseline value of 0.045 µm. The pMC and cMC results agree well from about 0.42 µm to 0.49 µm,

but the pMC results differ greatly from the cMC results in one case. Similar results were obtained

when the radius of the largest distribution was varied, Fig. 3.7c.
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Figure 3.8: Comparison of pMC estimates of reflectance across wavelengths with calculations of
reflectance obtained from independent cMC simulations of tissue.

Fig. 3.8 compares pMC and cMC results when the wavelength is perturbed from a baseline value

of 620 nm. From 580 to 720 nm all of the pMC and cMC results are the same within errors. And

for 3 of the 4 replicates, the agreement extends down to 560 nm.

Fig. 3.9 shows the parameters used in the MC simulations of tissue. Combining these data with

those in Fig. 3.5 for single size scatterers, 4 classes of simulations can be examined; 1) µs varies,
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Figure 3.9: Scattering parameters for the simulation results shown in Figs. 3.6, 3.7 and 3.8.

while g is constant or nearly constant, 2) g varies while µs is nearly constant, 3) both g and µs vary

for nearly constant µ′s, and 4) g, µs and µ′s all vary. For each of these classes, there are 2 or 3 relevant

simulations. By examining the pMC results for these simulations we can determine the range of

scattering parameters over which the pMC and cMC results agree to within 1% of the cMC results,

the results of Table 3.1 were obtained. When only µs varied, pMC results are accurate over a range

of ±15% the original value of µs. When only g varied, pMC results are accurate over a range of

±25% the original value of (1-g). When both g and µs varied, then the variation of µs + 0.5(1−g)

can be ±20% when µ′s is constant and slightly less if µ′s varies.
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Table 3.1: Range of parameter variation for <1% error in pMC reflectance calculation

simulation types
variation of only µs varies only g varies only g and µs g, µs and µ′s vary

µs ±15% NA – –
(1−g) NA ±25% – –

µs + 0.5(1−g) NA NA ±20% ±18%

3.3 Forward Problems with Polarization

This section shows the results we obtained when testing the performance of pMC reflectance es-

timates when polarization is taken into account. To test pMC performance, pMC reflectance es-

timates were compared to those obtained using cMC. cMC reflectance estimates were obtained

by launching 20 million photons in a tissue representation characterized by a combination of the

parameter values in Table 3.2 and parameter baseline values in Table 2.1. The ranges in Table

3.2 were chosen with the intent of modeling the length scales over which the index of refraction

changes in epithelial cells. pMC estimates were obtained by launching 20 million photons in a

single Monte Carlo simulation at the baseline parameter values in Table 2.1 and calculating the

sample averages of the estimator ξ̂ to obtain perturbed reflectance values. Error bars shown on the

plots represent the standard deviation of the sample means. All photon biographies were obtained

from a modified version of the conventional Monte Carlo simulation code outlined in [5].

cMC and pMC calculations were performed on the High Performance Cluster at University of

California, Irvine and a single private computer, respectively. The cluster runs CentOS 6.6 and

code on the cluster was compiled using gcc−4.8.2. The private computer has 2 × 1.33 GHz

Quad-Core AMD processors and 8 GB 1333 MHz DDR2 RAM running Ubuntu 10.04.4 LTS and

our code was compiled using gcc−4.1.3. Benchmark tests were performed to ensure similar

performance across the two settings.

Both polarized and unpolarized simulations were performed using the same optical properties and
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Figure 3.10: (a) Changes in the mean radii and how they relate to gi. (b) Changes in the ensemble
scattering coefficient for all perturbations.

probe geometry. Each cMC unpolarized light simulation launching 20 million photons took 22 –

45 minutes to run while the cMC simulations for polarized light transport took 6.7–18.9 hours. The

post-processing module generating pMC reflectance estimates requires only ∼7 seconds and ∼13

seconds for unpolarized and polarized cases, respectively. Table 3.2 provides the perturbations

used for the pMC tests we performed by applying perturbations in mean radii r̂i and number den-

sities N̂s,i. Our model has three distributions of scatterers and each distribution has an associated

anisotropy factor. We refer to the anisotropy factor of the ith distribution as gi and the ensemble

anisotropy factor of the medium as g. Fig.3.10 shows how µs and g change as these parameters are

changed with the parameter perturbation.

Table 3.2: Range of parameters examined in pMC calculations. Baseline µs = 125 cm−1 and g =
0.9534.

Baseline Value, α Perturbed Parameter, α̂ g ranges µ̂s ranges (cm−1)
λ = 620 nm 500 – 720 nm g = 0.952 – 0.953 94.5 – 183

Ns,1= 4.00 ×1013 cm−3 2.00 – 6.00 ×1013cm−3 g1 = 0.183 123 – 127
Ns,2= 5.00 ×1010 cm−3 2.5 – 7.5 ×1010cm−3 g2 = 0.958 93.9 – 156
Ns,3= 5.00 ×107 cm−3 2.5 – 7.5 ×107cm−3 g3 = 0.999 95.5 – 154

r1=0.030 µm 0.015–0.045 µm ĝ1 = 0.0502 – 0.345 121 – 152
r2=0.45µm 0.38 – 0.52 µm ĝ2 = 0.945 – 0.966 94.2 – 174
r3=4.8 µm 3.9 – 5.7 µm ĝ3 = 0.998 – 0.999 93.8 – 173
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In both cMC and pMC simulations, we treat the source fiber center as the origin of our coordinate

system. The center of Detector 1 in Fig. 2.1(c) resides along the y-axis and the center of Detec-

tor 2 resides along the x-axis of the coordinate system. Our pMC implementation requires the

biographies of detected photons generated by an initial baseline cMC simulation.

In the case of polarized light transport, polarization is tracked by rotating the Stokes vector as

outlined in [26]. All photons initially enter the medium linearly polarized and with polarization

parallel to the x-axis. Each scattering event is characterized by polar and azimuthal angles, θ and

φ, which are sampled from the phase function through a rejection sampling method used by Bartel

and Hielscher [1]. Once the photon exits the medium, the Stokes vector is used to calculate the

components of the photon weight that are, respectively, parallel and perpendicular to the x-axis.

3.3.1 Scattering model parameter perturbations

First, we investigate the ability of our pMC method to predict changes in reflectance produced

by perturbations in the mean radii and/or number density of one of the three particle populations.

Figs. 3.12 & 3.11 show a comparison between cMC and pMC reflectance estimates for Detector

1, which tallies photon weights with parallel or perpendicular polarization relative to the source.

Figs. 3.11(a) – (f) provide a comparison of pMC and cMC reflectance resulting from perturbations

in number density for each of the three scattering particle populations, whereas Figs. 3.12(a) – (f)

compare pMC and cMC reflectance estimates for perturbations in mean radii.

The agreement between pMC and cMC estimates in Fig. 3.12 is linked to the range in which µ̂s is

perturbed and the degree in which ĝi is perturbed. For perturbations of the scattering model param-

eters, the two largest ranges in µ̂s occur when the second and third mean radii are perturbed, as seen

in Table 3.2. Although perturbations in the second and third mean radii produce similar µ̂s ranges,

the perturbations in the second mean radii coincides with a larger perturbation in anisotropy factor

which causes a more pronounced disagreement between pMC and cMC. As shown in Table 3.2,
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we explored a perturbation range for mean radius that spans a larger range of ensemble µ̂s values

as compared to perturbations in the number density. For example, perturbations we examined for

number density of the first particle distribution N̂s,1 result in a range of ensemble scattering coeffi-

cients µ̂s = 123–127 cm−1, whereas perturbations we examined for first mean radius in the range r̂1

result in a broader range of µ̂s = 121–152 cm−1. Similar observations can be made for the second

and third populations. Because number density perturbations do not result in perturbation of the

phase function and because of the smaller changes in µ̂s, these pMC reflectance estimates have

smaller variance than when perturbing mean radii. From this, we conclude that pMC performance

is a function of the magnitude of µ̂s changes as well as the changes in the phase function which can

be characterized by the change in g.
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Figure 3.11: pMC and cMC estimates of reflectance of parallel and perpendicular polarization in
Detector 1 for perturbations in number density ((a), (c), and (e)) and mean radii ((b), (d), and (f)).
Solid lines display the trend for parallel reflectance estimates and dashed lines display the trend
for perpendicular reflectance estimates.
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Figure 3.12: pMC and cMC estimates of reflectance of parallel and perpendicular polarization in
Detector 1 for perturbations in number density ((a), (c), and (e)) and mean radii ((b), (d), and (f)).
Solid lines display the trend for parallel reflectance estimates and dashed lines display the trend
for perpendicular reflectance estimates.

Interestingly, Figs. 3.12 and 3.11 reveal that reflectance is highly sensitive to changes in the first

distribution since the slopes of the plots in Figs. 3.12(a) and 3.12(b) are much greater than those
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in Fig. 3.12(c)–(f). The sensitivity to the parameters of the first distribution can be explained by

the low anisotropy factor of the associated phase function, which heavily promotes backscattering

(See Table 3.2). This probe’s bias toward detecting photons that have undergone backscattering is

connected to the geometry of the probe which features angled detector fibers and a small source-

detector separation. Based on µs,i/µs ratios, we would expect that 3.0%, 49.8%, and 47.2% of all

scattering interactions would be with the first, second, and third distributions, respectively. How-

ever, analysis of the collected photons reveal that 4.7%, 48.8%, 46.4% of the scattering interactions

are with the particles from the first, second, and third distribution, respectively. This represents a

54% increase in the number of interactions that the detected photons have with particles from the

first population over the expected number of interactions. This is evidence that collected photons

have enriched sensitivity toward changes to parameters associated with the first particle distribu-

tion.

Another important observation from the results in Fig. 3.12 is that the polarization-sensitive mea-

surements provide sensitivity to parameters of the second particle distribution. This result differs

from findings in [23] where we saw sensitivity to only parameters of the first distribution with

unpolarized reflectance estimates. Changes in the first and second scattering populations, which

represent protein complexes and organelles, are associated with dysplasia [25] and sensitivity to

parameters of both first and second scattering populations may be helpful. Fig. 3.13 provides a

comparison between pMC reflectance estimates for perturbations in the second mean radii for the

cases of unpolarized and polarized light propagation and is intended to supplement the results in

Fig. 3.12(d). In Fig. 3.13(a) and Fig. 3.13(b), the change in reflectance across r̂2 values are observ-

able where as in Fig. 3.13(c), the changes in reflectance are not discernible from the noise in pMC

and cMC reflectance estimates.

Although pMC’s reflectance estimates are particularly poor for Detector 2 with perpendicular po-

larization, pMC accurately captures the 6% change in reflectance at r̂2 = 0.41 – 0.47 µm for Detec-

tor 2 with perpendicular polarization. The differences between pMC reflectance estimates in the
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two detectors and polarizations will be further addressed in §3.3.2.

In Fig. 3.14, we explore the ability of pMC to reproduce spectral reflectance measurements. The

baseline wavelength is λ = 620 nm and the wavelength perturbations are performed in the range

of λ = 500–720 nm. Alteration of the wavelength requires modification of both the scattering

coefficients and phase functions for all three scatterer distributions. The spectral asymmetry in

Fig. 3.14 of pMC’s performance relative to the baseline wavelength can be explained by the more

rapid increase of the scattering coefficient as the wavelength decreases, as shown in Table 3.2.

We also see that larger wavelength perturbations away from the baseline value of λ = 620nm

result in larger standard deviations of the resulting pMC estimates. Perturbations from the baseline

wavelength result in perturbations in both the ensemble scattering coefficient and the anisotropy

factors, both of which drive increases in the variance of the estimator ξ̂.
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Figure 3.13: pMC estimates for perturbation in second mean radius in cases of (a) parallel polar-
ization (b) perpendicular polarization and (c) unpolarized detection.
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Figure 3.14: pMC and cMC estimates of reflectance across wavelength perturbations for polarized
light propagation.
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To summarize, we find that pMC’s performance is negatively affected by: (1) increasing per-

turbations in the scattering coefficient and (2) extreme changes in the phase function which can

be characterized by anisotropy factor perturbation. We have also demonstrated the utility of our

method by showing that turning on polarization can add sensitivity to some parameters and by

showing the accuracy of our method in the problem of perturbing across wavelength.

3.3.2 pMC performance and conventional Monte Carlo relative error

Second, we examine the relative performance of pMC reflectance estimates for parallel and perpen-

dicular polarization as shown in Figs. 3.12 – 3.14. The top part of Table 3.3 shows the parameter

ranges in which pMC estimates are within 5% of cMC reflectance estimates. The elements in the

top part of Table 3.3 have a lower bound followed by an upper bound for the parameter values.

These bounds are recorded as percentage changes from the baseline value for that parameter. For

example, in the column Detector 1, ‖ and in the row r1, the parameter range is listed as −50%,

+40%. This means that pMC reflectance estimates for Detector 1 with parallel polarization were

within 5% of cMC reflectance estimates for the range r1 = 0.015 – 0.042 µm since the baseline

value for r1 is 0.03 µm. In the bottom part of Table 3.3, we compare the relative errors, which is

defined as the standard deviation of the estimate divided by the mean, of pMC estimates at baseline

parameter values.

The parameter ranges for accurate pMC estimates are governed by (a) the inherent noise of the

baseline cMC simulation and (b) the size of the perturbation characterized by the changes in µ̂s,

ĝi, and µ̂s,i. The effect of the inherent noise of the baseline cMC simulation can be determined

through the comparison of the pMC reflectance estimates between Detector 1, ‖ and Detector 1,

⊥. This is because reflectance estimates use the exact same photon biographies and the differences

between pMC performance can be attributed to the final weights. The fact that Detector 1, ⊥

provides accurate pMC reflectance estimates over smaller parameter ranges than Detector 1, ‖ can
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be explained by the larger relative error in the baseline cMC simulation for Detector 1, ⊥. Similar

arguments can be made for the range of accuracy of the pMC estimates for Detector 2, ‖ and

Detector 2, ⊥. The accuracy range reported for Ns,1 in Table 3.3 is the full range of parameter

values for Ns,1 in this study; the true limit of pMC’s performance lies beyond the range listed for

Ns,1.

Table 3.3: Relative error and parameter ranges for polarized pMC reflectance estimates that are
within 5% of cMC reflectance estimates for each detector.

Parameter Detector 1, ‖ Detector 1, ⊥ Detector 2, ‖ Detector 2, ⊥

λ −12.9%, +16.1% −6.4%, +12.9% −6.4%, +12.9% −6.4%, +6.4%

r1 −50%, +40% −30%, +30% −30%, +10% −20%, +10%

r2 −15.6%, +8.9% −15.6%, +8.9% −11.1%, +6.7% −13.3%, +6.7%

r3 −14.6%, +16.7% −6.25%, +4.2% −14.6%, +10.4% −8.3%, +8.3%

Ns,1 −50%, +50% −50%, +50% −50%, +50% −50%, +50%

Ns,2 −40%, +50% −30%, +40% −50%, +20% −50%, +30%

Ns,3 −50%, +50% −50%, +30% −40%, +40% −10%, +20%

Detector 1, ‖ Detector, 1 ⊥ Detector 2, ‖ Detector 2, ⊥

rel. err. 6.74×10−3 9.39×10−3 8.53×10−3 1.11×10−2

The observed disparity between the relative errors of reflectance estimates for Detectors 1 and 2 is

consistent with prior experimental work [25, 22, 16] and is consistent with the underlying physics

of our model problem, which causes Detector 1 to detect a larger reflectance polarized parallel

to the x-axis than Detector 2. This asymmetry in photon collection can be explained by a simple

model outlined in [16] for a similar optical probe geometry. This model uses three assumptions:

(1) photons undergo only 2 scattering interactions before entering a detector, (2) photons that are

collected by Detector 1 have scattering events in the Y-Z plane and photons that are collected

by Detector 2 have scattering events in the X-Z plane and (3) photons enter the medium with a
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trajectory parallel to the z-axis. Fig. 3.15 shows plots of |s1(θ)|2 and |s2(θ)|2, where s1 and s2 are

elements of the scattering amplitude matrix yielded by Mie Theory. The plot of |s1(θ)|2 (blue)

is the scattered irradiance per unit incident irradiance given that the incident light is polarized

perpendicular to the scattering plane and the plot of |s2(θ)|2 (red) is the scattered irradiance per

unit incident irradiance given that the incident light is polarized parallel to the scattering plane [3].

Since each photon initially starts with polarization parallel to the x-axis, |s1(θ)|2 can be interpreted

as the phase function of scattering events in the Y-Z plane and |s2(θ)|2 can be interpreted as the

phase function of scattering events in the X-Z plane in the context of this three assumption model.

The greatest difference between |s1(θ)|2 and |s2(θ)|2 occurs at a scattering angle of around 90◦. In

the event that a photon scatters at two 90◦ angles before entering the detector, then the implication

of Fig. 3.15 is that a photon will end up in the Y-Z plane more frequently.

In this section, we have shown that there is a link between the noise of the baseline cMC simulation

and the subsequent pMC performance. This link is helpful in understanding the difference in

performance between the pMC reflectance estimates for parallel and perpendicular polarizations.

Furthermore, to ensure better pMC performance, it is critical to keep the relative error of the

baseline cMC simulation as low as possible.
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Figure 3.15: A plot of the s1 and s2 components produced by the Mie Scattering Method.
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3.3.3 pMC and cMC computational efficiency comparisons

To examine the computational advantage provided by pMC over cMC, we examine their relative

computational efficiencies, η, defined as

η =
R2

σ2T
(3.2)

where R is the mean of the estimate, σ2 is the variance, and T is the time required for the calcula-

tion [4]. This figure of merit allows for both characterization of the performance of the estimator

and the amount of computational resources by combining the relative error of the estimator and

the computational time. Furthermore, this figure of merit is dimensionless since relative error

is proportional to 1/
√

N where N is the number of photons launched and T is proportional to

N; this lack of dimensionality then allows for comparison across different algorithms or estima-

tors. Figs. 3.16(a) and 3.16(b) plots the computational efficiency for perturbations in wavelength,

mean radii, and number densities. Both plots feature a relatively constant computational efficiency

value for cMC estimates, while pMC estimates have the highest computational efficiency when

the change in the ensemble scattering coefficient is zero. The gain in computational efficiency for

pMC estimates degrades as the perturbation in the ensemble scattering coefficient increases, which

results from an increase in standard deviation of the estimates. In Fig. 3.16(a), plots of the compu-

tational efficiency are shown for perturbations in the mean radii whereas in Fig. 3.16(b), plots of

the computational efficiency are shown for perturbations in the number density. A comparison of

the pMC computational efficiency plots in Fig. 3.16(a) and 3.16(b), reveals that changes in r̂1 de-

grade the computational efficiency even though the range in µ̂s is much smaller than perturbations

for r̂2 and r̂3. This degradation is the result of increases in the size of the standard deviation of the

estimate, which is caused by the extreme perturbation in anisotropy factor of the phase function of

the first population.

Recall that pMC is a true perturbation method; that is it works best if the perturbations are “small”.
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The pMC estimator is unbiased for ALL perturbations, but the larger the perturbation, the larger

the statistical error it incurs. (When we say that the pMC estimator is unbiased we mean that

on average the estimator will not tend to over-estimate or under-estimate the true value of the

parameter.) Thus, in the limit of very large perturbations, it is more efficient computationally to

examine independent Monte Carlo simulations of the baseline pMC and at the perturbed values of

parameters of interest. As the size of the perturbation shrinks to zero, the advantage of pMC over

independent conventional simulations tends to increase.
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Figure 3.16: A comparison of the computational efficiency of pMC and cMC estimates for (a)
perturbations in r̂i and (b) perturbations in N̂s,i. The pink and red symbols show the computa-
tional efficiency of pMC estimates. The blue and light blue symbols in the plot above are for the
computational efficiencies of cMC estimates.
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Chapter 4

Differential Monte Carlo

4.1 Differential Monte Carlo

This chapter explores the application of derivatives to the pMC estimator for our problem. The

idea of obtaining derivatives based on MC simulations of neutron transport problems has previ-

ously been explored by Dejonghe, Rief, and Hall. This technique is useful in performing sensi-

tivity analyses in forward MC simulations and may be used to drive inverse problem-solving via

gradient-based optimization algorithms [11, 13]. It has also been shown that differentiation of the

pMC estimator produces a new estimator whose sample means converge to the pMC derivative

[12]. The equations can be used to estimate these sensitivities (i.e., rates of change) of photon

weights with respect to parameters of interest are called differential Monte Carlo (dMC), termi-

nology first used in [11]. Below, we show the equations that are used for each differential Monte

Carlo calculation for our problem.

E
[

∂ξ

∂δµa

]
=

∂R
∂δµa

(4.1)
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The derivatives of the reflectance with respect to µs and higher order derivatives are found in a

similar manner.

In order to calculate the sensitivity of reflectance to some parameter, the sensitivity of each photon

biography to that parameter of interest must be calculated. If we take the derivative with respect

to the parameter of interest, we find that

∂R̂
∂α̂

=
1
N

N

∑
n=1

∂ξ̂n

∂α̂
. (4.2)

The parameters for our particular problem are the mean radius of scatterers and the number density

of scatterers and are represented with α in the above equation. The derivatives ∂ξ̂

∂α
can both be

obtained through an application of the chain rule as shown below.

∂ξ̂

∂α̂i
=

(
∂ξ̂

∂µ̂s,i

)(
∂µ̂s,i

∂α̂i

)
. (4.3)

Since calculation of the estimator ξ̂ varies with how scattering is simulated, the estimator for ∂ξ̂

∂µ̂s,i

is also dependent on the scattering method used. Below, we show how to calculate ∂ξ̂

∂µ̂s,i
for both the

Distribution Selection Scattering Method and the Composite Phase Function Scattering Method.

4.1.1 Composite Phase Function Scattering Method

Now, we will show the equations involved with dMC calculations for the Composite Phase Func-

tion Scattering Method. Using the Composite Phase Function Scattering Method, the perturbed
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weight would be

ξ̂n = An ∗Bn ∗Cn (4.4)

An = ξn

(
µ̂s
µs

) j

exp [−(µ̂a−µa)L]

Bn = exp
[
−(µ̂s−µs)L

]
Cn =

j

∏
k=1

[
f̂ k

f k

]

where f k =
µs,1
µs

fk,1 +
µs,2
µs

fk,2 + ...+
µs,m
µs

fk,m and f̂ k =
µ̂s,1

µ̂s
f̂k,1 +

µ̂s,2

µ̂s
f̂k,2 + ...+

µ̂s,m

µ̂s
f̂k,m. Here, j is

the total number of interactions the nth collected photon has with the medium. For the case of a

composite phase function, ∂Cn
∂µ̂s,i

is calculated in the following way:

∂C
∂µ̂s,i

=
∂

∂µs,i

[
j

∏
m=0

f̂ (θm)

f (θm)

]

=
∂ f (θ1)

∂µ̂s,i

1
f (θ1)

j

∏
m=0

f̂ (θm)

f (θm)
+

∂ f (θ2)

∂µ̂s,i

1
f (θ2)

j

∏
m=0

f̂ (θm)

f (θm)
+ ...+

∂ f (θ j)

∂µ̂s,i

1
f (θm)

j

∏
m=0

f̂ (θm)

f (θm)

=
j

∑
k=0

∂ f (θk)

∂µs,i

1
f (θk)

f (θ j)

f̂ (θ j)

j

∏
m=0

f̂ (θm)

f (θm)
. (4.5)

∂ f̂ k
∂µ̂s,i

is dependent on the number of distributions of scatterers in the medium. If the medium has

three groups of scatterers, the value of ∂ f̂ k
∂µ̂s,i

is:

∂ f̂ k
∂µ̂s,i

=
f̂k,i(µ̂s− µ̂s,i)− f̂k,i′ µ̂s,i′− f̂k,i′′ µ̂s,i′′(

µ̂s

)2 . (4.6)

As one can see, calculation of the term ∂Cn
∂µ̂s,i

is simpler for the case of the Distribution Selection

Scattering Method. The processing of performing dMC calculations for each photon results in
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75% fewer calculations per photon biography under the Distribution Selection Scattering Method.

4.1.2 Differential Monte Carlo for Distribution Selection Scattering Method

Before showing how to calculate ∂ξ̂

∂µ̂s,i
in the Distribution Selection Scattering Method, we will first

reproduce the estimator ξ̂ below and break up the estimator into three different factors:

ξ̂ = A∗B∗C (4.7)

A = ξ

(
µ̂s,1

µs,1

) j1( µ̂s,2

µs,2

) j2
...

(
µ̂s,m

µs,m

) jm
exp [−(µ̂a−µa)L]

B = exp
[
−(µ̂s−µs)L

]
C =

j1

∏
l1=1

[
f̂l1,1

fl1,1

]
j2

∏
l2=1

[
f̂l2,2

fl2,2

]
...

jm

∏
lm=1

[
f̂lm,m

flm,m

]
.

The derivative ∂ξ̂n
∂µ̂s,i

can be calculated in the following manner.

∂ξ̂

∂µ̂s,i
=

∂A
∂µ̂s,i

BC+A
∂B

∂µ̂s,i
C+AB

∂C
∂µ̂s,i

(4.8)

where

∂A
∂µ̂s,i

=
jiξ
µs,i

(
µ̂s,1

µs,1

) j1
...

(
µ̂s,i

µs,i

) ji−1

...

(
µ̂s,m

µs,m

) jm
exp
[
−(µ̂a−µa)L

]
(4.9)

=
ji

µ̂s,i

µs,i

µ̂s,i
A
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and

∂Bn

∂µ̂s,i
= −Lexp

[
−(µ̂s−µs)L

]
(4.10)

= −LBn.

(4.11)

and

dC
∂µ̂s,i

= 0. (4.12)

4.1.3 Further differential Monte Carlo Calculations

Once the estimate for ∂ξ̂

∂µ̂s,i
is calculated, this algorithm then proceeds to calculate the derivative

∂µ̂s,i
∂α̂i

, where α is a parameter of interest. For this tissue model, the parameters of interest are:

number density, Ns,i, and mean radius, r̂i. Remember that mean radius is related to the scattering

coefficient, µs by:

µ̂s,i =
∫ b(r)

a(r)
Qscat,i(r)Na,i(r)dr (4.13)

where

Na,i(ri, t) = conc(ri, t)Ns,iπt2 (4.14)

and Qscat is the effective scattering cross section obtained by Mie calculations, and conc is the

probability distribution function that describes the scatterer population. For the case of lognormally
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distributed scatterer radii,

conci(ri, t) =
1

normi

1
t

exp

(
− [log(t)− log(ri)]

2

2σ2
i

)
. (4.15)

In Eq. (4.16), the value normi is a normalization factor which is calculated by taking the integral

of Eq. (4.16) from −∞ to ∞.

normi(ri, t) =
∫

∞

−∞

1
t

exp

(
− [log(t)− log(ri)]

2

2σ2
i

)
dt. (4.16)

In silica, we perform this calculation by allowing the user to set the upper and lower limits for this

integration as well as the width of trapezoids for a trapezoid sum integration. Taking the derivative

of Eq. (4.13) with respect to the scattering coefficient contribution of the ith distribution, we get:

∂µs,i

∂Ns,i
=

∫ b(r)

a(r)
Qscat,i(r)

∂Na,i

∂Ns,i
dr (4.17)

where

∂Na

∂Ns,i
= conci(ri, t)πt2. (4.18)

∂µs,i

∂ri
=

∫ b(r)

a(r)
Qscat,i(r)

∂

∂ri
Na,i(t)dr (4.19)
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where

∂Na,i

∂ri
= Ns,i

∂conci(ri, t)
∂ri

πt2 (4.20)

where

∂conci(ri, t)
∂ri

=
log(t)− log(ri)

rtσ2normi
exp
[
−(log(t)− log(ri))

2

2σ2

]
−

1
tnorm2

i
exp
[
−(log(t)− log(ri))

2

2σ2

]∫ b(r)

a(r)

log(t)− log(ri)

trσ2 exp
(
−(log(t)− log(ri))

2

2σ2

)
dt

(4.21)

4.1.4 Finite Difference and dMC Comparisons

To test the dMC method, we compared estimates of the sensitivity to reflectance with the estimates

of those derivatives obtained through finite difference. Although, theoretically, dMC estimates of

sensitivity should be more accurate than Finite Difference (FD) estimates, this early test was per-

formed to ensure that dMC was coded correctly; this author at least expected the magnitudes of all

FD estimates and dMC estimates to agree. For our tests, we ran a mother Monte Carlo simulation

for polarized light transport and launched 20 million photons at a wavelength of 520 nm for each

case. The probe geometry shown in Fig. 2.1c was used in these simulations. Collected photon

biographies were then submitted to differential Monte Carlo equations. For the finite difference

method, Monte Carlo simulations were launched at slightly perturbed optical properties and the

finite difference was taken between the reflectance generated by the MC simulation with perturbed

properties and the reflectance generated by the MC simulation with baseline properties. The list of

slightly perturbed properties and the ”baseline“ properties are shown in the table below.

Using the values from the table above, we can see that dMC estimates for ∂R̂
∂r̂1

deviate from finite

difference estimates by 42.2%. ∂R̂
∂N̂s,1

by 1.50% ∂R̂
∂coxyHb

by 0.642% and ∂R̂
∂cdeoxyHb

by 1.86%. The es-
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Table 4.1: Parameter variation used in Finite Difference calculation

r̂1 N̂s,1

Wavelength
(nm)

oxyHb
Concentration

(mM)
deoxyHb Concentration

(mM)

0.61125 µm 2.0066 ×1010 520 0.01 0.002
0.61025 µm 2.0066 ×1010 520 0.01 0.002
0.61125 µm 2.0166 ×1010 520 0.01 0.002
0.61125 µm 2.0066 ×1010 520 0.0101 0.002

Table 4.2: Finite Difference and dMC comparison

Finite Difference Estimates
Det. ∂R̂

∂r̂1

∂R̂
∂N̂s,1

∂R̂
∂coxyHb

∂R̂
∂cdeoxyHb

1, ‖ 0.000393967 4.27603×10−15 -8.7×10−5 -0.0001
1, ⊥ 0.000329344 4.42556×10−15 -7.1×10−5 -8×10−5

2, ‖ -0.000219967 -1.41654×10−15 -7.6×10−5 -8.5×10−5

2, ⊥ 0.000169852 4.22021×10−15 -9.5×10−5 -0.000105
dMC Estimates

Det. ∂R̂
∂r̂1

∂R̂
∂N̂s,1

∂R̂
∂coxyHb

∂R̂
∂cdeoxyHb

1, ‖ 3.45×10−4 4.21×10−15 -8.61×10−5 -9.55×10−5

1, ⊥ 3.63×10−4 4.42×10−15 -7.12×10−5 -7.90×10−5

2, ‖ -1.14×10−4 -1.38×10−15 -7.56×10−5 -8.39×10−5

2, ⊥ 3.53×10−4 4.29×10−15 -9.43×10−5 -1.05×10−4

timates for the ∂R̂
∂r̂ values may be less accurate than dMC estimates for ∂R̂

∂N̂s,1
or ∂R̂

∂coxyHb
or ∂R̂

∂cdeoxyHb
.

This is because obtaining the scattering coefficient from the mean radius requires integration (see

Eq. 4.13). The integration in that equation is performed using a trapezoidal rule integration in

which the user must set the uniform partition sizes. This is the only parameter affected by the

partition size of an integral. If the step size chosen for the finite difference estimate was much

smaller than the partition size used for the trapezoidal rule integration in Eq. 4.13, then the per-

turbed scattering coefficient may not change as much as it should, resulting in inaccurate values

for the reflectance estimates. The strength of dMC sensitivity estimates over finite difference ap-

proximations is further supported by the fact that similar experiments were run to the ones shown
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in Subsection 4.1.5, but with finite difference values instead of dMC derivative estimates used to

drive the Levenberg-Marquardt Algorithm no optimizations converged.

4.1.5 dMC results Performance with Unpolarized Light

This section involves our analysis of the performance of the dMC calculations. The computer

used for these simulations had an AMD Phenom II 1045T Six-Core Processor and 8GB of DDR2

RAM running Ubuntu 10.04.3 LTS and all code was compiled using gcc-4.2. Our analysis in-

volves a comparison of two types of sensitivity estimates which we call dMC and d-cMC. For all

dMC results, 2 billion photons were launched in a medium which contained the three scatterer

populations described in Table 2.1. Next, using the biographies of collected photons and the dMC

calculations outlined in Eqs. (4.8) – (4.21) estimates for the sensitivity of the reflectance to param-

eters of interest were then calculated at various optical properties listed in Table 4.3. These dMC

estimates for the sensitivity are then obtained at a non-zero perturbation from the baseline optical

properties. For the d-cMC estimates of sensitivity, 20 million photons are launched in a Monte

Carlo simulation. The photons propagate through a The range of optical properties of the medium

in which the photons propagate is listed Table 4.3. No perturbation in the optical properties of

the medium is applied when performing dMC calculations (The perturbed ”hatted“ values were

always equal to their unperturbed ”unhatted“ values in Eqs. (4.8) – (4.21)) to get d-cMC estimates

of the sensitivity. As a side note, we adopt the terms ”dMC” and ”d-cMC” to draw a parallel to our

previous comparison between pMC and cMC reflectance estimates. In the previous section, pMC

reflectance estimates were obtained by using pMC equations to calculate reflectance estimates at

some perturbation away from the baseline optical properties where as in cMC, the reflectance esti-

mates are always calculated at the same optical properties of the original Monte Carlo simulation

in which the sample of photon biographies was taken. When we compared pMC and cMC es-

timates together, our objective was to characterize what controlled the accuracy and variance of

pMC estimates and how far pMC could perturb parameters while obtaining reflectance estimates
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that agree with cMC reflectance estimates. Similarly, the motivation to compare dMC sensitivity

estimates and d-cMC estimates is to characterize what controls the variance of dMC estimates and

how far the user can perturb optical properties and still obtain accurate sensitivity estimates.

Table 4.3: Additional perturbations for dMC.

Baseline Value, α Perturbed Parameter, α̂ Increment of Perturbed Parameter
r2=0.45 µm ˆ̄r2=0.44-0.46 µm 0.002 µm
r3=4.8 µm ˆ̄r3=4.7-4.9 µm 0.02 µm

Ns,2= 5.00 ×1010 N̂s,2= 4.5 ×1010-5.5 ×1010cm
−3 1.0 ×109cm

−3

Ns,3= 5.00 ×108 N̂s,3= 4.5 ×107-5.5 ×107cm
−3 1.0 ×106cm

−3
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Figure 4.1: d-cMC and dMC comparisons across radii perturbations for unpolarized light simula-
tions.

Figure 4.1 shows estimates of the sensitivity of the reflectance with respect to each of the three

mean radii for the case of unpolarized light. The plots in Fig. 4.1 show a comparison between

dMC and d-cMC data points. Since d-cMC data points represent calculations of the derivative

with no perturbation applied and dMC data points represent calculations of the derivative with a

non-zero perturbation, d-cMC estimates should be more accurate than dMC estimates. Similar to

the vertical green lines in Fig. 3.12, the vertical green lines in Fig. 4.1 mark the baseline mean

radius value of all dMC points in that particular plot. For the perturbations of the mean radii of the

second and third distributions in fig. 4.1, the estimates of the derivative with respect to the mean

radii are smaller than or approximately equal to the size of the standard error of the estimate for

d-cMC and dMC calculations. This indicates that the derivative values for reflectance with respect

58



to the mean radii of the second and third distributions are effectively zero and that this virtual

probe is not sensitive to these distributions, a result that parallels the rates of change of reflectance

in Fig. 3.7. Furthermore, the estimate of the derivative obtained through dMC conforms to dMC

estimates of the derivative for r̂1 between 0.015 - 0.033 microns, for r̂2 between 0.43 - 0.48 microns

and r̂3 between 4.6 - 4.9 microns.

Comparing the Fig. 4.1 and Fig. 3.7 together, it appears that the size of the confidence interval of

pMC’s estimate for any particular perturbation is roughly proportional to the size of the confidence

interval for dMC’s estimate. It is interesting to note that we found that the difference between the

magnitude of the standard deviation of pMC and the magnitude of the expected value of pMC was

always about one magnitude greater than the difference between the standard deviation of dMC

and the magnitude of the expected value of dMC for the same perturbation and the same photon

biography. In other words, however ”noisy” the estimate of pMC was, we could reliably expect the

estimate of dMC to be about one magnitude ”noisier.” We found this relationship to be upheld for

all perturbations, without exception. This can likely be explained by the fact that dMC equations

are the derivatives of pMC equations and that taking the derivative tends to make noisy signals

even noisier.
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Figure 4.2: d-cMC and dMC comparisons across number density perturbations for unpolarized
light simulations.

Figure 4.2 shows a comparison between dMC and d-cMC estimates of reflectance for perturbations

in the number density. Perturbations in number density do not result in a change in the phase
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function and do not result in a change in the aniostropy factor. These plots show high sensitivity

to the first number dneisty, but relatively low sensitivity to the other distributions. The estimate

of the derivative obtained through dMC agrees with d-cMC estimates of the derivative for N̂s,1

=2×1013−6×1013 cm−3, for N̂s,2 =4.5×1010−5.5×1010 cm−3 and N̂s,3 =4.5×107−5.5×107

cm−3.

4.1.6 dMC results Performance with Polarized Light

Figure 4.3 and 4.4 show dMC estimates alongside with d-cMC estimates of the derivatives dR/dr1

and dR/dr2. Agreement between dMC and d-cMC is strong for r̂1 between 0.015 – 0.033 microns

and r̂2 between 0.44 – 0.47 microns for all detectors. The range for accurate dMC estimates

for the derivative when using polarized light are similar to the range of accurate dMC estimates

of the derivative when using unpolarized light. An interesting thing to note from the plots in

Fig. 4.4 is that the polarized reflectance appears to be sensitive to the second mean radius. This

matches previous results in Chapter 3 that indicate that polarized reflectance may be sensitive to

the parameters involving the second distribution and is an encouraging result, since changes in

the second distribution are associated with dysplasia [20]. Furthermore, sensitivity estimates for

perpendicular polarization appears to consistently have larger error bars for the same detector and

at the same perturbation; this appears to be an artifact of the poorer relative errors the perpendicular

reflectance recieves and is an extension of the physics of this problem. Essentially, fewer photons

polarized perpendicular to the x-axis reach each detector than photons polarized parallel to the

x-axis, which results in larger variances for reflectance estimates at the baseline. Larger variances

at the baseline optical properties for reflectance estimates then translate to even larger variances in

dMC estimates for photons polarized perpendicular to the x-axis in each detector. The dMC and

d-cMC comparison between sensitivity estimates for the number density are omitted here in the

interest of brevity, but the results indicate similar findings about the nature of dMC.
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Figure 4.3: Comparisons of d-cMC and dMC estimates of reflectance across perturbations of the
mean radius of the first distribution for polarized light propagation.
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Figure 4.4: d-cMC and dMC estimates of reflectance across perturbations of the mean radius of
the second distribution for polarized light propagation.
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Chapter 5

Inverse Problem Solutions

In this chapter, we examine the potential to use our forward model as a means to recover the

number density and size of tissue scatterers from a set of unpolarized or polarized reflectance

measurements. Inverse problems are defined as the process of using a set of measurements and a

pre-determined mathematical model to determine the quantity of each causal factor that a model

accounts for. Generally, inverse problems are useful because they can quantify properties of a

material that are necessary to predict an actual experimental measurement in a manner consistent

with an assumed physical model. Inverse problems are also considered to be more difficult to

resolve than forward problems for several reasons: 1) inverse problems can be ill-posed, meaning

that different values of the model parameters may be consistent with the same measurements and

2) optimization of the model parameters can sometimes requires examination of a large parameter

space. Furthermore, even if a problem is not ill-posed, small errors in measurement data can result

in much larger errors in the estimates of the parameter values. There are a host of tools that help

one overcome the difficulties of solving inverse problems. Discussion of various inverse problem

solving techinques are outside the scope of this dissertation, but the author has found Engl’s book

and Sze Tan’s website helpful starting points for learning about this topic [8].
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This chapter is organized into several sections four separate sections. In the first section, we lay

out the theoretical framework of the inverse problem in terms of an optimization problem. In the

second section, we apply this framework to solve an inverse problem, considers using a set of

unpolarized reflectance measurements to recover model parameters (mean radii and number densi-

ties of three scatterer populations). In the third section, we apply the same framework to examine

the ability of polarized reflectance measurements to recover the same sets of model parameters.

In these cases we attempted to recover two of six parameters simultaneously using measurements

taken at five wavelengths. This examination focused on determining measurements that would be

sensitive to changes in mean radii for the two smallest scatterer distributions, which are indicative

of pre-tumorigenic changes. Finally, in the fourth section, we discuss the strengths and weaknesses

of our method.

Briefly, I would like to explain the motivations for each chapter. Our initial test of pMC’s in-

verse problem solving capabilities for unpolarized reflectance measurements were much simpler

in nature than our tests of its inverse problem solving capabilities for polarized reflectance mea-

surements and were motivated by “proof-of-concept” and code debugging. In the case of test-

ing pMC’s inverse problem solving capability using unpolarized reflectance measurements, only

one parameter of the scattering model was recovered at a time, while the other five parameters

were fixed. When pMC’s inverse problem solving capability was tested with polarized reflectance

measurements, we were motivated to solve problems similar to ones commonly encountered by

clinicians [25]. We were particularly interested in answering this question: is it possible to use

pMC in combination with reflectance measurements from fiber optic probes to determine micro-

architectural changes in tissue? We were aware of previous research that has successfully used

perturbation Monte Carlo to determine bulk optical properties such as the scattering coefficient

µs, the anisotropy factor g, or the absorption coefficient µa. We are also aware of researchers

using primarily instrumentation methods to efforts to obtain micro-architectural information; we

were interested in developing a somewhat unique method that uses a primarily modeling-based

approach to get at subcellular tissue information. Furthermore, we were also interested in seeing if
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our algorithm could successfully recover changes in tissue micro-structure, a task which had never

been done before with the pMC method.

5.1 Inverse Problem Equations

Let Rmeas(λi) be the measured reflectance at i = 1,...,M wavelengths. Suppose we wish to find the

optimal values of the number densities andmean radii that best match the measured data, i.e., we

have six optimization parameters: N̂s,1, N̂s,2, N̂s,3, r̂1, r̂2, r̂3. Let R̂(λ;Ns,1,Ns,2,Ns,3, r̂1, r̂2, r̂3) be the

pMC approximation of reflectance. A least-squares minimization for finding the optimal parameter

set N̂∗s,1, N̂
∗
s,2, N̂

∗
s,3, r̂

∗
1, r̂
∗
2, r̂
∗
3 is equivalent to finding the minimum of the following function:

χ
2(N̂s,1, N̂s,2, N̂s,3, r̂1, r̂2, r̂3) =

M

∑
i=1

[
Rmeas(λi)− R̂(λ; N̂s,1, N̂s,2, N̂s,3, r̂1, r̂2, r̂3)

]2

Var[Rmeas]
(5.1)

The problem of minimizing the value of this function is also known as a least-squares problem.

There are many strategies that are employed to minimize the value of the χ2 function, which

include: gradient-descent methods, the singular value decomposition, QR decomposition, etc. For

our problem, we chose the Levenberg-Marquardt Algorithm, a non-linear optimization method

that combines the method of gradient descent and Gauss-Newton Algorithm, a modification of

Newton’s method for finding the minimum of a function.

5.1.1 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt Algorithm is an iterative algorithm used to solve least squares problems

such as the problem of minimizing the function in Eq. (5.1). Let f (xi,β+δ) be the model function

and yi be the vector of measurement data. At each iteration, the parameter vector β is updated with

a new estimate, β+ δ. To determine δ, the model function f (xi,β+ δ) is approximated by this
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linearization:

f (xi,β+δ)≈ f (xi,β)+ Jiδ, (5.2)

where Ji =
∂ f (xi,β)

∂β
is the gradient of f with respect to β. The sum S(β) of square deviations has at

its minimum a zero gradient with respect to β. The above first-order approximation of f (xi,β+δ)

gives

S(β+δ)≈
m

∑
i=1

(yi− f (xi,β)− Jiδ)
2 = χ

2(β) (5.3)

Taking the derivative of S(β+δ) with respect to δ and setting the result to zero then yields

(JT J)δ = JT [y− f (β)] (5.4)

where J is the Jacobian matrix whose i-th row equals Ji, and where f and y are vectors with i-th

component f (xi,β) and yi respectively. This is a set of linear equations, which can be solved for δ.

Levenberg and Marquardt’s contribution to this is the damping factor:

[
JT J+λI(JT J)

]
δ = JT [y− f (β)] (5.5)

where I is the identity matrix, giving as the increment δ to the estimated parameter vector β. This

damping factor adjusts behavior of the algorithm to react in ways that are more similar to the

Gauss-Newton algorithm or more similar to gradient descent. Furthermore, this damping factor is

scaled to the size of each component. This avoids the problem of slow convergence in the direction

of small gradients; this problem can occur when parameters vary by several orders of magnitude.
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5.2 Unpolarized Reflectance Measurements and Parameter Op-

timization Experiments

This section contains our first explorations with pMC’s inverse problem solving capabilities us-

ing unpolarized light reflectance measurements. In a typical biomedical inverse problem solving

scenario, a practitioner of a method would be aware of several things: the geometry and the char-

acteristic output of the device used in optically probing a region of tissue. The value of certain

tissue characteristics, which may or may not be dependent on the model chosen by the investi-

gator, would be unknown before hand. The tests described in this section also abides by these

constraints. First, we generated reflectance measurements using various values for our model pa-

rameters, mean radii and number density. Next, we then used those reflectance measurements

as inputs to our pMC method in order to recover model parameter values. The efficacy of our

pMC method’s inverse problem solving capabilities are then evaluated by comparing the “actual”

parameter values, which are taken from the parameter values used to generate the reflectance mea-

surements in the first place, with the “optimized” parameter values, which is the output of the pMC

method used in an inverse problem solving manner.

5.2.1 Generation of Unpolarized Reflectance Measurements

In order to test out our method’s efficacy, we first had to generate data sets of unpolarized re-

flectance measurements, which would be used in inverse problem solving later. All reflectance

measurements were obtained by running a Monte Carlo simulation, as described in Chapter 3, on a

tissue in which there were 3 lognormally distributed groups of spherical Mie scatterers. The mean

radii and number densities of the scatterers embedded in the tissue were varied from the baseline

values in Table 2.1. The various combinations of mean radii and number density values for the

sample unpolarized reflectance measurement sets are shown below in Table 5.1. These reflectance

66



measurements were generated for the probe geometry described in Figure 2.1 at a wavelength of

620 nm. We picked this probe configuration because it closely mirrored a probe design used in

prior studies [22]. Recall that the center-to-center distance between Detector 1 and the source fiber

is the same as the center-to-center distance between Detector 2 and the source fiber. This means

that for unpolarized light, the reflectance at Detector 1 and Detector 2 should be statistically similar

and that there is only one independent measurement for each wavelength of light emitted. Because

of this, we elected to only recover one parameter at a time for each measurement. Now, in order

to obtain the actual reflectance measurement for this probe geometry and specific tissue scattering

model, we launched 20 million photons in a conventional Monte Carlo simulation for each set of

parameter values in Table 5.1. These simulations were run on the cores of University of California,

Irvine’s High Performance Cluster and took between 13 - 82 minutes to run.

Table 5.1: Combinations of of parameter values used to generate unpolarized reflectance measure-
ments

Floated Fixed Range for Floated Param. Param. Increments
r̂1 r̂2, r̂3, N̂s,1, N̂s,2, N̂s,3 0.015 – 0.045 µm 0.003 µm
r̂2 r̂1, r̂3, N̂s,1, N̂s,2, N̂s,3 0.38 – 0.52 µm 0.01 µm
r̂3 r̂1, r̂2, N̂s,1, N̂s,2, N̂s,3 3.9 – 5.7 µm 0.1 µm

N̂s,1 r̂1, r̂2, r̂3, N̂s,2, N̂s,3 2 ×1013 – 6 ×1013 cm−3 4 ×1012 cm−3

N̂s,2 r̂1, r̂2, r̂3, N̂s,1, N̂s,3 2.5 ×1010 – 7.5 ×1010 cm−3 5 ×109 cm−3

N̂s,3 r̂1, r̂2, r̂3, N̂s,1, N̂s,2 2.5 ×107 – 7.5 ×107 cm−3 5 ×106 cm−3

5.2.2 Optimization

Proper utilization of the pMC and dMC method requires the user to generate a set of collected pho-

ton biographies by running a “mother” simulation. The mother simulation was run by launching 2

billion virtual photons through the probe configuration in Fig. 2.1 into a medium with the baseline

optical properties in Table 2.1. We chose to launch a very high number of photons to obtain more

accurate dMC estimates and to obtain better parameter optimizations. With optimization, only one
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parameter was allowed to vary, while the other five parameters were fixed at proper values. The

simulations used to generate the reflectance measurements can be separated into six categories:

1) simulations where the mean radius of the first scatterer population is allowed to vary from the

baseline, 2) simulations where the mean radius of the second scatterer population is allowed to

vary from the baseline, and so on for the other four parameters... In every instance of parameter

optimization, the parameter that was floated was matched to the category in which the reflectance

measurement came from. In other words, if the reflectance measurement was generated using a

simulation in which the mean radius of the first distribution was different from the baseline, opti-

mization was performed in such a way that the value for the first mean radius was floated and other

parameter values were fixed. Figure 5.1 shows the results of this experiment.
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Figure 5.1: Comparison of parameter values used to generate virtual measurement data vs. opti-
mized model parameer values obtained by inputting measurement data into optimization algorithm
powered by pMC. Black sloped line indicates a perfect fit of the measurement data.

From Figure 5.1, we see that recovery of number density and mean radii of the first distribution

are within 10% of actual parameter values for all parameter values tested. For the number density

and mean radii of the second distribution, recovered parameter values are within 10% of actual

parameter values between Ns,2 = 4×1010−5.5×1010 cm−3 and r2 = 0.39−0.49µm, but accuracy
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of recovered parameter values break down outside of these ranges. This in part is due to the much

larger changes in the scattering coefficient, µs and the lower sensitivity to the second distribution,

as described in our sensitivity analysis using dMC estimates. Finally for the third distribution,

recovery of parameter values is poor for both mean radii and number density for any parameter

value away from the baseline. This poor recovery is a result of the very low sensitivity to the third

distribution, which agrees with previous dMC estimates of sensitivity. We conclude that accuracy

of parameter optimization is affected by a) sensitivity to that parameter and b) change in scattering

coefficient. Larger changes in scattering coefficient values will result in pMC estimates with larger

variances and result in more difficult optimization and possibly poorer parameter recovery. Poor

sensitivity (that is, if the dMC estimate of the sensitivity is very close to zero) to parameters will

also result in poor parameter recovery.

5.2.3 Polarized Reflectance

In this section, we summarize exploration of with pMC’s inverse problem solving capabilities using

polarized reflectance measurements. We consider the same experimental arrangement as in Section

5.2.2 except that we use linearly polarized light to illuminate the tissue sample and detect both the

co- and cross-polarized reflectance signals. For these experiments, we allowed two parameters of

the six total model parameters to stray from the baseline values. The two model parameters that

were allowed to stray from baseline values were then floated during optimization of parameter

values while others were fixed at baseline values.

5.2.4 Generation of Polarized Reflectance Measurements

We first had to generate data sets of polarized reflectance measurements, which would be used

in inverse problem solving later. All reflectance measurements were obtained by running a light

transport simulation on a tissue in which there were 3 lognormally distributed groups of spherical
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Mie scatterers. The mean radii and number densities of the scatterers embedded in the tissue were

varied from the baseline values in Table 2.1. The various combinations of mean radii and number

density polarized reflectance measurement sets are shown below in Table 5.2. These reflectance

measurements were generated for the probe geometry described in Figure 2.1 at a wavelength of

500, 520, 560, 640, 720 nm. We picked these wavelengths because these wavelengths were the

most sensitive to changes in the second distribution and are within the range of emitted wavelengths

of our collaborator’s actual probe. To generate the reflectance measurements we launched 800

million photons in a conventional Monte Carlo simulation for each wavelength for each set of

parameter values in Table 5.1. These simulations were also run on the cores of University of

California, Irvine’s High Performance Cluster.

Table 5.2: Combinations of of parameter values used to generate unpolarized reflectance measure-
ments

Floated Parameter Floated Parameter Range Increment
r̂1 0.015 – 0.045 µm 0.006 µm
r̂2, 0.38 – 0.52 µm 0.03 µm
N̂s,1 2 ×1013 – 6 ×1013 cm−3 1.00 ×1013 cm−3

N̂s,2 2.5 ×1010 – 7.5 ×1010 cm−3 1.25 ×1010 cm−3

5.2.5 Optimization

The mother simulation was run by launching 2 billion virtual photons through the probe configura-

tion in Fig. 2.1 into a medium with the baseline optical properties in Table 2.1. We chose to launch

a very high number of photons to help obtain more accurate dMC estimates and to help obtain bet-

ter parameter optimizations. With optimization, only one parameter was allowed to vary, while the

other five parameters were fixed at proper values. The simulations used to generate the reflectance

measurements can be separated into six categories: 1) simulations where the mean radius of the

first scatterer population, r̂1, is allowed to vary from the baseline, 2) simulations where the mean
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radius of the second scatterer population, r̂2, is allowed to vary from the baseline, and so on for the

other four parameters. For every instance of parameter optimization, the parameter that was floated

was matched to the category in which the reflectance measurement came from. In other words, if

the reflectance measurement was generated using a simulation in which the mean radius of the first

distribution was different from the baseline, optimization was performed in such a way that the

value for the first mean radius was floated and other parameter values were fixed. Figures 5.2–4

provide the results of this experiment. In this next section the results for parameter optimization

given polarized reflectance measurements are shown. These results were obtained by generating

measurement reflectance estimates using conventional Monte Carlo, in which 20 million photons

were launched. The optical properties of the measurement set of cMCs was determined by setting

four parameter values at the baseline values described in Table 2.1 and varying two parameter val-

ues. Reflectance estimates were obtained at wavelength values of 500, 520, 560, 640, and 720 nm.

These wavelengths were picked because they the most sensitive to changes in the second distribu-

tion. For optimization, five sets Monte Carlo simulations were run at the baseline optical properties

with incident photon wavelengths of 500, 520, 560, 640, 720 nm. In each simulation, we launched

800 million photons into the medium, resulting in a total of 4 billion photons that were launched

to generate the collected photon biographies to be used for pMC and dMC calculations. There are

several types of optimizations we performed which are summarized in the table below in Table 5.3.

Table 5.3: Types of polarized optimization

Figure Number Floated Parameters Fixed Parameters
Fig. 5.2 r̂1, r̂2 r̂3, N̂s,1, N̂s,2, N̂s,3

Fig. 5.3 N̂s,1, N̂s,2 r̂1, r̂2, r̂3, , N̂s,3

Fig. 5.5 r̂1, N̂s,1 r̂2, r̂3, N̂s,2, N̂s,3

Fig. 5.6 r̂2, N̂s,2 r̂1, r̂3, N̂s,1, N̂s,3

Fig. 5.7 r̂1, N̂s,2 r̂2, r̂3, N̂s,1, N̂s,3

Fig. 5.8 r̂2, N̂s,1 r̂1, r̂3, N̂s,2, N̂s,3
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The figure below shows the results for optimizing the parameters r̂1 and r̂2. Reflectance measure-

ments were generated by using baseline values for all other model parameters and using values

of r̂1 between 0.015 µm and 0.045 µm with increments of 0.003 µm and values of r̂2 between

0.38 µm and 0.52 µm with increments of 0.03µm. Combining the five possible values for r̂1 and

the five possible values for r̂2 resulted in a total of 25 sets of reflectance measurements that were

used to test the optimization capabilities of our method. Each of the two plots in Fig. 5.2 has 25

plot points, which represent the same 25 optimizations that were performed. The first plot from

the left in Fig. 5.2 shows information about optimization regarding the parameter r̂1 where as the

second plot from the left in that same figure shows information about optimization regarding the

parameter r̂2. As stated before, the optimizations were done in such a way that both parameters

were simultaneously optimized; however, information about parameter optimization is shown in

different plots due to the difficulty in showing optimization for the two parameters in the same plot.

For these optimizations, the run time took between 15 - 36 hours. Each optimization took between

4-10 iterations of the Levenberg-Marquardt Algorithm, with a user set limit of a maximum of 10

iterations. Early optimization experiments on this set of reflectance measurements showed that for

the most part, the step size for parameters were less than 1% of the previous parameter value after

10 iterations. (We had originally set the maximum number of LMA iterations to 25, which resulted

in much longer run times for optimization problems.) It should also be noted that each iteration of

the LMA did not necessarily correspond to one evaluation of the pMC and dMC functions. Oddly,

certain iterations called for multiple evaluations of pMC and dMC functions and other iterations

did not call for evaluations of dMC functions at all. Correlation between r̂1 and r̂2 were evaluated

using the elements of the covariance matrix as shown below.

cori, j =
Ci, j√

Ci,i
√

C j, j
(5.6)

where cori, j is the correlation between the ith and jth parameter and Ci, j is an element in the

covariance matrix in the ith row and jth column which describes covariance between a total of n
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parameters:

C =



C1,1 C1,2 . . . C1,n

C2,1 C2,2 . . . C2,n

...
...

...

Cn,1 Cn,2 . . . Cn,n


. (5.7)

Correlation between the parameters r̂1 and r̂2 ranged between -0.843 and 0.606, with the closest

value to zero at 0.014. Correlation values equal zero indicate that parameter values are independent

of one another and correlation values equal to -1 (negative correlation) or 1 (positive correlation)

indicate that the two parameters are not independent of one another. Correlation values close

to 1 or -1 mean that the two parameters are closely related and the user may experience some

difficulty optimizing for those parameters simultaneously. To measure the efficacy of parameter

optimizations, we utilized relative errors:

rel.err.=
|α?−α|

α
×100% (5.8)

where α? is the value of the parameter output by the optimization process and α is the true value of

the parameter used to generate the reflectance measurement. The relative errors of optimizations

of r̂1 were between 0.0281% and 18.7% with an average relative error of 3.35% across all 25

optimizations and the relative errors for optimizations of r̂2 were between 0.101% and 27.9%

with an average relative error of 6.01% across all 25 optimizations. In general, optimizations for

r̂1 recovered values closer to true values than r̂2. We attribute the reason for this to the higher

sensitivity to the first mean radius.
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Figure 5.2: Plots of optimized parameter values vs. actual parameter values. The black lines in
each plot are y = x; plot points that are closer to the black line represent more accurate optimiza-
tions that plot points that are further from the black line. Each plot point in this figure represents
an optimization where r̂1 and r̂2 were varied and other parameters were fixed.

In Fig. 5.3, we show the results of simultaneous optimizations for the parameters N̂s,1 and N̂s,2.

In these optimizations, the phase function is not perturbed; changes in reflectance are the result in

perturbations in the scattering coefficient from the baseline scattering coefficient values. Across

all 25 optimizations, average relative error in recovering N̂s,1 was 2.38% and the average relative

error in recovering N̂s,2 was 6.9%. These optimizations took between 8.84 – 21.8 hours and took

between 4 – 10 iterations of the LMA algorithm to complete. The relative error in recovering N̂s,1

and N̂s,2 is lower on average than recovering r̂1 and r̂2. This can be explained by the lower range in

scattering coefficient perturbations when perturbing N̂s,1 and N̂s,2 as opposed to perturbing r̂1 and

r̂2 as well as the perturbation in phase function that occurs when mean radii is perturbed. Fig. 5.4

shows the comparison between the most extreme perturbations for these two sets of perturbations;

the most extreme perturbations of r̂1 and r̂2 result in further perturbations from the baseline in

µ̂s. Since reflectance measurements obtained by perturbing r̂1 and r̂2 represent a more extreme

perturbation in the scattering coefficient, the pMC method obtains reflectance estimates with higher

variance; this in turn, translates to poorer recovery of model parameters for optimizations in r̂1 and

r̂2. Furthermore, perturbations in r̂1 and r̂2 also perturb the phase function where as perturbations

in N̂s,1 and N̂s,2 leave the phase function unchanged. This also contributes to the lower relative

error in recovery of the parameters N̂s,1 and N̂s,2.
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Figure 5.3: Plots of optimized parameter values vs. actual parameter values. The black lines in
each plot are y = x; plot points that are closer to the black line represent more accurate optimiza-
tions that plot points that are further from the black line. Each plot point in the figure represents an
optimization where N̂s,1 and N̂s,2 values were varied and other parameters were fixed at the correct
values.
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Figure 5.4: Comparison of µ̂s values for the most extreme perturbations of r̂1, r̂2 and N̂s,1, N̂s,2.
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In Fig. 5.5, we show plot the results of a simultaneous optimization of the parameters N̂s,1 and r̂1.

For this set of 25 optimizations, the relative error in recovering r̂1 was 43.7% and the relative error

in recovering N̂s,1 was 76.1%. These are poor average relative errors for parameter recoveries. The

run time for these optimizations ran from 21 – 33.3 hours with 7 – 10 iterations of the Levenberg-

Marquardt Algorithm. The LMA failed to return the correlation between N̂s,1 and r̂1 because of

numerical problems. Furthermore, the variance of the parameters were also not returned.
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Figure 5.5: Each plot point in this figure represents an optimization where N̂s,1 and r̂1 were varied
and other parameters were fixed at their correct values.

In Fig. 5.6, we show results for simultaneous optimization of the parameters N̂s,2 and r̂2. For this

set of 25 optimizations, the average relative error in recovering r̂2 was 8.96% and the average

relative error in recovering N̂s,2 was 32.2%. The run time for these optimizations 12.5 – 28.7 hours

with 2 – 10 iterations of the LMA. The average correlation between N̂s,2 and r̂2 was -0.999. Figure

5.7 shows the results of simultaneously optimizing N̂s,2 and r̂1. On average, the relative error of

optimizing r̂1 is 3.00% and the average relative error of optimizingN̂s,2 is 15.3%. The run time

for these optimizations was 17.9– 32.8 hours with 6 – 10 iterations of the LMA. The correlation

between these two variables on average was -0.281.
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Figure 5.6: Each plot point in this figure represents an optimization where N̂s,2 and r̂2 were varied
and other parameters were fixed at their correct values. Plot points closer to the black line represent
optimizations where optimized values were closer to actual values.
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Figure 5.7: Each plot point in this figure represents an optimization where N̂s,2 and r̂1 were varied
and other parameters were fixed at their correct values. Plot points closer to the black line represent
optimizations where optimized values were closer to actual values.

Figure 5.8 shows the results of simultaneously optimizing N̂s,1 and r̂2. On average, the relative

error of optimizing r̂1 is 3.14% and the average relative error of optimizing N̂s,2 is 31.3%. The run

time for these optimizations was between 14.4 – 28.6 hours with 4 – 10 iterations of the LMA. The

correlation between these two variables on average was -0.0974.
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Figure 5.8: Each plot point in this figure represents an optimization where N̂s,1 and r̂2 were varied
and other parameters were fixed at their correct values. Plot points closer to the black line represent
optimizations where optimized values were closer to actual values.

5.2.6 Discussion

We found that several important factors affect whether or not pMC is able to successfully obtain

parameter values. These factors are: the model’s sensitivity to its parameters, correlation between

other model parameters, changes in scattering coefficient and phase functions.

In Fig. 5.1, we showed results for parameter optimizations for unpolarized reflectance measure-

ments for our probe taken at 620 nm. We know from results in Chapter 4 that unpolarized re-

flectance measurements at 620 nm are not sensitive to changes in value for parameters involving

the second or third scattering populations. This insensitivity to the second and third distribution

resulted in very poor results in recovering N̂s,2 and r̂2, N̂s,3 and r̂3 when our method was only given

unpolarized reflectance measurements at a wavelength of 620 nm. Relative errors in recovery of

N̂s,3 averaged around 38%, with a maximum value of 80% relative error. Similar values were

obtained for optimizations of N̂s,2 (maximum relative error of 63% and average relative error of

25.5%), r̂2(maximum relative error of 18.4% and average relative error of 7.31%), r̂3 (maximum

relative error of 24.9%, and average relative error of 11.7%). The differences in relative error

ranges are different since for these optimizations, the LMA produced parameter values that did not

stray far from initial guesses, but the ranges for parameter values used to produce the reflectance
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measurements were very different across parameters. For example, both of the number densities

were perturbed ± 50% while r̂3 was perturbed ±18.75% and r̂2 was perturbed ± 15.6%. We then

concluded that low sensitivity was a contributor to the failure to accurately optimized parame-

ter values. Due to this conclusion, we then decided against attempting to optimize for the third

parameter value in our optimization experiments with polarized reflectance measurements.

Another conclusion we reached in numerical experiments with optimization was that high corre-

lation between multiple parameters can significantly increase the difficulty in optimizing for those

parameters simultaneously. We saw evidence of this when we tried to simultaneously optimize for

r̂2, N̂s,2 or when we tried to simultaneously optimize for r̂1 and N̂s,1. In both of these cases relative

errors for optimization of these parameters was high (Simultaneous optimization of r̂1 and N̂s,1 re-

sulted in relative errors of 43.7% and 76.1%, respectively. Optimizations of r̂2 and N̂s,2 resulted in

relative errors of was 8.96% and 32.2%, respectively.). High correlation between two parameters

means that changes in the those two parameters produces changes in reflectance that are similar.

If two or more parameters produces similar changes in the model’s output, it may be difficult if

not impossible to tease apart the effects of the individual parameters that share high correlation.

Thus, high correlation between two or more parameters is a contraindicator towards a successful

optimization.

One last conclusion we can draw from these results is that extreme changes in scattering coef-

ficient and phase function away from the baseline values will negatively effect the accuracy of

the optimization of the parameter values. This makes sense; previous chapters have established

that more extreme changes in the optical properties on the medium produce poorer estimates of

reflectance from pMC. It stands to reason that poorer pMC reflectance estimates will negatively

affect an inverse problem solution powered by pMC estimates. We can see evidence of this effect

by closely examining the Figs. 5.8 and 5.7. The set of optimizations performed in both figures

represent similar changes in scattering coefficient; the ranges of scattering coefficient values for all

these optimizations are shown below in Fig. 5.9; the maximum values for the medium’s scattering

80



500 550 600 650 700
Wavelength(nm)

100

200

300

Figure 5.9: Comparison of µ̂s values for the most extreme perturbations of r̂1, N̂s,2 and r̂2, N̂s,1.

coefficient values for perturbations involving r̂1 and N̂s,2 always stay within the maximum scat-

tering coefficient values for perturbations involving r̂2 and N̂s,1. Despite having similar ranges in

scattering coefficient values, the average relative errors for recovering r̂1 and N̂s,2 are significantly

worse than recovering r̂2 and N̂s,1. This is due to the extreme changes in the phase function when

perturbing r̂1. From Figure 5.10, we can see that perturbations involving both r̂1 and N̂s,2 span a

larger range in the anisotropy factor of the phase function, indicating that phase function changes

are more extreme. This more extreme change in phase function then translates to poorer pMC

reflectance estimates with and ultimately to poorer recovery of parameter values. For two opti-

mizations involving equal bulk optical properties but different changes in phase function, one can

expect that the optimization with smaller changes in phase function will result in more accurate

parameter optimization.
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Figure 5.10: Comparison of anistropy factor values for most extreme perturbations of r̂1, N̂s,2 and
r̂2, N̂s,1.
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5.2.7 Summary

In this chapter, we showed several key results involving our experiments with the pMC method

applied to inverse problem solving. We were able to show that the pMC method was sensitive to

the parameters involving the first scatterer distribution when utilizing only unpolarized light. We

were also able to recover parameters related to the smallest scattering distribution and the second

smallest scattering distribution, which relates to protein complexes and organelles. Recovering

parameters related to the second scattering distribution is of particular importance since changes in

this second distribution are related to dysplastic changes in tissue. While it is possible to recover

parameters individually, there are several conditions that must be met for a successful recovery.

First, it may be difficult to recover parameters that relate to the same scatterer population simulta-

neously due to high correlation. This may be alleviated in the future by applying pMC to a realistic,

yet simpler model of scattering in tissue. Second, successful recovery is highly dependent on the

model’s sensitivity to the parameter. Finally, extreme changes in the scattering coefficient and/or

the phase function will degrade the quality of reflectance estimates.
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Chapter 6

Summary and conclusion

This dissertation shows the author’s exploration of the perturbation Monte Carlo method and dif-

ferential Monte Carlo method. In the third chapter of this dissertation, an implementation of the

pMC method was applied to several problems. One problem involved a single sized distribution

of Mie scatterers and another problem involved a scattering model composed of three lognormal

distributions of Mie scatterers that approximates cervical tissue optical properties. This applica-

tion of the pMC method is the very first application of a perturbation Monte Carlo method that

accounts for changes in phase function. Previous implementations of pMC only accounted for

changes in bulk optical properties (the scattering coefficient of the medium µs or the absorption

coefficient µa) but not changes in phase function. This implementation of the pMC method was

also unique because it gave the user access to parameters associated with specific scatterers present

in tissue. The pMC method was able to yield reflectance estimates within 1% of of conventional

Monte Carlo reflectance estimates for changes in parameters that resulted in a 15% change in the

bulk scattering coefficient. Later sections of the chapter then expanded on this previous work and

tested the first application of polarization tracking to a pMC implementation. This chapter also

addressed the gains in computational efficiency, which are three orders of magnitude close to the

baseline optical properties, as well as the different factors that affect computational efficiency of

84



pMC, the changes in scattering coefficient and the changes in the phase function.

In fourth chapter, the author explores the application of the differential Monte Carlo method to

the tissue scattering model. First, the dMC model’s derivative estimates are compared to finite

difference method estimates. Next, the author compares dMC derivative estimates with those of

d-cMC estimates to help characterize the nature of the dMC estimates away from baseline optical

properties. The relative error of dMC derivative estimates was found to be at least one order of

magnitude higher than the relative error of pMC reflectance estimates. This can be explained in

the following manner: one would expect that taking the derivative of a noisy signal would create

an even noisier signal. The other important implication is that if it takes launching N photons to

obtain a minimum acceptable level of variance for reflectance estimates in this particular scattering

model, then to obtain that same acceptable level of variance for dMC derivative estimates requires

on the order of 100N photons to be launched. The author also found that dMC relative errors are

also affected by changes in phase function and scattering coefficient. Finally, the author also found

that dMC derivative estimates also supported the idea that unpolarized reflectance measurements

did not have sensitivity to parameters involving the second distribution, but polarized reflectance

measurements were indeed sensitive to those parameters.

The fifth chapter uses findings from previous chapters in an attempt to address the inverse prob-

lem: the problem of finding optimal parameter values given reflectance measurements. The first

presented results involve simulated unpolarized reflectance measurements and optimization of the

six parameters. The pMC method used in conjunction with a Levenberg-Marquardt algorithm was

able to recover only the parameter that related to the first scatterer population, a result supported

by both pMC and dMC results in Chapters 3 and 4. Next, polarized light at several different

wavelengths were used to obtain two parameter values simultaneously. The attempts to recover

parameter values successful in several cases with the following restrictions in common: 1) the

optimized parameters did not have high correlation with one another, 2) that the model was sen-

sitive to the parameters being optimized. With those restrictions in place, one could expect an
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optimization that yielded accurate values for optimized parameters. However, large changes in

scattering coefficients and phase functions could negative affect pMC reflectance estimates and, in

turn, negatively affect parameter optimizations.

The previous paragraphs summarize the key findings of the various chapters in this dissertation.

Together, these findings are this author’s contribution to the field, the implementation and testing

of a pMC algorithm with several unique features:

(1) This pMC implementation provides estimates of linearly polarized reflectance resulting from

linearly polarized incident light.

(2) That pMC implementation accounts for phase function perturbations.

(3) This pMC implementation integrates a model that connects scattering interactions with specific

scatterer groups to reflectance estimates.

Researchers have shown interest in recent years in utilizing polarized light sources in early detec-

tion of dysplasia or tissue changes and other researchers have also explored using phase function

other than the Henyey-Greenstein phase function in order to more accurately model light-tissue in-

teractions. Researchers interested in detecting dysplasia also lack models that explain how changes

in subcellular structures affect reflectance spectra. It is the author’s hope that these unique features

are attractive and useful to other researchers in the field and will facilitate interesting findings

regarding dysplasia or cancer detection.
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Appendix A

Proofs

A.1 Equivalence Proof for Scattering Algorithms

A.1.1 Scattering algorithms

Two distinct scattering algorithms were considered for this study: the Composite Phase Function

Scattering Method and the Distribution Selection Scattering Method. We will briefly explain

the algorithm behind each of these methods and show that these algorithms produce equivalent

distributions of scattering angles. We chose DSSM in this paper because the derivative of the

resulting estimator is computationally simple to obtain. The Composite Phase Function Scattering

Method used in [23] constructs a composite phase function by calculating the weighted average

of the phase functions of each distribution of scatterers, where the weights are based on each

distribution’s contribution to the scattering coefficient

f =
m

∑
i=1

µs,i

µs
fi (A.1)
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where f is the composite phase function, fi is the phase function of the ith distribution, µs,i is ith

scatterer distribution’s contribution to the scattering coefficient and µs is the scattering coefficient

of the entire medium and is the sum of the scattering coefficient contributions of all distributions.

The Distribution Selection Scattering Method used in this study, calculates the probability of in-

teracting separately with each of the scatterer distributions. The probability of interacting with

the ith scattering distribution is proportional to that distribution’s contribution to the scattering co-

efficient, i.e., P(Y = i) = µs,i/µs, where Y is a random variable that selects the population for the

scattering event. Given that the photon must interact with the ith scattering distribution, the phase

function of the ith scattering distribution, fi, is then sampled for a scattering angle. The composite

scattering phase function is not constructed in this method.

A.1.2 Proof of scattering algorithm equivalence

We will demonstrate equivalence between the Composite Phase Function Scattering Method and

the Distribution Selection Scattering method by showing that both methods ultimately produce the

same cumulative distribution function (CDF).

Consider a medium that has m groups of scatterers that each contribute to the medium’s scattering

coefficient. Recall that in the Distribution Selection Scattering Method, a distribution is randomly

selected according to the percentage population of that scatterer to the total scatterer population.

The variable Y is defined as a random discrete variable that selects the population for some scat-

tering event and can take on integer values between 1 and m. The CDF of Y is

FY (y) =


0, y < 1

f loor(y)

∑
k=1

µs,k
µs

, 1≤ y≤ m
. (A.2)

Given that Y selects the ith distribution, its phase function will be used to select a polar scattering
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angle θ. The conditional CDF of θ, given some value of Y is the CDF of that distribution’s phase

function

FΘY (θ|Y = i) =
∫

fi sinθdθ. (A.3)

Since the events that Y = 1, Y = 2, ..., Y = m are disjoint, we can obtain the CDF for θ for DSSM

through an application of Bayes’ Theorem using the probabilities in Eq. (A.2) and the conditional

CDF in Eq. (A.3)

Fnew(θ) =
m

∑
i=1

FΘY (θ|Y = i)P(Y = i) =
m

∑
i=1

∫
fi sinθdθ

{
µs,i

µs

}
=

∫ m

∑
i=1

fi sinθdθ

{
µs,i

µs

}
. (A.4)

In the last step above, we reverse the order of the summation and the integral so that Eq. (A.4)

will more closely resemble Eq. (A.5). We invoke Tonelli’s theorem, which states that if fn(x)≥ 0

then ∑
∫

fn(x)dx =
∫

∑ fn(x)dx [17]. In our case, the expressions inside of the summation and the

integral in Eq. (A.4) involve a probability density function and the sine of the scattering angle, both

of which may take on values greater than or equal to zero, so reversal of integration and summa-

tion operations are valid. In the Composite Phase Function Scattering Method, each distribution’s

phase function is calculated, and then the phase functions are weighted according to that distribu-

tion’s scattering coefficient and a composite phase function is then created. This was mentioned

previously in Eq. (A.1). Next, a CDF is then constructed from the composite phase function.

Substituting in Eq. (A.1), yields:

F(θ) =
∫

f sinθdθ =
∫ m

∑
i=1

µs,i

µs
fi sinθdθ. (A.5)

This demonstrates that the Composite Phase Function Scattering Method and the Distribution Se-
lection Scattering Method both produce the same CDF since Eq. (A.4) and Eq. (A.5) are equivalent
to one another.
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