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Reassortment is an evolutionary mechanism by which influenza A viruses

(IAV) generate genetic novelty. Reassortment is an important driver of host

jumps and is widespread according to retrospective surveillance studies. How-

ever, predicting the epidemiological risk of reassortant emergence in novel

hosts from surveillance data remains challenging. IAV strains persist and co-

occur in the environment, promoting co-infection during environmental trans-

mission. These conditions offer opportunity to understand reassortant

emergence in reservoir and spillover hosts. Specifically, environmental RNA

could provide rich information for understanding the evolutionary ecology

of segmented viruses, and transform our ability to quantify epidemiological

risk to spillover hosts. However, significant challenges with recovering and

interpreting genomic RNA from the environment have impeded progress

towards predicting reassortant emergence from environmental surveillance

data. We discuss how the fields of genomics, experimental ecology and epide-

miological modelling are well positioned to address these challenges. Coupling

quantitative disease models and natural transmission studies with new mol-

ecular technologies, such as deep-mutational scanning and single-virus

sequencing of environmental samples, should dramatically improve our

understanding of viral co-occurrence and reassortment. We define observable

risk metrics for emerging molecular technologies and propose a conceptual

research framework for improving accuracy and efficiency of risk prediction.

This article is part of the theme issue ‘Dynamic and integrative

approaches to understanding pathogen spillover’.
1. Introduction
Reassortment is a prominent mechanism by which segmented viruses produce

genetic variation. Reassortment occurs when genetic segments from different

co-infecting virions within the same cell are packaged together, generating a

novel strain. Some of the most devastating outbreaks caused by influenza

A virus (IAV; a segmented RNA virus) are believed to have been driven by

reassortants [1,2], yet predicting reassortment remains elusive.

For avian IAVs, new reassortants can be generated in natural reservoir hosts

(wild water birds), where multiple strains of virus circulate naturally, or follow-

ing spillover from a reservoir host to an infected spillover host (e.g. poultry,

pigs or humans). Although reassortants with increased fitness may be
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frequency of new reassortants between the
exposure dose and host-level samples
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Figure 1. Scales at which reassortment occurs (1). In order to predict the emergence of reassortants in poultry (D), reassortment and transmission processes
(2) need to be understood at each scale. We propose risk metrics that can be measured at each scale (3) for development of predictive models of epidemiological
risk (figure 2).
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produced less commonly than deleterious ones [3], reassor-

tants are observed frequently at the population scale among

natural virus isolates [4,5] suggesting that reassortment is

an important source of adaptation. Both co-infections

(a necessary precursor to reassortment) and reassortants are

often detected retrospectively during surveys of wild water-

fowl [6–11]. A comprehensive analysis of publicly available

genomic data from avian and mammalian host species

found that a substantial proportion of genomes (3%—646

total) were first time reports of novel reassortants [4]. Yet,

emergence of novel IAV reassortants remains unpredictable

and depends on host and virus populations [4]. One model

estimated a 3-year cycle of emergence and replacement of

avian IAV reassortants [9], but the highly pathogenic

goose/Guangdong/96 clade 2.3.4.4 H5 appears to be persist-

ing and contributing to the ongoing generation of novel

reassortants [12].

In wild birds, IAV transmission via the environment is a

major mechanism facilitating co-infection and host contact

with pathogens [13]. Environmental reservoirs, such as

ponds, can accumulate virus particles shed in faeces by

many individuals, increasing the co-occurrence and exposure

to different viral strains [13,14], and hence the likelihood of

co-infection. By extension, reassortment events that have

occurred in hosts using the same water body could be

revealed by sequencing individual whole viruses from the

environment over time and conducting genomic analyses,

thus increasing detection capabilities for the reassortant com-

binations present. Environmental reservoirs also increase

contact between species—i.e. species that may never contact

each other directly drink or feed from the same water

source. They additionally increase the infectious period

(time frame during which infectious particles can be trans-

mitted following infection) and expand the spatial
availability of viruses (locations where infectious particles

can be acquired), thus increasing the likelihood that novel

host species will make contact with a variety of different

viruses. Therefore, environmental transmission can overcome

barriers of spillover by increasing interspecies contact with

viable pathogens, and facilitating large jumps in viral diver-

sity and fitness by allowing co-infection and reassortment.

One of the most important public/livestock health chal-

lenges is to predict the emergence of novel strains from

surveillance systems. Predicting this epidemiological risk

for viruses that reassort frequently, such as IAV, requires an

understanding of the viral evolutionary ecology in reservoir

and spillover hosts and its significance in driving viral fitness

across scales [15]. Factors involved include predicting the rate

with which new reassortants are generated in cell tissues and

individual hosts (de novo reassortment), estimating the prob-

ability that a new reassortant will become predominant in

reservoir-host populations locally and regionally, and the

probability of spillover and transmission in spillover-host

populations (figure 1–1, 1-2).

We first review what is known from experimental studies

of within-host reassortment rates, environmental transmission

of IAV and assaying strain-specific fitness. We then outline

emerging technologies in environmental sampling, phenotyp-

ing, genomics and bioinformatics that could improve detection

and assessment of reassortants in environmental surveillance

samples. We describe how emerging technology could allow

efficient observation of reassortant dynamics in host popu-

lations, by incorporating environmental surveillance. Lastly,

we define risk metrics (e.g. figure 1-3) that can be measured

using these molecular technologies and describe conceptual

strategies for using those metrics to inform quantitative

frameworks designed for prediction of epidemiological risk

from environmental surveillance samples.
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2. Knowledge from experimentation
Experiments have provided foundational knowledge on de

novo reassortment rates and combinatorial constraints

within hosts and cell tissues, yet predicting within-host

rates of reassortment from specific factors has just begun

[16,17]. Similarly, quantifying reassortment rates within an

environmental reservoir-host system (e.g. figure 1b) has

only rarely been addressed [11]. Below, we describe exper-

imental approaches that could be used to measure de

novo reassortment rates within hosts, and transmission of

reassortants in an environmental reservoir-host system,

allowing improved prediction of epidemiological risk from

surveillance data.

(a) Co-infection and reassortment processes
Significant progress has been made in understanding within-

host reassortment processes in spillover host models (i.e.

poultry and mammals) using experimental inoculation tech-

niques [16,17]. Rates of de novo reassortment within hosts

can be determined by co-infecting single hosts with known

parental genotypes and measuring the proportion of shed

virions that are reassortants. Such experiments have helped

to develop assays for studying reassortment rates within

hosts, and demonstrated substantial and highly variable

rates of reassortment within-host individuals ([18–22]; e.g.

8.7% of viruses recovered from ferrets co-infected with

human and avian strains were reassortants [18], to approxi-

mately 50% of viruses recovered from co-infections of

chickens with other chicken-derived subtypes [19], to 86%

in swine and guinea pigs co-infected with swine or human

strains [20,21]). The differences are thought to be owing to

functional incompatibilities between viral genome segments

or differing receptor binding specificities or other host restric-

tions, leading to low levels of co-infection in the same cells.

Within-host studies have determined that transmission

route, timing of exposures, dose, strains and strain compe-

tition all can influence co-infection and reassortment rates

[16,17,21]. Higher doses lead to higher rates of co-infected

cells [21]. When exposure with two different strains is offset

by a short period of time (12 h), co-infection and reassortment

rates are higher than when the host is exposed to the two

strains simultaneously [21]. Delayed introduction of the

second strain likely increases co-infection rates because it

allows the first strain time to infect many cells, thus maximiz-

ing co-infection potential by the second strain [21]. By

contrast, exposures with longer time lags can reduce co-infec-

tion because of super-infection exclusion mechanisms that

occur later post-infection (i.e. host innate immune function,

and viral processes such as receptor interference) [17] and

because death of infected cells occurs. As expected, effects

of co-infection time lags on reassortment rates can differ

depending on host-strain combinations and experimental

design [19]. Importantly, these advances in our understand-

ing of within-host reassortment provide a foundation for

predictive models to account for co-infection and reassort-

ment processes mechanistically in epidemiological models.

An important gap for experimentation is that little work

has focused on understanding reassortment in reservoir

hosts under natural transmission conditions (figure 1A);

how the lessons learned from animal models apply to wild

birds infected by environmental transmission remains

unknown.
(b) Environmental transmission
Models suggest that environmental reservoirs play an

important role in the ecology of IAVs because they allow infec-

tion between hosts that infrequently come into direct contact,

such as migratory wild waterfowl on breeding grounds

[13,14,23,24]. Experimental systems have shown the occurrence

of environmental transmission of IAVs among reservoir hosts

and from reservoir hosts to spillover hosts [25–28]. However,

the role of indirect transmission though the environment rela-

tive to other transmission mechanisms is not well understood

empirically, which is important for informing models aimed at

predicting epidemiological risk. One study identified a corre-

lation between host population density and environmental

levels of IAV [29]. Environmental transmission experiments

combined with molecular characterization and disease-

dynamic models would provide powerful tools for improving

our quantitative knowledge of environmental transmission,

co-infection and reassortment processes.

One key driver of environmental transmission is persist-

ence of viral viability after shedding into the environment.

There is substantial variation in environmental durability of

IAVs (between 1 and 600 days) depending on abiotic factors,

especially temperature, salinity, pH and mineral content of

the medium [30–35] and viral genotype [33,35], including

under natural conditions [36]. While some information is

available for water and bird faeces, studies with soil [37],

sediments [29,33,38] and plant material are few. Variation

in viral environmental persistence could be an important

component of fitness [39] and should be included in

models predicting the ecological and evolutionary dynamics

of IAVs. A final important knowledge gap is understanding

the relationship between environmental virus concentrations

and infectivity.

(c) Strain-specific fitness
Experimental studies are also helpful for evaluating pheno-

types (e.g. measures of within-host replication fitness) of

parental and reassortant viruses, a predictor of co-infection

and reassortment rates within hosts (figure 2a). Fitness of reas-

sortant strains is a crucial filter on emergence risk. Fitness

studies on human IAV strains provide some insights where

deleterious reassortment events were characterized by fewer

reassortant progeny and more limited replication efficiency in

spillover host cells [3,40]. Also poorly understood is the connec-

tion between within-host fitness and transmissibility (e.g. [41]).

Comparative genomics of IAV genomes from wild bird

and poultry samples identify putative genetic constellations

that can readily produce reassortants with high fitness in

reservoir and spillover host species (‘high risk’ markers).

These could be tested for potential fitness effects in vitro
with deep-mutational scanning approaches [42] to efficiently

phenotype a large number of strains for which the genotype

is known. Then putative ‘high risk’ markers can be identified

by statistically analysing the relationship between genotype

and phenotype. Using synthetically engineered or naturally

isolated genotypes in in vivo experimental infection and

transmission experiments could produce estimates of fitness

for particular genotypes or molecular markers in a given

host system (e.g. see techniques in [36]). At present, deep-

mutational scanning and in vivo techniques are too time-

intensive and costly to incorporate in large-scale surveillance

systems, but they are feasible for experimental settings and
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Figure 2. Approaches to predicting epidemiological risk in an environmental reservoir-host system. (a) Bottom-up approach. Develop a mechanistic disease trans-
mission model of the evolutionary and ecological processes (bolded numbers) involved in reassortment. Design controlled environmental transmission studies with
multiple strains and hosts. Then, iteratively fit and validate the mechanistic model and refine models and experiments based on learning. Top part of the plot shows
processes that need to be considered in the mechanistic model. Note that there are additional within-host processes (not shown here) such as super-infection
exclusion, within cell compartmentalization, spatial heterogeneity of target cells and others that can also affect the likelihood of reassortment. Numbers represent
the following processes: (1) some viruses degrade owing to environmental conditions, (2) selection for persistence, (3) viruses that persist can be transmitted,
(4) more than one virus strain can infect a single host either by co- or super-infection, (5) viral particles propagate within-hosts, as determined by the initial
dose and fitness of the inoculating strain(s), (6) co- or super-infection of individual cells and reassortment may occur as a function of multiplicity of infection
in target cells, (7) mutations with fitness effects occur during within-host replication, (8) selection for within-host replication influences the bottleneck size at
shedding into the environment (9). (b) Top-down approach. Develop a statistical model for predicting diversity-pressure-phenotypes. Collect surveillance data
from water, wild birds and sentinel chickens in multiple areas. Fit the model to the data to predict true reassortant diversity-pressure-phenotypes metrics. For
both bottom-up and top-down approaches, the first step is to develop predictive tools. Once the predictive tools are validated through research studies, they
can be applied to surveillance data (e.g. figure 1D ) to predict epidemiological risk in poultry.
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thus hold promise for improving our understanding of viral

evolutionary dynamics and emergence.

3. Prospects from genomic technology
A fundamental hurdle with studying reassortment using gen-

etic data is knowing how different segments are distributed

among virions. In this section, we describe challenges at

each step, from acquiring genome sequences to detecting

reassortants in a collection of genomes. We further describe

cutting-edge advances that may make it possible to detect

and understand reassortment from an environmental reser-

voir-host system (figure 1B). In particular, the rapidly

growing field of environmental metagenomics provides a

framework for capturing IAV diversity from the environment

([43,44]; figure 1B). When applied in tandem with population

genomics analyses, environmental metagenomics could be a

useful tool for inferring reassortment events and for under-

standing the role of the environment in co-infection risk

and reassortant emergence (figure 1).

(a) Environmental sampling
A major challenge with environmental surveillance is captur-

ing the strain diversity of IAVs in the environment [38].

Questions include: do you sample water or soils or both?

How many samples per site? How deep do you sample?

How many technical replicates? A gold standard for capturing,
isolating and identifying true IAV diversity from the environ-

ment is still not established [45]. Similarly, the effects of

common environmental variables such as water turbidity,

rates of dispersion and diffusion and spatial heterogeneity

across water or other environments have not been examined,

although they affect environmental DNA capture from aquatic

organisms [46]. Because knowledge of how to sample the

environment for target RNA is still in its infancy, pilot studies

structured to optimize sampling protocols are critical (e.g. [47]).

Another major sampling challenge is RNA preservation

[48]. Filtration to capture virions/RNA requires hours at a

single site (e.g. 800 L) to achieve adequate probability of

virus detection [49]. Decontamination of pumping equipment

at each site is necessary, further increasing sampling time.

While these methods provide a useful means of collecting

environmental genetic sequences [46], methodological advance-

ments in RNA preservation/collection techniques are needed to

improve the efficiency of collecting high-quality RNA viromes

from environmental samples.

(b) Generating sequence data from environmental
samples

An initial field-based screen can rapidly prioritize localities

for further sampling efforts. Technological advances will

soon allow diagnostic PCR assays in the field, with results

within hours to minutes. Companies such as Biomeme
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(Philadelphia, Pennsylvania, USA) have developed field-

based nucleic acid extraction kits (M1 Sample Prep Kits)

and a hand held real-time PCR thermocycler that attaches

to a smart phone (two3TM Real-Time PCR Thermocycler).

Both of these have been deployed in the field to identify mos-

quito pools positive for RNA viruses in less than 2 h to target

samples for more thorough sequencing [50].

New sequencing platforms (e.g. MinION from Oxford

Nanopore Technologies) hold promise for field-based surveil-

lance of IAV owing to their rapid library prep and run times,

and elimination of PCR amplification. The MinION generates

long reads that allow sequencing of entire gene segments in a

single read, single-molecule sequencing and direct RNA

sequencing without conversion to cDNA and PCR amplifica-

tion [51,52]. For field-based pathogen surveillance, it is

possible to run a sequencer from a smartphone (e.g. Smid-

gION from Oxford Nanopore Technology). All of these

technologies currently lack high-throughput capacities, have

cost-prohibitive library prep, low sensitivity and high error

rates for application to broad-scale surveillance. Despite

these hurdles, there is a continual push to improve mobile

diagnostic capabilities [53,54], which will inevitably improve

efficiency, accuracy and precision of obtaining IAV genomic

data from environmental samples.

All contemporary sequencing platforms require a mini-

mum concentration of input nucleic acids, and water

samples tend to fall below this threshold, requiring enrich-

ment of target IAV RNA [55]. Centrifugation following

filtration has been effective at concentrating viral particles

[56]. The gold standard for IAV enrichment is virus culture

in either embryonated chicken eggs or Madin–Darby

canine kidney cells. These methods work well for clinical

samples, but there can be high costs and challenges with iso-

lating the virus from environmental samples [57–59].

Additionally, using virus isolates to study reassortment can

be counter-productive because of subtype and genomic

selection bias in media used to propagate isolates. PCR is

another method for enriching viral genomes, however, PCR

can preferentially amplify specific strains and introduce

nucleotide errors that can be difficult to distinguish from

true, low-frequency virus variants. The ideal approach is

direct sequencing of viral genomes without PCR (see below).

Another major challenge with viromic data from environ-

mental samples is delineation of individual genomes—i.e.

how do we distinguish potential reassortants from multiple

parental genotypes or viral mixtures? A common method is

to isolate individual genotypes using limiting dilution

plaque assays and subsequent whole-genome sequencing.

However, plaque assays can cause biased replication levels

between multiple strains because of tissue tropism [60],

in vitro strain mutation [61] and overlapping plaques [62],

all which can obscure the delineation of genotypes. Serial

dilution can reduce plaque overlap but is very time

consuming.

The advent of single-virus sequencing techniques [63,64],

similar to single-cell genome sequencing techniques of

eukaryotic and bacterial genomes [65], holds promise for cir-

cumventing several potential biases from viral isolation

techniques while providing sequence data from individual

virons. Using flow cytometry to isolate virions has improved

sequencing of single-virus genomes [63,66], but RNA input

requirements for library prep are still too high to allow the

sequencing of a single, non-enriched virus genome from
environmental samples. However, methods for conducting

single-virus RNA sequencing on a Nanopore or similar

single-molecule sequencing platform will undoubtedly be

realized in the near future, providing a valuable method

of delineating IAV genotypes that have not been subject to

selective media.

(c) Assembling genes and genomes for reassortment
analysis

The most widely used sequencing platforms generate short

reads, which makes genome assembly challenging because

there may not be enough overlap between reads to determine

alignments with high enough certainty. A common first step

is to remove non-target sequence reads. Environmental

samples include nucleic acids from non-target organisms,

for which sequenced genomes are not available. The effec-

tiveness of filtering is thus reduced, which increases

computing time for genome assembly. The two main

approaches for viral genome assembly are reference-based

mapping and de novo assembly. Mapping reads to a refer-

ence genome can simplify assembly, but reference genome

choice is not trivial and IAV genomic diversity in wild

birds is very high, which can bias results when trying to

recover viral population diversity [67]. De novo assembly of

segmented viral genomes is complicated because of incom-

plete and uneven coverage of different segments, which can

lead to skewed results or failed assemblies [68]. A useful

approach could be de novo assembly to build reference gen-

omes directly from the sample reads then map all the reads

back to this genome to recover the viral population diversity,

infer haplotypes and estimate their frequencies [67,69,70].

The ultimate goal is to accurately assemble all genome

variants in systems with high levels of diversity and deter-

mine dominant and low-frequency strains, which can

greatly influence epidemiologic outcomes.

(d) Detecting reassortants
Classically reassortants are identified by sequence alignment,

and if necessary by generating phylogenetic trees of each

gene segment to look for incongruent clades. An isolate can

be considered to be a reassortant if one or more gene seg-

ments have a significantly different position in a fully

resolved phylogenetic tree relative to other gene segments

[71]. However, in wild birds, IAV diversities are frequently

very high with multiple strains co-circulating, such that

both mixtures of parental sequences and reassortants may

be quite prevalent, resulting in phylogenetic trees that do

not differ significantly from trees generated at random [6].

To detect such reassortants, we must define a minimum

degree of difference in the topologies (e.g. [4]). The chosen

thresholds will impact inferred rates of reassortment in

surveillance samples.

Another challenge of detecting reassortants is that some

assumptions of phylogenetic methods are violated, as eco-

logical and evolutionary processes occur simultaneously in

viral populations. For example, phylogenetic trees assume

ancestral alleles are extinct, evolutionary patterns are bifur-

cating and no reticulation events have occurred [72]. Even

creative approaches to estimating the frequency of reassor-

tants in phylogenetic trees, such as discrete trait mapping

and Bayesian ancestral state reconstruction [73], do not
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circumvent assumptions. Furthermore all eight gene

segments need to be analysed separately, which is computa-

tionally burdensome. To better detect viral reassortants, we

need to develop or apply approaches that align with viral

evolutionary processes rather than applying theories and

concepts developed for organisms with highly disparate

biology [74].

Population genetic approaches may be more appropriate

for identifying the frequency of reassortants in a set of gen-

omes. Phylogenetic networks are methods that account for

reticulate evolution and can identify reassortment events

[11,72,75,76]. There is promise in using coalescent theory

[77] and maximum-likelihood or Bayesian estimates of

migration [78]. An additional approach could be from popu-

lation genetic clustering algorithms (e.g. [79,80]), using

hemagglutinin (HA) and neuraminidase (NA) subtypes as

population delimiters and then using those as a framework

for estimating the replacement and ‘gene flow’ of the internal

segments. One final method could take advantage of recom-

bination metrics by using concatenated IAV gene segments

and treating the genomes as chromosomes. The exchange

of gene segments will thus lead to estimates of recombina-

tion rates that can serve as a proxy for reassortment

frequencies [76].
4. Approaches to predicting epidemiological risk:
the way forward

(a) Observing reassortment across scales
Within individual hosts (figure 1A), the important risk metric

is the de novo reassortment rate. Reassortment rates ideally

would be measured using the genomic diversity (number

of unique genotypes, frequency of each unique genotype,

and relatedness between genotypes) in samples from individ-

ual hosts over time during an infection, where the first time

point is the exposure dose of co-infecting viruses [22]. The fre-

quency of reassortants in each sample relative to parental

viruses at the first time point would give an empirical

index of the host-level rate of reassortment. From the

distribution of frequencies for all samples from an individual

host over time, one could calculate the mean and variation of

host-level reassortment rates. However, except in controlled

field experiments the genomic diversity of the exposure

dose will be unknown. As a proxy, genomic diversity of

samples from the environment could be used.

Extending these ideas, the next scale is reassortment in an

individual environmental reservoir-wild bird system

(figure 1B). We propose three complementary risk metrics

at this scale: the ‘diversity dynamics’ are captured by measur-

ing the genomic diversity in the water and faecal samples

from individual hosts over time; the ‘pathogen pressure’

[81] is the concentration of virions in water and their preva-

lence in the host population; and the ‘dominant-strain

phenotypes’ is a rapid assessment of replicative fitness for

strains that are most frequent in the surveillance samples.

We refer to these three important risk metrics together as

‘diversity-pressure-phenotyping’: data that can be observed

to understand and predict epidemiological risk. An impor-

tant condition is that these data are collected over time at

the same site (longitudinal sampling) in order to monitor

the process of reassortants being generated and selected
within hosts, and then shed and selected for persistence in

the environment (e.g. figure 2a). Linking the molecular mar-

kers that are identified in the ‘diversity’ data to phenotypes

will provide a mechanistic foundation for diversity dynamics.

At the next level ( figure 1C), diversity-pressure-

phenotyping in water and hosts could be measured across

space and time to surveil for reassortant emergence

along flyways. Lastly, concurrent surveillance of diversity-

pressure-phenotyping in sentinel poultry at sites where

water-host systems are being surveilled would provide an

ideal measure of predicted epidemiological risk for spillover

and emergence of reassortants in poultry (figure 1D).
(b) Bottom-up approaches: disease-dynamic modelling
Within-host viral dynamics of IAV have now been reasonably

well studied using experimental data [82,83], providing a

strong foundation for developing predictive models of reas-

sortment dynamics. Important factors determining within-

host viral kinetics for IAV include target-cell availability

[84], immune system factors [85], spatial distribution of

target cells [86] and initial dose [87]. While these viral kinetic

models have been developed using data from human infec-

tions [82,83], their insights and methods have begun to be

applied to avian hosts [88]. The most important factor for

reassortment is co-infection [16,17]. Thus, initial dose,

target-cell availability and the distribution of target cells

will play a primary role in predicting de novo reassortment

rates. Once reassortment has occurred within a host, selection

within the host and the size of the transmission bottleneck

will determine whether a reassortant is shed into the environ-

ment [16] (figure 2a). The recent advances in understanding

of intracellular and within-host processes that govern

reassortment [16,17] provide conceptual and quantitative

knowledge for models of within-host viral and reassortment

dynamics. In the larger context, the reassortment processes

and within-host viral dynamic models can be nested in

between-host models that account for selection, transmission

bottlenecks and environmental transmission processes (e.g.

[39]) to develop a predictive framework that can be validated

with experimental data (figure 2a).

Controlled experiments that allow transmission to occur

naturally coupled with data-driven modelling frameworks

(as above, figure 2a) together form a valuable stepping-

stone toward inferring epidemiological risk from genetic

samples. Controlled experiments are important for restricting

the range of potential genotypes and environmental factors

so that models can be designed to capture epidemiological

behaviour based on a limited and known set of factors. In

high-dimensional systems such as IAV, model-guided field-

work [89]—i.e. iterative model development, prediction and

experimentation (figure 2a)—can be applied for efficient

experimental design and knowledge building. By this

approach, models could be used to predict which processes

are the most important to assess. Then experiments would

test our knowledge of how ill-understood processes such as

environmental transmission contribute to the observed out-

come. For example, a poor-fitting model of diversity-

pressure-phenotyping would suggest that there are ill-

defined processes occurring in the system that are not well

captured or are absent in the model. Then the model and

experimental design could be adjusted to elucidate these ill-

understood mechanisms. This concept is not new [89] but it
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is surprisingly underused for designing empirical studies of

complex ecological and epidemiological systems with

ample process uncertainty. The iterative approach of hypoth-

esis generation!model building and prediction! data

collection!model evaluation aims to reduce process uncer-

tainty by targeted learning. Thus, it is a powerful approach

for identifying important gaps in our ability to predict reas-

sortment in environmental reservoir-host systems

(figure 1B), and to design effective experiments that will

best inform the identified gaps. Once this type of mechanistic

epidemiological model is developed and validated using

experimental data from controlled studies with natural trans-

mission, it could be used to predict epidemiological risk from

surveillance of diversity-pressure-phenotypes data in

environmental reservoir-host systems.

As an illustration of how these cross-scale processes could

be explored empirically, we describe a possible experimental

study to measure diversity-pressure-phenotypes and result-

ing infection risks in an environmental reservoir-host

system. A potential study would simulate a scenario where

multiple hosts infected with different virus strains would

be allowed to contaminate a quasi-natural environment.

Infected hosts would then be removed and susceptible

individuals would be exposed to the contaminated environ-

ment to allow for infection. Hosts and the environment

would be sampled longitudinally at regular intervals

throughout the experiment. All samples would be sequenced

to determine de novo reassortment rates and diversity-

pressure-phenotypes (figure 1; which measures the frequency

dynamics of particular genotypes and their associated pheno-

types, i.e. reassortant emergence). Testing both reservoir and

spillover host species (e.g. mallards and chickens) would

allow for determination of potential host differences in sus-

ceptibility and the impacts of diversity-pressure-phenotypes

on epidemiological dynamics. A similar design could be

applied to conditions that only allow direct contact between

hosts. Comparing results from both experiments would

help quantify transmission mechanisms and determine

which mechanisms lead to higher reassortment risk.
(c) Top-down approaches: statistical modelling of
sentinel surveillance (functional surveillance)

A second important approach to understanding and predict-

ing epidemiological risk is to apply statistical methods to

surveillance data from the environment and from reservoir

and sentinel hosts. While bottom-up approaches based on

experimental data have the power to improve inference

by reducing complexity, the inference is specific to the

conditions that are tested. For this reason, approaches

that measure diversity-pressure-phenotypes in natural popu-

lations are equally important. Phylogenetic or phylodynamic

methods have mostly been applied to estimate reassortment

occurrence, rather than to quantify its frequency or dynamics

(i.e. pattern-based surveillance as opposed to process-based,

which is ‘functional surveillance’). Additionally, because

these methods rely on historical genomic diversity for infer-

ence of current genomic diversity, they are retrospective not

predictive. We propose that longitudinal surveillance of

environmental reservoir-host systems, paired with systematic

deployment of sentinel host individuals (e.g. [11]), is an

important research direction that could improve the power
of top-down statistical tools for prediction of epidemiological

risk from environmental surveillance data.

Sentinel host sampling can allow for direct measurement

of spillover rates between reservoir and poultry host popu-

lations when surveillance occurs at the same locations over

time [90]. An example approach would include enclosures

of sentinel poultry adjacent to environmental reservoirs

used by waterfowl. This type of sentinel host design has

allowed for documentation of seasonal dynamics of spillover

[91] and evaluation of vaccination effectiveness [92]. The sen-

tinel host design would be coupled with frequent measures

of diversity-pressure-phenotypes in the environmental reser-

voir-host system, and in the sentinel hosts themselves, by

applying single-virus sequencing and phenotyping assays

to the samples (figure 2b). Analysis of genotype frequencies,

linked to measured phenotypes, could identify molecular

markers that are most likely to lead to outbreaks in poultry.

Another useful dimension within this design would be to

collect longitudinal data on the abiotic conditions of environ-

mental samples, densities of hosts and host-species

composition, concurrently with the longitudinal diversity-

pressure-phenotypes data. These data would be used as cov-

ariate data for predicting emergence risk in sentinel hosts

(figure 2b). Once validated with out-of-sample data from

multiple sites, this type of statistical framework could be

used to predict epidemiological risk in spillover hosts using

diversity-pressure-phenotypes and abiotic data collected

longitudinally from environmental reservoir-host systems.

Although these systems might not capture all of the real-life

complexity of contact structure between hosts, they would

include natural complexity from strain diversity and abiotic

factors, which is important for optimizing environmental sur-

veillance technologies and inference from environmentally

sampled data.
5. Conclusion
Understanding the emergence of novel reassortments across

ecological scales that include environmental transmission,

could transform risk assessment capabilities and add to cur-

rent approaches that use non-mechanistic or retrospective

genetic analyses. For example, shifting our focus from infer-

ring which strains have spilled over to predicting which

strains will successfully spill over from wild birds to poultry

in the near future. Advancements in molecular techniques

have brought the goal of predicting reassortment and spil-

lover risk of IAVs onto the near-term horizon. Coupling

risk-metric data, such as diversity-pressure-phenotyping,

with bottom-up and top-down quantitative models is poss-

ible and can yield frameworks for both understanding and

predicting reassortant emergence.

Although it is still not possible to collect diversity-

pressure-phenotyping data routinely as part of large-scale

surveillance systems, technological refinements that dramati-

cally improve efficiency can occur rapidly. Once more

efficient molecular technologies are available, scaling up

their application to surveillance programmes will require a

strong research foundation that has addressed fundamental

gaps in the evolutionary ecology of IAVs; a knowledge base

that is inextricably linked to the natural life cycle and com-

plexity of this host–pathogen system. Thus, addressing the

basic science knowledge gaps with current technology, as
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we have outlined, is an important stepping-stone towards

developing more accurate and efficient risk assessment and

surveillance programmes. However, even at a fine scale, the

research approaches we outlined will require substantial

investment because they require wide-ranging interdisciplin-

ary collaboration and specialized facilities (i.e. animal

pathobiology, cutting-edge sequencing technology, bioinfor-

matic resources and skills, and expertise in mathematical

and statistical modelling). Collaborations of this breadth are

expensive but are feasible. The potential payoffs from

improvements to risk assessment and outbreak prevention

through evidence-based biosecurity could greatly outweigh

the costs in the long term.

The improved surveillance system we envision can be

characterized as ‘functional surveillance’: collecting and inte-

grating appropriate surveillance data into analytical

frameworks that describe emergence processes (as opposed

to patterns). Functional surveillance would complement

current approaches of using pattern-based surveillance
by improving our understanding of emergence processes

(e.g. [93]). The mechanistic underpinnings of functional

surveillance will allow for better prediction as conditions

change, a current weakness of retrospective risk assessments.
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