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Unraveling inflammatory responses using systems genetics and
gene-environment interactions in macrophages
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SUMMARY
Many common diseases have an important inflammatory component mediated in part by
macrophages. Here we used a systems genetics strategy to examine the role of common genetic
variation in macrophage responses to inflammatory stimuli.

We examined genome-wide transcript levels in macrophages from 92 strains of the Hybrid Mouse
Diversity Panel. We exposed macrophages to control media, bacterial lipopolysaccharide, or
oxidized phospholipids. We performed association mapping under each condition and identified
several thousand expression quantitative trait loci (eQTL), gene-by-environment interactions and
several eQTL “hotspots” that specifically control LPS responses. We validated an eQTL hotspot
in chromosome 8 using siRNA knock-down of candidate genes and identified the gene
2310061C15Rik, as a novel regulator of inflammatory responses in macrophages.
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We have created a public database where the data presented here can be used as a resource for
understanding many common inflammatory traits which are modeled in the mouse, and for the
dissection of regulatory relationships between genes.

INTRODUCTION
After the completion of the Human Genome Project and the HapMap project, the field of
genetics witnessed an explosion of genome-wide association studies that aimed to identify
the common variants that affect common diseases in humans. Despite this effort,
accumulating data have shown that all identified loci combined can only explain a small
fraction of the variation in the population. This has been speculated to be partly due to
environmental factors and their interaction with various genes influencing the traits.
Therefore, uncovering such gene-by-environment interactions (GxE) will aid in
understanding the mechanisms underlying the observed variation in the population. In an
effort to elucidate such interactions, we focused on inflammation and sought to determine to
what extent environmental factors that trigger immunological responses interact with
naturally occurring variation to determine the phenotypic outcomes.

Inflammation is the innate immune response to harmful stimuli such as pathogens, injury
and tissue malfunction. Acute inflammation is associated with the response to infection and
tissue injury, and is often triggered by recognition of bacterial products such as
lipopolysaccharide (LPS). In contrast, chronic inflammation is thought to be the underlying
cause of many complex diseases, including autoimmune disease (Kanter et al., 2006),
Alzheimer’s disease (Rojo et al., 2006) and atherosclerosis (Berliner et al., 2009). We and
others have shown that oxidized phospholipidss, such as oxidized 1-palmitoyl-2-
arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC), are potent environmental
stimuli which can trigger the initial recruitment of macrophages, and contribute to both
initiation and progression of chronic inflammation (Berliner et al., 2009).

Genetic variation in naturally occurring populations can have dramatic effects on how
individuals respond to environmental stimuli such as LPS and OxPAPC. Studies in model
organisms have revealed thousands of GxE interactions responsible for phenotypic
differences among genetically diverse individuals (Smith and Kruglyak, 2008). Wurfel et al.
demonstrated in humans that some individuals show high sensitivity to LPS, while others
exhibit low sensitivity (Wurfel et al., 2005), suggesting that GxE interactions play a role in
the extent of inflammatory responses. Similarly, chronic inflammatory conditions such
atherosclerosis are influenced by both genetic and environmental variation, and multiple
studies suggest that GxE interactions are an important component of the disease etiology
(Romanoski et al., 2010).

In this study, we sought to understand macrophage inflammatory responses and how these
are influenced by genetics in a panel of genetically diverse mouse inbred strains called the
Hybrid Mouse Diversity Panel (HMDP). We obtained primary macrophages from each of
the strains and exposed them to inflammatory stimuli. We then profiled the transcriptome
and used genome-wide association to reveal genetic loci and GxE interactions in the
macrophage response to inflammatory stimuli. All our results are publicly available through
our database website http://systems.genetics.ucla.edu/data. Here we will describe our results
and demonstrate how the analyses and data we generated can be exploited to further our
understanding of cellular processes involved in macrophage inflammation.
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RESULTS
Macrophage HMDP samples

To better understand inflammatory responses in macrophages, we obtained primary
macrophages from 92 mouse inbred strains of the HMDP. We exposed the cells to control
media, LPS, or OxPAPC and measured genome-wide mRNA expression levels using
microarrays. To determine reproducibility, we also examined expression levels from seven
strains in the control condition, and five strains in the LPS condition at different times, using
different mice of the same strain to examine biological reproducibility. We used hierarchical
clustering of data for all genes in the microarray and found that samples of the same strain
clustered together independent of the experiment date, suggesting that genome-wide
expression levels were highly reproducible for both experimental and biological replicates
(Figure S1, A and B). As an example, the variation in the response to LPS of Ccl2 (MCP-1)
is shown in Figure S1C.

If the variation in gene expression between samples of the same strain was comparable to
variation among different strains, this would lead to false positive results due to random
fluctuations in gene expression levels. To examine this possibility, we compared the
distribution of the variance in gene expression among different strains (inter-strain
variance), to the variance in samples from the same strain (intra-strain variance). We found
that the inter-strain variance was 2.2-fold larger than the intra-strain variance in strain
BXH20/KccJ (p=1.26×10−226, Figure S1D), with similar results in additional strains, where
the inter-strain variance was larger than the intra-strain variance by 2-fold in BXA12/PgnJ
(p=0), 2.5-fold larger in BXD33/TyJ (p=9.99×10−270), 2.4-fold larger in BXD36/TyJ
(p=8.49×10−309), and 2.3-fold larger in LG/J (p=0).

We carried out expression array profiling in macrophages from 92 strains out of the 100
strains originally included in the HMDP. To ensure that we did not introduce a bias due to
possible differences in cell viability in response to an inflammatory stimulus, we examined
viability using calcein AM, which produces an intense fluorescence in live but not in dead
cells (Figure S2). We found no significant differences in viability after LPS treatment
(p=0.76) between cells from strains included (93.6%) and strains not included in this study
(94.9%).

Genetic, environmental and GxE interactions
We examined the effect of genetic differences, environmental stimuli and GxE interactions
on global gene expression levels using analysis of variance (Anova). We found that 5,726
(44.1%) out of 12,980 genes represented in the array were under genetic regulation at the
5% FDR rate (Table S1). For environmental effects, we compared control versus treated
(LPS or OxPAPC) samples, and found that 2,802 (21.6%) genes were regulated by LPS, 593
(4.6%) genes were regulated by OxPAPC, and 2,946 genes (22.7%) were regulated by at
least one of the treatments over 2-fold. There was a significant overlap of 445 genes that
were differentially expressed over 2-fold in both treatments (p<1.0×10−16).

In a genetically diverse population such as our panel of strains, GxE interactions can be
observed when a strain(s) responds to a given environmental stimulus (e.g. LPS), while
another strain(s) of different genetic background does not. We found GxE interactions in
2,607 (20.1%) genes in LPS-treated cells, 512 (3.9%) genes in OxPAPC treated cells, and
2,786 (21.5%) genes that showed a GxE interaction in at least one of the conditions.
Although treatment influenced expression levels in a larger number of genes for LPS than
for OxPAPC treatment, a large proportion of the genes differentially expressed show GxE
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interactions in both LPS (2607/2802, 93%) and OxPAPC (512/593, 86%) treatments. The
total number of genes regulated, and genes regulated over 2-fold is shown in Table S1.

Figure 1 shows representative examples of environmental, genetic and GxE effects.
Expression levels of Heme Oxygenase-1 (Hmox1) are shown in Figure 1A for cells in
control and OxPAPC-treated cells in different mouse strains, and in Figure 1B for cells in
control and LPS-treated cells. Hmox1 expression is strongly regulated by environmental
inflammatory stimuli in response to OxPAPC (p<1×10−16), but not in response to LPS. In
contrast, expression of N-acetylneuraminate pyruvate lyase (Npl) is strongly influenced by
genetic effects (Figure 1C, p<1×10−16), but not by environmental effects in response to LPS
(p=0.37). The expression levels of Interferon activated gene 205 (Ifi205) are influenced by
environmental effects (Figure 1D, p<5.17×10−6), genetic effects (p<1×10−16) and show a
GxE interaction (p<1×10−16).

We used DAVID gene ontology to identify pathways and cellular processes enriched in
genes regulated by inflammatory stimuli. Consistent with previous work, we found that
phosphoproteins (p=2.5×10−23), Toll-like receptor signaling (p=5.1×10−9) and NOD-like
receptor signaling (p=4.1×10−6) were highly enriched in response to LPS, while regulation
of kinase activity (p=4.7×10−5), cytokine production (p=3.7×10−5) and SH2 domain
(p=1.8×10−4), which recognizes phosphorylated tyrosine residues, were enriched in response
to OxPAPC. Genes that were regulated by OxPAPC and not by LPS were enriched in
glutathione metabolism (p=1.5×10−5) and response to oxidative stress (p=9.5×10−3),
consistent with the hypothesis that oxidative stress plays a major in role in chronic
inflammatory disorders such as atherosclerosis. In contrast, genes regulated by LPS and not
by OxPAPC were enriched in phosphoproteins (p=1.2×10−20) and the Toll-like receptor
pathway (p=1.4×10−8).

The complete list of genes, fold-induction, Anova p-values and FDRs can be found in the
online database, and similar plots as those shown in Figure 1 to examine the response to LPS
or OxPAPC for all genes represented in the array.

Association mapping of gene expression
To identify genetic loci responsible for inflammatory responses and GxE interactions, we
performed association mapping of genome-wide expression levels using single nucleotide
polymorphisms (SNPs) across the mouse genome. For each gene we associated differences
in gene expression to genetic differences using Efficient Mixed Model Association
(EMMA). We and others have previously shown that EMMA effectively reduces false
positive associations due to population structure among the mouse inbred strains (Bennett et
al., 2010; Kang et al., 2008), thus allowing us to identify genomic loci that regulate the
mRNA expression levels of any given gene represented in the microarray. These loci are
commonly referred to as expression Quantitative Trait Loci, or eQTL.

We observed dramatic differences in the eQTL identified in control, LPS and OxPAPC-
treated macrophages (Figure 2 and Table S2). We found both local or cis-eQTL, where
expression levels of a gene were regulated by genetic variation at or near that same gene, as
well as distant or trans-eQTL, where expression levels of a given gene were controlled by
variation at a different locus, likely representing regulatory relationships between the genes.
Most of the loci we identified in trans belonged to the LPS-treated macrophages (18,082),
followed by 11,658 loci identified in control-treated cells, and 9,344 loci identified in
OxPAPC-treated cells, at the 5% FDR level. We also found a large number cis associations,
5,217 in the control, 4,587 in LPS and 4,747 in the OxPAPC conditions.
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Treatment-specific associations represent an interaction between genetics and the
environment, where specific differences in gene expression are only observed in the context
of an external stimulus. To specifically examine genetic loci influenced by GxE interactions,
we mapped the fold difference between LPS-treated and control gene expression levels, or
the fold difference between OxPAPC-treated and control expression levels. We found 4,805
gxeQTL in LPS and 81 gxeQTL in OxPAPC conditions in trans, as well as 1,394 cis-
gxeQTL in response to LPS and 219 cis-gxeQTL in response to OxPAPC (Table S2 and
Figure S3). For example, Ifi205 is a gene that shows a gxeQTL in cis (Figure 1D), while
Abca1 shows a gxeQTL in trans (Figure 5A and 5B) in the LPS condition. Genes with
gxeQTL in LPS but not in OxPAPC were highly enriched for acetylation (p<8.2×10−25),
phosphoprotein (p<3.2×10−18) and mitochondrial proteins (p<4.4×10−15) using gene
ontology. We did not find significant gene ontology enrichments in the OxPAPC gxeQTL.

Type I and Type II errors in association studies can be due to the influence of confounders
such as population structure and batch effects. These can result in an inflation (too many
false positives) or deflation (too many false negatives) in the association results. We used
EMMA to control for spurious associations due to population structure, and to verify that
there was no inflation, we computed the inflation factor lambda. Lambda values over 1
indicate inflation, lambda values under 1 indicate deflation, and lambda of 1 indicates
neither. We computed the inflation factor in our association results and observed no
evidence of inflation, with lambda values ranging from 0.9–1 (Table S2). Association results
for all genes and all conditions can be found on our online database.

Expression “hotspots”
Previous studies on the genetics of gene expression have suggested the existence of eQTL
“hotspots”, where a polymorphism(s) at a locus is responsible for changes in gene
expression in tens or hundreds of genes (Ghazalpour et al., 2008). These can be seen as
vertical bands in the plots of genome-wide association of gene expression (Figure 2), where
hundreds of transcripts across the genome were all associated with a SNP(s) in a locus. To
find eQTL hotspots, we divided the genome into 2-Mb size bins and counted the number of
trans-eQTL genes mapping to each bin.

We observed striking differences in hotspots from cells exposed to the different stimuli. We
found 54 significant hotspots in control-treated cells, 47 hotspots in LPS, 39 hotspots in
OxPAPC, 17 hotspots for LPS gxeQTL and no hotspots in OxPAPC gxeQTL (Figure 3 and
Figure S4). The majority (145/157) of the hotspots regulated less than 1% of all eQTL in
each condition, and only 3 hotspots, identified in response to LPS, regulated more than 5%
of eQTL. A complete list of eQTL hotspot genome positions, their significance and the
number of genes regulated by each hotspot can found in Table S3 and in our online
database. We identified several common hotspots in the different conditions. Although we
found a significant overlap in the transcripts mapping to hotspots that overlap in different
conditions, the majority of the transcripts mapping to each hotspot were specific to the
treatment condition. The number of hotspots which overlap in the different conditions can
be found in Table S4 and in our online database.

The finding of an eQTL hotspot suggests the presence of a regulator(s). We found a total of
eight unique hotspots with profound changes in gene expression across the genome,
affecting more than 1% of all eQTL. Three of these mapped to previously known regulators
of inflammatory responses, including Tumor necrosis factor alpha, Tnf, in the hotspot at 34–
36 Mb on chromosome 17 for LPS-treated cells and in the LPS-response gxeQTL. We also
found a cluster of Serpin genes adjacent to a hotspot at 110–112 Mb on chromosome 1 in the
LPS and LPS-response conditions. Serpinb2, which plays a role in adaptive immunity
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(Schroder et al., 2010), is a candidate causal regulator for this locus. Finally, Interleukin 1a
(Il1a) and Interleukin 1b (Il1b) in an OxPAPC-specific hotspot at 128–130Mb on
chromosome 2. These observations suggest that the eQTL hotspots we identified are
biologically meaningful, and hence that the hotspots in loci not previously implicated in
inflammation will likely reveal novel regulators of inflammation.

Expression “hotspots” reveal a novel regulator of inflammatory responses
To identify novel regulators of inflammatory responses, we experimentally validated one of
the hotspots in LPS-treated cells. The locus is in mouse chromosome 8 at approximately
119Mb and controls a large number of eQTL, 6% of eQTL in LPS and 13.5% of LPS
gxeQTL. There are 12 candidate genes in the locus based on the LD structure. To narrow
down the list of candidate genes for experimental validation, we selected genes that showed
a difference in expression among the strains and genes with documented coding non-
synonymous SNPs, and excluded genes whose expression was undetectable by quantitative
PCR (qPCR) in primary macrophages. These criteria narrowed down our list to six genes:
2310061C15Rik, 4933407C03Rik, Atmin, Gcsh, 1700030J22Rik and Gan. Among these,
2310061C15Rik had a strong cis-eQTL in LPS-treated cells (p=1.9×10−9).

For experimental validation, we used siRNA to knock-down expression levels in each of the
six candidate genes in primary mouse macrophages treated with LPS. We were successful in
obtaining approximately 50% knock-down in four of the candidates, 2310061C15Rik,
4933407C03Rik, Atmin and Gcsh. However, despite repeated attempts, we were unable to
obtain consistent knock-down of either 1700030J22Rik or Gan, possibly due to the low level
of expression in the case of the 1700030J22Rik gene. To assess the effect of knock-down on
trans-eQTL genes predicted to be regulated by the chromosome 8 locus, we measured
expression of 19 trans-eQTL genes by qPCR. In these initial experiments, we saw that 8 of
the 19 genes tested (42%) were validated reproducibly, and their expression was affected by
knock-down of either 2310061C15Rik in 6 of the 8 genes, or Gcsh in 2 of the 8 genes. We
did not observe reproducible differences in the 19 trans-eQTL genes after knock-down of
the other candidate genes.

To more comprehensibly validate the chromosome 8 hotspot, we examined global gene
expression using microarrays. For this, we again used siRNA to knock-down the two
candidate genes 2310061C15Rik and Gcsh, since they showed the highest effect on target
genes by qPCR. We profiled the transcriptome after knock-down using microarrays and
determined how many of the genes that mapped to the chromosome 8 hotspot locus as eQTL
were affected by the knock-down (Figure 4). Knock-down of 2310061C15Rik or Gcsh had a
significant effect on 173 and 128 genes, respectively (Figure 4A and Table S5). The number
of genes affected in each knock-down experiment was significantly higher than expected by
chance based on random samplings in LPS-treated cells (p=1.11<1×10−16 for
2310061C15Rik and p<1×10−16 for Gcsh). Similar results were observed for the LPS-
response condition (Table S5).

To assess the functional significance of genes validated in each knock-down experiment, we
looked at the GO enrichment terms for each list. The GO enrichments for genes influenced
by siRNA knock-down of 2310061C15Rik were immune response (p=9.3×10−11),
regulation of T-cell activation (p=7.0×10−5), cytokines (p=2.0×10−4) and Toll-like receptor
signaling (p=4.0×10−4) in the LPS condition, and included inflammatory cytokines and LPS
primary response genes such as lll1b, Csf1, Il6, Ccl2 (MCP-1) and Serpine1 (Figure 4B). In
contrast, the genes influenced by siRNA knock-down of Gcsh were enriched in GTPase
activity (p=3.3×10−3) and were not enriched in immune response or Toll-like receptor
signaling (p=0.62). Our validation results confirm that the chromosome 8 eQTL hotspot
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represents biologically meaningful regulatory relationships between candidate genes and
trans-eQTL mapping genes. However, we also observed that more than one gene in the
locus was responsible for regulation of the trans-eQTL. Finally, our results indicate that
2310061C15Rik is a novel regulator of inflammatory responses underlying the chromosome
8 eQTL hotspot.

Using eQTL to find regulatory relationships and candidate gene
identification

One of the goals of systems genetics is to understand the behavior of the system as a whole
by identifying all the elements present in the system and understanding the relationships
among them. The eQTL identified in our study provide a suitable resource to understand the
gene expression regulatory circuits present in macrophages when they are exposed to
inflammatory stimuli such as LPS and OxPAPC. This information can also be used to
understand the biological networks underlying traits with an inflammatory component.
Towards this end, we have developed an online database, and below we describe how it
facilitates discovery of new and/or pre-existing relationships among genes and clinical traits.

Gene expression, correlations, GxE and eQTL
Here are some of the types of data that can be obtained for any gene of interest represented
in the array, as an example for Abca1: (1) a user can query and download our results for
genetic, environmental and GxE effects in tabular or graphical format (Figure 5A). The
tabular format includes Anova p-values, FDR, the average fold-change in response to a
treatment and the number of strains which show a fold difference above two for each of the
conditions. (2) The user can query the results for gene-gene expression correlations between
the gene of interest and all other genes in tabular format. (3) A user can query all eQTL
association results for the gene of interest, in any of the conditions, in tabular or graphical
format (Figure 5B). The tabular format also conveys detailed information such as the p-
value for the association, specific SNP name and coordinates, and links to the UCSC
genome browser at that locus. (4) One can also obtain gene expression profiles, correlations
and eQTL results from additional tissues (liver and bone) previously profiled in the HMDP,
and compare expression in macrophage control, LPS, OxPAPC, to adipose, aorta, heart and
liver for a gene of interest (Figure 5C). Similarly, one can obtain results for correlations,
eQTL or clinical QTL from additional genetic studies in mouse intercrosses and in human
endothelial cells exposed to OxPAPC. All of these can be used to compare and contrast
results between these data sets and the macrophage data set presented here.

Regulatory relationships between genes
Our database allows us to screen for novel genes that regulate a gene of interest using trans-
eQTL for the gene. Each trans-eQTL is hypothesized to harbor at least one gene (e.g.
geneA) that is responsible for modulating the expression of a gene of interest (e.g. geneB).
However, since the locus may carry more than one gene (e.g. several genes can be geneA),
the limiting step in identifying such interactions is to select the appropriate candidate
regulator. To do this, we can use various parameters such as: linkage disequilibrium, to
define the physical boundaries of the locus; the median expression of the genes in HMDP
strains to exclude genes which are very lowly expressed in the cell; presence of cis-eQTL, to
select genes which vary in expression in HMDP strains as a result of genetic variation in or
near the gene; coding non-synonymous SNPs, to select genes which have structural
variation; and previously documented relationships in the published literature.

As an example, we used trans-eQTL and the various criteria described above to establish
putative regulatory relationships for Abca1, a gene involved in reverse cholesterol transport
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(Figure 6). Expression of Abca1 maps to four different loci in LPS-treated cells (Figure 5B).
A locus on chromosome 17 contains Tnf, a gene known to regulate Abca1 (Edgel et al.,
2010). The locus on chromosome 4 contains toll-like receptor 4, Tlr4. Although previous
studies have suggested a connection between toll-like receptor signaling and cholesterol
efflux pathways (Zhu et al., 2010), our observed trans-eQTL suggests that Abca1 itself is
regulated by Tlr4. Another locus on chromosome 17 is roughly 1 Mb away from Lnpep, a
gene involved in cholesterol metabolism, which suggests regulation of Abca1 by Lnpep.
Based on a fourth trans-eQTL, 2310061C15Rik is also hypothesized to regulate Abca1,
since there is a cis-eQTL for the candidate gene 2310061C15Rik. Similarly, extending the
network connections to known published associations and novel associations found through
the trans-eQTL in our data set, created a link between reverse cholesterol transport and
adipogenesis via Pparg and Adipor2 (Chinetti et al., 2004; Hamm et al., 1999). Also,
combining known relationships with novel trans-eQTL extends the connections of Abca1 to
a host of inflammatory mediators through Tnf (Figure 6). In particular, two candidate genes
underlying eQTL hotspots, on chromosome 1 (Sepinb2) and 8 (2310061C15Rik)
demonstrated high degree of interaction with inflammatory mediators and with each other
(Figures 6 and Figure S5), since Serpinb2 maps to 2310061C15Rik in the chromosome 8
hotspot.

Identification of positional candidate genes involved in inflammation
Our database of macrophage eQTL can also be used to prioritize genes involved in complex
traits. Macrophages play critical roles in many conditions that involve acute and chronic
inflammation, such as susceptibility to infection and atherosclerosis, and previous studies
have identified hundreds of regions in the genome that are linked to immune-related traits in
mice, i.e. clinical QTL. The QTL identified in these studies harbor a causal gene(s)
influencing the trait of interest. Our online database allows one to narrow down candidate
genes in clinical QTL, by looking for genes with a cis-eQTL in a region of interest. To
illustrate this utility, we obtained genomic coordinates for previously identified QTL from
Biomart and used cis-eQTL to prioritize candidate genes.

We found cis-eQTL candidate genes in 145 immune-related clinical traits, which have been
previously identified in mouse QTL studies. In total, we identified 514 candidate genes for
these 145 clinical QTL. These include atherosclerosis (Figure 7A), susceptibility to
Salmonella typhimurium (Figure 7B), systemic lupus susceptibility, autoimmune
susceptibility, arthritis, response to trypanosome infection, leishmaniasis resistance,
cytokine production and TNF-lethal shock susceptibility. Candidate cis-eQTL mapping
genes in atherosclerosis QTL are shown in Figure 7A. Interleukin 10 has been shown to play
a role in atherosclerosis (Mallat et al., 1999), and we found a related gene, Interleukin 10
receptor a (Il10ra) as a candidate gene for the atherosclerosis QTL in mouse chromosome 9
at 44–46 Mb. We also found the gene 2310061C15Rik, which we examined above in an
eQTL hotspot, as a candidate cis-eQTL for the atherosclerosis QTL in mouse chromosome
8, identified in a cross between strains C57BL/6J and A/J. Based on our findings, this gene
regulates the expression of several inflammatory genes and is likely to contribute to
atherosclerosis.

We identified several candidate cis-eQTL mapping genes in QTL for susceptibility to S.
typhimurium (Figure 7B). These include genes with previously described functions in
immunity, such as Ifi204 in the distal mouse chromosome 1 QTL, the NOD-like receptor
family genes Naip1, Naip2 and Naip5 in the distal chromosome 13 QTL, and the
lymphocyte antigen genes Ly6a and Ly6d in chromosome 15. We also found that Ppp3ca
and Dok1 are candidate genes, and although no role in susceptibility to infection has been
described for these genes, Ppp3ca gene targeted mice show decreased T-cell proliferation
(Zhang et al., 1996), and Dok1 null mice show increased response to LPS (Shinohara et al.,
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2005). A complete list of candidate genes for each of the 145 immune-related clinical QTL
we examined can be found in our online database.

DISCUSSION
The finding of common genetic interactions has important implications for the study of
common diseases and other complex traits. Human genome-wide association studies are
poorly powered to identify genetic interactions and, thus, human geneticists have tended to
ignore them. But studies in mice suggest that gene-gene and gene-environment interactions
are prevalent, and our results are consistent with that conclusion. Heritability calculations in
human studies assume an additive model and, if common disease traits have a large non-
additive component, this would substantially inflate the heritability estimates (Zuk et al.,
2012). Interactions add a level of complexity that may have broad implications for the
development of treatments and for diagnosis. Nevertheless, the use the HMDP to detect
genetic effects is limited to identifying common genetic variants, as opposed to rare or
strain-specific effects, similar to human GWAS. This limitation in inherent to the current
panel of HMDP strains and to the use of genome-wide association itself. Additional studies
in more strains, in humans, and using DNA sequencing will complement the current work
and help us identify rare variants influencing inflammatory phenotypes.

Overall, our data strongly support that GxE interactions play a major role in the regulation
of genome-wide gene expression and inflammatory responses. We observed that the
expression of thousands of genes was regulated by naturally occurring genetic variation or
environmental stimuli. A large proportion of these were also controlled by GxE interactions
in LPS and OxPAPC (Table S1 and S2), with a much more robust response to LPS than to
OxPAPC. It is possible that the reason we found the majority of the gxeQTL in the LPS
condition is that LPS elicits more robust changes in gene expression in the cell, and hence
we have more power to detect these. Macrophages may show a minimal response to
OxPAPC, or they may respond only after prolonged exposure to OxPAPC. Additional time-
dependent genetic studies are still required to further elucidate the macrophage response to
OxPAPC.

We observed several eQTL hotspots which controlled a large fraction of all eQTL (>5%)
only in the presence of LPS, but not in control or OxPAPC conditions. In these
environmental specific eQTL hotspots, we found both known and novel regulators of
inflammation. We used a treatment specific eQTL hotspot to identify 2310061C15Rik as a
novel regulator of inflammatory responses. This was supported by: (1) trans-eQTL which
map to the hotspot were highly enriched in Toll-like receptor signaling, immune response
genes and cytokines; (2) there was an LPS treatment-specific cis-eQTL for the expression of
2310061C15Rik, suggesting that it was a strong candidate gene for the locus; (3) trans-
eQTL mapping genes were differentially expressed when we silenced expression of
candidate genes using siRNAs (Figure 4); (4) the genes affected by knock-down of
2310061C15Rik were enriched in immune response genes.

Numerous studies have identified eQTL hotspots in genetically diverse populations
(Ghazalpour et al., 2008), but very few eQTL hotspots have been experimentally validated
in yeast (Zhu et al., 2008), while none have been validated in mammals. This lack of
validation may be due to a variety of reasons, such as GxE interactions. Synergistic and
compensatory effects can also account for lack of validation, since one may need to
simultaneously target two or more genes to observe an effect in some of the trans-eQTL
genes. Hotspots may be complex loci, and we also found Gcsh as yet another candidate gene
at the chromosome 8 hotspot. Both 2310061C15Rik and Gcsh combined could only account
for the regulation of approximately 12% of the total genes that mapped to this locus. The
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remaining 88% genes may be regulated by other candidate genes not validated in this report.
Also, the siRNA knock-down experiments we performed may not exactly mimic the life-
long effects of natural genetic variation on cellular processes. Likewise, the 50% knock-
down in expression of candidate genes we achieved may not be sufficient to observe an
effect on trans-eQTL genes, or some of the siRNAs may have off-target effects. Finally, lack
of validation may be due to false positives.

Although very little is known about the biology of 2310061C15Rik, domain prediction
algorithms show that it has homology to the mitochondrial protein Cytochrome c oxidase
biogenesis protein Cmc1. Consistent with this, the LPS gxeQTL which map to the
chromosome 8 hotspot were highly enriched in mitochondrial proteins (p=5.3×10−6), and
mitochondrial proteins and processes were the third most highly enriched category among
all LPS eQTL (p=6.3×10−15). Recent reports suggest that mitochondria integrate signals
from infection and tissue damage, as well as signals from metabolic processes and reactive
oxygen species to trigger an appropriate inflammatory response (Zhou et al., 2011). Notably,
a previous linkage study for atherosclerosis found a locus which coincides with the physical
location of 2310061C15Rik on chromosome 8 (Chen et al., 2007). This warrants further
work to investigate if genetically modified mice for the 2310061C15Rik gene will exhibit
differential susceptibility to atherosclerosis.

eQTL hotspots may be due to genetic differences that affect gene expression, protein
structure, or regulatory elements that control expression of a causal gene(s). The causal
genes may be transcription factors, or genes that affect transcription factor activity, such as
the hotspot we found in chromosome 2, which maps to the cytokine Interleukin 1. We also
observed that genes controlled by the chromosome 8 hotspot included transcription factors
(e.g. Irf1), cytokines (e.g. Il6) and other regulatory proteins (e.g. Mapk3). Hence, we can
speculate that a causal gene may influence expression of a target gene, which in turn
regulates downstream genes in multiple regulatory pathways, so that a hotspot may reflect a
signaling cascade triggered by the causal gene underlying the hotspot. It is also possible that
eQTL hotspots are driven by epigenetic differences. Using reduced representation bisulfite
sequencing in liver genomic DNA, we found over 2,000 CpG sites which vary in DNA
methylation among mouse inbred strains (data not shown). The changes in DNA
methylation levels were accompanied by differences in expression of nearby genes, and by
nearby eQTL in 106 genes. These observations suggest that eQTL and eQTL hotspots are
driven by genetic, environmental and also epigenetic differences among individuals.

We believe that our approach has some important advantages and builds upon concepts
proposed in previous work. Studies in a mammalian model organism such as the mouse are
directly applicable to biological processes and pathways in humans. Because the HMDP
consists of permanent inbred strains, we propose that the data generated here constitute a
cumulative resource that can be used for the integration of genetic, gene expression and
phenotype data for the understanding of complex immune-related traits. In conclusion, we
observed that gene-by-environment interactions occur abundantly throughout the genome.
As such, the combined success and failure of any GWAS study, as we have witnessed in
recent years, will be largely linked to the functional dependency of causal variants to the
environmental conditions, and how these variants interact with them.

EXPERIMENTAL PROCEDURES
Online database

Results can be accessed at http://systems.genetics.ucla.edu/data
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Accession numbers
All microarray data from this study are deposited in the NCBI GEO (http://
www.ncbi.nlm.nih.gov/geo/) under the accession number GSE38705.

Mice
Male mice were obtained from the Jackson Laboratories (Bar Harbor, ME). Mice were
housed in pathogen-free conditions according to NIH guidelines until 16-weeks of age, then
fasted overnight for 16 hours prior to euthanasia. A complete list of strains can be found in
Table S6 and in the online database.

Macrophage culture conditions
We harvested primary macrophages using four mice per strain, by intraperitoneal lavage
four days after injection with thioglycollate (BD, Sparks, MD). All mice were injected with
the same batch of thioglycollate. We pooled cells from different mice of the same strain, and
plated duplicates or triplicates per condition, per strain. We used additional replicates for
some of the strains to determine experimental reproducibility (Table S6). The next day, cells
were incubated for 4 hours with 1%FBS DMEM media in control-treated cells, media plus
2ng/mL LPS (List Biological Inc., Campbell, CA), or media plus 50µg/mL OxPAPC.

Expression array profiling
We profiled RNA using Affymetrix HT MG-430A arrays, from 86 strains in control, 89 in
LPS and 80 in OxPAPC-treated cells (Table S6). We used the Robust Multichip Average
(RMA) method to determine the hybridization signals.

Reproducibility of microarray data
We arrayed different samples of the same strain in two different experiments for five strains
in the LPS condition, and for seven strains in the control condition. We used hierarchical
clustering of samples using all microarray data and the ‘spearman’ distance metric. To
examine the distribution of the variance in gene expression, we computed the variance for
each gene, using all strains treated with LPS for inter-strain variance, and all samples for a
given strain for the intra-strain variance. We plotted the empirical cumulative distribution of
these variances and compared the distributions using the Kolmorogov-Smirnov test. We
took the mean of each variance distribution to compare the fold difference of the
distributions.

Viability assay
We obtained macrophages from 4 strains in this study and 5 strains from the HMDP not
included in this study (see Supplementary Experimental Procedures and Figure S2). We
treated the cells the next day using control or LPS media for 4 hours and then incubated
them with the cell permeable dye 2µM calcein AM (Molecular Probes). As a negative
control, we added 70% methanol to control-treated cells to kill the cells, and then incubated
them in calcein AM. We read the fluorescent intensity at 530nm. We compared the two
groups using a t-test.

Environmental and genetic analysis of variance
To examine genetic effects, we used one-way Anova for each of the transcripts in the array
in strains treated with control, and used the strain label as the grouping label variable, as
previously described (Smith and Kruglyak, 2008). For environmental effects, we compared
control versus treated samples using one-way Anova and the treatment label as the variable.
To find genes that were regulated by at least one treatment, we compared all samples using
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one-way Anova with three grouping variables (control, LPS and OxPAPC). For GxE
interactions, we used a two-way Anova with interaction model, using strains in all
treatments, with both treatment and strain labels as the variables. We calculated FDR for
each of the effects and selected genes with FDR<5%. For GxE interactions, we selected
genes significant for GxE effects, genetic and environmental effects. Since there are genes
with more than one microarray probe-set, we reported the number of unique genes, that were
regulated at least 2-fold in at least 5 strains.

Genetic association and genotyping
Genotyping—Mouse inbred strains were previously genotyped by the Broad Institute
(www.broadinstitute.org/mouse/hapmap) and the Wellcome Trust Center for Human
Genetics. We selected informative SNPs with a minor allele frequency greater than 10% and
missing values in less than 10% of the strains for each SNP. This criteria resulted in 96,518
SNPs in control, 95,733 in LPS, 94,510 in OxPAPC, 95,649 in LPS-response and 94,210 in
the OxPAPC-response conditions.

Association mapping—We used EMMA to test for association and to account for
population structure and genetic relatedness among strains. We applied the linear mixed
model: y=µ+xβ+u+e. Where µ=mean, x=SNP, β=SNP effect, and u=random effects due to
genetic relatedness with Var(u) = σg

2K and Var(e) = σe
2, where K=IBS (identity-by-state)

matrix across all genotypes in the panel. We computed a restricted maximum likelihood
estimate for σg

2 and σe
2, and we performed association based on the estimated variance

component with an F-test to test β ≠ 0.

Local and Distant eQTL definition—eQTL were defined as Local or cis if the peak
association was within a 4Mb interval, flanking 2Mb on either side of the genomic start site
of the gene. eQTL were defined as Distant or trans by selecting the peak association per
chromosome per gene, excluding loci that mapped in cis.

Genome-wide alpha for cis-eQTL—We calculate false discovery rates using the qvalue
package in R. For each gene, we selected all association p-values in the 4 Mb interval, and
calculated q-values using all the p-values for all genes. We estimated the FDR separately for
each treatment and selected FDR<5% as follows: control p<8.88×10−3, LPS p<6.74×10−3,
OxPAPC p<8.56×10−3, LPS GxE p<1.15×10−3 and OxPAPC GxE p<1.38×10−4.

Genome-wide alpha for trans-eQTL—Due to the computational complexity associated
with evaluating q-values for over 2 billion p-values, we computed the FDRs by taking the
median FDR for 100 samples, each containing 5 million randomly selected p-values from
the original calculated association p-values (Ghazalpour et al., 2008). We estimated the FDR
separately for each treatment and selected FDR<5% as follows: control p<1.09×10−5, LPS
p<9.58×10−6, OxPAPC p<9.91×10−6, LPS GxE p<1.10×10−6 and OxPAPC GxE
p<6.31×10−8. Additional p-value thresholds for different FDR cutoffs can be found in Table
S7 and online database.

Inflation—We calculated the inflation factor lambda by taking the chi-squared inverse
cumulative distribution function for the median of the association p-values, with one degree
of freedom (DF), and divided this by the chi-squared probability distribution function of 0.5
(the median expected p-value by chance) with one DF. Since it was not feasible to calculate
this statistic using all p-values, for each data set we calculated lambda using a random
sample of 1000 p-values, 1000 times, and took the average and standard deviation of
lambda. We also selected 5 million p-values, 100 times in the LPS GxE condition and
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obtained comparable results of in the 5 million p-value sets (lambda=0.987+/−0.001) and
1000 p-value sets (lambda=0.991+/−0.074).

eQTL hotspots
For each condition, we divided the genome into 2Mb windows (the average size of linkage
disequilibrium blocks in the HDMP strains) and counted the number of genes with
significant eQTL in each window. Consecutive windows were merged if tag SNPs in the
windows were correlated with r2>0.5. We used the Poisson distribution to determine if
individual windows contained a larger than expected number of eQTL. Hotspots were
considered significant if the number of genes with eQTL in a window was above 30 for
control, 39 for LPS, 26 for OxPAPC, 21 for LPS gxe interaction and 5 for OxPAPC gxe
interaction.

Knock-down experiments
We obtained macrophages from C57BL/6J mice as described above. The day after plating
we added siRNAs (Qiagen) complexed with Lipofectamine LTX (Invitrogen, Carlsbad CA )
to the cells for 6 hours, and then washed the cells. After 48 hours, we treated cells with
control media or media plus LPS for 4 hours, then harvested total RNA. We determined the
level of knock-down from cDNA using quantitative PCR (Roche, San Francisco CA), and
normalized data using Rpl4 as an internal control. We used at least 2 siRNAs per candidate
gene.

Analysis of knock-down data—For each candidate gene, we used one-way Anova to
compare the scramble siRNA, and siRNAs to target the candidate gene, using the siRNA
label as the grouping variable. We selected genes significant in the Anova test at the
FDR<5% and that were affected by at least 2 of the siRNAs used for the same candidate
gene, in the same direction, relative to the scrambled siRNA.

Random samplings—We carried out random samplings of transcripts in the microarray
data. For each candidate gene knocked-down and random sampling, we selected significant
genes in the same way we did for the non-random data above. We then repeated this analysis
for 1,000 random samplings and determined the average number genes differentially
expressed by chance (lambda). To determine if our results were higher than expected by
chance, we used the cumulative Poisson distribution, taking the number of genes
differentially expressed in the non-random data (X) and lambda.

Clinical QTL
We downloaded QTL information from Biomart (http://biomart.informatics.jax.org/) for
immune related traits, and from Chen et al. for atherosclerosis QTL (Chen et al., 2007). We
used the peak linkage position of the QTL and selected a 2Mb window around the QTL to
search for cis-eQTL candidate genes, and selected all cis-eQTL physically located in the
2Mb window.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

A genetics study and database resource for dissecting molecular and clinical traits

Gene-environment interactions play a major role on the regulation of gene expression

Genome-wide responses to LPS and oxidized lipids in mouse macrophages

Validation of eQTL hotspot and identification of a novel regulator of inflammation
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Figure 1. Environmental, Genetic and GxE interaction effects on gene expression
Expression levels are plotted as the log2(microarray intensity) on the Y-axis, for mouse
strains on the X-axis. Each dot represents the levels of a gene for a given strain in control
(blue dots) and treated cells (red dots). (A) Hmox1 expression in response to OxPAPC and
(B) Hmox1 in response LPS, illustrate environmental effects. (C) Npl levels are influenced
by genetic effects. (D) Expression levels of Ifi205 are influenced by GxE interactions. See
also Figures S1 and S2.
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Figure 2. Genome-wide association of gene expression
Association using microarray expression of macrophages in various conditions. Each dot
represents a significant association between a transcript and a SNP. Genomic position of the
SNPs and transcripts are shown on the X and Y-axes, respectively. (A) Association in
control condition. (B) Association in LPS condition. (C) Association in OxPAPC condition.
See also Figure S3, Table S2 and Table S7.
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Figure 3. eQTL hotspots
The number of genes mapping to each 2-Mb bin is shown on the Y-axis and the genomic
position of the bin is on the X-axis. The horizontal dashed line represents the significance
threshold. (A) Hotspots in control eQTL. (B) Hotspots in OxPAPC eQTL. (C) Hotspots in
LPS eQTL. (D) Hotspots in LPS gxeQTL. See also Figure S4, Table S3 and Table S4.
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Figure 4. Expression levels in LPS condition after knock-down of candidate genes
(A) Microarray expression levels in LPS condition for 273 genes affected by knock-down of
the candidate genes Gcsh (siGcsh) and 2310061C15Rik (siC15Rik). For each gene on the Y-
axis, expression is plotted as the mean of the siRNAs (X-axis) that significantly affected
expression relative to the scramble control on a log2 scale. (B) Microarray expression levels
for the genes Il1b, Csf1, Il6, Ccl2 and Serpine1, after knock-down of the candidate gene
2310061C15Rik (C15Rik). Data are presented as mean +/− standard deviation. See also
Table S5.
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Figure 5. Database plots for Abca1
Sample plots for a given gene of interest that can be obtained from our online database. (A)
LPS response of Abca1. (B) Genome-wide association for the expression of Abca1. (C)
Relative expression levels among mouse strains of the HMDP in macrophages and different
tissues.
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Figure 6. Abca1 and LPS-activation regulatory network defined by trans-eQTL
Causal regulatory relationships between genes were defined using LPS trans-eQTL. Novel
relationships are shown in red lines, and previously described relationships are in black
lines. Dotted lines are previously described relationships which were not identified in the
LPS trans-eQTL. See also Figure S5.
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Figure 7. Candidate genes in QTL for Atherosclerosis and susceptibility to Salmonella
Ideograms of mouse autosomes showing the position of clinical QTL identified through
multiple studies. The peak linkage region is marked with a red, blue, green or black bar.
Genes listed for each QTL are cis-eQTL identified in this study. Genes discussed in the text
are highlighted in red. (A) Atherosclerosis QTL. (B) QTL for susceptibility to Salmonella
thyphimurium.
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