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Abstract
Carbon accumulation in coastal wetlands is normally assessed by extracting a sedi-
ment core and estimating its carbon content and bulk density. Because carbon content 
and bulk density are functionally related, the latter can be estimated gravimetrically 
from a section of the core or, alternatively, from the carbon content in the sample 
using the mixing model equation from soil science. Using sediment samples from La 
Paz Bay, Mexico, we analyzed the effect that the choice of corer and the method 
used to estimate bulk density could have on the final estimates of carbon storage in 
the sediments. We validated the results using a larger dataset of tropical mangroves, 
and then by Monte Carlo simulation. The choice of corer did not have sizable influ-
ence on the final estimates of carbon density. The main factor in selecting a corer is 
the operational difficulties that each corer may have in different types of sediments. 
Because of the multiplication of errors in a product of two variables subject to random 
sampling error, when using gravimetric estimates of bulk density, the dispersion of the 
data points in the estimation of total carbon density rises rapidly as the amount of 
carbon in the sediment increases. In contrast, the estimation of total carbon density 
using only the carbon fraction as a predictor is very precise, especially in sediments 
rich in organic matter. This method, however, depends critically on the accurate esti-
mation of the two parameters of the mixing model: the bulk density of pure peat and 
the bulk density of pure mineral sediment. The estimation of carbon densities in peaty 
sediments can be very imprecise when using gravimetric bulk densities. Estimating 
carbon density in peaty sediments using only the estimate of organic fraction can 
be much more precise, provided the model parameters are estimated with accuracy. 
These results open the door for simplified and precise estimates of carbon dynamics 
in mangroves and coastal wetlands.
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1  |  INTRODUC TION

Due to the anoxic and salty conditions in mangrove substrates, 
root remnants and litterfall accumulate in the sediments making 
them one of the most carbon-rich ecosystems on Earth (Adame 
et al.,  2021; Donato et al.,  2011; McKee et al.,  2007). Because 
of the importance of atmospheric carbon sequestration by man-
grove ecosystems and its long-term trapping in the flooded sub-
strate either as peat or as amorphous organic matter, many studies 
have devoted efforts to estimate the amount of carbon trapped 
in mangrove sediments as a key input in the calculation of their 
ecosystem services and their relevance for the growing market for 
carbon emissions mitigation. This research on mangrove ecosys-
tem services is of high priority given the rapid historical (Valiela 
et al., 2001) and ongoing (Goldberg et al., 2020) rates of mangrove 
deforestation, at the same time, climate change, biodiversity loss, 
and other sustainability crises place immense pressures on coastal 
communities (Bindoff et al., 2019).

Most studies assessing carbon accumulation in mangrove 
sediments throughout the tropics follow similar methodologies 
(Kauffman & Donato,  2012): (a) First, a core is extracted using a 
sediment corer, which may differ among studies in corer type and 
depth cored. (b) Then, a segment of the core is cut for analysis, and 
its volume is estimated by multiplying the length of the segment by 
the cross-sectional area of the core. (c) The segment is dried in a 
low-heat oven (60–80°C) until constant weight, and the bulk density 
of the sediment is calculated by dividing the dry mass by the volume. 
(d) Finally, a subsample is weighed out and analyzed in the lab for its 
carbon content. Usual methods are loss-on-ignition, which estimates 
total organic matter, or mass proportion of elemental carbon esti-
mated with an elemental analyzer (after HCl treatment to remove 
carbonate). Total organic matter can be converted into carbon frac-
tion dividing by a conversion factor that may vary slightly from site 
to site but usually ranges between 2.0 and 2.2 (Pribyl, 2010). The 
carbon density, i.e., the mass of carbon in a given volume of the sedi-
ment, is then obtained by multiplying the bulk density (g cm−3) by the 
proportion of carbon or carbon fraction.

The different coring diameter and sediment-cutting proce-
dures of each corer in the field could potentially compact, exclude, 
or otherwise disturb the sediment differently, resulting in altered 
estimates of bulk density, a critically important element in the es-
timation of total carbon content. Some studies use standard soil 
probes (Ezcurra et al., 2016), which have a 17 mm internal bit diam-
eter (when fitted with a tip-bit for swampy sediments). Others use a 
larger, 6-cm-diameter, open-faced corer designed for swampy sub-
strates (Donato et al., 2011). Other researchers use the Russian peat 
corer, which takes semi-cylindrical cores 5 cm in diameter (McKee 

et al., 2007) while, finally, some have used a 10-cm-diameter core if 
they need a large sample for other analyses in addition to C content 
(Smoak et al.,  2013). The soil probe and the open-faced corer cut 
through the sediment, roots, and peat as they are driven down into 
the substrate, while the Russian peat corer is driven down empty to 
the desired depth and closed by rotating the corer to enclose a sam-
ple. Carbon accumulation methodology has become standard and is 
used in almost all sediment blue carbon studies, but little is known 
about the influence of the type of corer used on the final results.

Additionally, the bulk density of mangrove sediments is not in-
dependent of their organic matter content (Callaway et al.,  2012; 
Holmquist et al., 2018; Morris et al., 2016). A sediment with no or-
ganic matter will have the bulk density of the mineral matrix, usu-
ally a value close to 1.6–2.0 g cm−3 in coastal substrates (Holmquist 
et al.,  2018; Morris et al.,  2016). Similarly, a sediment formed by 
pure organic matter will have the bulk density of pure peat, a value 
normally close to 0.09 g cm−3. Any sediment containing a mixture of 
mineral particles and peat will have a bulk density between those 
extreme values. It seems possible, then, that the bulk density of a 
coastal sediment core could be approximately estimated directly 
from the proportion of carbon or organic matter in the core, elimi-
nating the need to estimate bulk density from the volume and mass 
of the segment. The question arises, what would be the appropriate 
model to estimate bulk density from carbon content, and how pre-
cise would that procedure be compared to the bulk densities esti-
mated gravimetrically from core segments?

In this study, we address the question above by (a) comparing 
sediment bulk densities obtained from three different corers to 
evaluate how much they differ, and (b) comparing carbon estimates 
obtained from bulk densities calculated from the conventional grav-
imetric method against carbon estimates obtained from bulk den-
sities that were predicted from the organic matter content of the 
sediment.

2  |  METHODS

2.1  |  Equipment

Three corers were used: (a) a standard soil probe (Oakfield 
Apparatus), (b) a custom-made open-faced peat corer (following 
Kauffman & Donato, 2012), and (c) a Russian peat corer (Belokopytov 
& Beresnevich, 1955; Jowsey, 1966). Finally, a rectangular spade was 
used to dig out large aggregates of undisturbed sediments to esti-
mate the true bulk density of sediments at the site (Figure 1).

The soil probe (Figure  1a) has a 30.48 cm sediment-coring 
tube with 19 mm inner diameter, a detachable sharp tip, and 30 cm 
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extension rods. We used a wet-soil tip with 17 mm coring diameter 
to allow the sample cores to enter easily into the 19 mm tube and to 
retain the core on extraction. The tube has a cut-out in the front to 
allow for sediment sampling, visual inspection, and cleaning.

The open-faced corer (Figure 1b) is a stainless-steel single cham-
ber with an inner diameter of 60 mm. The relatively large diameter is 
intended to reduce vertical compaction of the core by reducing the 
percentage of the sampled area in close contact with the corer walls. 
The core chamber is 101.6 cm in length and has extension rods that 
allow the corer to go deeper when necessary.

The Russian peat corer (Figure 1c) is operated by inserting the 
corer to the depth interval to be sampled and rotating corer so 
that the cutting edge moves horizontally around a column of sed-
iment adjacent to the corer while a vertical fin remains anchored 
in place, sealing the sample in the core chamber without verti-
cal compaction. The model used in this study has a core cham-
ber 50 cm long and samples a cross-sectional area of 8.81 cm2 
(Appendix S1).

2.2  |  Field sampling procedure

All samples were taken in La Paz Bay, Baja California Sur, in three 
different mangrove forest locations: El Conchalito (C), El Mogote 
(M), and Enfermería (X). In an effort to represent different sedi-
ment types, including mud, peat, clay, and sand, each mangrove 
forest was sampled in different sampling sites within each loca-
tion. El Conchalito was sampled at three sites: C1 (24°08.309′, 
−110°20.863′), C2 (24°08.464′, −110°20.819′), and C3 (24°08.453′, 
−110°20.814′). El Mogote was sampled at sites M1 (24°10.300′, 
−110°26.000′) and M2 (24°10.336′, −110°26.175′). Enfermería was 
sampled at sites X1 (24°15.691′, −110°18.637′) and X2 (24°15.635′, 
−110°18.628′; Figure 2).

Within each site, we extracted sediment cores to a maximum 
depth of 1 m below the substrate surface. From these cores, we 
cut out segments of known volume at different depths. Each core 
segment formed our individual sampling unit. Core samples were 
taken at two or three different depths: One sample was taken 

F I G U R E  1 The four bulk density 
estimation methods: (a) standard soil 
probe, (b) open-faced peat corer, (c) 
Russian peat corer, and (d) rectangular 
spade to dig out undisturbed aggregates 
of sediment.
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at approximately 15 cm belowground, another one at a depth of 
40 cm, and, when corer penetration allowed, a third sample was 
taken in some sites at a depth that fell between 75 and 95 cm. 
All three corers were used at each sampling site, extracting cores 
as close to each other as field conditions permitted and avoiding 
coring on trampled sediments. In some sites, we also extracted a 
spade sample of undisturbed sediment. For spade samples, only 
one sample was taken per sampling site at a depth of 15 cm if the 
upper layer of sediment was not waterlogged and a large intact 
aggregate could be extracted. Digging out intact aggregates from 
deeper layers was not possible in the mangroves' waterlogged 
substrate.

For the soil probe, all samples taken had a vertical extent of 
5  cm (10–15 or 35–40 cm below the sediment surface), so each 
sample had a volume of 11.35 cm3. For the open-faced corer, all 
samples taken had a vertical extent of 3 cm and a depth range 12–
15 and 37–40 cm below the sediment surface, so each sample was 
a half cylinder, with a volume of 42.41 cm3. For the Russian peat 
corer, all samples had a vertical extent of 3 cm and depth ranges 
of 12–15 or 37–40 cm, so each semi-cylindrical sample had a vol-
ume of 26.46 cm3. In the case of the spade, a rectangular prism 
with approximate dimensions 16.5 × 16.5 × 30 cm was carefully cut 
out of the ground in order to cause minimal disturbance. Once the 
large block of sediment was retrieved, a small 3 × 3 × 3 cm cube was 

carefully sliced with a sharp knife to cause the lowest disturbance 
possible. All spade samples were in the depth range 12–15 cm and 
had a volume of 27 cm3.

2.3  |  Experimental design

In each core sample, we measured two attributes: carbon fraction, 
i.e., relative carbon content, and bulk density, using the laboratory 
methods described below. Each sample, then, is characterized by 
two dependent variables (carbon fraction and bulk density) and by 
four factors: (a) the specific mangrove forest, or location, (b) the 
sampling site within the mangrove location, (c) the depth at which 
the sample was extracted from the core, and (d) the coring equip-
ment used to extract that particular sample. In statistical design 
terms, mangrove location and sampling site nested within location 
are both random blocks (or random factors), while sediment depth 
and corer are fixed-effect factors.

Because the corers did not always penetrate the substrate, not 
all corers were used at each site. This was especially true for the 
Russian peat corer, which proved difficult to drive into wet sandy 
sediments. So, in total, we obtained 52 samples: 16 samples with the 
soil probe, 16 samples with the open-faced corer, 14 samples with 
the Russian peat corer, and six samples with the spade. To compare 

F I G U R E  2 Mangrove field sites in La 
Paz Bay, Baja California Sur, Mexico: El 
Conchalito, El Mogote, and Enfermería. 
Each mangrove forest was sampled 
at different points at each site to 
include different sediment types (see 
text for details; background satellite 
image courtesy of Google Earth©, date 
4/3/2018).
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the bulk densities obtained with the different corers, we did pairwise 
comparisons of the samples that overlapped between any two cor-
ing methods (see Table 1). The soil probe and the open-faced corer 
had 15 samples in common, and the Russian peat corer had 13 sam-
ples shared with the soil probe and 14 with the open-faced corer. 
All corers shared six samples with the spade sampler, as this is the 
total number of samples that could be extracted with his method. A 
summary table is presented in Supporting Information with all the 
samples from La Paz Bay (Appendix S2).

2.4  |  Sample processing and analysis

Upon returning from the field, all samples were placed in a convec-
tion oven (Thermo-Fisher Scientific) to desiccate at 60°C until con-
stant weight was achieved to the nearest tenth of a gram. The dry 
samples were weighed uncapped in their corresponding glass jar and 
the dry weight of the sample was obtained by subtracting the weight 
of the empty jar. The samples were then individually ground using a 
mortar and pestle. The samples were considered fully homogenized 
when all particles passed through a 500 μm mesh sieve.

Inorganic carbon in the form of calcium carbonate was re-
moved prior to the sediment analysis through acid fumigation, 
following Ramnarine et al. (2011): A 300 mg subsample was taken 
from each fully ground and dried sample and placed into a 20-ml 
glass scintillation vial moistened with 150 μl of deionized water. 
Each uncapped vial was placed in a sealed and vacuumed Pyrex 
desiccator with a beaker with 100 ml of 12 M hydrochloric acid 
(HCl). After 72 h of exposure to HCl fumes under vacuum, the 
beaker containing HCl was removed, and the subsamples flushed 
with air to clear any residual HCl gas. A small portion of about 
9 mg of sampled sediment was placed in a 9 × 6 mm tin capsule, 
sealed (to prevent leakage), compressed (to remove trapped CO2), 
arranged in a 96-well microtiter plate, and sent to the University 
of California Davis (UCD) Stable Isotope Facility, where they were 
analyzed for carbon fraction using an Elementar-Vario elemental 
analyzer (Elementar Analysensysteme GmbH) interfaced to an 
Isoprime VisION Isotope Ratio Mass Spectrometer (Elementar 
UK Ltd; see https://stabl​eisot​opefa​cility.ucdav​is.edu/carbo​n-and-
nitro​gen-solids).

2.5  |  Prediction of bulk density from 
carbon content

We modeled the inverse functional relationship between sedi-
ment bulk density and organic matter content following Stewart 
et al.'s (1970) mixing model equation:

where δ is the estimated bulk density of the sample, O is the proportion 
of organic matter (or pure peat) in the sediment, δp is the bulk den-
sity of pure peat, and δm is the bulk density of pure mineral sediments. 
The theory and derivation of this model is provided in Appendix S3. 
Although the mixing model has been known and used in soil science 
for over half a century (e.g., Adams, 1973), it has been used for car-
bon estimates in coastal marshlands and peatlands only in the last 
decade (Holmquist et al., 2018; Morris et al., 2016). One of the most 
attractive aspects of this model is that it only has two parameters to 
be estimated for the fitted function, δp and δm, which correspond to the 
bulk, self-packing densities of pure peat and pure mineral sediments, 
respectively. These parameters have a simple and direct ecological in-
terpretation and can be obtained from regression of bulk density ver-
sus carbon fraction data, or from the literature, for the estimation of 
carbon in mangrove sediments.

If organic matter is measured gravimetrically by loss-on-ignition, 
O is the percentage mass that is lost after treatment in the muffle 
furnace at 450°C. However, if organic carbon is measured with an 
elemental analyzer, it must be converted into total organic matter. 
The proportion of carbon-to-total organic matter in tropical peat 
ranges from 40% to 55% (Andriesse, 1988; Craft et al., 1991); it var-
ies according to a multiplicity of factors such as the type of plant 
material, the content of clay in the sediment, and the hydrology of 
the lagoon, among others (Atwood et al., 2017). In our own data-
sets, we found a regression slope between LOI and carbon fraction 
of 2.2, which implies a 45% proportion of carbon in the sediments' 
organic matter (see Appendix S4). This value is consistent with those 
reported in other studies (Atwood et al., 2017; Cinco-Castro et al., 
2022; Ouyang & Lee, 2020; Pribyl, 2010), so we multiplied the pro-
portion of carbon in our samples by a conversion factor f = 2.2 to 

(1)� =
�p�m

�mO + �p(1 − O)

TA B L E  1 Pairwise comparison among the five different estimation methods for bulk density.

Soil probe Open-faced corer Russ. Peat corer Spade sample

Soil probe — r = .66 (n = 15) r = .53 (n = 13) r = .92 (n = 6)

Open-faced corer b = 0.90, SE = ±0.11 — r = .60 (n = 14) r = .84 (n = 6)

Russ. peat corer b = 0.96, SE = ±0.12 b = 0.97, SE = ±0.15 — r = .90 (n = 6)

Spade sample b = 0.96, SE = ±0.06 b = 1.17, SE = ±0.11 b = 1.29, SE = ±0.10 —

Note: The right upper triangle, above the diagonal, shows the correlation coefficients (r) between instruments and number of paired samples (n). The 
lower triangle, below the diagonal, shows the major axis slope from the origin (b) and the jackknifed standard error of the slope (SE). All correlations 
were significant at p < .05, with the exception of soil probe versus Russian peat corer that had a significance of p = .06. The diagonal cells, shaded in 
grey, have no values as they correspond to the same corers.

https://stableisotopefacility.ucdavis.edu/carbon-and-nitrogen-solids
https://stableisotopefacility.ucdavis.edu/carbon-and-nitrogen-solids
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get an estimate of total organic matter. Thus, the model that relates 
carbon fraction (i.e., relative carbon content Cs) to bulk density in 
peaty mangrove sediments becomes:

The carbon density (D) in a sediment sample is the product of rela-
tive carbon content (C) and bulk density (δ). As noted by Holmquist 
et al.  (2018), given the relative carbon content in a peaty sediment, 
and knowing the bulk densities of pure peat (δp) and pure mineral sed-
iment (δm), the density of carbon in the sample can be calculated from 
Equation (2) so that

2.6  |  Estimation of model parameters

Because the mixing model is not linear, to estimate the model pa-
rameters (δp and δm), we used nonlinear least-squares regression 
with a Gauss–Newton algorithm for parameter search (Nocedal & 
Wright, 1999), implemented through the nls function in the R lan-
guage (R Core Team, 2022). Because in a nonlinear model the vari-
ances are not necessarily additive, a standard ANOVA test is not 
valid. For this reason, we measured the quality of the fit by means 
of a lack-of-fit test, i.e., a variance ratio test with the variance of 
the sampling points from the model's predictions in the numerator, 
and the within-samples variation, or “pure error” in the denominator 
(Neill, 1988).

After fitting the mixing model, the residuals of the fitted func-
tion were then tested with linear models against other possible pre-
dictors of bulk density, such as the random effect of each location, 
a potential effect of the sites selected within each location, or the 
depth of the core. The results were summarized in a variance decom-
position table, similar to multiple-regression ANOVAs, with the only 
difference being that the main explanatory variable, relative carbon 
content, was fitted by nonlinear estimation, and all other possible 
factors were tested by linear regression on the residuals.

2.7  |  Model validation with a large dataset

To test whether this model for predicting sediment carbon density 
from carbon relative content (i.e., carbon fraction) behaves similarly 
in mangroves from throughout the region, we used a larger data-
set of mangrove sediment carbon content and bulk density (Costa 
et al., 2022). These data are from samples taken at mangrove loca-
tions from the Caribbean and Pacific coasts of Panama and through-
out the Baja California Peninsula, and from the sediment surface to 
the maximum depth of corer penetration. The cores were taken with 
the same Russian peat corer as used in this study, and the samples 
were processed and analyzed following the same methods, with the 

exception that the samples from the Caribbean coast of Panama 
were analyzed by loss on ignition (LOI), with a subset of 20 sam-
ples also analyzed using an elemental analyzer to construct a linear 
calibration curve to relate carbon content to LOI (see Appendix S4).

3  |  RESULTS

3.1  |  Comparison among corers

The bulk densities estimated by the three corers were significantly 
correlated with each other and with the bulk density measured from 
cutout, undisturbed sediment aggregates (Table  1). More impor-
tantly, the major axis regression slopes (b) between the three corers 
and the “true” bulk density estimated from the cutout aggregates did 
not differ significantly from an identity function (i.e., b = 1; Figure 3 
and Table 1). In short, the bulk densities estimated by the three cor-
ers did not differ significantly between corers, or did they differ sig-
nificantly from the bulk density of undisturbed sediment aggregates.

3.2  |  Relationship between bulk density and 
carbon content

Using the mixing model, a strong statistical relationship was found 
between gravimetric bulk density and carbon fraction, i.e., the pro-
portion of carbon in the sediment sample (r2 = .715; Figure 4a). The 
lack-of-fit test indicated that the deviation of the mixing model from 
the mean bulk density at each site was not significantly different 
from the within-site variation (F = 0.49, p = .95). An analysis of vari-
ance on the residuals of the nonlinear model found no significant 
effects of location or sample depth. There was a significant (p = .02) 
effect of site, which can be attributed to the sediment type of each 
particular site: Mogote site 2, a site with densely clayey sediments, 
had lower residual bulk densities than the other, nonclayey, sites. 
There was also a slight but significant (p < .01) effect of the choice of 
corer that had not been detected with the pairwise comparisons: the 
soil probe and the spade had higher residual bulk densities that the 
open-faced or the Russian peat corers. Although significant, these 
differences are of small quantitative importance in the estimation 
of bulk density: 71% of the variation in the estimated bulk densities 
was accounted for by the amount of organic matter in the mixing 
model, 6% was accounted for by the choice of corer, and 5% by the 
sedimentology of the site.

Multiplying the fitted bulk densities by the carbon fraction in 
the sample, an estimate of the carbon density in each sampling site 
was obtained (Figure 4b). The fit of this model, predicting total car-
bon as a function of carbon fraction to the same data using grav-
imetric estimates of bulk density, was good (r2  =  .865). However, 
the squared residuals were significantly correlated with predicted 
carbon content (r =  .75; F = 70.3; df 1, 55; p < .0001); a statistical 
problem that suggests that the dispersion of error in the data using 
the gravimetric estimate of bulk density increases with the amount 

(2)� =
�p�m

�mfC + �p(1 − fC)

(3)D =
C�p�m

�mfC + �p(1 − fC)
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of peat in the sediment. Finally, the coefficients of the mixing model 
were δp = 0.135 ± 0.019 and δm = 1.530 ± 0.062.

3.3  |  Testing the mixing model on larger datasets

When the mixing model was tried against the pooled dataset from 
Costa et al.  (2022), a similarly strong relationship was found be-
tween the bulk density and the carbon fraction of the sediments. In 

this case, the carbon fraction predicted 85.5% of the total variation 
in the bulk density data (r2 = .855; Figure 5a). As with the local La Paz 
dataset, the lack-of-fit test indicated that the departure of the mix-
ing model from the within-carbon-level means was not significantly 
different from the pure error (F = 0.49, p = .95), indicating that the 
fit is statistically robust.

However, the relationship between carbon fraction and car-
bon density showed a high dispersion between the predictions 
of the mixing model and the values calculated using gravimetric 

F I G U R E  3 Pairwise major axis regressions between the bulk densities of the three corers plus that from cutout, undisturbed sediment 
aggregates (spade). The dotted line represents the identity function, and the shaded regions describe the 95% confidence interval. None of 
the regressions differed significantly in their slope from the identity function (see Table 1 for numeric values of each regression).
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estimates of bulk density (r2 = .315, Figure 5b), and, as with the 
previous dataset, the residuals were significantly correlated 
with the fitted values (r =  .43, F = 112.9; df 1, 494; p < .0001). 
This result suggests, again, that gravimetric bulk density mea-
surements yield statistical estimates of total carbon that are 
strongly heteroscedastic and dependent on the value of the 
carbon fraction in the sediment. The coefficients of the mix-
ing model for the pooled dataset were δp = 0.082 ± 0.0025 and 
δm = 1.575 ± 0.0322. Note that, because the pooled dataset con-
tained many sites with large amounts of peat, the estimate of δp 
has a much lower standard error and is hence more precise than 
in the La Paz dataset alone.

4  |  DISCUSSION

4.1  |  Comparison among corers

Despite their differences in diameter and core-sectioning method, 
the three corers produced similar and comparable results when 
compared through pairwise correlations, and slight, quantitatively 
minor differences when compared using the residuals of the fit-
ted model. When discussing this issue, corer selection in coastal 
studies such as this one often refers to the tendency for sediment 
cores to undergo vertical compaction during sampling (Morton & 

White,  1997). For instance, the open-faced corer may cause less 
vertical compaction than the standard soil probe because its larger 
diameter puts a lower fraction of the sample within proximity to 
the corer wall. The Russian peat corer is designed to eliminate verti-
cal compaction by closing horizontally around a segment of sedi-
ment adjacent to the corer. The fact, however, that no significant 
or very small differences in bulk density were observed among the 
corers tested in this study, and the true bulk density estimates ob-
tained from cutting the sediment with a spade suggests that com-
paction induced by the sampling methods was not substantial in 
this study of near-surface wetland sediments. Artificial compaction 
may increase with depth of coring, so for other applications, such as 
paleo-reconstruction, this consideration with regard to corer choice 
may be more important. Most blue carbon studies focus on the top 
meter of sediment (Holmquist et al., 2018; Pendleton et al., 2012), 
so the nondetectable or minor influence of corer choice on bulk 
density estimates demonstrated in this depth range is of practical 
applicability to the field.

The main factor in the selection of a corer is possibly the oper-
ational difficulties that may be encountered in the field with core 
penetration and recovery. Because of its smaller diameter size, the 
soil probe was able to penetrate relatively hard sediments like sand 
and clay with low amounts of organic matter, while the other two 
corers often proved difficult to drive into these substrates. In water-
logged, peaty substrates, in contrast, the Russian peat corer worked 

F I G U R E  4 (a) Relationship between 
bulk density of the La Paz sediment 
samples and the carbon fraction in the 
sample. The black curve represents the 
values fitted by the mixing model. (b) 
Carbon density (bulk density × carbon 
fraction) against carbon fraction for the 
same dataset. The black curve represents 
the fitted values from the mixing model. 
Note how data dispersion around the 
fitted values increases as the organic 
matter content of the sediment increases.
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optimally because it encloses the peat sample in a semi-cylindrical 
chamber by cutting laterally once the corer is at the desired depth. 
The open-faced corer worked very well in mangrove sediments, but 
was difficult to operate on the forest edges, sand bars, or the harder 
upper mudflats. The decision on what corer to use, finally, may de-
pend on the type of substrate and the familiarity of the user with the 
equipment, but it is important to know that, once a core has been 
successfully extracted, the type of corer used will not have a large 
influence on the final estimates.

4.2  |  Relationship between organic carbon 
content and bulk density

There was a very narrow relationship between the carbon fraction in 
the sample and its bulk density, which showed a very close fit to the 
mixing model equation. The model only needs two parameters, the 
bulk density of pure peat (δp) and the bulk density of pure mineral sedi-
ments (δm). Other studies (Holmquist et al., 2018; Morris et al., 2016) 
have fitted the mixing model to coastal wetland data and found values 

F I G U R E  5 (a) Relationship between 
bulk density in our pooled dataset (La Paz 
Bay, Baja California, Panama's Caribbean 
coast, and Panama's Pacific coast) against 
carbon fraction in the sample. The black 
curve represents the values fitted by the 
mixing model described in Equation (2). 
(b) Carbon density (bulk density × carbon 
fraction) against carbon fraction for the 
same dataset. The black curve represents 
the fitted values from the mixing model 
described in Equation (3). (c) Gravimetric 
carbon fraction versus the mixing model 
estimation of carbon fraction. Note that, 
as in Figure 4, data dispersion around the 
fitted values increases as the sediments 
increase in their organic matter content.
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for δp and δm very close to the ones reported in this study (Table 2), 
a fact that suggests that the mixing model is a robust and consistent 
predictor of bulk density in waterlogged sediments. Excluding the pa-
rameters from La Paz Bay (which were included in the larger, pooled 
dataset), the mean values for δp and δm in this study and two other pub-
lished ones were 0.09 ± 0.009 and 1.75 ± 0.217, respectively. Although 
more studies are necessary to confirm these results, it seems clear that 
using the mixing model's equation with parameter values δp = 0.085 
and δm = 1.65, the carbon fraction, or organic matter fraction, will yield 
a good, conservative estimate of the sample's bulk density.

4.3  |  Gravimetry or carbon fraction? Choosing the 
best estimate of bulk density

The previous analysis shows that bulk density can be reliably esti-
mated from carbon fraction data if adequate parameters are used. 
The question that follows is how precision and accuracy vary be-
tween the two approaches. In order to test this—and taking advan-
tage of the fact that no significant differences were found in the 
bulk densities estimated by each of the three corers—we took each 
corer within each sampling site as a replicate of the site's bulk den-
sity estimation, and we ran a linear model taking gravimetric bulk 
densities as the dependent variable, the site as the predictor, and the 
three corers as replicates within each site. We then performed the 
same analysis, taking carbon-based estimates of bulk density as the 
dependent variable. Because in a linear model with this design the 
residual term in the ANOVA is a measure of within-site variation, we 
checked which of the estimates of bulk density gave a proportion-
ally lower residual term, as a measure of replicability and consist-
ency in the results. We found that the within-sites variation for the 
gravimetric estimate was 24% of the total observed sum of squares, 
while the within-sites variation for the carbon-based estimate was 
only 15% of the total variation, proportionally much less. The differ-
ences between the two within-site variation terms were significant 
according to a variance ratio test (F = 2.32, df 33, 33; p = .009). We 
can conclude, then, that the carbon-based estimate of bulk density 
has a lower variation between replicate measures.

4.4  |  The challenge of heteroscedasticity in total 
carbon estimation

Although the functional relationship between carbon fraction and 
gravimetric bulk density is strong, the product of the two variables 

to calculate carbon density in the sediment shows a wide, funnel-
shaped dispersion of the data points that increase as the sediments 
become richer in organic matter. We argue here that this phenom-
enon is a result of the way errors propagate in a product. In its 
simplest form, if a variable z is the product of two variables x and 
y so that z = xy, then it follows that dz/dx = y. Approximating the 
differential dx with its small increment equivalent Δx, we can write 
Δz = yΔx. That is, a small error (εx = Δx) in one of the variables inter-
vening in the product will be amplified by the value of the other vari-
able in the product so that εz(x) = yεx and εz(y) = xεy. This implies that 
in a model based on the product of two variables with independ-
ent random errors, the dispersion in the model will increase with 
the values of the intervening variables. This simple conclusion is in 
agreement with statistical theory: It is a well-known fact in statis-
tics (e.g., Bohrnstedt & Goldberger, 1969; Goodman, 1960) that the 
variance of the product of two independent variables x and y with 
random, independent errors is V(xy) = E(y)2V(x) + E(x)2V(y) + V(x)V(y). 
Note that the variance of each variable (V) propagates onto the cal-
culated product multiplied by the square of the expected value (E) 
of the other variable, a fact that predicts, again, that the dispersion 
in the model will increase as the value of the intervening variables 
increases (Appendix  S5a). If the variables in the product are not 
independent but correlated, the formula becomes more complex 
because additional terms must be added to correct for the effect 
of correlation on the product (Goodman,  1960), but the first two 
terms (E(y)2V(x) and E(x)2V(y)) are still the main contributors to the 
total variance. In short, when two variables with independent, ran-
dom errors are multiplied, the dispersion in the data will increase as 
the main predictor variable increases, which is what is observed in 
the calculation of total carbon using the product of gravimetric bulk 
density and carbon fraction.

If, on the other hand, bulk density is estimated directly from 
the value of carbon fraction using the mixing model equation 
D  =  f(C), where f(C) is the mixing model equation described in 
Methods (Equation 3), then a differential equation model can be 
used to estimate how an error in the estimation of carbon frac-
tion will propagate onto the estimation of total carbon density. 
By definition, dD/dC  =  f '(C). Approximating the differential dC 
with its small increment equivalent ΔC, we can write ΔD ≅ f '(C)ΔC. 
That is, a small error in the estimation of carbon fraction (εC = ΔC) 
will propagate onto the estimation of total carbon density multi-
plied by the first derivative, or slope, of the D versus C function. 
Because the slope of the function decreases for high values of C, 
then it follows that for sites with high carbon fraction (i.e., peaty 
sediments), the error in the estimation of total carbon density will 

Pooled dataset Holmquist et al. Morris et al.

Value SE Value SE Value SE

BD of peat 0.081 ±0.002 0.098 ±0.001 0.085 ±0.001

BD mineral 
sediment

1.575 ±0.032 1.670 ±0.025 1.990 ±0.028

TA B L E  2 Values of the bulk density 
(BD) parameters of the mixing model 
reported in this study (pooled dataset), 
in Holmquist et al. (2018) and Morris 
et al. (2016).
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be lowest. Furthermore, because the first derivative of the model 
(Equation 3) can be shown to be �2

C
∕�p , where δC is the bulk density 

predicted by the mixing model for an estimated carbon fraction C, 
and δp is the bulk density of pure peat, it is easy to see that as the 
carbon fraction in the sediment increases, δC will decrease accord-
ing to the model, and the dispersion in the estimated values will 
decrease (Appendix S5b).

4.5  |  Accuracy vs. precision in carbon 
density estimation

Adding to the preceding algebraic derivation, the heteroscedasticity 
of the data points when using the gravimetric estimate of bulk den-
sity was also tested empirically using a Monte Carlo simulation as 
described in detail in Appendix S5c. By introducing normalized ran-
dom errors to simulated sample values for carbon fraction and bulk 
density, we estimated carbon density by (a) multiplying the carbon 
fraction by the bulk density of the randomized samples (Equation 2; 
Figure 6a), and (b) using the mixing model with carbon fraction as the 
sole input (Equation 3; Figure 6b). As with the real data, the disper-
sion in the estimation of carbon density when using carbon fraction 
and the gravimetric estimate of bulk density increased as the sedi-
ment became richer in organic matter while the relative error when 
using carbon fraction only to estimate bulk density through the mix-
ing model decreased as the sediment became more peaty.

It seems clear from the above reasoning that the precision of 
the carbon density model solely based on carbon fraction is much 
higher than the estimate using the product of carbon fraction and 
gravimetric bulk density. Indeed, the dispersal of data points when 
predicting total carbon density from gravimetric bulk density data 
is so large that Holmquist et al. (2018) decide to base their carbon-
density mapping at a continental level using the binary catego-
ries of organic-  and mineral-dominated sediments. The product 
of gravimetric bulk density and carbon fraction has an extremely 
high data dispersion and hence is very imprecise, but it is import-
ant to note that the product estimator is unbiased, in the sense 
that the expected value of a sample is the true value in the field, 
and, in the strict sense of the statistical definition, it is accurate. 
In contrast, the estimation based solely on carbon fraction has a 
very high precision, but the final estimate of total carbon density 
can be biased because it depends on the accuracy with which 
the two parameters of the model, δp and δm, have been estimated 
(see Figure 6b). Thus, the accuracy of the estimate of total carbon 
based on the mixing model depends very strongly on the accuracy 
with which δp, the bulk density of pure peat, and δm, the bulk den-
sity of pure mineral sediment, are estimated.

5  |  CONCLUSIONS

Research in the last two decades has revealed the large role played 
by mangroves, seagrass beds, and marshlands in CO2 sequestration 

and carbon immobilization in their sediments (Chmura et al., 2003; 
Lovelock & Duarte,  2019; Rockström et al.,  2021). The choice of 
corer to sample mangrove sediments does not seem to have much 
influence on the final estimates of carbon density. The main factor in 
the selection of a corer is more related to the operational difficulties 
that each corer may have in different types of sediments than to the 
accuracy of the estimate.

The bulk density of a core sample can be estimated gravimetri-
cally, by cutting and dry weighing a segment of the core, but it can 
also be estimated from the carbon fraction in the sample, using the 
mixing model equation. Because of the multiplication of errors in a 
product of two variables subject to random sampling error, when 
using gravimetric estimates of bulk density, the dispersion of the 
data points in the estimation of total carbon density rises rapidly as 
the amount of carbon in the sediment increases. For this reason, the 
estimation of carbon densities in peaty sediments using gravimet-
ric bulk densities can be very imprecise. Historically, the gravimetric 

F I G U R E  6 Monte Carlo simulation for sample values of 
carbon fraction and bulk density with normalized, independent 
random errors. (a) Carbon density estimated by multiplying the 
carbon fraction by the bulk density of the randomized variables 
(Equation 2). (b) Carbon density estimated using the mixing model 
with carbon fraction as the sole input (Equation 3). This last 
simulation was done with parameter values for the mixing model of 
δm = 1.75 g cm−3 and δp = 0.09 g cm−3 (the mean of published values 
for the parameters; blue dots). In order to assess the sensitivity of 
the carbon density estimation to the parameters, we repeated the 
simulation with δm = 2.00 g cm−3 and δp = 0.10 g cm−3 (the upper 
limit of reported values, pale yellow dots), and with δm = 1.50 g cm−3 
and δp = 0.08 g cm−3 (the lower limit of reported values, pale 
green). In both graphs, the true data values are represented by the 
continuous red line. See Appendix S5 for more information.
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approach has dominated, followed by loss-on-ignition analysis, 
possibly because it is less costly than analyzing all samples on an 
elemental analyzer. Our study demonstrates, however, that even 
with loss-on-ignition, the mixing model can be used with increased 
precision.

The estimation of total carbon density using only the carbon 
fraction as a predictor is very precise, especially in sediments rich 
in organic matter. This method, however, depends critically on the 
accurate estimation of the two parameters of the mixing model (the 
bulk density of pure peat and the bulk density of pure mineral sedi-
ment) and on the conversion factor from organic carbon fraction to 
organic matter. If these parameters are not estimated with accuracy, 
the calculation of total carbon density can be biased. It is recom-
mendable to use relatively low values of δp and δm, and a relatively 
high conversion factor of carbon fraction-to-LOI (implying that the 
proportion of carbon in organic matter is less than 50%), so that the 
estimates of carbon density are conservative.

In practical terms, these findings open the door to simpler and 
more precise estimations of blue carbon in mangrove sediments. 
They also open the door to the possibility of using pre-existing 
data containing elemental carbon or organic matter assessments in 
coastal lagoon sediments for the precise estimation of blue carbon 
storage, even if data on bulk density are lacking. We believe that 
the use of the mixing model in carbon storage estimations can det-
onate many new assessments of blue carbon storage with a simpler, 
quicker, and statistically more robust method.
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