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Abstract As part of the Deep Convective Cloud and Chemistry (DC3) experiment, the National Science
Foundation/National Center for Atmospheric Research (NCAR) Gulfstream-V (GV) and NASA DC-8 research
aircraft probed the chemical composition of the inflow and outflow of two convective storms (north storm,
NS, south storm, SS) originating in the Colorado region on 22 June 2012, a time when the High Park wildfire
was active in the area. A wide range of trace species were measured on board both aircraft including biomass
burning (BB) tracers hydrogen cyanide (HCN) and acetonitrile (ACN). Acrolein, a much shorter lived tracer for
BB, was also quantified on the GV. The data demonstrated that the NS had ingested fresh smoke from the
High Park fire and as a consequence had a higher VOC OH reactivity than the SS. The SS lofted aged fire
tracers along with other boundary layer ozone precursors and was more impacted by lightning NOx (LNOx)
than the NS. The NCARmaster mechanism boxmodel was initialized withmeasurements made in the outflow
of the two storms. The NS and SS were predicted to produce 11 and 14 ppbv of O3, respectively, downwind of
the storm over 2 days. Sensitivity tests revealed that the ozone production potential of the SS was highly
dependent on LNOx. Normalized excess mixing ratios, ΔX/ΔCO, for HCN and ACN were determined in both
the fire plume and the storm outflow and found to be 7.0 ± 0.5 and 2.3 ± 0.5 pptv ppbv�1, respectively, and
1.4 ± 0.3 pptv ppbv�1 for acrolein in the outflow only.

1. Introduction

Thunderstorms and pyroconvective storms can serve as conduits for redistributing both long- and short-lived
HOx and ozone precursors from the lower troposphere (LT) to the upper troposphere (UT) and even into the
stratosphere [e.g., Dickerson et al., 1987; Dye et al., 2000; Brunner et al., 1998; Crawford et al., 2000; Fromm et al.,
2000; Jost et al., 2004]. Species such as hydrogen peroxide (H2O2), methyl hydroperoxide (CH3OOH) [Snow et al.,
2007], formaldehyde (CH2O) [Colomb et al., 2006; Stickler et al., 2006; Fried et al., 2008], isoprene, and isoprene
oxidation products [Apel et al., 2012] have been shown to be transported to the UT through this process.
Lightning associated with storms produces substantial amounts of nitrogen oxides (NOx=NO+NO2) [e.g., Ridley
et al., 1994, 2004], and its influence in the UT is generally thought to be greater than currently represented in
global models [Singh et al., 2007; Hudman et al., 2007] although a recent study presented an optimized regional
scaling algorithm to fit lightening NOx sources to satellite lightning data in a way that preserves the coupling to
deep convective transport [Murray et al., 2012] . The UT is a chemically important region of the atmosphere
where small changes can have large effects; it is well known that ozone is an important greenhouse gas
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[Intergovernmental Panel on Climate Change, 2013], and Lacis et al. [1990] and Forster and Shine [1997] showed
that ozone increases near the tropopause raise surface temperatures more than similar increases in ozone
elsewhere in the troposphere. Thus, it is important to obtain information on the redistribution of precursors from
the LT to the UT and chemical processes that result from this that affect ozone chemistry in the UT region.

The impact of vertical transport on the photochemistry of the UT is ultimately dependent upon the boundary
layer (BL) emissions of VOCs and NOx and on lightning NOx (LNOx) occurring within the storms whose outflow
reaches the UT. On a global scale, biogenic emissions account for the majority of the VOC emissions.
However, for the Colorado Front Range in June the majority of BL emissions are from vehicles, agriculture,
and the oil and gas industry [Pétron et al., 2012, 2014; Gilman et al., 2013]. NOx sources are dominated by
vehicle and power plant point emissions. Fires can add significant quantities of NOx and VOCs including
OVOCs, and these can have a large impact on the air quality in the region during summertime.

A goal of the Deep Convective Clouds and Chemistry (DC3) campaign (M. Barth et al., The deep convective
clouds and chemistry campaign, Bulletin of the American Meteorological Society, unpublished, 2015), conducted
between 10 May and 30 June 2012, with operations out of Salina, Kansas, was to investigate the impact of
deep midlatitude convection on UT composition and chemistry with an understanding that lightning plays a
large role in this; modeling studies [Pickering et al., 1990; Apel et al., 2012] have shown the importance of LNOx

in increasing the ozone-forming potential in the outflow of convected air masses. This paper presents a case
study for determining the ozone-forming potential for the outflow from two storms, one that was more
impacted by LNOx than the other and one that was more impacted by fresh biomass burning (BB) emissions
than the other. An overview of the methods used to characterize the presence and impact of lightning during
this study is given by (M. Barth et al., unpublished, 2015).

One way to detect the transport of fire plumes into the UT is by quantifying HCN, which has proven to be
valuable in air chemistry studies as a reliable tracer of BB emissions [e.g., Singh et al., 2003; Yokelson et al.,
2007a, 2007b; Crounse et al., 2009]. Although it has a photochemical lifetime of approximately 4 years, the
tropospheric residence lifetime of HCN is on the order of months because it is presumed to be deposited to
the ocean surface [Li et al., 2000, 2003; Singh et al., 2003]; the relatively long lifetime in the free troposphere
allows for this species to be distributed throughout the troposphere, and HCN has been observed in satellite
imagery deep into the stratosphere as a consequence of BB entrained into the Asian monsoon circulation
[Randel et al., 2010]. Acetonitrile (CH3CN and ACN) is another species known to have significant emissions
from fires. It is also quite unreactive and believed to be removed primarily through deposition to the ocean
[Hamm and Warneck, 1990]; it is similarly distributed throughout the troposphere and has been used to track
both local fire emissions [e.g., Yokelson et al., 2007a] and transocean and transcontinental advection of BB
plumes [Singh et al., 2003; de Gouw et al., 2006; Warneke et al., 2009].

The primary atmospheric chemical sink for both HCN and ACN is from reaction with OH [Singh et al., 2003]
resulting in photochemical lifetimes on the order of 4 years for HCN (as mentioned previously) and 2 years
for ACN. Although BB is believed to be the primary source for both HCN [Li et al., 2000, 2003, 2009; Shim
et al., 2007] and ACN [Singh et al., 2003; de Gouw et al., 2003] in the atmosphere, uncertainties remain in
understanding the tropospheric budgets of these species in part because of an insufficient number of
measurements, particularly for HCN since fewer techniques are available for its measurement. For ACN the
database has increased substantially during the last decade as the result of the widespread deployment of
mass spectrometric techniques (proton transfer reaction-mass spectrometry (PTR-MS) and the Trace
Organic Gas Analyzer (TOGA)) that can easily measure it.

Acrolein (CH2CHCHO) is a toxic, highly reactive unsaturated aldehyde that is produced by the incomplete
combustion of organic material [Lipari et al., 1984] and vehicle exhaust as well as the oxidation of atmospheric
chemical precursors such as 1,3-butadiene (a component of motor vehicle exhaust and fire emissions).
However, a recent study conducted in a region strongly impacted by motor vehicles [Spada et al., 2008]
showed that acrolein concentrations did not correlate with traffic density, ozone concentrations, or tracers of
direct vehicle emissions, suggesting that BB is the predominant source and not vehicles either through
primary emissions or secondary oxidation products. Two recent studies documented acrolein emissions in
laboratory-controlled burning experiments [Warneke et al., 2011; Kostenidou et al., 2013] providing further
evidence that acrolein may be a useful BB burning tracer. Although considered by regulatory agencies to be
one of the most dangerous components of toxic air mixtures, acrolein is typically not reported in studies
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ofcarbonyls in the atmosphere because its mixing ratio is often below the limit of detection of the
instruments used in the studies. Because of its BB source, its high reactivity, and consequent short lifetime
(≈ 4 h at [OH] = 3.7 × 106 molecules cm�3, average OH measured during the afternoon hours, approximately
1–5 P.M. local time), acrolein is a good candidate for use as a tracer of fresh fire emissions. However,
detecting acrolein from aircraft in diluted fire plumes is challenging because mixing ratios of acrolein
decrease rapidly with time. The technique described here has sufficient sampling frequency and sensitivity
to be useful for ambient aircraft-based measurements. The details of this technique will be described in
another paper (Apel et al., in preparation).

The extensively instrumented aircraft used in the study described here included the National Science
Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream-V (GV), the National
Aeronautic and Space Administration (NASA) DC-8, and ground-based observations used to characterize
storms from below and satellites from above in the DC3 domain (M. Barth et al., unpublished, 2015). The
GV aircraft was the primary platform to study the high-altitude outflow of the storms. The GV also targeted
the subsequent downwind chemical evolution following convection. The DC-8 aircraft worked closely
with the GV and had a primary mission objective to characterize the convective storm inflow. Reversing
roles, the GV occasionally measured inflow, and the DC-8 occasionally measured outflow, principally to
obtain data for trace gases and aerosols that were not measured on the GV.

On 22 June both the DC-8 and the GV flew to Colorado to study convective outflow from developing
thunderstorms. The research team was aware that the fire season in Colorado in 2012 was an active one
[Johnson et al., 2014], with fires beginning in early June and that the air quality along the Front Range on the
date of this flight was impacted by fire emissions. Thus, in addition to studying the convective outflow of
the storms, research flights investigated the actively burning High Park fire, west of Fort Collins, which was
first detected on 9 June [Lang et al., 2014] and was declared 100% contained on 30 June.

2. Methods
2.1. TOGA

The Trace Organic Gas Analyzer (TOGA) was deployed on the GV and used to measure a wide range of VOCs,
including NMHCs, OVOCs, nitriles (BB tracers), and halogenated VOCs. The instrument is based on the
concepts of earlier versions of the instrument previously described in the literature [Apel et al., 2010;
Hornbrook et al., 2011]. A number of new species were measured by TOGA for this experiment including HCN
and acrolein, so these, along with the third fire tracer ACN, are described in some detail here along with a
basic description of the instrument operation.

The system is composed of the inlet, cryogenic preconcentrator, gas chromatograph, mass spectrometer,
zero air/calibration system, integrated electronics, and data system. All processes and data acquisition are
computer controlled. Three traps are used: a water trap, an enrichment trap, and a cryofocusing trap with
silanized glass wool in the enrichment trap and open tubes for the water trap and cryofocuser. All tubing was
1/16 inch Silonite™ tubing (Entech Instruments, Inc., Simi Valley, CA). For the enrichment cycle, the water trap
and enrichment traps were set to �25°C and �130°C, respectively. The flow rate during sampling was
25mL/min and the sample collection time was 35 s, yielding a sample volume of 14.6mL. Following this, the
enrichment trap was heated at 25°C/s from �130°C to 100°C and transferred with He carrier gas at 1mL/min
to the cryofocus trap which was cooled to �130°C. The cryofocusing trap was then heated, also at 25°C/s,
from the cold set point to +100°C, in the presence of 1mL flow of He carrier gas, thereby injecting the sample
onto the custom-designed gas chromatograph (GC). The GC is fitted with a Restek MTX-624 column
(ID= 0.18μm, length = 8m). The initial GC oven temperature of 25°C was held for 10 s followed by heating to
120°C at a rate of 110°C min�1. The oven was then immediately cooled to prepare for the next sample.
Sample processing time was 2min.

An Agilent 5973N Mass Spectrometer with a fast electronics package was used for detection using the single
ion mode set to m/z= 27 for HCN, 41 for ACN, and 56 for acrolein. The system was operated in standard
electron ionizationmode operated at 70 eV. A nonstandard three-stage pumping systemwas used consisting
of a Varian 301 turbomolecular pump, an Adixen (model MDP 5011) molecular drag pump, and a 28 V DC
KNF-Neuberger diaphragm rough pump.
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A custom-fabricated catalytic-clean air generator/dynamic dilution system, referred to herein as the Zero
Air/Calibration System (ZA/CS) [Guenther and Hills, 1998; Apel et al., 2003], was used for system blanks and
calibrations. The system contains two calibrated mass flow controllers, one for the calibration mix
(0–30 cm3min�1 STP) and one for the diluent gas (0–10 standard liters per minute) and is used to dilute
mid-ppbv to low-ppmv gas phase standards to ambient-level mixing ratios. This arrangement yields
accurate (±1%) and precise (±1%) gas delivery. The diluent gas is ambient air that is drawn in through an
inlet and scrubbed via catalytic oxidation (platinum on alumina at 425°C). This arrangement allows the diluent
gas to mimic the humidity levels and permanent gas mixing ratios of the air masses under investigation.

ACN and acrolein were prepared in known amounts in a high-pressure Al cylinder, and this was used for
calibrating through the ZA/CS both in the laboratory and during flight. The total uncertainty was determined
by summing in quadrature: (a) the preparation uncertainty of the gravimetric standard (5%), (b) the
uncertainty in intercomparing the mixes with other gravimetric standards (6%), (c) the uncertainty in replicate
determinations from various days (4%), and (d) uncertainty associated with dilution of the standards (2%).
Hence, the expanded uncertainty expressed at the 95% confidence limit for each compound concentration
was determined by the expression

2 a2 þ b2 þ c2 þ d2
� �1=2

(1)
or (±9%).

The options for calibrating HCN are limited because of the extreme toxicity of the molecule. The only readily
available option is a permeation tube (PT). Thus, a PT containing liquid HCN (stabilized by a minute amount of
sulfuric acid) and having a certified stated permeation rate of 317ngmin�1 at 30°C (KinTek Corporation) was used
as the reference gas to calibrate the system in the laboratory. The permeation rate was checked in our laboratory
by a high-precision Mettler AT261 balance and was found to be 317±2ngmin�1. A two-step dilution was
necessary to reduce the permeation tube output to ambient levels. All flows were checked with calibrated BIOS
DryCalTM flowmeters to within 2%uncertainty. Using a similar approach as above, the total uncertainty at the 95%
confidence limit which includes uncertainty in both dilution stages and replicate analyses (15%) is calculated to
be ~±20%. Further details will be available in an upcoming publication (Apel et al., in preparation).

2.2. Other Measurements and Products Used

The instrumental techniques and references containing further details for the airborne measurements used
in this analysis are summarized in Table 1. The chemiluminescence (CL) technique was used to measure

Table 1. Summary of Measurement Techniques Aboard the NASA DC-8 and NSF/NCAR GV Aircraft Used in the Analyses

Species Technique Reference

DC-8 Aircraft
NO NO/O3 chemiluminescence (CL) Ryerson et al. [2000]
NO2 UV photolysis followed by NO/O3 CL detection Pollack et al. [2012]
OH Laser-induced fluorescence-ATHOS Brune et al. [1998]
HCN Chemical ionization mass spectrometry Crounse et al. [2009]
ACN Proton transfer reaction mass spectrometry e.g., de Gouw et al. [2006]
CO IR spectroscopy Eisele et al. [2003]
PANs Chemical ionization mass spectrometry Slusher et al. [2004]
VOCsa Whole Air Sampler (WAS)-gas chromatography/flame

ionization detection/mass spectrometry
Colman et al. [2001]

GV Aircraft
O3 NO/O3 CL Ridley et al. [1992]
NO NO/O3 CL Ridley and Grahek [1990]
NO2 UV photolysis followed by NO/O3 CL detection Ridley and Grahek [1990]
CO Vacuum UV fluorescence Gerbig et al. [1999]
VOCsb In situ gas chromatography mass spectrometry-TOGA Apel et al. [2012]
ACNb, Acroleinb TOGA Apel et al. [2012]
HCNb TOGA Apel et al., in preparation
H2O2, CH3OOH CIMS Silwal et al., in preparation
HCHO Difference frequency generation spectrometry-CAMS Weibring et al. [2010]

aWAS canister sampling frequency and integration time varied depending on location and altitude but averaged
approximately one integrated sample every 4min.

bTOGA VOCs were integrated for 35 s every 2min.
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ozone (O3), nitric oxide (NO), and nitrogen dioxide (NO2) on both the GV [Ridley and Grahek, 1990; Ridley et al.,
1992] and the DC-8 [Ryerson et al., 2000; Pollack et al., 2012] aircraft. The hydroxyl radical (OH) was measured
aboard the DC-8 using laser-induced fluorescence (Airborne Tropospheric Hydrogen Oxides Sensor, ATHOS)
[Brune et al., 1998]. Speciated nonmethane hydrocarbons (NMHCs) and other VOCs were measured aboard
the DC-8 aircraft with the Whole Air Sampler (WAS) [Colman et al., 2001]. HCN and ACN were measured on
the DC-8 with chemical ionization mass spectrometry [Crounse et al., 2009] and proton transfer reaction
mass spectrometry [e.g., de Gouw et al., 2006], respectively. PAN and PPN were measured on the DC-8 with
chemical ionization mass spectrometry [Slusher et al., 2004] and were not measured on the GV platform.
Carbon monoxide (CO) and formaldehyde were measured aboard the GV aircraft via vacuum UV resonance
fluorescence [Gerbig et al., 1999] and difference frequency generation spectrometry (Compact Atmospheric
Multispecies Spectrometer, CAMS) [Weibring et al., 2010] techniques, respectively. Carbon monoxide was
measured on the DC-8 with differential midinfrared spectroscopy [Eisele et al., 2003].

Satellite-borne visible images of the storm clouds are from GOES 13 (http://www.nasa.gov/mission_pages/
goes-n/index.html#.U4dxJygrd3M). Ground-based measurements by the Colorado State University CHILL
(http://www.chill.colostate.edu/w/CSU_CHILL) dual-Doppler and polarimetric radars, the National Weather
Service Next Generation dual-Doppler Radar system (NEXRAD, http://www.roc.noaa.gov/WSR88D), the Northeast
Colorado Lightning Mapping Array (NECLMA) [Rison et al., 1999], and measurements of cloud-to-ground (CG)
lightning flashes from the National Lightning Detection Network (NLDN) (http://thunderstorm.vaisala.com) are
used in the analysis presented here.

The full DC3 data archive with links to the airborne, satellite, lightning, and radar data products can be
accessed at http://data.eol.ucar.edu/master_list/?project=DC3. In addition, all of the measurements from
a given aircraft platform have been merged into composite databases and are available at the following
web address: http://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3?MERGE=1. These merges are available on
different time bases including 1 s, 10 s, and 1min. A majority of the data on each aircraft platform are
reported every second, and thus, the 1 s merge combines these and other more slowly reported data into
files for each flight as well as a combined full mission file. Ten second merges consist of averaging reported
data over 10 s increments and 1min merges consist of averaging the reported data over 60 s increments.
Specific merges are also available for nonstandard sampling time bases such as TOGA and WAS canisters.
For example, in the case of the TOGA merge, the database consists of averaging data collected from
the faster measurements (e.g., 1 s time base measurements) over the TOGA sample collection time period
which is 35 s every 2min. Similarly for WAS, the faster measurements are averaged over the canister sample
collection time.

2.3. Model

The NCAR master mechanism (MM) [Madronich and Flocke, 1999] was used to predict the chemical evolution
from initial conditions observed in the outflow of the storm. The MM is a 0-D model with detailed gas phase
chemistry consisting of ~5000 reactions among ~2000 chemical species combined with a mathematical
solver. User inputs depend on the experiment being designed but include starting point mixing ratios (MRs)
of species of interest, latitude, longitude, emissions, temperature, and pressure. The model as incorporated
here computes the time-dependent chemical evolution of an air parcel initialized with known composition,
assuming no additional emissions, no dilution, and no heterogeneous processes [Madronich, 2006]. Any input
parameter may be constrained with respect to time. Photolysis rates are calculated using the tropospheric
ultraviolet-visible model [Madronich and Flocke, 1999] included in the code package.

3. Results and Discussion
3.1. Colorado Convection

The main objective of the 22 June 2012 flights was to study Colorado convection in coordination with the
ground observations by the CHILL and NEXRAD radars, NECLMA, and soundings. The timing of convection
initiation was uncertain, so the DC-8 and the GV takeoff times were set to enable the aircraft to perform other
studies while waiting for convection to develop.

Figure 1 shows GOES 13 satellite images of three convective cells that were studied on 22 June. Figure 1a
shows an isolated storm, the first convective cell investigated (image taken at 22 June 2012, 21:30 UTC);
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Figure 1b shows two other storms labeled north storm (NS) and south storm (SS) (image taken at 23 June
2012, 00:15 UTC) that developed later in the day and were subsequently probed by the research aircraft;
Figure 1c shows the same two cells 1.5 h later. The High Park fire is visible in both Figures 1b and 1c
(red circled area). As can be seen from the images, the smoke from the fire plume was ingested into the NS.

Figures 2 and 3 show Cheyenne, WY (KCYS), and Goodland, KS (KGLD), NEXRAD radar plots of the storm
structures, respectively. They were captured within 15min of the GOES 13 images in Figures 1b and 1c
(the location of KCYS and KGLD are shown in Figure 1). Figure 2 indicates vigorous convective cells with peak
reflectivities up to 60 dBZ. Echo tops (Figure 2a) are in excess of 12 km (although the large range from the
radar to the storm core means that echo tops are approximate). A large forward anvil associated with light
precipitation extends downshear. Figure 3 presents a radar depiction of the storm from the KGLD NEXRAD,
approximately 90min after the KCYS cross section in Figure 2. The storm continued to maintain strength,
which is shown by the high reflectivities and echo tops. New storm cells were developing in the forward anvil
25–40 km ahead of the primary storm core.

The DC-8 flew from Salina toward the Wyoming border and then sampled the fire plume of the High Park fire
between 2 and 7 km altitude above sea level (asl) at 20:44–20:59 UTC. The far left red circle in Figure 4a shows
where the fire originated (NEXRAD image, the DC-8 flight track is shown in black with the flight direction
to and from Salina shown by the arrows). The GV transited to Colorado from Salina KS in the clean FT
(Figure 4a, white flight track superimposed over NEXRAD images with the flight direction to and from
Salina shown by the arrows) and executed a low-level leg between 3.5 and 4 km asl (light blue oval in
Figure 4a) on the Colorado Front Range. These low-altitude measurements (Figure 4b, time series trace),
centered on about 21:00 hUTC, showed levels of HCN and ACN enhanced above tropospheric background
(typically 100–150 pptv for ACN (e.g., this paper and Aiken et al. [2010]) and ~ 200 pptv for HCN (e.g., this

Figure 1. (a) GOES 13 satellite image from 22 June 2012 at 22:00 UTC. The isolated storm began developing at approximately
20:40 UTC. (b) GOES 13 satellite image from 23 June 2012 at 00:15 UTC showing development of the north storm (NS) and
the south storm (SS). The Cheyenne, WY (KCYS), and Goodland, KS (KGLD), NEXRAD radar locations are shown. (c) GOES 13
satellite image from 23 June 2012 at 01:45 UTC showing further development of the NS and SS. The NS began forming at
approximately 22 June 2012 22:00 UTC, and the SS began forming approximately 1 h later.
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paper and Knighton et al. [2009]))
characteristic of a relatively well
mixed air mass that had been
influenced by BB. Acrolein was
slightly enhanced, between 10
and 20 pptv. Following this, the
GV ascended up to the storm
outflow region at 11 km and from
22:15 to 23:30 interrogated the
outflow of the isolated storm
(shown in the satellite image in
Figure 1a) that had developed near
the Colorado-Nebraska-Kansas
borders. The storm outflow was
traversed several times, showing
evidence of fire influence
(Figure 4b) with enhanced HCN
and ACN, though there was little if
any enhancement of acrolein,
indicating that the fire emissions
sampled were not fresh.

Although the smoke plume
trajectory from the active High
Park fire (circled in red, Figures 1b,
1c, and 4a) is distinct on the day
of the flights, this fire had been
burning since 9 June and was
impacting air quality throughout
the Front Range. The data
obtained from the isolated storm
are consistent with sampling of
lofted boundary layer emissions
that included aged BB emissions
that had accumulated over the
previous days. There were a
number of devastating fires in the
summer of 2012 following an
extremely dry winter, but the High
Park fire was the only significant
fire during the time period
considered here.

As the isolated storm began to die,
the north storm (NS) was forming
(Figures 1b and 1c); remaining at
a similar altitude (~11 km), the GV
aircraft abandoned the isolated
storm for the growing NS. NEXRAD
Doppler radar and GOES 13
satellite images (not shown)
indicate that this new storm
began growing at approximately
22:05UTC. GOES 13 and NEXRAD
images (Figures 1b, 1c, and 2)

Figure 2. Reflectivity (dBZ) from the KCYS NEXRAD radar depicting the structure
of the storm system at 0003 UTC 23 June 2012. (a) A CAPPI (constant altitude
plan position indicator, horizontal cross section) of the storm at 6 km mean sea
level; (b) a west-east cross section through the storm with the cross-section
location indicated by the black line through Figure 2a. Horizontal distances are
kilometers north-south and east of KCYS.

Figure 3. Similar to Figure 2 but showing the KGLD NEXRAD radar reflectivity of
the SS at 0148 UTC 23 June 2012. Horizontal distances are kilometers north and
west of KGLD.
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indicate the presence of a third storm cell (SS) that had begun to form at approximately 23:00UTC and was
reasonably well developed by approximately 23 June 00:00–00:15 UTC (Figure 1b). Inspection of the satellite
images in Figures 1b and 1c shows the presence of these two cells in close proximity to one another, one
centered just north of the Colorado-Nebraska border (NS) and one just to the south of the border (SS). In the
NEXRAD image shown in Figure 2, the two separate cells are visible each with reflectivity > 50 dBZ.

The high-reflectivity region in Figure 4a designates where the outflow from the NS and SS was sampled. Two
distinct regions of the outflow, represented by the purple and gold ovals in Figure 4a, were sampled by
several legs flown by the GV approximately orthogonal to the outflow of the storms. The purple oval area
represents the approximate region where the GV sampled the outflow that was primarily from the NS. The
gold oval area represents the approximate region where the GV sampled in outflow primarily from the SS.
The blue oval area on the south side of the storms in Figure 4a represents the sampled region that was
just outside of outflow from either storm and corresponds with the portion of the time series in Figure 4b
when the three fire tracers are at their minimum values in the section of the time series labeled “Outflow.” The
black flight track in Figure 4a indicates where the DC-8 also measured the outflow of these storms on the
western edge.

Figure 5 reproduces the NEXRAD composite reflectivity with the DC-8 and GV flight tracks overlaid (Figure 5a)
and shows HCN from the DC-8 (Figure 5b) and acrolein and HCN from the GV (Figures 5c and 5d, respectively).
The plots are color coded with respect to the species of interest, and relative sizes of the points indicate the
altitude with low-altitude points smaller and high-altitude points larger. The DC-8 HCN plot indicates where
the fire plume was intercepted. Recall that the first intercept was at 2–7 km early in the flight (high HCN values
from the fire origin and along the CO-WYO-NE border) and the second intercept at ~ 7 km near the end of the

a)

b)

Figure 4. Results from the Colorado-Nebraska convection studied during the 22 June 2012 research flights. (a) NEXRAD
image overlaid with DC-8 and GV flight tracks. The arrows indicate the direction of the flight paths. The far left red circle
indicates the fire origin, and the further right red circle indicates where the DC-8 intercepted the High Park fire plume
near the end of the research portion of the flight. The light blue oval indicates the region of the low-level leg executed on
the Front Range. The purple oval indicates the approximate location of the NS outflow, the gold oval the SS outflow,
and the blue oval indicates the region studied that was outside of the main outflow. (b) The corresponding time series
of TOGA-measured fire tracers HCN, acetonitrile (ACN), and acrolein showing the approximate time range during which the
low-level, isolated storm, and outflow legs were executed.
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flight (Figure 5a, red circle centered approximately at 103.1°W, 41.2°N); in the time between the two passes, the
fire had flared up to burn a new section of terrain. Very high HCN values were obtained (> 5000pptv) during
the second pass (Figure 5b, full scale not shown in figure) indicating that thick smoke was sampled. Note
that acrolein is most enhanced in the NS (Figure 5c), whereas the longer-lived HCN is enhanced in both the NS
and the SS (Figure 5d) but with the NS having slightly higher average values for both HCN and ACN (see Table 3
for values averaged over the points sampled in and out of the outflow). The acrolein data are consistent
with the visual satellite images in Figures 1b and 1c showing that the fresh High Park fire emissions were
ingested into the NS. Radar images (not shown) indicate that the smoke from the High Park fire was ingested
into the convective column of the storm at an altitude of 5–8 km, consistent with the DC-8 data.

Figure 6 shows several other tracers displayed in the same way as in Figure 5. The outflow from both the NS
and the SS exhibits highly elevated values (relative to surrounding nonoutflow data) for the boundary layer
tracers O3, CO, formaldehyde, ACN, and n-butane at this altitude (~ 10 km) indicating efficient transfer
via the storms from the source region to the UT. NO and NO2 (Figure 6 and Table 3) are higher in the SS, and
it is clear from Figure 6 that NO is elevated in the outflow compared to the inflow. A separate analysis is
being done on the lightning characteristics of both storms. The NS was initially bigger and was producing
high flash rates (>200 flashes/min) early on, before the aircraft arrived. The south storm became much
bigger later on, likely producing more lightning concomitant with more NOx (as observed). Unfortunately,
both storms were well out of CHILL’s range after about 01:00 UTC. CO is higher on average in the NS outflow
as fresher BB emissions were entrained and subsequently sampled. The alkanes including n-butane
(shown in Figure 6) are elevated in the outflow of both storms (slightly higher on average in the SS, Table 3)
likely reflecting convection of boundary layer emissions from oil and natural gas operations which are

a)

b)

c)

d)

Figure 5. (a) NEXRAD image with flight tracks overlaid as in Figure 4a: (b) DC-8 HCN measurements for the 22 June flight
taken from the DC-8 1min data merge. The flight track is color codedwith HCNmixing ratios, and the size of the data points
(circles) scales with altitude; the smaller circles representing low altitude and larger circles high altitude. (c) GV acrolein
measurements for the 22 June flight taken from the GV 1min data merge. The flight track is color coded with acrolein MRs,
and the markers are scaled by altitude, with the smaller circles representing low altitude and larger circles high altitude;
(d) GV HCN measurements plotted as for Figure 5c.
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prevalent in the area [Gilman et al., 2013]. The alkenes (Table 3) are higher in the NS which is expected for a
more BB-impacted air mass.

3.2. Air Mass Age and Normalized Excess Mixing Ratio Calculations

Characteristic species, including toluene and benzene, are emitted directly by fires. Both toluene and
benzene react with the hydroxyl radical (OH) but at different rates. This can be used to obtain information on
the approximate photochemical age of an air mass impacted by BB. If the ratio of benzene to toluene near
the fire source (t= 0) is known and the integrated [OH] is known from the time of emission until the time
of detection, then the photochemical age of the air mass can be determined from [Gelencsér et al., 1997;
de Gouw et al., 2005]

Δt ¼ 1
OH½ � ktoluene � kbenzene½ � ln

toluene½ �
benzene½ �

� �
t¼0

� ln
toluene½ �
benzene½ �

� �� �
(2)

Although the rate constants of benzene and toluene with OH are well known, they vary with temperature. At
temperatures experienced within a typical fire (600–1000 K), the ratios of the rates of benzene:OH to toluene:
OH are near unity, but outside of the fire itself toluene reacts significantly faster than does benzene; at 298K,
toluene reacts 5 times faster than benzene, and at temperatures experienced in the outflow, approximately
230 K, toluene reacts 11 times faster. Complicating the picture somewhat here, the full integrated [OH] over the
time since emission is difficult to know exactly because in fire plumes and in convective systems the photolysis
frequencies (J values) vary rapidly. However, the residence time in the convective system is relatively short
compared to the total smoke age, so its overall effect on the OH exposure is small. Put simply, the more

a)

b)

c)

d)

e)

f)

Figure 6. GV measurements along the flight track during the 22 June 2012 research flight plotted as for Figure 5c.
(a) Ozone, (b) NO, (c) CO, (d) CAMS formaldehyde, (e) ACN, and (f ) n-butane.
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photochemically aged fire plumes should have progressively smaller toluene/benzene ratios. This trend can be
used to compare relative photochemical ages of NS outflow (i.e., where acrolein is significantly enhanced)
versus SS outflow (acrolein not significantly enhanced). An initial ratio of 0.69 for toluene to benzene was
obtained for the High Park fire from the DC-8 WAS observations that intercepted fresh smoke from the fire on
22 June 2012 at 20:44–20:59UTC and 0.68 when the DC-8 intercepted the plume once again, later in the flight
on 23 June 2012 at 01:42–02:01UTC. This ratio falls within the range of values found in the literature for this type
of forest fire [Friedli et al., 2001; Akagi et al., 2011]. Using the observed toluene/benzene ratio, an observed
average daytime OH mixing ratio of 3.7× 106molecules cm�3 and a temperature of 260K for the fire outflow
(average temperature measured while traversing the plume), the estimated photochemical ages of the air in
the NS (purple area, Figures 4–6) and SS outflow (gold area Figures 4–6) are 8 and 15h, respectively. The
photochemical lifetime of acrolein under these conditions (KOH=2.36× 10

�11 [Magneron et al., 2002]) is 3.2 h.
Thus, the relative age of the two portions of the outflow is consistent with our fire tracer (acrolein) measurements
in that the older outflow is too aged to have maintained the MRs seen in the less aged outflow.

Emission ratios (ERs) or enhancement ratios (EnRs, also referred to as normalized excess mixing ratios, NEMRs)
are commonly used terms to quantify the emissions from, and atmospheric impact of, BB. An emission
ratio (ER) is the molar ratio between two emitted compounds measured at a fire source and is generally
reported as Δ[X]/Δ[Y] where Δ[X] and Δ[Y] refer to mixing ratios of the two species in the fire plume minus
the mixing ratio of those species in background air. Y is generally a long-lived fire tracer such as CO, which
is used in this analysis. By definition, ERs refer only to fresh emissions, whereas an NEMR can refer to the
enhancement of a compound X measured downwind from a fire with respect to the enhancement of a fire
tracer Y, also reported as Δ[X]/Δ[Y].

NEMRs were calculated for the three fire tracers for the GV NS data (times shown in Table 2) using orthogonal
distance regression (ODR) fits. Table 2 shows the results from this analysis: the NEMRs relative to CO are found
to be 6.84 ± 0.98, 1.83 ± 0.28, and 1.41 ± 0.29 (pptv ppbv�1) for HCN, ACN, and acrolein, respectively. The r2

value for the standard linear regression fit to the data is included to provide further information on the
goodness of fit.

From the DC-8 passes through the fire plume at two different times (Table 2) on 22/23 June, NEMRs were
found to be 2.74 ± 0.25 and 1.02 ± 0.14 for HCN and ACN, respectively. In the time between the two passes,
the fire had flared up burning a new section of terrain. For the second pass the NEMRs were found to be
considerably different, 6.65 ± 0.50 and 2.61 ± 0.13 for HCN and ACN, respectively. The modified combustion
efficiency (MCE) was calculated for each of the two fire intercepts and was found to be 0.91 for the data
obtained on the first and 0.94 for the data obtained on the second. An MCE of 0.99 indicates pure flaming
combustion, while MCEs between 0.65 and 0.85 are considered to indicate pure smoldering combustion, and
MCEs between 0.85 and 0.99 indicate a mixture of flaming and smoldering [Akagi et al., 2011]. Thus, the
plume encountered during the second pass was in a more flaming stage than in the first pass and may have
burned different vegetation types, either or both of which affected the NEMRs. In between, the DC-8 also

Table 2. Plume Intercepts and Normalized Excess Mixing Ratios (pptv(x) ppbv�1 CO) Determined by Orthogonal Distance Regression (ODR) for the GV Data in the
NS Outflow and for the DC-8 Data Obtained During Fire Plume Intercepts and NS Outflowa

HCN ACN Acrolein

NEMR ±b r2 No. of Points NEMR ± r2 No. of Points NEMR ± r2 No. of Points

GV
Outflow intercept NS times:
22 June 2012 23:32 to
23 June 2012 2:02

6.84 0.98 0.74 19 1.83 0.28 0.68 19 1.41 0.29 0.49 19

DC-8
Fire plume intercepts:
22 June 2012 20:44:30–20:59:30 2.74 0.25 0.90 15 1.02 0.14 0.78 16
23 June 2012 01:42:30–2:01:30 6.65 0.50 0.92 18 2.61 0.13 0.89 20
Combined fire plume intercepts 6.95 0.48 0.87 33 2.55 0.18 0.85 36
Outflow intercept NS times:
23 June 2012 00:34:30–01:30:30 7.27 0.29 0.93 39 2.57 0.08 0.96 39

aThe GV data are from the DC3 archive TOGA merge, and the DC-8 data are from a 1min merge.
bStandard error in the ODR fit.
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measured the outflow of the NS finding NEMRs of 7.27 ± 0.29 and 2.57 ± 0.08 for HCN and ACN, respectively,
entirely consistent with the second direct fire pass.

The TOGA HCN and the CIT HCN values agree well. There are possible differences between the TOGA and
PTR-MS ACN data, but this cannot be determined from these data alone. The HCN NEMRs from this work fall
within the ranges found in more recent literature, 2.4–12.8 [Yokelson et al., 2007a, 2007b, 2009; Simpson et al.,
2011; Akagi et al., 2011; Hornbrook et al., 2011; Le Breton et al., 2013] but are higher than earlier reported
values, which are in the range of 0.43–1.5 [Andreae and Merlet, 2001]. The ACN NEMRs also fall within the
ranges found in the literature, 1.1–4.3 [Andreae and Merlet, 2001 (conversion done by authors of this paper
from emission factors (EFs) in g kg�1 dry weight burned, given in reference); de Gouw et al., 2006; Yokelson
et al., 2007a, 2009;Warneke et al., 2009; Hornbrook et al., 2011; Akagi et al., 2011; Simpson et al., 2011]. No ERs
or NEMRs have previously been reported for these compounds in this area of the U.S.

The measured NEMR for acrolein is somewhat higher than the ER reported by Andreae and Merlet [2001] for
extratropical forest BB emissions (0.84). Emission ratios using a PTR-MS for mass 57 representing acrolein
(plus possibly other species at the same mass) have also been reported in two recent studies; Kostenidou
et al. [2013] performed a controlled burn study of olive tree branches and derived an ER of 6.4 pptv
acrolein ppbv�1 CO (conversion done by authors from EFs), andWarneke et al. [2011] derived ERs (pptv acrolein
ppbv�1 CO) of 0.55, 1.39, and 1.56 for mass 57 using a PTR-MS in a controlled laboratory burn experiment
for fuels collected to represent regional vegetation from the southwestern U.S., southeastern U.S., and some
pine, spruce, and fir samples, respectively, showing reasonable agreement with the TOGA data. Akagi et al.
[2011] report an ER value of 3.5 pptv acrolein ppbv�1 CO for tropical forest burning. Yokelson et al. [2013] report
an ER (pptv acrolein ppbv�1 CO) of 2.26, quantified with the Fourier transform infrared technique. This value is
the average for prescribed fires in pine forest understory and semiarid shrub land, and fires in coniferous
canopy fuels, but encompasses a very large variability over many measurements.

Although weakly soluble, it is unlikely that acrolein is significantly scavenged in the storm because
formaldehyde, which is 3 orders of magnitude more soluble than acrolein [Sander, 1999], is typically
scavenged on the order of only 50% in storms studied thus far during DC3 (A. Fried et al., private
communication, 2014). In our study some of the acrolein will have reacted relative to CO before sampling
but it is also likely that some acrolein has been produced from precursors, chiefly 1,3-butadiene, which
is known to be emitted from fires [Friedli et al., 2001, Akagi et al., 2011] but not reported in the DC3
data archives; based on known emission ratios, reaction rates [Magneron et al., 2002], and product
yields [Sprengnether et al., 2002], we estimate that 1,3-butadiene emitted at the fire source contributes
up to 15% of the total acrolein observed. This secondary production will effectively extend acrolein’s
lifetime slightly.

3.3. Box Modeling

An objective of this study was to use the NCAR master mechanism (MM) model to predict the chemical
evolution of the plume in the UT outflow from the storms and, specifically, to quantify the ozone production
potential. The model offers an opportunity to examine chemical transformations of these isolated outflows at
a level of detail that is impractical to implement in current 3-D models.

Three primary model runs were done using a full suite of VOC, NOx (NO+NO2), CO, O3, etc., MRs to initiate the
model (Table 3): scenario (1) initialized with values obtained in the NS (purple ovals, Figures 4–6); scenario
(2) initialized with values obtained within the SS (gold ovals in Figures 4–6); and scenario (3) initialized
with values obtained outside of the outflow (blue ovals, Figures 4–6). Effects of dilution are not considered
here. All starting point mixing ratios were taken from the NASA merge file (http://www-air.larc.nasa.gov/
cgi-bin/ArcView/dc3-seac4rs) for the GV and DC-8 aircraft platforms. Most of the VOC data were taken from
the GV TOGA data with the exception of ethyne, ethene, ethane, and propene which were taken from
the DC-8 UCI WAS measurements. It should be noted here that although a significant number of VOCs
were identified and quantified, studies have shown that there are numerous VOCs present in ambient
atmospheres and the suite measured here is not all inclusive [Lewis et al., 2000; Akagi et al., 2011; Yokelson
et al., 2013]. Research groups responsible for the other measurements are shown in Table 1.

Scenario 1 data encompass the outflow from the NS that is influenced by fresh emissions from the High Park
fire. The average initial mixing ratios of NO2 and NO for the NS are 294 and 314 pptv, respectively, and are
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likely a result of both lightning-produced NOx, fire, and anthropogenic NOx that has been swept up from the
fire-influenced boundary layer. Measurements of CG lightning flashes from the NLDN and the NECLMA show
substantial lightning activity in the NS and the SS beginning at about 22 June 2012, 22:40UTC and continuing
over the next several hours. Measurements of NOx from the DC-8 while sampling the High Park fire show

Table 3. Average Values for the NS and SS Outflows and for Values Outside of the Outflow in the Free Troposphere

Parameter NS Value SS Value Out of Storm Units

Temperature 226.28 225.18 229.64 K
Pressure 237.51 230.99 254.42 hPa
Altitude 10.70 10.88 10.80 Km
Latitude 41.54 (41.22–41.99) 40.98 (40.64–41.24) 40.29 deg
Longitude 101.1 (100.0–102.4) 101.1 (100.0–102.3) 100.70 deg
H2O 256 223 268 ppmv
O3 64 65 52 ppbv
NO2 295 490 72 pptv
CO 110 103 73 ppbv
NO 314 646 37 ppbv
Methane 1831 1834 1806 ppbv
Ethyne (WAS) 238 152 60 pptv
Ethene (WAS) 445 191 0 pptv
Ethane (WAS) 1523 1496 1200 pptv
Propane (WAS) 517 556 50 pptv
n-butane (TOGA) 128 157 6 pptv
i-butane (TOGA) 55 67 2 pptv
Propene (TOGA) 158 56 7 pptv
i-butene (TOGA) 12 8 3 pptv
Isoprene (TOGA) 1 1 0 pptv
n-pentane (TOGA) 31 37 1 pptv
i-pentane (TOGA) 30 38 1 pptv
n-hexane (TOGA) 8 9 0 pptv
2-methylpentane (TOGA) 6 6 0 pptv
n-heptane (TOGA) 4 3 0 pptv
Benzene (TOGA) 52 31 7 pptv
Toluene (TOGA) 21 7 0 pptv
Ethylbenzene (TOGA) 4 1 0 pptv
CH2O (CAMS) 815 657 40 pptv
Acetaldehyde (TOGA) 303 211 7 pptv
Propanal (TOGA) 21 13 2 pptv
Butanal (TOGA) 5 3 2 pptv
Methanol (TOGA) 2833 3258 490 pptv
Ethanol (TOGA) 105 123 30 pptv
Acetone (TOGA) 1712 1928 417 pptv
MEK (TOGA) 106 120 4 pptv
MACR (TOGA) 3 3 0 pptv
MVK (TOGA) 16 9 0 pptv
H2O2 (CIT) 237 217 270 pptv
CH3OOH (CIT) 355 371 147 pptv
HCN (TOGA) 508 441 262 pptv
ACN (TOGA) 161 134 105 pptv
Acrolein (TOGA) 35 13 7 pptv
Methyl nitrate (WAS) 8 10 2 pptv
Ethyl nitrate (WAS) 5 5 3 pptv
Propyl nitrate (WAS) 1 1 1 pptv
Isopropyl nitrate (WAS) 7 8 5 pptv
Isobutyl nitrate (WAS) 10 12 9 pptv
3-PenONO2 (WAS) 3 4 4 pptv
2-PenONO2 (WAS) 5 6 2 pptv
3-Methyl-2-BuONO2 (WAS) 3 4 2 pptv
PAN (GTCIMS) 298 254 200a pptv
PPN (GTCIMS) 28 23 20a pptv

aThese values are estimated, not measured.
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that the fire produced substantial NOx (first pass: 22 June 2012, 20:44UTC–20:59 UTC, NO2> 500 pptv,
NO> 80 pptv, second pass: 23 June 2012 01:42–02:01UTC, NO2> 2000 pptv, NO> 200 pptv), but only a
fraction of it was entrained into the storm. The initial average mixing ratios of NO2 and NO for the SS are 490
and 646 pptv, respectively, and also likely result from a variety of sources but are primarily due to lightning
because the boundary layer (inflow) NOx values are only ~ 200 pptv as measured by the GV during the
low-level leg earlier in the flight.

Figure 7 shows O3, NOx, and VOC OH reactivity results from the MM runs for all three scenarios with initial
conditions for each given in Table 3. The SS produces the most ozone over a period of 2 days (gold trace,
color scale consistent with the previous figures), starting from an initial value at t= 0 (the box model t= 0
corresponds to 6:00 P.M. local time) of 64.6 ppbv ozone and ending with 78.2 ppbv ozone (~ 14 ppbv). The NS
initial condition MR is 64.3 ppbv ozone, and after 2 days of processing a MR of 74.9 ppbv (purple trace) is
predicted. Thus, a lower amount of O3 production is predicted (~ 11 ppbv) for the NS versus the SS despite
the fact that the NS is much more impacted by fresh BB emissions. Ozone mixing ratios are also shown for
outside the outflow (51.9 ppbv) showing that (1) both the NS and SS have enhanced initial ozone MRs
compared to the background showing that ozone has already been produced in these air masses and (2) very
little ozone is produced in the background air over the 2 day period. Also plotted in the graph is the time
evolution of both NOx and VOC OH reactivity. Not surprisingly, the average VOC OH reactivity is higher
(0.37 s�1) in the NS (entrained fresh BB emissions) compared to the SS (0.25 s�1). However, because of LNOx,
the initial NOx mixing ratio is substantially higher in the SS (1125 pptv) compared to the NS (609 pptv).
Following the predicted chemical evolution from t= 0 (6:00 P.M. local time) for each storm, ozone stays
constant during the night, the following day (23 June) the Sun rises and reactions of NOx (see paragraph
below for more details) and VOCs ensue resulting in rapid depletion of the precursors and significant ozone
formation. However, enough precursors remain for both storms on the following day (24 June) to once again
produce a response in the ozone mixing ratio.

Figure 7. NCAR master mechanism initialized with the average MRs of species for the NS, SS, and outside the outflow
(taken from Table 3).

Figure 8. NCARmaster mechanism initialized with the average MRs of species for the SS (Table 3) showing the evolution of
important nitrogen-containing species.
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Figure 8 shows results for the chemical evolution of ozone and important nitrogen-containing species for the
SS. Following the progression of the photochemistry from the initial local Sun time (6:00 P.M. local time), NO is
converted to NO2 at night. Nighttime reactions (NO2 +O3→NO3) followed by NO2 +NO3↔N2O5 produce
N2O5 in modest amounts (~ 40 pptv, SS, 25 pptv, NS). When the Sun rises, photochemical reactions ensue.
NO2 quickly photolyzes to produce NO+O and HNO3 and PAN begin to form. The rate of O3 production falls
off as more NOx is sequestered into the PAN and HNO3 reservoirs. During themost vigorous production of ozone,
which occurs on the following day (23 June) after sunrise, [N2O5] is less than 5% of [NOx] in either storm indicating
that the impact of this channel on the magnitude of next-day ozone production is expected to be minor.

For outside the outflow, substantially less NOx (NO= 37.5 ppbv and NO2 = 71.6 ppbv) and fewer oxidant
precursors are present, resulting in minimal ozone produced in this scenario.

To investigate the factors contributing to the predicted ozone formation in the outflow, sensitivity tests were
run with the MM. Figure 9 shows the results of these tests with the NS results shown in Figure 9a and the
SS results in Figure 9b. The trace color annotation is identical for both Figures 9a and 9b except for the
unperturbed initial condition traces in the figures which are consistent with previous figures (purple for the
NS outflow and gold for the SS outflow). The purple trace in Figure 9a and the gold trace in Figure 9b show
the evolution of ozone from the actual initial conditions as was previously shown in Figure 7. The dark blue
trace has identical initial conditions except that NOx was halved. For the NS, halving the NOx results in a
reduction of O3 formation of 56% over the course of 2 days, whereas in the more NOx rich SS, halving the NOx

results in a decrease of only 30%. Reducing the NOx to 200pptv (which is the amount of NOxmeasured in the BL)
results in dramatically less ozone produced in both cases (pink trace) with the NS producing 75% less ozone
and the SS producing 78% less ozone under these conditions. Reducing the VOC OH reactivity by a factor of
2 results in only a 7% reduction in ozone for themore VOC rich NS but a 20%decrease in the less VOC rich SS. The
more VOC rich NS is less sensitive to changes in VOCs than the less VOC rich SS. The more NOx rich SS is less
sensitive to changes in NOx than the NS. Thus, if only BL NOx (200pptv) is convected into the storms (i.e., absence
of fire produced NOx or LNOx), then very little ozone is predicted to be produced from either storm. It is clear
that LNOx is the major contributor to predicted ozone formation in the SS outflow and is likely a significant
contributor to predicted ozone formation in the NS outflow.

Figure 9. NCAR master mechanism initialized with the average MRs of species for the (a) NS and (b) SS (Table 3).
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The GV aircraft flew the following day with the goal of finding the air mass that was convectively lofted in the
Colorado storms the previous evening and sample its composition. However, little evidence of BB was found
during the flight suggesting little or no connection to the previous day’s sampling of the convective outflow.
This was unfortunate as it could have provided a good test for our model results. However, the MM model
previously has shown significant skill in predicting ozone production in the outflow from non-BB-impacted
outflow events [Apel et al., 2013] during DC3, lending confidence that the modeling results here have merit
although with the caveat that even using the detailed chemical representation in the MM, not all initial species
and not all reactions are represented.

As we have shown, this case involves the entrainment of both fresh and more aged BB emissions along with
other boundary layer emissions into convective cells where lightning is producing substantial NOx. Previous
model estimates of ozone production rates for midlatitude convection not impacted by biomass burning
range from 4 to 15 ppbv/d [Pickering et al., 1990, 1992], depending on boundary layer composition and
lightning flash rate production of NOx. The results here predict 8 ppbv/d (first day) for the NS and 10 ppbv/d
(first day) for the SS, both of which were impacted by BB. A number of studies have examined ozone
production from fires [e.g., Pfister et al., 2006, 2008; Jaffe and Wigder, 2012, and references therein; Singh et al.,
2012; Jaffe et al., 2013], which is determined largely by the emissions from the fire that constitute the
chemical potential for ozone formation and the actinic flux and temperature which determine the rate at
which ozone is formed; aerosols can also play a role [Konovalov et al., 2012]. Most but not all observations
have shown that ozone is produced from fires but with highly varying yields. A variety of models, from
global [e.g., Martin et al., 2002; Pfister et al., 2006, 2008; Nassar et al., 2009; Alvarado et al., 2010] to regional
[e.g., Phadnis and Carmichael, 2000] and box models [e.g., Trentmann et al., 2005; Mason et al., 2006], have
also investigated this issue with most studies showing some degree of O3 formation. This subject is treated
in depth by Jaffe and Wigder [2012].

4. Summary

During the NCAR/NSF GV and NASA DC-8 research flights on 22 June 2012, the outflow from three convective
storm cells near the Colorado-Nebraska border was studied at a time when the High Park fire had been
burning for over a week. Aged smoke from the fire was sampled during the flight, as evidenced by
enhancements in the BB tracers HCN and ACN. Acrolein was also elevated particularly in the NS outflow,
indicating that the emissions sampled were only hours old. Acrolein proved to be a good fire tracer for
fresh fire emissions, and this was validated by photochemical lifetime calculations using toluene to
benzene ratios.

Box modeling predicts substantial downwind ozone production in the UT for both the fresh BB-impacted NS
storm and more aged BB-impacted SS, whereas very little ozone production is predicted for transported
air outside the outflow. The SS was predicted to produce more ozone over 2 days (14 ppbv) than the NS
(11 ppbv) despite having lower VOC OH reactivity. Sensitivity tests showed that this was principally due to
more NOx being present in the SS outflow because of LNOx. In fact, in the absence of LNOx, the SS was
predicted to produce only about 2 ppbv of ozone over 2 days, but with LNOx a much higher ozone
production efficiency leads to the predicted 14 ppbv ozone.

NEMRs were determined for the three BB tracers observed in the High Park fire. HCN and ACN were
determined from both the DC-8 and GV measurements. They were found to be generally consistent with
literature values although they are the first such measurements documented that are specific to the Front
Range region. The NEMR for acrolein represents the first ambient measurement recorded and is generally
consistent with published laboratory-based BB studies.
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