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Driving forces of land surface 
temperature anomalous changes  
in North America in 2002–2018
Yibo Yan1,9, Kebiao Mao1,2,9 ✉, Jiancheng Shi3, Shilong piao4, Xinyi Shen5, Jeff Dozier6, 
Yungang Liu2, Hong-li Ren7 & Qing Bao8

The land surface temperature (LST) changes in North America are very abnormal recently, but few 
studies have systematically researched these anomalies from several aspects, especially the influencing 
forces. After reconstructing higher quality MODIS monthly LST data (0.05° * 0.05°) in 2002–2018, we 
analyzed the LST changes especially anomalous changes and their driving forces in North America. 
Here we show that North America warmed at the rate of 0.02 °C/y. The LST changes in three regions, 
including frigid region in the northwestern (0.12 °C/y), the west coast from 20°N–40°N (0.07 °C/y), and 
the tropics south of 20°N (0.04 °C/y), were extremely abnormal. The El Nino and La Nina were the main 
drivers for the periodical highest and lowest LST, respectively. The North Atlantic Oscillation was closed 
related to the opposite change of LSt in the northeastern north America and the southeastern United 
States, and the warming trend of the Florida peninsula in winter was closely related to enhancement of 
the North Atlantic Oscillation index. The Pacific Decadal Oscillation index showed a positive correlation 
with the LST in most Alaska. Vegetation and atmospheric water vapor also had a profound influence on 
the LST changes, but it had obvious difference in latitude.

land surface temperature (LST) is an important reference index used to measure the land environment and has 
important impacts on regional material and energy cycles, ecological system balance and human production and 
life1–3. Regional LST will incur sensitive and obvious changes with the differences in time and space4. In particu-
lar, annual change in LST have large impacts on human development. For example, in July 2018, Canada expe-
rienced a series of high temperatures not seen in decades that killed at least 70 people in Quebec. In July 2017, 
the west coast of the United States was hit by a heat wave that broke 100-year records in many places and caused 
frequent wildfires in many western states. These are serious threats to human life and economic development. 
North America has rich climate types and complex geographical environment, and its LST changes have great 
research value. The Cordillera mountain system in the west has a lot of glacial snow, and the glacier melt water 
in this region is closely related to the LST5. Moreover, this region is located at the junction of the Pacific plate 
and the American plate, with frequent geological and volcanic activity6, and the variation in LST can reflect the 
energy changes from underground activities to some extent7. The central region of North America is an impor-
tant agricultural area that is extremely vulnerable to the interactions between hot and cold air currents from the 
Arctic Ocean and the Gulf of Mexico due to the very large corridor formed by the mountains to the east and west. 
The plateau/mountainous region in eastern North America is affected by the uplift of moist airflow in winter and 
summer8, and meteorological disasters such as blizzards and rainfall are frequent. Most areas of Greenland in the 
northeast of North America are located in the frigid zone, and more than 80% of the whole island is covered by 
snow and ice, which plays an important role in stabilizing the global climate environment9. In summer, southern 
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North America is extremely vulnerable to tropical cyclone activities10, which results in hurricanes, rainstorms, 
floods and other major disasters and causes great harm to local economic production and development. In recent 
years, a new hot issue has emerged regarding the annual change in global and region temperature, which is the 
global warming11–14 that has been of concern for a long time. Climate warming will lead to global precipitation 
redistribution, melting of glaciers and permafrost, sea level rise, frequent occurrence of extreme disasters and 
other problems, not only harming the balance of natural ecosystems but also threatening the survival and devel-
opment of mankind14–16. This has become a major issue for the development of many countries and regions. 
These phenomena, including climate warming, glacial meltwater, meteorological disasters, volcanic earthquakes, 
and land cover change, are closely related to LST changes. Paying close attention to the abnormal LST changes 
and exploring the reasons for the changes have great importance on strengthening disaster monitoring and early 
warning, protecting agricultural production, promoting ecological protection and maintaining human daily life.

Higher-quality data can help monitor and analyze temporal and spatial variations in LST more accurately. 
Traditionally, people mainly measure LST by ground stations. This kind of data can accurately reflect the LST near 
the stations with high precision and strong reliability17. Moreover, data from ground stations are less disturbed 
by cloud and rain weather, so the data integrity is relatively high and the time series covered is long18. Many 
researchers have made long time series of observations of regional and global LST using statistical data from 
ground stations19,20. However, the distribution of stations is usually sparse, and some areas with rugged terrain 
and harsh environments even have no stations, resulting in a lack of spatial continuity of the data, so it is difficult 
to reflect the spatial difference of the data. With the progress of information technology, many authoritative 
institutions in the world use station data from different systems to carry out data assimilation interpolation and 
generate reanalysis data with greater spatial continuity21–23. Although this kind of data improves the deficiencies 
of station data to some extent, the spatial resolution of reanalysis data is usually low. And the data accuracy in 
some areas needs to be improved, so it is still difficult to meet the requirements for more accurate spatial analysis. 
Since the 1970s, with the development of satellite launch technology and sensor technology, remote sensing has 
become a new means to monitor LST. The characteristics of a large observation range, good timeliness and good 
spatial continuity of remote sensing LST data can improve the limitations of traditional station data and better 
display spatial changes in surface information, and this data is suitable for spatial analysis on a large scale24–27. 
However, compared with the ground station data, remote sensing data also has its own limitations. The most 
important manifestation is that remote sensing signals are impacted by cloud, rain and other weather interfer-
ence when propagating through the atmosphere, so there are always some pixels of missing information and low 
precision in remote sensing images. Among remote sensing sensors, MODIS (Moderate Resolution Imaging 
Spectroradiometer) is mounted on the Terra and Aqua satellites, which were launched in 1999 and 2002, respec-
tively, and the LST data from MODIS are widely used because of the good temporal and spatial resolution28. 
Although the MODIS LST data is relatively mature, some areas image still suffer from a lack of information and 
low accuracy due to the interference of atmospheric conditions, which greatly reduces the quality and utilization 
rate of remote sensing data and causes great difficulties for subsequent analysis of relevant issues29. To solve this 
problem, many researchers have tried to improve the accuracy and integrity of the data by improving inversion 
models30, cloud detection technology31, data repair32 and so on.

In recent years, some natural disasters in North America such as fire, drought, earthquake and other have 
occurred frequently, and LST is one of important physical parameters for the characterization of these disasters. 
This study mainly used remote sensing data to reveal the variation of LST from the pixel scale, especially some 
anomalous changes in North America. Firstly, ground stations data and adjacent pixels were used to reconstruct 
remote sensing LST data with more complete information by the interpolation model. Secondly, we analyzed 
the LST changes in different North American regions from 2002 to 2018 on pixel scale, especially focusing on 
anomalous areas with obvious linear variation trends. Finally, we combined land surface, atmosphere, ocean and 
other parameters and used multiple methods to analyze the driving factors that lead to spatiotemporal variations 
in LST. Through analysis, we obtained the anoumalous variation areas and some driving factors of LST in North 
America in recent years, which could help us understand factors of regional climate change, and provide mean-
ingful conclusions and basis for agricultural production, disaster monitoring and early warning, and ecological 
protection.

Results
More accurate and complete LST data of North America from 2002 to 2018. The distribution 
of LST in North America has strong spatial differences. The average LST in North America was 1.92 °C, and the 
maximum spatial difference in LST was 67.73 °C (Fig. 1a). The California Peninsula on the west coast was the 
region with the highest annual average LST of 32.41 °C, and it is a world-famous dry heat region. The lowest 
annual average LST was found in the interior of Greenland, reaching −35.32 °C, which was mainly caused by 
the location at higher latitudes and deep inland. To more clearly and concretely reveal the spatial differences 
in LST in North America, we performed a specific analysis of the LST in different seasons in the area traversed 
by the seven latitude lines of 10°N (Fig. 1b), 20°N (Fig. 1c), 30°N (Fig. 1d), 40°N (Fig. 1e), 50°N (Fig. 1f), 60°N 
(Fig. 1g) and 70°N (Fig. 1h). We found that under the influence of topographic conditions, the spatial difference 
in LST in the western part of North America was large, and that in the central and eastern parts of North America 
was relatively small. The valley areas in the western Alpine region had a higher LST than the surrounding areas 
and were major areas of agricultural production and population urban development, such as the Central Valley 
between the Sierra Nevada and the coastal mountains (Fig. 1c). In the middle and high latitudes, the LST showed 
obvious temperate climate characteristics, especially in the inland areas of the middle and high latitudes. Under 
the influence of the differences in the hydrothermal properties of land and water, the LST difference between 
Nippon Lake and the surrounding area showed opposite variation characteristics in the cold season and warm 
season (Fig. 1d). Influenced by this phenomenon, the temperate inland lakes and rivers are the seasonal migration 
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areas for many animals, such as Swan Lake at the latitude of 60°N (Fig. 1d). In the western mountain region of the 
middle and high latitudes, the spatial difference in LST was extremely significant. In this area, glaciers, river val-
leys, volcanoes and other staggered distributions and landscape types are extremely rich, which makes this region 
a world-famous tourist resort area. These spatial characteristics of LST in different areas are of great significance 
for agricultural production, ecological environmental protection and human development. After the analysis 
of spatial variation, we briefly analyzed the trend of LST from different time dimensions by anomalies of LST 
(Fig. 1i). The LST anomalies by day, night, different seasons and whole year showed similar trends of fluctuating 
increases. From the average LST of the whole year, the interval between two adjacent minimum of LST anomaly 
was a period of fluctuation, and each period lasted approximately 4–5 years. In 2016, the average LST reached its 
peak state in recent years, and the LST declined year by year since then.

Figure 1. Average LST and its variations in North America from 2002 to 2018. (a) Average LST for all years in 
North America from 2002 to 2018. (b–h) The average LST in different seasons at 10°N, 20°N, 30°N, 40°N, 50°N, 
60°N and 70°N. (i) Variation in LST anomalies in different time dimensions in North America from 2002 to 2018.

https://doi.org/10.1038/s41598-020-63701-5


4Scientific RepoRtS |         (2020) 10:6931  | https://doi.org/10.1038/s41598-020-63701-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Variation trends of LST in different regions. We comprehensively analyzed the linear variation in LST 
through the interannual variation rate of LST (Fig. 2) (see Methods) and focused on the regions with an obvious 
linear variation trend (The two-tailed t test with a confidence level of 0.05 was performed). We found a num-
ber of noteworthy regions in North America with abnormal changes. The west coast from 20°N–40°N was the 
region with the most abnormal LST changes in North America, and there was a significant linear warming trend 
(0.07 °C/y)in average LST. In this region, the area of LST increases in the daytime was much wider than that in 
night (Fig. 2a,b). In particular, nearly 30% of the California peninsula had a linear increase in daytime LST, with 
a rate of 0.08 °C/y (Fig. 2a). From the perspective of seasons, we found that this region had different degrees of 
warming trends in different seasons, and the distribution of warming in the region showed obvious differences in 
different seasons. In the region, the warming area in the cold season (spring and winter) was mainly distributed 
in the south (Fig. 2c,e), while the warming area in the warm season (summer and autumn) was mainly distributed 
in the north (Fig. 2b,d). Moreover, the warming area was larger in the warm season than in the cold season, and 
the warming rate was also larger. In addition to this region, the frigid region in the northwestern North America 
also had a significant warming trend, which was mainly reflected in the cold belt of Alaska and Canada. The 
range of LST increases in this region was very large, with the rate of annual LST reaching 0.12 °C/y (Fig. 2g). In 
the tropical regions south of 20°N, the annual average LST growth trend in recent years was also significant, with 
the rate reaching 0.04 °C/y (Fig. 2g). These three regions were the regions showing significant LST changes in 
multiple time dimensions. The percentages of areas with significant linear warming, significant linear cooling and 
non-significant change in different seasons are shown in Table 1. It could be found that the significant warming 
area was the most widely distributed in summer and the significant cooling area was the most widely distributed 
in autumn. The regions of significant warming were wider than the regions of significant cooling over the seasons.

Other areas of North America also experienced significant LST changes, but they had strong seasonal dif-
ference. In summer, there was a significant warming in the northern and central parts of Canada (0.17 °C/y) 
(Fig. 2d). There was a significant cooling trend (−0.16 °C/y) on both sides of Davis strait in the autumn (Fig. 2e). 
In winter, there was a significant warming trend in Florida (0.16 °C/y) and a cooling trend (−0.23 °C/y) in 
Montana and Wyoming (Fig. 2f). Along the tropical eastern Pacific coast south of 20°N, LST showed com-
pletely opposite trends in different seasons. In spring, the region showed a significant cooling trend (−0.07 °C/y) 
(Fig. 2c), while in autumn, the region showed a significant warming trend (0.06 °C/y) (Fig. 2e).

Figure 2. The interannual changes in LST in different time dimensions from 2002 to 2018. (a,b) The rate of 
LST change during day and night in North America. (c–f) The rate of LST change during spring, summer, 
autumn, and winter in North America. (g) The rate of LST change during the whole year in North America. 
The areas with black boundaries in the figures indicate that these regions passed the two-tailed t test with a 
confidence of 0.05, which represent a strong linear warming or cooling trend.
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The influence of land surface and atmospheric circulation on LST. The reception of the land sur-
face to solar radiation is influenced by atmospheric conditions and land cover. The correlations between NDVI 
(normalized differential vegetation index), SM (soil moisture), AOD (aerosol optical depth), cloud fraction and 
atmospheric WV (water vapor) and LST were analyzed (see Methods). When the absolute value of Pearson coef-
ficient was greater than 0.6, we highlighted the pixels, indicating a strong correlation between a kind of parameter 
and LST. There was a strong correlation between LST and NDVI (Fig. 3a), but it had obvious zonal differences in 
latitude. LST was negatively correlated with NDVI in the area south of 40°N and positively correlated with NDVI 
in the area north of 40°N. The correlation between LST and SM was weaker than that with vegetation. The LST 
and SM were negatively correlated in the western California peninsula and positively correlated in the eastern 
Labrador peninsula (Fig. 3b). The correlation between LST and AOD was the weakest among all the factors in 
this study, and the correlation had no obvious distribution pattern (Fig. 3c). LST and cloud fraction were nega-
tively correlated in most areas but positively correlated in a few areas. Moreover, the negative correlation was very 
significant, especially between 20°–40°N (Fig. 3d). The correlation between LST and atmospheric WV was very 
strong (Fig. 3e). This correlation had obvious zonal differences in latitude, showing a negative correlation in the 
region south of approximately 40°N, a positive correlation in the northern region. On the whole, among the five 
parameters selected in this study, the correlations between atmospheric WV and NDVI and LST were the strong-
est, followed by that of cloud fraction, and the correlations between SM and AOD and LST were the weakest.

On the basis of correlation analysis, we analyzed the regression relationships between LST and 5 kinds of 
parameters, latitude and altitude and studied the influence of these 7 factors on the spatial differences in LST 
in different regions of North America. We used these values to construct five regression models of LST with 
the 7 factors in 5 regions (Fig. 3f). On this basis, we randomly selected some points in the same image and sim-
ulated the LST values of these points by using the regression model built for each region (The distribution of 
sample points and verification points and the specific parameters of the model were given in the Supplementary 
Information). The LST regression models we established can simulate the regional LST well (R2 > 0.8) (All models 
and coefficients passed the two-tailed t test with a confidence of 0.05) (Fig. 3f). RMSE (Root Mean Square Error) 
was used to show the difference between simulated and predicted values, and NMRSE (Normalized RMSE) was 
used to show the variation of simulated differences within the region. For North America as a whole, latitude and 
altitude directly affect the amount of solar radiation energy received in the region and the inverse radiation inten-
sity of the atmosphere, which are the most important factors affecting the spatial differences in LST. Atmospheric 
WV and NDVI also have great impacts on LST, while the other factors have relatively small impacts on LST. The 
RMSE between the LST values in different regions simulated by the 7 kinds of parameters and the original remote 
sensing LST values was within 2 °C. The simulation error for the polar islands was the largest, reaching 1.99 °C, 
while the simulation error for the Alaska region was less than 1 °C. The NRMSE was relatively small in the tropical 
and cold zone, while relatively large in the temperate zone, which was mainly related to the spatial difference of 
LST in different regions. By comprehensive correlation analysis and regression analysis, it could be determined 
that the vegetation index and atmospheric WV had a great influence on LST. Variations in regional surface vege-
tation and atmospheric WV cause changes in LST to some extent.

North America is surrounded by sea, and large marine climate activities have a great impact on it. We calcu-
lated the mean LST anomaly of North America from 2002 to 2018 and analyzed the consistency of LST anomaly 
with three indexs, including the SST (sea surface temperature) index of the NINO3 region (Fig. 4a), the NAO 
(North Atlantic Oscillation) index (Fig. 4b), and the PDO (Pacific Decadal Oscillation) index (Fig. 4c). In the 
past 17 years, there were four El Nino events during 2002/06–2003/01, 2006/09–2007/01, 2009/06–2010/03, and 
2015/04–2016/04. Among them, the El Nino event that occurred between 2015 and 2016 was the most severe, 
lasting for a whole year, and the maximum NINO3 index reached 2.91 °C. There were four La Nina events in the 
past 17 years during 2007/04–2008/03, 2010/06–2011/03, 2011/09–2012/01, and 2017/09–2018/05. The LST in 
North America showed a periodic maximum with each El Nino event, while every La Nina event caused a peri-
odic minimum LST in North America, indicating that El Nino and La Nina had a great influence on the variation 
in LST in North America. The LST in North America reached the highest level in recent years in 2016 under the 
influence of the strong El Nino event in 2015 and then fell sharply over the next two years. The consistency of the 
NAO index with the mean LST anomaly was relatively weak, and we found that the NAO had been enhanced in 
recent years (Fig. 4b). There was no obvious correspondence between the mean LST anomaly of North America 
and PDO index (Fig. 4c).

We analyzed the influence of three phenomena on local LST. The whole continent was divided into 71 grid 
units of 900 km*900 km, and the correlation coefficients of the NINO3 SST index, NAO index and PDO index 
with the mean LST anomaly in each region were calculated to analyze the influence of the three phenomena on 
the time variation of regional LST. We found that the SST index in the NINO3 region was positively correlated 
with LST in most areas of North America, and the positive correlation was very strong in southeastern Mexico 
and parts of Central America (r > 0.5) (Fig. 5a). The effects of the NAO on LST in North America were mainly 
reflected in the northeast, especially in Baffin Bay and Davis Strait, and there was a strong negative correlation 

Variable Spring Summer Autumn Winter

Significant warming 1.03% 4.72% 0.88% 1.78%

Significant cooling 0.28% 0.32% 0.49% 0.23%

Non-significant change 98.69% 94.96% 98.63% 97.99%

Table 1. The proportion of LST variation in North America in different seasons.
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6Scientific RepoRtS |         (2020) 10:6931  | https://doi.org/10.1038/s41598-020-63701-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

between LST and the NAO index (r < −0.5) (Fig. 5b). The correlation between PDO and LST in North America 
was mainly reflected in the Alaska region in the northwest, and the PDO index showed a strong positive correla-
tion with the LST anomaly (r > 0.5) (Fig. 5c).

Because the LST and circulation patterns all had significant seasonal differences, we analyzed the correlations 
between the three indexes and LST for different seasons (Fig. 5d–o). The areas influenced by the El Nino and La 
Nina phenomena were mainly distributed in the south of North America. The NAO had a great influence on the 
LST in northeastern North America. The influence of PDO was reflected in northwest North America. The areas 
influenced by the three phenomena in different seasons were relatively consistent with those of the whole year, but 
the intensity of the effect varied from season to season. These three phenomena had the strongest effect on LST 
in North America during winter and spring, followed by autumn and summer. In other parts of North America, 
these three phenomena also showed a strong correlation with regional LST. In winter and spring, there was a 
positive correlation between the NINO3 index and LST in northwestern North America (r > 0.4) and a negative 

Figure 3. Correlation analysis of LST and other surface and atmospheric parameters. (a) Correlation coefficient 
between LST and NDVI. (b) Correlation coefficient between LST and SM. (c) Correlation coefficient between 
LST and AOD. (d) Correlation coefficient between LST and cloud fraction. (e) Correlation coefficient between 
LST and atmospheric WV content. The area highlighted with black boundaries in figures (a) to (e indicate that 
the absolute value of the correlation coefficient is greater than 0.6. (f) Simulation results of LST in different 
regions. The map of the partition was generated by Arc gis10.2 (https://www.arcgis.com)).

Figure 4. Overall variation trends of the LST anomaly and three climate indexes. (a) The variation in the 
monthly LST anomaly in North America and the SST anomaly in the NINO3 area from 2002 to 2018. (b) The 
variation in the monthly LST anomaly in North America and the NAO index. (c) The variation in the monthly 
LST anomaly in North America and the PDO index.

https://doi.org/10.1038/s41598-020-63701-5
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correlation between LST and the NINO3 index in southwest of Mexico (r < −0.5). The correlation between LST 
in southeastern United States and the NAO index in winter and spring was also strong (r > 0.5). The PDO index 
showed a negative correlation with the southernmost parts of Mexico in spring (r < −0.5).

Discussion
LST is a key variable for climate and ecological environment research. We reconstructed LST data to take advan-
tages of the ground station data through building reconstruction model which overcome the effects of the 
cloud to some extent. This data has more complete coverage and higher data accuracy, which is very valuable for 
more accurate study of spatio-temporal variation of LST and monitoring of abnormal areas of LST. On this basis, 
we found some noteworthy areas of abnormal changes in LST, and explained some of the reasons for the changes.

Overall, North America showed a volatility warming trend in recent years. The linear warming trends in the 
frigid zone in the northwest of North America was very obvious (Fig. 6a). Many scientists have performed a large 
amount of research on the climate and environment in this region and found some evidence of warming33,34. Our 
results suggested that warming trend was continuing in this region. As this region is located in the arctic cold 
zone, the resources of glacial snow and frozen soil in this region are relatively rich, which is very important for the 
balance and stability of the ecological environment in this region. A large continuous increase in LST is an impor-
tant threat to the ecological environment in this region and must be considered. The LST in California peninsula 
in the western United States also showed a substantial and significant warming in recent years (Fig. 6b). And we 
found that in this region, the closer to the Pacific, the greater the rate of change in the LST was, which provied a 
new idea and basis for us to further explore the causes of the warming in this region. Coupled with the discovery 
of seasonal north-south movement of the warming regions, we believe that the abnormal trend may be caused 
by large scale natural factors. Due to the unique geographical features of this region, volcanic earthquakes and 
forest fires occur frequently in the region, so the abnormal warming trend in this region in recent years needs to 
be considered seriously. In addition, local residents should pay attention to the prevention of drought and fires, 
especially in the warm season (summer and autumn), because the area has a larger warming rate in these two sea-
sons. What’s more, it is worth noting that this area belongs to the cordillera mountain system. Glacial meltwater is 
an important source of fresh water resources in this region, which is greatly affected by the sharp rise of regional 
LST. The warming of tropical areas south of 20°N is also noteworthy (Fig. 6c). The increase of LST in this area was 
also closely related to the drought and high temperature events.

The causes that affect LST change are complex and variable. Although we have not fully explained all causes 
of every abnormal regional changes, some important driving factors were found and we can make some new 
discoveries based on these conclusions. Through our research, we found that surface type and atmospheric con-
ditions can affect changes in LST, especially vegetation and atmospheric moisture. We can even simulate the 
LST in some areas by some relevant factors of land surface and atmosphere, and this approach is helpful for data 
restoration and more comprehensive anomaly monitoring. However, compared with large climate activities, such 
as El Nino-La Nina, the NAO, and the PDO, the influence of land surface and atmospheric conditions on LST is 
relatively small. El Nino and La Nina are bound to cause periods of high and low temperatures in North America, 
respectively, and we found that this effect also has a certain lag period, about 1–3 months (Fig. 4a). It should be 
emphasized that not all periodic high and low temperatures are associated with El Nino and La Nina, for example, 

Figure 5. The correlation between the LST anomaly and three climate phenomena indexes. (a–c) The 
correlation between the LST anomaly and the index of NINO3, NAO, and PDO for the whole year. (d–f) The 
correlation between the LST anomaly and the index of NINO3, NAO, and PDO in spring. (g–i) The correlation 
between the LST anomaly and the index of NINO3, NAO, and PDO in summer. (j–l) The correlation between 
the LST anomaly and the index of NINO3, NAO, and PDO in autumn. (m–o) The correlation between the LST 
anomaly and the index of NINO3, NAO, and PDO in winter).
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the LST anomalies in June 2005 and August 2009. The seesaw phenomenon of the NAO had a great influence on 
the LST changes in the eastern Atlantic coast of North America, especially in winter. The NAO index was neg-
atively correlated with the LST in the northeast of North America and positively correlated with the LST in the 
Florida peninsula in the southeast of the United States. By observing the change trends of the NAO in recent years 
(Fig. 4b), we think that the cooling trend in northeastern North America and the warming trend in southeastern 
North America in winter are probably caused by the strengthening of the NAO. These results and discoveries have 
great significance to understand the forces of regional LST changes, the monitoring of abnormal regions, the early 
warning and prevention of disasters, and the protection and improvement of human life and production.

Methods
Research data. Data from remote sensing. MODIS is mounted on the Terra and Aqua satellites, which 
were launched in 1999 and 2002. The transit times of the two satellites were 10.30 am and 01:30 pm, respec-
tively. MODIS has 36 discrete spectral bands, which can provide information reflecting land surface conditions, 
cloud characteristics, aerosols, surface temperature, ozone, ocean and other characteristics35. MODIS inversely 
generates LST by using information from middle infrared and thermal infrared bands. Many researchers have 
performed a large amount of research on the inversion algorithm and accuracy verification of LST36–41. The gen-
eralized split window method39 and day/night method40 are the official inversion algorithms of MODIS LST data 
at present. Through many verification analyses and improvements, the average precision of LST inversion for 
these two algorithms is approximately 1 K42–44. MODIS LST data have been widely used in many fields, such as 
climate change, water cycles, environmental assessment and agricultural production, due to the good temporal 
and spatial resolution and wide coverage45,46. The MOD11C3 LST products are inverted by the day/night method 
and obtained by projection, splicing, resampling and average synthesis.

The day/night method uses mid-infrared and thermal infrared band data during day and night to invert sur-
face temperature and emissivity40. This method assumes that there is no significant difference in surface emissiv-
ity from day to night and that the angular form factor changes little in the region of interest in the middle infrared 
band. The model of surface temperature inversion by this algorithm is shown in Eq. (1)40. In this algorithm, N 
bands were measured twice (day and night), and the number of unknowns was N + 7 (emissivity of N channels, 2 
surface temperatures, 2 moisture contents, and 1 mid-infrared channel); thus, the number of bands chosen must 

Figure 6. Mean annual LST anomalies of the three anomalous regions from 2002 to 2018. (a) The annual LST 
anomaly in the anomalous warming region of the frigid region in the northwestern from 2002 to 2018. (b) The 
annual LST anomaly in the anomalous warming region of the west coast from 20°N–40°N from 2002 to 2018. 
(c) The annual LST anomaly in the anomalous warming region of tropical areas south of 20°N from 2002 to 
2018).
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be greater than or equal to 7 to make the equation solvable. For MODIS, these seven bands are MODIS bands 20, 
22, 23, 29, 31, 32, and 33.

ε ε
π

αµ= + +
−

. + +L(j) t1(j) (j)Bj(Ts) La(j) 1 (j) [t2(j) 0E0(j) t3(j)Ed(j) t4(j)Et(j)] (1)

In formula (1), L(j) is the radiation intensity of band j; ε(j) is the band emissivity; similar for Bj(TS), La(j), and 
E0(j); and Ed(j) and Et(j) are the band-averaged solar diffuse irradiance and atmospheric downward thermal irra-
diance at the surface, respectively.

Data from ground stations. Although the MODIS LST data are relatively mature, some areas still suffer from 
a lack of information and low accuracy due to cloud interference, which affects the accuracy of spatiotemporal 
analysis. Therefore, considering the advantages and disadvantages of remote sensing data and ground station 
data, we repaired and reconstructed the MODIS monthly LST data with data from ground station LST and adja-
cent pixels to make the data more complete and accurate. Since 2000, most stations have been able to measure 
both air temperature and LST. Only a small part of the area can only measure air temperature due to mechanical 
equipment. For stations lacking of LST, we calibrated the air temperature of them using the difference between 
the MODIS LST and air temperature of the same station in the near data. Assuming that the difference does not 
change much between the LST and the air temperature at the same station in the near dates, then we use the air 
temperature to calculated LST by using the difference in the near date. The ground stations data we used are 
from the National Oceanic and Atmospheric Administration’s National Center for Environmental Information 
(NCEI) website. The NCEI’s land-based observations are obtained by instruments from all regions of the con-
tinent, including temperature, dew point, relative humidity, precipitation, wind speed and direction, visibility, 
atmospheric pressure, hail, fog, and thunder, and cover many kinds of time scales, including hours, days, months, 
and years. The distribution of ground stations in North America is shown in Supplementary Information. The 
ground stations are more densely distributed in the United States, central and southern Canada and some central 
American countries, while in the northern polar islands the distribution is sparse. In some areas and time, the 
ground station data has the phenomenon of missing value, mainly in the severe weather environment. We first 
selected the data from 4 time periods from 2002 to 2018 provided by the institution, including 01:00 am, 10:00 
am, 1:00 pm and 10:00 pm, which approximately correspond to the four time periods of 01:30 am, 10:30 am, 
1:30 pm and 10:30 pm in the MODIS LST data. We used the stations LST to interpolate the MODIS LST data at 
different times. After the restoration of the data, we reselected the monthly stations LST data from 2002 to 2018 
provided by the NCEI to verify the accuracy of the reconstructed LST data.

Land surface and atmospheric parameters. The factors affecting LST are complex. Based on previous research 
results on the factors of LST47–51, we selected seven parameters, latitude, altitude, the NDVI (normalized differ-
ential vegetation index), SM (soil moisture), AOD (aerosol optical depth), cloud fraction and atmospheric WV 
(water vapor), to analyze the driving factors of spatial differences in LST. The status of vegetation on the surface 
directly affects the amount of solar radiation received by the surface, and the vegetation also affects the change 
of LST through climate regulation during the growth process. Soil moisture is an important reflection of water 
resources in the land surface and certain depth, and it can change the LST by adjusting the specific heat capacity 
of the land. Aerosol optical depth, Clouds and atmospheric water vapor, as important manifestations of atmos-
pheric conditions, have important effects on the propagation and reception of solar radiation signals. The detailed 
data introduction are shown in Table 2.

Parameters of climate phenomena. The ocean on the Earth’s surface accounts for approximately 71% of the 
global total area and is an important factor affecting the thermal distribution, atmospheric circulation, weather 
changes and climate differences on the land surface52. The El Nino and La Nina phenomena are large-scale phe-
nomena of continuous temperature increase and decrease in the central and eastern equatorial Pacific Ocean. 
These phenomena affect the WV energy cycle between land and sea and have important impacts on the tem-
perature and rainfall in many parts of the world53. They are the strongest signals of interannual changes in the 
climate system. In general, when the SST anomaly index in the area of NINO3 (5°N-5°S, 90° W-150°W) reaches 
more than 0.5 °C for 6 consecutive months, it is defined as an El Nino event. In contrast, if the SST anomaly index 
of this region is below −0.5 °C for 6 consecutive months, it is defined as a La Nina event. The NAO refers to the 
inverse relationship between the Azores high-pressure center and the Icelandic low-pressure center and is one of 
the most apparent North Atlantic atmospheric modes. It not only directly affects the climate of the North Atlantic 

Variable Product
Spatial 
coverage

Temporal 
Resolution

Spatial 
Resolution Source

NDVI MOD13C2 Global Month 0.05° NASA

SM AMSR-E, SOMS,AMSR-2 Global Month 0.05° JAXA, ESA

AOD MOD08_M3 Global Month 1° NASA

Cloud fraction MOD08_M3 Global Month 1° NASA

Atmosphere WV MOD08_M3 Global Month 1° NASA

Table 2. Introduction of others parameters about land surface and atmospheric.
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and nearby areas but also has an important influence on the temperature and precipitation of the whole north-
ern hemisphere. The NAO index can explain 31% of the variance in average winter temperature in the northern 
hemisphere over a period of time54,55. The Pacific Decadal Oscillation (PDO) is a Decadal cycle of Pacific climate 
change, and it is characterized by unusually warm or cold surface water temperatures in areas north of 20°N in 
the Pacific Ocean56,57. PDO has a huge impact on the climate of surrounding regions, including North America58. 
In this study, we used the NINO3 SST index, NAO index and PDO index to analyze the influence of these three 
phenomena on the time variations in LST in different areas of North America. All data of these three indexes are 
from the US National Climate Prediction Center (NCPC).

Data repair methods. The low accuracy of remote sensing data in some areas caused by cloud interfer-
ence is a common problem faced by optical remote sensing59. This problem affects the accuracy of data analysis, 
and many researchers use different data repair methods to address this problem. These methods can be broadly 
divided into three categories depending on the data source used for the fix. The first type is to repair the missing 
pixels by relevant data of other time scales under the same spatial conditions60. In the second category, under the 
same time conditions, the missing pixels can be repaired by relevant data from other spatial scales61. The third 
type uses other types of data in the same area at the same time to repair the missing pixels, such as ground site 
data, microwave data, and other reanalysis data62. In this study, the monthly LST data in North America from 
2002 to 2018 were obtained by preprocessing MODIS LST products, including data set extraction, coefficient 
conversion, cropping, projection conversion and other processes. On this basis, we used the quality control data 
set in the original MODIS LST data to evaluate the quality. We regarded the accuracy to be less than 2 K and the 
missing information pixels as the area to be repaired for the monthly data. Then, the pixels whose accuracy was 
less than 2 K and whose information was missing in the daily LST data controlled by this region were set as invalid 
pixels. After determining the invalid pixels, we repaired and interpolated them. We first assigned the ground sta-
tion data to the invalid pixels of the corresponding time scale according to the longitude and latitude coordinates 
and then used the adjacent value substitution method (Nibble) based on the elevation to interpolate and repair 
the remaining invalid pixels. Finally, we verified the accuracy of the reconstructed data by using the monthly LST 
data from ground stations. The complete data repair process is detailed in the Fig. 7.

The method of substitution of an adjacent pixel value adopted in this study used the pixel value of an adjacent 
region on the same time scale for substitution repair. The algorithm first identified an invalid pixel in the image, 
then calculated its Euclidean distance to the adjacent valid pixel, and finally assigned the nearest valid pixel value 
to the corresponding invalid pixel. This method is based on the regional consistency principle of geography, 
which holds that the closer that regions are, the more similar their geographical environments will be. Before 
using this method for interpolation, we used the ground station data to interpolate some pixels, so the rest of the 
invalid pixels were sporadically distributed. In this case, we can guarantee the interpolation accuracy in the pro-
cess using the method of adjacent value substitution. To further improve the accuracy of restoration, we consid-
ered the influence of altitude on LST. There have been many studies on the relationship between temperature and 
altitude in geography. For example, Barry studied the relationship between mountain temperature and altitude63. 
Körner redetermined the geographical significance of altitude and discussed the influence of altitude on temper-
ature64. The interpolation method used in this study is a generally accepted rule of temperature vertical decline of 
0.55 °C for every 100 m of elevation increase with other conditions unchanged63. According to this rule, we first 
restored the original LST pixel value to the pixel value when the altitude is 0 m. On this basis, the invalid pixels 
were interpolated by the method of adjacent pixel value substitution. Finally, according to this rule, the interpo-
lated pixel value was restored to the LST of the corresponding elevation. The calculation process was shown in 
Eqs. (2 and 3). The vertical decline rule of the temperature decreasing by 0.55 °C when the altitude increases by 
100 m is applicable to most areas. Therefore, this method can improve the accuracy of LST data reconstruction to 
a certain extent for pixels with large elevation differences when the distance is short.

= + . ∗LST LST ele0 55 ( /100) (2)m0

= − . ∗LST LST 0 55 (ele/100) (3)ele nibble

In the equations, ele is the elevation of the pixel and its unit is m; LST is the MODIS daily LST data; LST0m is 
the LST at an altitude of 0 m; LSTnibble is the interpolation result after substitution of adjacent pixels; and LSTele is 
the LST restored to the corresponding elevation.

Spatial and temporal variation analysis methods. To reveal the interannual variation trend of LST 
from 2002 to 2018, we use the least square method to calculate the interannual variation rate, which represents 
the average annual variation range of LST from 2002 to 2018. At the same time, we defined the rate of change 
of the two-tailed t test passing the 0.05 confidence interval as a significant linear change, and we focused on the 
regions of these significant changes.

To reveal the driving factors of the LST space, we first analyzed the correlation between LST and the NDVI, 
SM, AOD, cloud fraction and atmospheric WV. The Pearson coefficient is used again to show this correlation. 
The areas with the absolute value of Pearson coefficient greater than 0.6 were defined as strongly correlated. 
Correlation analysis can only show the correlations between LST and other parameters but cannot reveal the 
influence of various parameters on LST. Therefore, on the basis of correlation analysis, we studied the regres-
sion relationships between LST and other parameters. By means of a linear multiple stepwise regression model, 
we reveal the influence of latitude, altitude, the NDVI, SM, AOD, cloud fraction and atmospheric WV on LST. 
Multiple stepwise regression is an important method in regression analysis. This method is mainly used to deter-
mine the number of independent variables from a large number of factors to be selected and to select independent 
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variables to establish the equation with the best regression relationship. Finally, we used RMSE (Root Mean 
Square Error) and NRMSE (Normalized RMSE) to analyze the error accuracy of the regression model. The meth-
ods used in our study for trend analysis, correlation analysis, and regression analysis were all based on the a statis-
tical book written by Wilks, which is named Statistical Methods in the Atmospheric Sciences,10065.

Accuracy verification. Before the spatiotemporal analysis, we verified the accuracy of the reconstructed 
data. We randomly selected ground stations and verified the accuracy of the reconstructed data by using monthly 
LST data from ground stations. The verification results show that the average accuracy error between the recon-
structed monthly LST data and the ground stations is approximately 1 K-2 K, and the R2 value is above 0.95. The 
accuracy of the data meets the requirements of large-scale spatiotemporal analysis. The specific accuracy verifica-
tion results were shown in the Supplementary Information.

Data availability
The reconstructed remote sensing LST data set that support the findings of this study are available at https://
doi.org/10.5281/zenodo.3529456. The station data we used for data recovery are from the National Oceanic and 
Atmospheric Administration’s National Center for Environmental Information (NCEI) website. Remote sensing 
data about the land surface and atmosphere used for the analysis are available on the website of NASA, ESA and 
JAXA. The large index of climate activity used in the study is available on the America National Climate Center 
website.
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