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Two of the most active areas in quantum many-
particle dynamics involve systems with an
unusually large number of conservation laws.
Many-body-localized systems generalize ideas of
Anderson localization by disorder to interacting
systems. While localization still exists with
interactions and inhibits thermalization, the
interactions between conserved quantities lead to
some dramatic differences from the Anderson case.
Quantum integrable models such as the XXZ spin
chain or Bose gas with delta-function interactions also
have infinite sets of conservation laws, again leading
to modifications of conventional thermalization. A
practical way to treat the hydrodynamic evolution
from local equilibrium to global equilibrium in such
models is discussed. This paper expands upon a
presentation at a discussion meeting of the Royal
Society on 7 February 2017. The work described was
carried out with a number of collaborators, including
Jens Bardarson, Vir Bulchandani, Roni Ilan, Christoph
Karrasch, Siddharth Parameswaran, Frank Pollmann
and Romain Vasseur.

This article is part of the themed issue ‘Breakdown
of ergodicity in quantum systems: from solids to
synthetic matter’.

1. Introduction
One of the most fundamental distinctions in classical
physics is between systems that are ‘integrable’ and those
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that are ‘chaotic’. The simplest example of an integrable system is a set of decoupled harmonic
oscillators: each oscillator evolves at its own frequency, and there is no meaningful relaxation or
dissipation in the system, even if it is prepared or measured with a small amount of uncertainty.
The energy of each oscillator is separately conserved. Most systems of many interacting particles
are chaotic and behave in a different fashion: although the total energy is conserved, and the
underlying physics is reversible, we observe an arrow of time and an increase of entropy yielding
ultimately a thermalized state.

‘Thermalization’ for the purposes of this article means that measurements over length scales
that are large compared with a microscopic cut-off, but small compared with the system size,
become equivalent to those in the Gibbs ensemble with density matrix

ρ = e−β(H−μN)

Z
. (1.1)

Note the privileged role of the energy and number operators, which are conserved quantities.
For a system with additional conserved quantities, one might expect that this standard Gibbs
ensemble will not be applicable and that at best a generalized Gibbs ensemble or ‘GGE’, with
more conserved quantities and corresponding Lagrange multipliers generalizing β and μ, will
describe the system. Even the GGE concept is of debatable relevance to the long-time behaviour
of the non-thermalizing systems to be discussed here.

Much effort in recent years has gone into understanding failures of thermalization in quantum
systems. Two of the most studied failures result from the existence of an extensive number of local,
independent conserved quantities, which can be taken as a working definition of integrability.
The goal of this article is to summarize, at a level that is not very technical or rigorous, the
consequences of two different kinds of integrability. The first kind appears in systems that exhibit
many-body localization (MBL) [1–3]. A definition of a many-body-localized system of fermions is
that it has an infinite number of conserved quantities that are local and adiabatically connected,1

as the strength of interactions is reduced to zero, to the occupancies (i.e. the number operators ni
with eigenvalues 0 or 1) of orbitals in an Anderson-localized system,

H =
∑

i

niεi =
∑

i

εic
†
i ci. (1.2)

Anderson localization for our purposes means that the states created by the c†
i operators are

spatially localized (fall off exponentially at spatial infinity).
A specific way to picture the failure of thermalization in the Anderson case is that particles

move only a distance of the order of localization length, which is the typical size of the localized
orbitals. With interactions, the form of the Hamiltonian becomes more complicated, but if there
remain as many independent conserved quantities as before, one would expect that these would
interfere with thermalization just as in the localized system. The first part of this perspective is
concerned with understanding which physical phenomena are strongly modified in this process
of introducing interactions. In other words, we would like to understand how MBL is different
from Anderson localization, given that both have similar conservation laws. In many cases, one
expects that, once the interactions reach some critical strength, the system begins to thermalize;
the nature of the transition between MBL and thermalizing states [4], and the possibility of
intermediate phases, will not be discussed here.

Even the above statements can be difficult to make precise. For example, there is already
some subtlety in the requirement above that for integrability the conserved quantities need
to be in some sense ‘local’. This requirement is there partly in order to rule out trivial
constructions, such as allowing the projection operators onto individual energy eigenstates to
count as conserved quantities. Precisely what qualifies as local depends on the context. Another
important class of integrable systems, which are the second main subject of this perspective, does
not involve quenched disorder. In these ‘Yang–Baxter’ integrable systems, conserved quantities

1One should be careful about adiabaticity: there are resonances across large spatial distances at any non-zero interaction
strength, which could lead to conservation laws that are not equivalent to those of the Anderson-localized orbitals.
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are translation-invariant sums of local or quasi-local operators, where quasi-local means with
exponentially decaying support. For example, on a lattice a conserved quantity looks like

Q =
∑

i

Qi, (1.3)

where the Qi are local or quasi-local combinations of operators, and the effect of changing i is
simply a translation.

Free particle systems without disorder are examples of integrable systems of this type, but a
remarkable fact with deep implications across mathematical physics is that certain interactions
can be added in one spatial dimension without destroying the infinite list of independent
conserved quantities. Many physically important Hamiltonians are in this class: for example,
spinless bosons interacting with a δ-function interaction, or a spin-half chain with nearest-
neighbour Heisenberg interactions. As in the many-body-localized case, the focus here will be on
how the existence of an infinite number of conserved quantities modifies important dynamical
phenomena in the system.

For the same reasons as before, we would expect the long-time state of the system to be a GGE
rather than the normal Gibbs ensemble. In conventional thermalizing systems without disorder,
hydrodynamics describes how a system evolves from local equilibrium to global equilibrium;
assuming the equivalence of ensembles, this is the flow from a local Gibbs ensemble to a global
one. Below we start from a simple far-from-equilibrium situation of two reservoirs initially
prepared in different Gibbs ensembles and then joined at the origin. This model problem has
been treated using a variety of methods, including a hydrodynamical approach [5,6] that turns
out to provide a very general tool for the long-time, long-length-scale dynamics of integrable
models [7,8]. The hydrodynamics of integrable models involves an infinite set of conserved
quantities and has appeared before in classical models, including the problem of a dense gas of
nonlinear Schrödinger solitons [9], which also describes the weak-coupling limit of the quantum
Bose gas. These hydrodynamical approaches can be formulated in different ways. The kinetic
theory form [9] of a single ‘Bethe–Boltzmann’ equation (for details and additional references, see
[10]) is particularly tractable. Properly speaking, the final state is not, in general, a global GGE
because there is no dissipation or irreversibility in the equation: densities keep streaming out to
infinity.

The outline of this article is as follows. The following two sections briefly review recent
works on MBL and integrable models with a specific focus on the existence and consequences
of conserved quantities. (It should be noted that the work on conserved quantities we mention is
a relatively small part of the recent work in both fields; for broader reviews, see, for example, [11]
for MBL, or [12] for GGEs in Yang–Baxter integrable models.) The last section outlines some open
questions for current and future work.

2. Dynamics in the many-body-localized state
Let us consider a particular model of spinless fermions with nearest-neighbour interactions that
shows Anderson localization at zero interaction strength. After mapping the fermions to spin-half
degrees of freedom via the Jordan–Wigner transformation, we obtain a disordered XXZ chain

HXXZ =
L∑

i=1

J⊥
8

(σ+
i σ−

i+1 + σ−
i σ+

i+1) + Jz

4
σ z

i σ z
i+1 + hi

2
σ z

i . (2.1)

Here, the σi are Pauli matrices, and the random fields hi are sampled independently and uniformly
from the interval [−W, W].

With Jz = 0, this Hamiltonian is quadratic in the fermionic representation and can be
diagonalized in terms of orbitals as in (1.2). The orbitals are localized if the strength of disorder
W is non-zero, with a localization length that decreases as W increases. When a small non-zero
Jz is added, it is believed that the model goes into a many-body-localized phase; this belief
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integrable
ballistic

W/Jz = 0 W/Jz = •

? MBL
Anderson
localized

Figure 1. Schematic phase diagram of the one-dimensional disordered XXZ model (2.1). With no disorder, the model is
integrable and transport is ballistic. With disorder but no interactions, the model is Anderson localized. In between the model
is believed to have both many-body-localized and thermalizing phases, with a transition indicated by the solid circle. There are
possibly other phases than conventional diffusive thermalization, including subdiffusive dynamics, in the region labelled by a
question mark [14,15].

is based primarily on numerical evidence and experience with a different model for which
MBL has been shown more rigorously [13]. The phase diagram of this Hamiltonian is shown
in figure 1.

From the Introduction, we note that MBL can be defined via the presence of independent local
conserved quantities that go continuously as Jz → 0 into the orbital occupancies of the Anderson
localized case. While that is clearly sufficient to prevent ordinary thermalization, it raises the
question of whether there are any differences betweeen Anderson localization and MBL. Indeed,
early work on MBL tended to focus on quantities such as ordinary linear-response conductivity
that are not very different in the two phases. We note that the conserved quantities ni commute
not just with the single-electron Hamiltonian (1.2) but also with some possible extra terms, e.g.

H =
∑

i

εini +
∑

ij

Uijninj +
∑
ijk

Vijkninjnk + · · · . (2.2)

Here, the ni in the many-body-localized phase should not be taken strictly as occupancies of
some single-particle orbital, but rather as more general localized conserved quantities (sometimes
called ‘l-bits’). A main conclusion of this section will be that a surprising amount of physics can
be understood from the ‘real-space Fermi liquid’ form (2.2), thus called because the interaction
terms are similar to those in the Landau–Silin theory of a Fermi liquid, where the quasi-particle
occupancies in momentum space are good quantum numbers. This physics is readily visible even
if the detailed form of the l-bits is unknown.

We note in passing that there are other possible definitions of the many-body-localized phase,
including a useful one based on entanglement entropy [16] showing an area law for excited
energy eigenstates rather than the volume law expected for a state satisfying the eigenstate
thermalization hypothesis [17,18]. The focus here will be on dynamics starting from states that
can in principle be readily prepared in the laboratory; how to prepare a large number of excited
eigenstates is a challenging question, although some insight may be provided by recent tensor
network approaches to this question [19,20].

As an example of such a preparation protocol, suppose that the system (2.1) is prepared with
initial condition being an arbitrary simple product state in the Sz basis; clearly, this is the ground
state of a trivial non-interacting Hamiltonian. Consider first Jz = 0, so all states are Anderson
localized and the system consists of non-interacting fermions. We would expect each fermion to
move a distance of the typical localization length from its initial location; for the box distribution
mentioned above, the localization lengths have a well-defined statistical distribution. Indeed this
is observed: particle density and energy density, once averaged over disorder realization and
initial conditions, are found to move a distance of the order of the localization length and then
stop. This is consistent with both charge and energy conductivities being zero. Entanglement
entropy also behaves consistently with particles moving a finite distance on average and then
stopping: the entanglement between two infinite reservoirs grows from zero (because the initial
condition was a product state) for a finite period of time and then saturates [21].
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When a small Jz is introduced, particle transport and energy transport behave similarly,
again consistent with localization. However, there is a dramatic change in the behaviour of
entanglement entropy: after a time that scales inversely with Jz, entanglement is found to increase
logarithmically with time, and the slope of the logarithmic increase is nearly independent of
the precise value of Jz [21]. (It had been noted a long time ago that disorder could reduce
the entanglement growth in the XXZ model and hence make it more amenable to numerical
simulation [22,23].) We now sketch the likely explanation of this behaviour [24–26] as follows:
the local conserved quantities interact with each other in the many-body-localized case, unlike in
the Anderson case, and this interaction leads to a dephasing-induced growth of entanglement.

To start, consider two localized conserved quantities (l-bits), each of which takes two possible
values. Suppose that the interaction between these two conserved quantities, similar to the second
term in (2.2), has an energy scale

Jeff = Jz exp
(

−|x1 − x2|
ξ0

)
. (2.3)

Here, ξ0 is the non-interacting localization length: for a nearest-neighbour interaction like Jz, the
effective interaction requires overlap of the localized orbitals corresponding to the conserved
quantities (we ignore ambiguities of order unity in the definition of the localization length).
We then expect that, starting from a product state and treating these two l-bits in isolation,
approximately one bit of entanglement entropy will be generated on a time scale ∼ h̄/Jeff. Note
that neither l-bit has moved, i.e. no transport has occurred. We can estimate the distance out to
which entanglement has taken place from

Jeff = Jz exp − L
ξ0

= h̄
t

⇒
(

L
ξ0

)
= log t

(
Jz

h̄

)
. (2.4)

Now, we make the somewhat drastic assumption that the total entanglement generated can be
found by summing over all pairs of l-bits that have had sufficient time to become entangled.

S(t) ∝ ξ0 log
(

Jzt
h̄

)
. (2.5)

This functional form agrees well with the numerical results, in particular the prediction that the
slope of the logarithmic growth is dominated by the non-interacting localization length.

A natural question is whether this logarithmic scaling from interactions between conserved
quantities shows up in observables that are more experimentally accessible than entanglement
entropy. An important idea in classical dynamical systems is of recurrences or revivals, and
these are increasingly used to analyse quantum coherent dynamics in atomic systems. In
quantum mechanical language, suppose that a system has certain oscillation frequencies in its
dynamics. It will return close to its original state if all those frequencies are ‘in sync’, which
becomes exponentially rare if a large number of frequencies are involved. The number of
frequencies involved in the many-body-localized Hamiltonian (2.2) clearly depends on whether
the additional interaction terms are included; as the dynamics are localized, one also has to
consider which frequencies appear in the time dependence of a particular local observable.

As an example, consider adding a single probe spin (capital S variables) at the edge of the XXZ
spin chain [27],

H = HXXZ[{σi}] + λ

4
(S+σ−

1 + S−σ+
1 ). (2.6)

The same geometry was previously considered in the context of qubit decoherence [28]. Suppose
that the probe spin is initially up and that the XXZ chain is in a random σ z product state. We will
show that the rate at which the probe spin returns to nearly its initial polarized state is a direct
probe of the same logarithmic dynamics seen in entanglement.
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Let us start with the non-interacting case where the frequencies of the many-body problem
are just sums of N one-particle frequencies. We define a revival as an interval of time satisfying
(e.g. [29])

N∑
i=1

|1 − cos(2πωit)| < δ (2.7)

with δ a small parameter. Let the disorder-averaged revival rate Γ0(t, N) be defined as the ratio
of the number of such revivals in the time window [0, t] to the total time t. This decreases with
increasing N, as the revival criterion becomes more difficult to satisfy, but the time dependence
of Γ0(t, N) depends on the statistics of the ωi. With weak interactions turned on, the frequencies
experience Hartree-type level shifts as a consequence of the Uij term in (2.2). As in the picture for
entanglement, the modified energy splitting of levels ωi, ωj takes the form δωij ∼ Jze−|i−j|/ξ . For
times t � J−1

z , the splitting is unimportant and does not significantly modify the revival criterion.
However, for t � J−1

z , the Hartree shift of each nearest-neighbour pair causes an additional
frequency to enter the revival criterion. As t increases further, each pair separated by distance
x leads to an additional frequency entering the revival criterion when t � ex/ξ /Jz, so that, at
time t, the appropriate revival rate is roughly Γ0(t, N + α log Jzt). Indeed numerical data are
found to collapse onto this form, and with some further analysis [27] one obtains the following
characteristic form for the mean revival rate, in terms of the function ν that gives the asymptotic
revival rate for N independent frequencies once the initial condition has been forgotten:

N − N0

T
≈ ν(N + α log Jzt) − ν(N). (2.8)

It is somewhat surprising that, for a broad range of the many-body-localized phase in the
disordered XXZ model, this picture based on only the one- and two-body terms in (2.2) seems
to suffice; at longer times or close to the phase boudary, one expects the three- and higher-body
terms to become important.

We conclude that the logarithmic scaling that results from interactions between conserved
quantities in the many-body-localized phase appears in several contexts. However, it should be
noted that the long-time behaviour, when the approximation of independent pairs of conserved
quantities breaks down, remains difficult to calculate analytically. We avoided this question by
looking at the unbounded increase of entanglement of an infinite subregion, but for a finite
subregion it is currently not possible to calculate the long-time limit of entanglement and other
quantities. For a thermalizing system, a key idea that enables the calculation of the long-time limit
of a large finite subsystem is the Gibbs ensemble: we introduce a Lagrange multiplier, namely
inverse temperature, that couples to the extensive conserved quantity (energy).

In a many-body-localized system, each individual conserved quantity is not extensive in the
same way: the eigenvalues remain bounded (e.g. 0 and 1 for number operators, or up and down
for spin operators), rather than scaling with system size-like energy. As a result, the equivalent
ensemble that appears in dynamical properties is not well understood. It would be nice to
have a practical way to use our relatively well-developed understanding of many-body-localized
eigenstates to solve practical dynamical questions, and indeed there has been a lot of recent work
in this area. There are also active research questions about to what extent this precisely defined
MBL in terms of conservation laws survives in higher dimensions or with translational invariance,
non-Abelian symmetries or long-ranged interactions.

3. Transport and hydrodynamics in quantum integrable models
Now, we turn to Yang–Baxter integrable models, which like MBL have infinitely many conserved
quantities. However, the systems are translation invariant and the conserved quantities are sums
of local operators rather than being properly local or quasi-local as in MBL. (The importance of the
conserved quantities being written as sums of local operators, rather than arbitrarily non-local, is
that this form leads to local notions of equilibration and continuity equations.) It is also believed
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that Yang–Baxter integrability is generally unstable to small perturbations, while in at least one
model [13] the conservation laws are stable in an open set. It is an interesting question whether
MBL-like physics, and in particular integrability that is stable to small perturbations, can exist in
a model with translation invariance [30–35].

Our main goal will be to understand how initial states that break translation invariance evolve
in time, starting from the case of two semi-infinite ‘reservoirs’. A simple example of a Yang–Baxter
integrable model is the XXZ model (2.1) with no disorder (W = 0) and no interactions (Jz = 0).
Then the model is diagonalized by plane waves in the fermionic representation,

H =
∑

k

εkc†
kck =

∑
k

εknk. (3.1)

(The reader can solve for εk as an exercise.) Now, clearly the nk operators commute with each other
and with the Hamiltonian, but for the interacting case (and even for questions of equilibration
in the free case [36]) a different basis is more useful. It is quite remarkable that infinitely many
conserved quantities survive even with non-zero Jz, and this is only true for certain interactions—
a generic two-body interaction, even in one spatial dimension, will not have this property.

Now, suppose that we prepare an initial condition for the infinite XX chain (i.e. XXZ with Jz = 0)
in which the set of sites i ≤ 0 are prepared at chemical potential and temperature μL, TL, and the set
i > 0 with other values μR, TR. (We deliberately refer to chemical potential rather than magnetic
field to stress that this is a Lagrange multiplier used to prepare the initial state, not a term in
the Hamiltonian used to evolve the system, as the latter would break translation invariance if
different on the two sides.) One can calculate the steady-state charge and energy currents that
result across the origin in this ‘two-reservoir quench’, after some initial transient, from Landauer-
type expressions: for charge current, for example,

J =
∫ 0

−∞
dk

2π h̄
fR(εk)vk −

∫∞

0

dk
2π h̄

fL(εk)vk, (3.2)

where fR,L is the Fermi function evaluated in the right and left reservoirs. A similar expression
holds for energy current. In fact, the energy current for a free Fermi system at low temperature,
assuming that the chemical potential is within a Fermi band, is one example of the result that a
general conformal field theory has a steady-state energy current [37,38]

J = πckB
2

12π h̄
(TR

2 − TL
2). (3.3)

For one band of spinless fermions, the central charge c = 1. This might seem to be a simple
consequence of the decoupled propagation of left- and right-moving excitations in a conformal
field theory, but conformal invariance also yields an interesting correction term in more general
situations [37] related to the Schwarzian derivative of an initial locally thermal distribution.

Now, we turn to effects of interactions. A full review of integrability is beyond the scope of
this perspective, but to get a sense of how an infinite number of conserved quantities could
exist, it is useful to consider a different integrable model: the continuum Bose gas with delta-
function interactions or Lieb–Liniger model [39,40]. In the coordinate Bethe ansatz approach
to integrable models, there is a pseudomomentum k that generalizes ordinary momentum: the
allowed wavevectors of particles in a periodic geometry are modified because particles interact
with each other through phase shifts. The (Bethe) equations that determine the pseudomomenta
are complicated, but in the thermodynamic limit, even at non-zero temperature (via the
‘thermodynamic Bethe ansatz’ [41,42]), there is a simple expression for the conserved quantities
in terms of the pseudomomentum distribution ρ(k),

Qn =
∫

dkρ(k)kn. (3.4)

The first three of these are familiar: Q0 is proportional to particle number, Q1 to total
momentum and Q2 to total energy. Looking ahead, in conventional hydrodynamics, these are
the three quantities that are conserved, leading to three hydrodynamical equations as reviewed
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below. Clearly, a system with an infinite number of conserved quantities should require an
unconventional kind of hydrodynamics as well as a different Gibbs ensemble.

For XXZ, the conserved quantities are considerably more complicated and come in two classes.
There is a long-known set with explicit expressions generated by standard methods, and then a
new set of ‘quasi-local’ conservation laws found starting from work of Prosen [43]. This second set
turns out to underlie spin currents and explain the observation in the gapless phase of non-zero
Drude weight [44] using numerical density-matrix renormalization group time evolution, which
is quite powerful for XXZ. The complexity of XXZ charges places a premium on methods that do
not require explicit expressions for the conserved quantities and their continuity equations.

However, there is one useful and nearly unique property of the XXZ conserved quantities.
The local energy current jE is itself a conserved density (i.e. the local current density integrates
over space to a conserved quantity or ‘charge’). Even though the XXZ model is certainly not
Lorentz invariant, this is similar to the property that, in Lorentz-invariant theories, energy flux
divided by c2 is equal to momentum density. With interactions, the problem of two reservoirs is
much more complicated than in the free case. The fact that energy current is itself a charge in a
continuity equation allows one to derive several exact far-from-equilibrium results for integrals
of the energy current distribution in space

Jtot(t) =
∫∞

−∞
jE(x, t) dx (3.5)

for the two-reservoir quench [45], which also explain some previously noted identities for
XXZ [46]. The more general hydrodynamical methods described in a moment can calculate the
full spatial distribution but are limited to long-time, long-distance behaviour.

We now return to the general properties of conserved charges in integrable and non-integrable
models to try to develop some general principles for time evolution on long length and time
scales. First, consider ordinary hydrodynamics in the dilute gas as studied for well over a century.
The ‘zeroth-order’ hydrodynamical equations in three dimensions, which neglect dissipative
behaviour such as viscosity, are

∂n
∂t

+ ∇ · (nu) = 0, (3.6)
(

∂

∂t
+ u · ∇

)
u + 1

ρ
∇P = F

m
(3.7)

and
(

∂

∂t
+ u · ∇

)
τ + 2

3
(∇ · u)τ = 0. (3.8)

Here, n is the density, u is the mean velocity, F is an external force, P is the scalar pressure
and τ is the kinetic energy density converted to a temperature via the ideal gas law. There are
three equations because there are three quantities conserved in this system (particle number,
momentum and energy). Hydrodynamics describes how local equilibrium, which establishes
itself on the scale of a few collision times, evolves into global equilibrium (although strictly
there are false equilibria of the zeroth-order hydrodynamics above, and first-order effects such as
viscosity are needed for thermalization). For an integrable model, where standard Gibbs ensemble
thermal equilibrium is replaced by a GGE, hydrodynamics should describe the flow starting from
a local GGE, which it is hoped will appear rapidly from an arbitrary initial state.

One way of deriving the above equations is from the Boltzmann equation for the single-
particle distribution function f (k, r, t). The densities appearing in the hydrodynamical equations
are simply integrals over this distribution function; for example,

n(r, t) =
∫

f (k, r, t) dk. (3.9)

Clearly, (3.9) is similar to the expressions for conserved quantities in the Lieb–Liniger model
in (3.4). In ordinary hydrodynamics, much information is lost in going from the Boltzmann
equation of kinetic theory to hydrodynamics, as one has gone from an arbitrary momentum
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distribution at a point in space–time to just three of its moments. In integrable models, there is
a significant difference in how hydrodynamical equations are related to kinetic theory. Consider
Lieb–Liniger as an example. As a distribution is uniquely determined by all of its moments under
the Hamburger moment problem conditions, hydrodynamics for all the conserved charges is, at
least possibly, equivalent to a kinetic theory description of the evolution of ρ(k, x, t).

What form would we expect such an evolution equation for the pseudomomentum to take? In
an integrable model, quasi-particles interact with each other through phase shifts: the initial and
final momenta of two particles going through a collision are preserved, but there is a scattering
phase shift. (In fact the Yang–Baxter equation, which we have used to name a class of integrable
models, is an expression of how scattering phase shifts for three particles are determined by the
two-particle scatterings and independent of their sequence.) According to Wigner, an energy-
dependent phase shift can be interpreted as a time delay, i.e. particles of one momentum k are
delayed by passing through particles of another momentum k′.

We thus should expect a Boltzmann-like equation with no collisions that rearrange momentum
but with a velocity at each point that depends on the distribution of other particles,

∂tρ(k, x, t) + ∂x(v[{ρ(k′, x, t)}]ρ(k, x, t)) = 0. (3.10)

The only part of this ‘Bethe–Boltzmann’ equation requiring Bethe ansatz methods is the
calculation of the self-consistent backflow that determines the velocity functional v[] (for the case
of the XXZ model, this was done in [6]). Hydrodynamic solutions (ignoring previous attempts that
did not correctly capture the self-consistency) and derivations of (3.10) or closely related forms
have been investigated for the two-reservoir quench for Lieb–Liniger [5] and XXZ [6,10,47,48]
and shown to work exactly in the scaling limit. More recently, solutions have been investigated for
general initial conditions in these models [7,8], including at T = 0, where interesting connections
to normal hydrodynamics appear [49].

The two-reservoir quench is especially tractable in that there is no length scale in the initial
condition, so solving to first order in time already gives the entire ‘scaling limit’, which is the
most one could hope for from hydrodynamics. For more general initial conditions, solutions can
be constructed numerically and there are also some interesting mathematical features that suggest
routes to rigorous solutions [7,8]. The technical details of how equation (3.10) can be solved in
practice are somewhat complicated and we refer the reader to the aforementioned papers.

Aside from techniques for solving dynamics, some remarkable properties of the
thermodynamic Bethe ansatz only become clear with the recent understanding of hydrodynamics.
This is particularly clear for XXZ where explicit representations of the charges are rather
complicated. A general form of the continuity equation can be written down using the self-
consistent velocity functional [6]. A stringent test that hydrodynamics passes is to compute
the charge or spin ‘Drude weight’, the strength of the delta-function in a conductivity σ =
Dδ(ω) that describes ballistic transport in linear response. For XXZ the spin Drude weight is
known to arise from the quasi-local conserved quantities [43,44]. It is nevertheless captured
exactly by hydrodynamics [10,48]. In the final section of this perspective, we discuss some
limitations of the hydrodynamical approach and a few open questions in both Yang–Baxter and
many-body-localized integrability.

4. Comments and open problems
While in the discussion of Yang–Baxter integrability we have concentrated on the success of
hydrodynamical approaches, there remain several limitations. Given an arbitrary initial pure
state, it remains an assumption that this will evolve into a GGE to which hydrodynamics can
be applied, and there are not in general practical methods to calculate which GGE a particular
state evolves into. Related to this is the fact that the Bethe–Boltzmann equation describes ballistic
propagation, while spin currents, for example, have a diffusively decaying part as well [50]. At
low temperature the ‘coarse-graining’ length and time scales for a GGE to become established and
for hydrodynamics to become valid for non-Bethe-state initial conditions are expected to diverge.
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The most dramatic agreement so far with microscopic density-matrix renormalization group
calculations is obtained for energy flows in XXZ, which are known to be somewhat special
because of the energy current conservation mentioned above [45]. It would be very interesting
to extend the approach to the gapped regime where transport is diffusive or superdiffusive [51].
As integrable models have applications all over mathematical physics, including in the theory
of stochastic differential equations and also in topological phases in 2 + 1 dimensions, the
hydrodynamical approach might have benefits there.

We close with a few general comments. Arguably the main surprise of MBL from a
mathematical point of view is that it provides a type of ‘stable’ integrability, as an infinite set of
conserved quantities survives even when one moves away from the Anderson-localized case [13].
The interactions between these conserved quantities lead to a logarithmically slow but very
long-lived time evolution that may be visible in experiments. Entanglement was very useful in
understanding the origin of this logarithmic time evolution, which provides a simple physical
example of how the dynamics of entanglement in a system may be very different from that of
more conventional quantities.

In Yang–Baxter-type integrable models, the Bethe ansatz was often cited as being simple
for ground states and thermodynamics but much more challenging for dynamical correlation
functions. Recent work shows, though, that, in addition of course to ‘quantum quenches’ [52],
hydrodynamical evolution from general initial conditions (i.e. not Bethe states) can be
obtained without significantly more difficulty than in standard thermodynamic Bethe ansatz
calculations [7]. Even in one spatial dimension, which has long been known to be particularly
amenable to calculations, it is remarkable how far the ability to understand and even solve
quantum dynamics has advanced in the past decade or so.
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