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ABSTRACT OF THE DISSERTATION

Endomorphism Algebras in Coxeter Categorifications

and Harish-Chandra 2-Categories

by

Benjamin William West
Doctor of Philosophy in Mathematics
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Professor Raphaél Rouquier, Chair

Given the data of a Coxeter system (W,S), a Coxeter categorification is a 2-category in which the
objects are subsets of S, the generating 1-morphisms categorify induction and restriction functors associated
to parabolic subgroups, and the generating 2-morphisms impose certain coherence conditions and structural
properties among the 1-morphisms. Of particular interest is the structure of the 2-homomorphism spaces of
these 1-morphisms. Furthermore, given a connected, reductive, algebraic group G over an algebraically closed
field k, a chosen Frobenius endomorphism F': G — G determines a parameter ¢ € k*, and the Weyl group
of G gives rise to a Coxeter system. When this system is of rank 1, we construct by generators and relations
an extension of the Coxeter categorification, independent of g, where the 2-homomorphism spaces are free
modules of finite rank over the ring of Laurent polynomials with integer coefficients. An explicit description
of the 2-homomorphism spaces between generating 1-morphisms is given, along with an algorithm lifting
these descriptions to the 2-homomorphism spaces of arbitrary l1-morphisms. Then a nontrivial 2-functor
from this 2-category is constructed into the 2-category of bimodules. Some conjectural constructions are
given in the case that W has arbitrary finite rank, in particular a proposal for the endomorphism ring of the

generating 1-morphism from () to S that is an extension of an algebra introduced by Marin.
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1 Introduction

Suppose G is a reductive group defined over F,, an algebraic closure of the finite field of p elements, with an
isogeny F': G — G such that some power of F if a Frobenius endomorphism of G. Let G denote the set
of fixed points, and let Ko(CG¥-mod) denote the Grothendieck group of the category of finite dimensional
CGF-modules. In the late 1970s and early 1980s, Alvis and Curtis introduced the Alvis-Curtis duality, an
involution

D¢ : Ko(CGF-mod) — Ko(CGF-mod)

given as a particular alternating sum of compositions of parabolic inductions and restrictions over F-stable
parabolic subgroups of G with respect to a chosen F-stable Borel subgroup.

In 1990, Broué showed that D¢ is a perfect isometry, i.e. a type of generalized induction associated
to a perfect character (c.f. Definitions 1.1 and 1.4 of [I]), in all characteristics other than p. This result
was a reflection of a fact of categorical flavor first conjectured by Broué, namely that Dg is induced by
a self-equivalence of the bounded derived category D®(RG-mod) of the category of finitely generated RG-
modules, where R is a complete discrete valuation ring with residue field of characteristic other than p.
This conjecture was proven in slightly greater generality by Cabanes and Rickard in [2] using a coefficient
system of Z[p~!]G-bimodules. The crux of the proof involves applying parabolic induction to a cuspidal
module, and then determining its image in the bounded homotopy category after tensoring with various
chain complexes associated to the aforementioned coefficient system. To quote the authors, an “essential
ingredient” is a result of Howlett and Lehrer that parabolic induction and restriction are independent of the
choice of parabolic subgroup.

Similar situations have arisen elsewhere, e.g. Chuang-Rouquier [4], and inspired by this, Dreyfus-Schmidt
develops in his thesis a new categorical framework called the Coxeter complex categorification. This setting
is used to categorify the Alvis-Curtis duality, as well as provides a category theoretic schema for both
Harish-Chandra and Howlett-Lehrer theory.

To begin, Dreyfus-Schmidt associates to a finite Coxeter system (W,S) a family of linear, abelian cat-
egories A; parametrized by the subsets of I C S. Among other things, for any I C J C S, there exist
exact biadjoint functors F IJ A =2 Ay Gf , akin to the Harish-Chandra induction and restriction func-
tors. Additionally, there are distinguished natural isomorphisms that encode categorical analogues of the
standard properties of such functors, namely transitivity, independence of the choice of parabolic subgroup,
and transport of structure. Dreyfus-Schmidt refers to this initial premise as a weak W-categorification,
but upgrades this definition to a genuine W-categorification if the aforementioned natural isomorphisms are

subject to several coherence conditions, one of which provides a notion of a Mackey decomposition like that



of the usual Mackey formula for induction and restriction. By his own remark, Dreyfus-Schmidt notes that
several of the coherence conditions in the definition of a W-categorification are not needed for the aim of
categorifying the Alvis-Curtis duality, but would be useful in elucidating the structure of the endomorphism
algebras of cuspidal objects. In fact, in this work this initial definition is enlarged. For instance, for each
I C J, Dreyfus-Schmidt fixes an adjunction (e7,n{) : F{ - E{ realizing F} as a left adjoint to EY, but fixes
no specific adjunction witnessing E as a left adjoint to Fy. Our extended definition does fix such an ad-
junction, and imposes an additional coherence condition such that the two induced maps between End(Fy)
and End(E{) by these two choices of counit-unit pairs coincide. This is not a particularly unnatural require-
ment, as frequently the functors F/ and Ej correspond to a generalized induction or restriction given by a
symmetric algebra, and the corresponding algebra morphisms corresponding to the units and counits satisfy
the same coherence conditions. In this vein, we hope to describe the endomorphism algebras of the Fy, and
consequently those of the G once a fixed counit-unit adjunction is chosen.

Algebras similar to possible candidate endomorphism algebras have been studied for some time. A close
analogue of the familiar Iwahori-Hecke algebra is the Yokonuma-Hecke algebra %/, that is, the endomor-
phism algebra of the permutation representation of a Chevalley group G with respect to a chosen maximal
unipotent subgroup U. In 1967, Yokonuma gave a presentation of this algebra in terms of standard gen-
erators parametrized by double coset representatives of U, and such generators satisfy the expected braid
relations, as well as a slightly different quadratic relation. Some decades later, Juyumaya and Kannan gave
a new presentation of the Yokonuma-Hecke algebra. After choosing a Borel subgroup and maximal torus,
for each corresponding root they modify the coefficients of a linear combination of Yokonuma’s standard
generators with a fixed additive character of the underlying field of definition. The new quadratic relation of
this nonstandard presentation then involves an idempotent which is in turn a linear combination of standard
generators parametrized by the image of the corresponding coroot.

These new generators and the idempotents that appear in the quadratic relation thus generate a subal-
gebra of %/, and Marin has determined a presentation for it in recent work [12]. To explain this setup, let
(W, S) denote the Coxeter system for the above G, and let R denote the set of reflections in W. For ease
of notation, assume that the isogeny F' acts trivially on W, so that W = W¥. Marin then constructs an
associative algebra Cy(§) over a commutative, unital ring k, where § = (gs)ses is a family of parameters
such that gs = ¢; whenever s,t € S are conjugate. The algebra Cyy(g) is defined by generators {g,}ses and
{et}+er subject to some relations, two of which together impose the condition that the e; are commuting
idempotents. The coefficients in the relations only involve the parameters ¢; and the unit 1, so for our
purposes specializing each ¢s to ¢, we may assume a simpler setting where Cy (¢) =: Cyw is defined over

Z[4, G ']. Thus given a finite subset J C R, one can put e; = [I,c;e: without ambiguity. It is a further



consequence of the relations that for J, K C R finite, e; = ex whenever J and K generate the same reflection
subgroup. Furthermore, Cyy is freely generated as a module by the products e;g, for J C R finite, and
w € W. It thus follows that when W is finite, Cy has rank m |W|, where m is the number of reflection
subgroups of W. In particular, the rank of Cyy is independent of the field of definition of the original group
G.

With this result of Marin in mind, our aim to is provide endomorphism algebras of the biadjoint functors
in Dreyfus-Schmidt’s W-categorification setting in such a way that their dimension is independent of the
characteristic of the underlying field of definition of the associated group. To explain this in more detail,
first consider a root datum R = (X*, ®, X,, ®*) and an algebraically closed field k. Up to isomorphism, R
uniquely determines a split reductive group (G, T), where G is a reductive algebraic group over k satisfying
the usual commutator relations, and 7' is a split maximal torus. Let (W(R),S) be the associated Weyl
group, which is an instance of a Coxeter group. Furthermore, G is an algebraic group with split BN-pair,
and for each J C S, the standard parabolic subgroup P; has the Levi decomposition P; = Lj x Uy, where
L is the standard Levi subgroup, and Uj; is the unipotent complement. The Levi subgroup L is itself
an algebraic group with split BN-pair satisfying the commutator relations, and thus has its own standard

parabolic subgroups P; N Ly for I C J. In turn, P; N L; has Levi decomposition

P]ﬂLJ:LIX](UIﬁLJ).

Additionally, that L ; has a split BN-pair is witnessed by subgroups By and N, defined by By = U(y,), X T
and N;j/T = W;, where U,,), is the product of root subgroups corresponding to the positive roots with
respect to J.

Now consider a general Coxeter system (W,S), a commutative ring R = Z[G,G '], and g € R an inde-
terminate. If M = (mg;) denotes the Coxeter matrix, the Hecke algebra .75 (§) associated to this Coxeter

system is the R-algebra with generators T}, for s € S, subject to the relations

1. TSTth... :’17‘"1—'51—;5...7
—_——— — ——
Mst Mst

2. (Ts —q)(Ts+1) =0, for all s € S.

To this Coxeter system (W, S) and arbitrary parameter ¢, there is associated a Hecke 2-category Hecke 3 q(W),
realized as a subcategory of the usual 2-category Bimod of bimodules. The 2-category Hecke 7, q(W) has as
objects the Hecke algebras .7 (G) for J C S, morphisms generated by (7¢5(q), 7% (4))- and (% (G), #5(q))-
bimodules 55 (§) for any K C J C S, and the 2-morphisms are the usual bimodule homomorphisms.

However, since (W(R),S) is not only a Coxeter system, but arises as the Weyl group of a reductive



algebraic group G, we can associate to it another 2-category, the Harish-Chandra 2-category HC(W(R))
which is given as follows. The objects of this category are the algebras kLj, for J C S, where Ly is
the standard Levi subgroup of G corresponding to J defined above. The morphisms are generated by
the (kLj, kLr)-bimodules k[L;/(Ur N Ly)] and the (kL kL y)-bimodules k[(Ur N L;)\L;] for I C J C S.
As above, the 2-morphisms are the usual bimodule homomorphisms. Note, of course, that the generating

1-morphisms are the bimodules inducing the Harish-Chandra induction and restriction functors
Ry’ =kL;/(UrNLy)®r, —: kLi-mod — kL -mod
and
*Ry? = k[(Ur N Ly)\Ly] ®kL, —: kL;-mod — kL;-mod.

For the group G above, again let F': G — G denote a Frobenius endomorphism. The pair (G, F)
determines a parameter ¢ € k*. Let Heckey o(W(R)) denote the Hecke 2-category defined in the same
fashion as HeckeRﬁ(W(R)) above, with k in place of R, and ¢ in place of ¢. Then there is a 2-functor .#
from HC(W(R)) to Heckey (W (R)) via the following commutative diagrams, for I C J C S,

HOm(kL[/BI,—)

kL;-mod A7 (q)-mod
Ry J Jlndlﬁf @
kL j-mod A7 (q)-mod

Hom(kL;/B.s,~)

and
kL y-mod — 2B ) -mod
“Rp] J lResﬁiiIJ @
kL;-mod A7 (q)-mod.

Hom(kLI/BI,f)

Furthermore, a ring morphism ¢: R — k such that ©(q) = q induces a functor ¢4 from HeckeR7q(W(R))

to Heckey, ,(W(R)) via specializing ¢ to q. This gives the diagram

Heckey -(W(R))

|«

HC(W(R)) — Heckey (W (R)).



To the root datum R, we wish to construct an R-linear 2-category . (R) yielding a diagram

' (R) — Heckep .(W(R))

| I

HC(W(R)) —5 Heckey (W (R))

where the functor .(R) — HC(W(R)) is given by specialization.

The 2-category . := #(R) should consist of the following data. To the root datum R, there is an
associated finite Coxeter system (W(R),S), where S is a fixed set of generators. Briefly, the 2-category
7 has objects subsets of S. The 1-morphisms are generated by the following: given subsets I C J C 5,
there is a pair of biadjoint arrows Fy : I = J : E{, and in cases where w € W and “I C S, isomorphisms
®;,: I = I Additionally, there are 2-morphisms which encode some coherence conditions amongst the
generating 1-morphisms. Precise definitions will follow in the body.

Suppose that a Borel subgroup B of G is chosen containing the torus T'. Since G is split, the factorization
B =U x T gives a unipotent group U. Within the category HC(W(R)), there are objects Ly =T, Ls = G,

and the morphism kG /U viewed as a (kG, kT)-bimodule. The 2-endomorphism algebra of this morphism is
Y (q) == End(h w1y (kG/U) = Endye (kG/U)T,

which can be viewed as the subalgebra of the (opposite) Yokonuma-Hecke algebra End,e(kG/U) fixed under
the conjugation action induced by T. The functor .# sends kG/U to the (#5(q), 74 (q))-bimodule #5(q),
and so .7 (% (q)) is a subalgebra of Endx, (q),,(q)(#5(q)) =: H in Hecker (W (R)). This endomorphism
algebra . is the image of the analogous algebra # = End ;s (9),24(2)(#5(q)) in Heckep, -(W(R)), which
is sent to S by the functor ¢. This indicates that the category . should contain some 2-endomorphism
algebra A@q fitting into a diagram

A ——

|

Y(q) —— H

where each arrow is given by the application of the previously introduced functors on the level of 2-morphisms.
So far, a complete construction is given only in the case where |S| = 1.

For a Coxeter system (W,S) arising from a Chevalley group defined over a field of ¢ elements, the
corresponding Yokonuma-Hecke algebra, introduced by Yokonuma in [I4], has generators indexed by the

elements of S, and others by elements of the torus, and hence has dimension dependent on ¢. This necessitates



some algebra such as A above, which can be defined in terms of a generic parameter ¢, which is not possible
with % (q).

Lastly, a brief comment on the layout of this thesis. In Section 2 we recall some of the basic algebraic ma-
chinery, including proper definitions of the types of Hecke algebras mentioned above. Section 3 investigates
some motivating examples concerning typical groups such as SLs2(q) and GL2(gq). For convenience, Section
4 provides a complete and slightly modified definition of Dreyfus-Schmidt’s W-categorification, as this defi-
nition first appeared in [7], which is unpublished as of this writing. Section 5 defines a 2-categorical setting
centered around a 2-category C’, with a biadjoint pair of 1-morphisms, and explicitly constructs endomor-
phism algebras in the case of rank 1. The first main result is Theorem [5.26] which determines a description
of the space of 2-morphisms between any parallel 1-morphisms. Roughly, the Mackey decomposition ax-
iom of a W-categorification yields a decomposition of any 1-morphism as a direct sum of indecomposable
1-morphisms, of which there are only finitely many. A subspace of the space of 2-morphisms between inde-
composable 1-morphisms is simply chosen, and then an algorithmic process allows one to lift these choices to
a subspace of the space of 2-morphisms between arbitrary 1-morphisms. Some extensive case checking shows
these potentially proper subspaces are actually the full spaces of 2-morphisms in the generated 2-category.
Subsequently, in Theorem a 2-functor is constructed from C’ into the 2-category of bimodules, with
image a nontrivial sub-2-category, showing that the 2-category C and a particular quotient are themselves

nontrivial. Lastly, Section 6 proposes a candidate algebra for the endomorphism algebra for larger rank.



2 Background

In this section, we briefly recall some definitions and basic theorems which will be used throughout.

2.1 Groups with BN-pair

Definition 2.1. An abstract group G is said to be a group with a B N-pair if it contains subgroups B, N C G

such that the following conditions hold:
1. G=(B,N)

2. T := BN N is a normal subgroup of N, and the quotient group W := N/T is generated by a set S of

elements of order 2
3. $Bs # B, where s € S, and $ denotes a representative of S in N
4. $Bn C BsnBU BnB for any s € S and n € N
5. NpenynBnt =T.
In addition to writing w for a preimage in N of w € W, we will occasionally use the notation n,,.

Definition 2.2. A group G with a BN-pair is said to have a split BN-pair if there is a normal subgroup
U < B such that

1. For T:=BNN,B=UH and UNT = {1}. Thatis, B=U xT.
2. For any n € N, n~lUnNnBCU.

Theorem 2.3. (Bruhat decomposition) A group G with BN -pair has the double-coset decomposition

G= || Bn.B.
wew
Theorem 2.4. Let G be a group with a split BN-pair such that W is finite. Let wqy denote the longest
element of W. For w € W, put
Uy,:=UnNn_"

wowUnwOw.

Any g € Bny B has a unique expression of form g = bnyu, forbe B, w e W, and u € U,,. Hence

G= || BnuUs.
weW

Proofs of the above two theorems can either be found in [8] or [6], for instance.



2.2 Symmetric Algebras

Let R be a commutative, unital ring, and let A be an R-algebra. A morphism ¢ € Hompg(A, R) is said to be

a central form if ¢(ab) = t(ba) for all a,b € A. Such ¢ induces an (A, A)-bimodule morphism
t: A — Hompg(A,R) : t = t,

where %, (b) = t(ab) for all b € A. Also, for any R-module M, let M* := Hompg(M, R).

Definition 2.5. An R-algebra is said to be symmetric if A is finitely generated and projective as an R-
module, and additionally if there exists a central form ¢ € A* such that £: A — A* is an isomorphism of

(A, A)-bimodules.

Such a form t above is called a symmetrizing form on A. In the following definitions, A and B are

symmetric algebras.

Definition 2.6. An (A, B)-bimodule M is said to be exact if M is finitely generated and projective as a

left A-module, and as a right B-module.

Definition 2.7. If M is an exact (A, B)-bimodule and N is an exact (B, A)-bimodule, then the pair (M, N)
is said to be a selfdual pair of exact bimodules if there is an R-bilinear map ( , ): M x N — R such that
(amb,n) = (m,bna) for all m € M, n € N, a € A, and b € B, and furthermore this map induces bimodule
isomorphisms

M—N":mw—(m-) and N — M*":n— (—n).

More details concerning symmetric algebras can be found in Chapter 2 of [5]. The theory of symmetric
algebras plays a role in this paper as the group algebra RG of a finite group G over a ring R is always a

symmetric algebra. The canonical symmetrizing form on RG is the projection

RG—>R:ngg»—>re
geG

sending a formal sum to the coefficient of the identity element e € G.

2.3 Hecke Algebras
2.3.1 Generic Iwahori-Hecke Algebras

Let (W, S) be a finite Coxeter system with Coxeter matrix M = (ms;)ses. Let q := {¢s}ses be a family of

indeterminates such that g; = ¢; whenever s and ¢ are conjugate in W.



Definition 2.8. A generic Iwahori-Hecke algebra .57 (W, S) associated to the Coxeter system (W, S) is the
Zlqs,q; " : s € S]-algebra generated by elements {T}}scs subject to the following two relations, referred to

as the quadratic and braid relations, respectively:
o (Ts—qs)(Ts+1)=0foralses,
o IT.T)T,--- =TT, T;--- when sts--- =tst--- in W.

For any s € S, the quadratic relation may be expanded as T? = (g, — 1)Ts + g5, so that Ty is invertible
in (W, S) with inverse T, 1 = ¢;'Ts + ¢ (1 — ¢q). Furthermore, if w € W has a reduced expression
w = 8§1...8, define Tp, := Ty, ---Ts . From the braid relations, Matsumoto’s lemma implies that this

expression is independent of the chosen reduced expression of w.
Theorem 2.9. The set {T,, }wew constitute a Z[qs,q; " : s € S)-basis of HL{(W, S).

Proof. See Theorem 4.4.6 of [9]. O

2.3.2 Unipotent Hecke Algebras

Suppose G is a finite Chevalley group, and U is a maximal unipotent subgroup of G. Let x: U — C* be

a linear character. The unipotent Hecke algebra 52 (G, U, x) is the endomorphism algebra
(G, U, x) = Endee(Indg (x))-

Let e, = |le\ > e X(uH)u be the idempotent in CG. Since Ind¥(y) is afforded by the CG-module
CGe,, there is the standard isomorphism Endee(Ind$(x))°P =~ e, CGe, of algebras. In this way, we will
often identify (G, U, x) with e, CGe,,. Of particular interest is the case where x = 1y, the trivial character

on U. In this case, the unipotent Hecke algebra J#(G,U, 1y) is referred to as the Yokonuma-Hecke algebra.



3 Preliminary Observations and Examples

3.1 Fixed Points and Orbit Sums

Let k be a field, and let G be a group with split BN-pair. In this section, we will view (kG, kT')-bimodules
as modules over k[G x T, with T acting on the right. The group ring k[G/U] is then a k[G x T]-module via

the left and right translation actions of G and T, respectively. Let
AT)={(t,t7)eGxT:teT}

The fixed points of k[G/U] under the action of the subgroup H := (U x {1}) x AT, denoted k[G/U]*,

determine the maps in Endy g 1) (k[G/U]) as follows.

Proposition 3.1. Let G be a group with split BN -pair as above. There is a bijection
k[G/U)" — Endyioxr)(k[G/U]) : © — (U — 2).
Proof. Let H := (U x {1}) x AT. First, there is a bijection
k[G/UIH — Homgp (k, Rest T K[G/U) : 2 @0

where k is the trivial kH-reprsentation, and ¢, is defined by ¢, (1) = x. This assignment is injective since a
kH-map k — Resl}:gng] k[G/U] is determined by its image on 1. If ¢ is a kH-map, then (1) is fixed under
H, since (ut,t71) - (1) = p((ut,t71) - 1) = ¢(1), and hence this assigment is surjective.

Second, there is a bijection
Homy, g (k, Resp sV k[G/U]) — Homy g (k, Hompyaery (K[G x T, k[G/U]))

induced by the usual isomorphism of kH-modules Homyqyx 1) (k|G x T, k[G/U]) ~ Res],:[gXT] (k[G/U)),
determined by sending a morphism f to its value f(1), and conversely, sending = € k[G /U] to the k|G x T}-
map mapping 1 to z.

Third, the usual adjunction gives a bijection
Homy, g (k, Homy (g 1) (K[G x T], k[G/U])) = Homyx 1) (k[G X T] @1 k, k[G/U]) : ¢ = [a @b ((b))(a)].
Tracing through these bijections, a point x € k[G /U] determines a kH-map ¢, : k — k[G/U] such that

10



(1) = . This corresponds to a kH-map

ot kb — Homygur)(K[G x T],E[G/U]) : 1+ (1 ).
The adjunction then gives a k[G x T]-map

7(Pa): K[G X T| @k k — k[G/U] - a @b [2(D)](a).

Note

Furthermore, as k[G x T]-modules,
_ k[GxT]
kKGxT| @k k=Ind ;" "'k ~k[(GxT)/H| ~k[G/U]

where the first isomorphism is given by (g,t) ® 1 — (g,t)H, and the second is given by (g,t)H +— gtU.
Identifying k[G' x T| @y k with k[G/U], one can view 7(,) as a morphism in Homyq 7 (k[G /U], k|G/U])
defined by

T(Pe)(U) = 7(P((L, ) ®1) = (1,1) -z = .

Suppose now that k is a field such that |U] is invertible in k. As noted before, let

1
ey = — Z u € kG.
|U| uelU

There is an isomorphism of k[G x T]-modules k[G /U] ~ kGey given by gU <+ gey, and so
Endyexr)(k[G/U]) ~ Endyaxr)(kGer).
Since ey is an idempotent in kG, there is the standard anti-isomorphism of kG-modules
Endgg(kGey) — evkGey : o — eyplev)eu.

This anti-isomorphism then sends the subalgebra Endjqx7)(kGer) of Endra(kGey) to a subalgebra of the

Yokonuma-Hecke algebra epkGerr. As noted before, a fixed point z € K[G/U]W*{TH*AT determines a
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k[G x T)-endomorphism 7, on kGey, where if x = . ¢;z;U, for z; € G, ¢; € k, then 7, is determined
by 7.(ev) = >, cievziey in kGey. In particular, the image of Endyigyr)(kGey) in eykGey is the points
euTe(ev)ey, for x € k[G/U)UXTIH*AT,

The fixed points in k[G/U] under the action of (U x {1}) x AT are precisely the orbit sums of an element
in G/U. Since B = TU, from the refined Bruhat decomposition it follows that if gU is a coset in k[G/U],
g = huwv for unique h € T, w € U, w € W, and v € U,, so that gU = huiwvU = huwU. With a view

towards algebraic groups, from now on assume the subgroup 7' is abelian.
Proposition 3.2. Let G be a group with split BN -pair, with B =U x T such that T := BN N is abelian.
The orbit of a coset huwlU € G/U in k|G/U] forh € T, u € U, w € W under the action of (U x {1}) x T is

[T, wlhUwU = {[t,whowlU : t € T,v € U}.

Proof. Let (t,t=1)(u/,1) be an arbitrary element of (U x {1}) x AT. Since T normalizes U, u'h = hu" for
some " € U. Then observe
(t, ™ (W', 1) - hulU = tu' huUt ™" = thu wit U
= thu'v (wt ™ ™) wU = t(wt ™ o~ )h'"wU  for some v € U
= [t,w]hu"" WU
where the penultimate equality follows since u”u’ € U, and wt 'w~! € T. Hence the orbit of huwU is
contained in {[t, w]huwU : t € T,u € U}.
Conversely, suppose [t, w]hviU for t € T, v € U. As before, there exists u’ € U such that u'h = hvu~1.

Then

(u',1) - hulU = v huiU = hou™ ubU = howU.

Hence the action of U x {1} shows that any point of form hvwU is in the orbit of huwU. Likewise, there

exists u” € U such that u” (it~ ~1) = (wt~ 1w~ !)v. The previous computation shows

(t,t™ ) (hu"wU) = [t, 0] hviU.

O

Note that since T is abelian, for any w € N the set of commutators [T, w] := {[t,w] : t € T'} is a subgroup

12



of T. Indeed, if a,b € T, then

[a, w][b, W] = a(wa™ ™ )b(wa ™) = ab(wa™ ) (wa ) = abwa b ! = [ab, ]

and

Corollary 3.3. Let G be a group with split BN -pair, such that T := BN N is abelian. The (U x {1}) x AT

orbits in k[G/U] are paramterized by | |,,cyw T/[T,w], where a coset [T,w]h determines the orbit

[T, whUwU = {[t,w]huwU : t € T, uw € U}.

Proof. Certainly if [T,w]h = [T,w]h’, then these cosets determine the same orbit. Conversely, suppose

[T, w]hUwU = [T,w'|h'Uw'U are equal orbits. Tt follows that

[t, w]hu = [t', w']h'v'w'

for some v € U, and the other elements are in the obvious subgroups. These elements are in the double
cosets BwB and Bw'B, so by the Bruhat decomposition w = w’.
For clearer notation, let n,, also denote a preimage of w € W in N, i.e., @ = n,,, and let wy denote the

longest element of W. Set U, = U N n;éwUnwow. From the factorization U = UyywUy, one can express

1

wow? Mwgw) € UwgwUy, for some v',v"” € U. Then

velUasv=(ng vng)(n
[t, nwlhuny, = [t', nw)h'u'nyv

1

= [t D U My (g 010 ) (g 0 M)

= [t/, nw]h u'v'ny, (n;jwv"nwow).

Now [t, ny|huny, € Bny,Uy and [t ny, W a'v"ny (10,0 Nwgw) € B Uy, so by uniqueness of expression,
[t,n]hu = [t/,ny]hu/v" in B. Since B = T x U, uniqueness of expression in B further implies [t, n,]h =

[t', |l , so that [T, w]lh = [T, w]h'. O

To summarize, suppose G is a group with split BN-pair, such that T":= BN N is abelian, and B = UT.
For each w € W, a coset in [T, w]h in T/[T,w] determines a (U x {1}) x AT-orbit in G/U, and the sum
of this orbit gives a fixed point z in k[G/U]. This fixed point = determines a k[G x T]-endomorphism of
E[G/U], defined by sending the trivial coset U to x. If x = ", c;a;U € k[G/U], for ¢; € k, and x; € G, this

13



endomorphism corresponds to an element ey (ZZ ciziey) ey in epkGey, and the subset of such elements

forms a subalgebra isomorphic to Endyg 7 (k[G/U]).

3.2 Some Examples with Small Groups

Example 3.4. Suppose ¢ is an even prime power, and G = SLy(q), the special linear group with entries in
the field F, of ¢ elements. Suppose k is a field of approriate characteristic such that ¢ and ¢ —1 are invertible
in k. Let T = {diag(a,a™1) : a € kX}, and U is the set of upper unitriangular matrices. The roots of G are

® = {+a} where a: T — F : diag(a,a™") — a® and the coroots are " = {+a"} where
o FY — T : a+ diag(a, a™1).
. 0 1
The Weyl group W ~ Z /27 = {1, s}, where § = ( ) O>' Then

| | 7/[1,@] =T/[T, 10 T/[T, 4 =T UT/[T, 3.
weWw

Computation shows

[diag(a,a™1), 5] = diag(a?, a™?).

Hence [T, §] = {t* : t € T}, and [T, §] is in bijection with the set of squares in F*.
Since q is even, every element of F* is a square, and thus [T, $] = T". So the (U x {1} x AT-fixed points
of k[G/U] are in bijection with T'U {1}. If h € T, the corresponding orbit is

[T AUt €T, ue Ut ={hU : t € T,u € U} = {hU},

and the fixed point in k[G/U] is the coset hU. This corresponds to the element hey = ephey € eykGey.

The coset [T, 5] =T in T/[T, $] has orbit
{[t,8lusU :t € T,u e U} ={tusU :t €T, ue U}

Since G is of rank 1, U = Uy, so we have uniqueness of expression, and the corresponding orbit sum is

T = Z tusU.

teT, uelU
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The corresponding point in ey kGey is then

ey E tusey | ey = q(q — Deyersey.
teT, uel

For t € T, put by = eytey, and put by = eyersey. Then the {b;}icr and b generate a subalgebra in
eykGey isomorphic to Endygxr)(k[G/U]).
One can compute multiplication relations among these generators. To do so, recall that the Yokonuma-

Hecke algebra ey kGey has basis {T,, : n € N}, where Ty, = eywey, with relations

Tsw if {(sw) = L(w) + 1,
TST,, =

q_lTasV(fl)sw + q_l Z:(LGJF;< Ta;/(a)w if é(S”LU) = g(w) - L
ThTw = Thw, heT, weW

and

ThTy = Thy, hkeT.

In particular,

(eviev)’ = ¢ teva(—1)ev + ¢ 'evsey Z eva’(a)ey = q ey +q (g — Devserey
a€Fy

since a¥(—1) = —I = I in characteristic 2, and o (a) = diag(a,a™1), so that D aerx a(a) =Y ,crt

The generators by for t € T, and b, then satisfy the following relations.
L] btbt/ = bt/bt = btt’ for t,t/ efT.
o bib, =bsby =bsforteT.

° bg = q_l(q — 1) ZtET bt + q_l(q — 1)()5

Note

b? = (epersey)? = eT(eU‘é.eU)2 = eT(q_leU + q_l(q — 1eyserey)
=q 'eyerey + ¢ '(q— 1)eversey

=q¢ g—1D> bi+q ' (g—bs

teT

Example 3.5. Suppose that G = SL2(gq), with ¢ an odd prime power instead. By the previous example,

[T, §] is the set of squares in T and is in bijection with the squares of IE‘?I. Since ¢ is odd, half the elements
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of F)¢ are squares, so T/[T, 8] ~ Z/2Z.
As before, an element t € T corresponds to an element eytey € eykGey. For the coset [T, §] in T/[T, §],

one gets an orbit
[T, 8]UsU = {[t,8]usU : t € T, uc U} = {t*usU : t € T, u € U}.

This corresponds to the element

eu Z tusey | ev =¢q Z t | eysey.

teT a square teT a square
uelU

The other coset is [T, §]h, where h is not a square in T. The corresponding orbit is then
{tusU : t ¢ T?, u e U},

and the corresponding element in eykGey is

q Z t | eysey.

teT a nonsquare

Write

bs+ = Z tey sey and bs,— = Z tey sey.

teT square teT nonsquare
Then the subalgebra of eykGey isomorphic to Endyq ) (k[G/U]) is generated by b; for t € T, b and
bs,—. The multiplication relations between generators depends on whether —1 is a square in F,, and hence
on whether ¢ = 1,3 (mod 4).

In the first case, suppose ¢ =1 (mod 4), so that —1 is a square in F,. There are relations

L] btbt’ = bt/bt = btt’ for t,t/ elT.
bs,— if t nonsquare,
o by by =bibs + =eytey Z a | eysey = Z taey sey =
a€T square a€T square bs + ift square.
bs,— if ¢ square,
[ ] b37_bt - btbs,— =

bs,+ if t nonsquare.

—1 —1/. 1\2 —1/,_1\2
i (b3a+)2 =1 (2[1 s EtET square bt+ 4 ((411 s b37++ . (?l L bs»_'
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. . -1 .
(bs,4)* = Z aeysey - Z eUseU:qT Z aleysey)?

a€T square beT square a€T square
—1
= qT Z alg~tevaY(=1)ev + ¢ evsey Z eva’(cley)
a€T square CEF;
—1
=* 2 Z alq tev(—I)er + 47! (Zf> evser)
a€T square teT
-1
—1
T S ] FYRN B SN RUR SR P
a€T square beT square c€T nonsquare
—1 -1 —1 -1 2 —1 -1 2
_q (% ) S aey+ (q4 ) S beyser + (q47) Y cevsey
a€T square beT square c€T nonsquare
-1 -1 2 -1 2
—1 -1 -1
_q (g ) L (q4 ) — (q4 ) by

teT square

e Similarly,

(b, 2= T 2= S bt a1, ate=1)

te€T nonsquare

—1, —1, 1,
i b37—b$=+: 1 (Qq L ZbET nonsquarebt+q (Af 1)b$7++q (éf 1)b$7—'

Note

bs,—bs,4 =bs by _ = Z eysey - Z beysey = Z ab(eysey)?

a€T square beT nonsquare a€T square
beT nonsquare

-1
_ 1 5 Z b(g tepaY (—1ey + ¢ teysey Z epa(a)ey)

beT nonsquare acF¥
—1 -1
_q¢ (g—1) q (¢g—1) :
=5 Z (=bey + — Z bz tey sey
beT nonsquare beTnonsquare teT
1 -1 2
-1 —1
S B (q2 ) Z bey + (I (q4 ) Z tey sey
beT nonsquare teT
“g—-1 “g—-1
2 Y- (g ) Z by + 2 9= (i )eUeTéeU

beT nonsquare

-1 -1 -1
g g—1) g 'g—1) g 'g—1)
=1 2 - > by + bt b

beT nonsquare

If ¢ = 3 (mod 4), then —1 is not a square in ;. The last three relations change slightly, as multiplication

by —1 swaps the sum of squares in 7" to the sum of nonsquares in T, and vice versa. The analogous relations

are
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-1 -1 2 —1 2
q '(qg—1) q '(qg—1) q (g—1)
(bs,+)? = — E by + bs+ + bs,—

teT nonsquare

(b, )2 = ¢ '(g—1) 3 O B UV S Bl Ul Vi

teT square

—1 -1 —1 -1 —1 -1
be by — (g ) R (211 )b37++q (g )b&_

beT square

Example 3.6. Suppose G = G Ly(q). Then T' = {diag(a,b) : a,b € F; }, U is the set of upper unitriangular

0 1
matrices, and a representative for the nontrivial element of W is § = (1 O> . The corresponding coroot is

0
aV:IFqX—>T:a»—><a 1).
0 a

Computation shows

ab—1
[diag(a,b), $] = ( bO a_01b> .

It follows that [T, 5] = T N SLa(q), and T/[T, §] is in bijection with F via

a

T/[T, 4] — F : (o

2) [T, $] — ab

with inverse a — diag(a, 1)[T, $].

Let h = diag(a, 1) be a representative in T'/[T, $]. The corresponding orbit is
{t, $]husU :t € T, u e U} = {tusU : t € T, det(t) =a, uec U}.

The corresponding element in eykGey is

ey Z tusey | ev =¢q Z teysey.

det(t)=a det(t)=a
uelU

So for a € FX

g set bs o = ey ZteT, det(t)=a tsey. Then the b, t € T, and by, for a € IFqX, generate a

subalgebra of eykGey isomorphic to Endy g1 (k[G/U]).

Multiplication of these generators is given as follows.
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L] btbt/ = bt/bt = btt’ for t,t/ eT.

L4 bs,abt = btbs,a = bs,det(t)a'

Note

bibs,a = (evtev)(eu Z t'sey) = ev Z tt'sey = ey Z rsey = bs det(t)a-
det(t')=a det(t')=a det(r)=adet(t)

® bsabsp = q_l(q - 1)2bé7ab + q_l(q —-1) Zdet(t):ab be.
Note

bs,absp = €U Z tsey - ey Z t'seu

det(t)=a det(t')=b

=ey Z Z (evser)?

det(t)=a det(t')=

=(g—Dev Y. tlgreva’(~Dey +q tevser Y evaV(r)ey]

det(t)=ab relfy
=q¢ q—Dev Y tev(~D)ev+q (g—1) > teyser Y < )
det(t)=ab det(t)=ab reFy
=q g—Dev Y, ev+qlqg—1’er Y tier
det(t)=ab det(a)=ab
=q¢'g-1) > bit+q (g—1)bsa
det(t)=ab

Since det: T — IF; is surjective, for any a € IF‘qX7 there exists ¢ € T' such that bibs1 = b; det(r) = bs,a-

Hence Endjgx7)(k[G/U]) is in fact generated by b, for t € T', and b, ;.
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4 W-Categorification

The following categorical framework of this section was first defined by Dreyfus-Schmidt in [7]. It is re-

presented here with some minor modifications and additions.

4.1 Axioms of a W-categorification

Let R be a commutative, unital ring, and let 4 denote an artinian and noetherian R-linear abelian category.
Let (W, S) be a finite Coxeter system. For any I C S, let W; = (s : s € I) be the parabolic subgroup in W
corresponding to I. Let

Dy ={weW :{(sw) > l(w) for all s € T},

where ¢ denotes the length function on W. Write DI_1 = {d!:d € Dy}, and for I, J subsets of S, write
Drj=D;n D' Lastly, if I CJ C Sand K C S, put Wg(I,J) = {w € W : “I C J}, where “I is the

conjugate wlw~'. The subscript is omitted if K = S.

Definition 4.1. Given a Coxeter system (W, S), a weak W-categorifcation on an abelian category A is the
data of a decomposition A = @, ¢Ar, biadjoint functors (F{: Ar 2 Ay: E{)icjcs, and equivalences

P Ar = Awg, wew(1,5), With the additional natural isomorphisms,
eForal I CJCKCS, vyK: Fj(FIJ = FIK,
e Forall I C S and we Wi(I,S), ¢rw: ®rw — Ida,,
e Forall ICJCSandweW(J,S), aryw: Fu] ®ra > O, Fy.

The above are further subject to the conditions that for all I C S, w € W(I,S5), and w € W("I,S),
Dug oy 0 Pry = Pruw, and for all I C 5, FII =1Id4, = E{

Additionally, for each I C J C S, fix two counit-unit pairs witnessing the fact that F{ and E{ are
biadjoint: put (¢7,n7): F/ 4 E{, and put (¢7,77): E{ 4 F{.

These counit-unit pairs must be such that the following diagram commutes for any natural transformation

¢: F/ — FY, (the { notation below is suppressed for readability)
" grE " EFE

EFFE —— EFFE—F
EoFE eE
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and for any natural transformation v: E{ — E7, the following commutes:

-  rEr 25 PER

npl }F

FEF —— FEF —— F.
FoF Fe

Remark 4.2. The final condition on the counit-unit pairs states that the usual transpose maps
Hom(F{, F{) — Hom(E{, EY)

induced by the adjunction coincide, regardless of whether the map is induced by (e7,77) or (¢/,77). Hence
for p € Hom(F{, F{), let ¢* € Hom(E{, E{) denote the transpose natural transformation. Of course, the
analogous statements are also assumed with the roles of F' IJ and E‘I] reversed. The * notation also applies

to any generated biadjoint natural transformations, e.g., F¥ F/ is biadjoint to E{ EX via
e o FFe/EN  FRF/E{EY —1da,, E{nSF/on]:1da, — EJ/EFFFF/].
By functoriality of the mate correspondence, in this case we have the following particular isomorphisms in a
weak W-categorifcation,
e Forall I CJC K CS, 'y}‘)J’K: Ef ;E{Eﬁ(
'LUJ

e Forall [ CJCSandweW(JS), o}, E/®;, = ;L Eu].

Definition 4.3. A W-categorification on A is a weak W-categorification that satisfies the following coherence

conditions.

e Forall ICJC K CLCS, the following diagram commutes:

FEvr gk

FREFF FRFf

’YJ,K,LF]J\L l’YIJ‘K

FtF) ————— FF

Y1,J,L
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e Forall I C S, and all v,w € W;(I,S), the following diagram commutes

©1,0Pr1,0

(I)I,w(bl,v ? (DLU

@I,wipl,vl m J/(PI,’U

_—
(I)I,w ol w Id.A]

Note that since v € Wy, then I C S implies I = I, so the composition of functors is defined.

e Forall ICJC S, veW(J,S5), and w e W("J,S), the following diagram commutes

wv g wv 5
Fw'uI (I)'”I,wq)l,v — va[ q)l,wv

O‘UI,WJ,wq)I,UJ

vJ
Do gulo; Oy ar,J,w

q:'”J,wOéI,J.,vl

q)v‘]yw(I)J’vFI‘] E— (I)J’vaIJ.

e Forall ICJC K CS, and allve W(K,S), the following diagram commutes

v
K
Fy; argw

v v v 7
F.y Fop @1 F.; ®5.F;
'Y”I,”J,'”KJ JQJ,K,v
YK K K 1nJ
—> <7
E’I (I)I,v arK,v (I)K’wFI VI,J0,K ¢J’UFJ FI

e Forall I CJ C K C S, the following diagram commutes

J K pJ
n

J
n Einy F
Ids, —— E{F} ——"— EJEXFKF/
*—1
Y r1,0,k71,J,K

EfFf

The analogous statement for the other adjunction is assumed to hold as well.
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e Forall I CJ C K C S, the following diagram commutes

EK
FEEK d Ida,

—1 . K
V1,0, 57 I,J,Kl TGJ

Kol nK KK
EE———
FPFYETE] K T K FrE]
7 ey

The analogous statement for the other adjunction is assumed to hold as well.

e (Mackey Axiom) For all I C J C K C S, there is an isomorphism

I J ~, K K
@ Foyar®rovrwlinpe — BT F
weWgNDyy

induced by the component maps (with the identity transformations suppressed)

K
I J 1 K K I J
FmeI(I)Jﬂ"”I,wEJme — ET Fj FanI(I)JﬁwLwEme

YwJjni, I, K K K J
EI Fw JmI(I)JﬂI“’,wEJﬁI“’

XJNIV K,w

K K J
EI (I)KwaJan Eme
PR, w

K nK J
EI FJﬁI“’EJﬂIw

—1
Yinrw, 5,k K K —J J
EI FJ FJHIWEJOI“’

J
€ w
JNIW E;{ F;(

Example 4.4. Suppose (W, S) is a Coxeter system of type A;, so that S = {s}. Then a W-categorification
is the data of a decomposition A = Ay ® Ag, and pair of biadjoint functors F': 4y = Ag: F with two fixed
adjunctions (e,n) : F'+= E and (¢,7) : £ = F. There is an automorphism ®¢ : Ay — Ay. Furthermore,

since g5 s ~ Id 45, there is an isomorphism a: F® — F, and the Mackey axiom implies EF' ~ Id 4, © ®.
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5 Constructing a 2-category

This section contains an explicit construction of a 2-category extending that of a W-categorification in
type A;. Additional 2-morphisms ¢’, €”, z, and & are introduced below, which are not present in Dreyfus-
Schmidt’s definition of a W-categorification. Moreover, a large list of explicit addition relations are given for
the generating 2-morphisms, and allows one to write explicit (module) generating sets for the endomorphism

algebras of the generating 1-morphisms of the 2-category.

5.1 Definitions

Put R = Z[q*], for ¢ an indeterminate. Let C’ be the strict, R-linear 2-category with two objects, () and S,

and 1-morphisms generated by
e F:)— S
e £:S—10
e O: () — 0

and 2-morphisms generated by
e c:ly—d D — 1
e a: Fod® — F,
e z:Pod — 1y

IQLEFL):[@

o lg— L3 FE— 414

where the final two bullets are fixed counit-unit adjunctions for the biadjoint 1-morphisms F' and E. Impose
the condition that o and z are invertible. Also, set e = €’ o€/, and € = ¢’ o €”, and label the following
endormophisms of 1g by setting eg = esong, e;1 = eso FeEong, and e = esoaF o Fe' Eong. Furthermore,

impose the condition that for any ¢ € Home/ (F, F'), we have

Feso EpEonyE = ey o EFE o Eng.

so that the two usual maps Home: (F, F') — Home/ (E, E) induced by the adjunctions coincide. It then
follows that the usual maps from Home: (F, F') to Home: (E, E) are equal, as are those from Home: (E, E) to

}IOIHC/(F'7 F)
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Note also that there are two 2-morphisms
= (ng, Eaony®): 1p ®® — EF

and

a:=Fego EaFEony®E: PF — E.

Now let C be the strict R-linear category obtained from C’ by inverting the 2-morphism u, as well as «,
a, and z.

These arrows are subject to the following relations:

yed L EFr—"51,

is given by (q‘l O). Note this is specifically the two relations ey oy = ¢~ !, and €y o Ea o ng® = 0.

2,
1 diag(1g,&
B grEt B pgep UPY  pap
is given by ale where ¢ € {0,1}.
(=1)%(¢lg +q(¢g—1)aoe'E)
3.
-1 di s
JoBELING o) LG N o LD BN P
is given by air where € € {0,1}.
(=1)%(qlr + q(g — Do Fe')
4,
&= Pe
1y pr i B opr 229
is given by ¢~ 1(1 — q)¢’.
5.
a1t e P
lp—sFprt Fro "9
is given by ¢~ 1(1 — q)e’.
6.
& e'E &
DE E DE E

is given by ¢~ ¢ E + ¢ (¢ — 1)eE o a.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

is given by ¢~ !Fe” + ¢ (¢ —1)Feoa.

aoca®=q 'Fz+q Hqg—1)aoFe oFz
ao®a=q 2E+q gq—1)aoeEozE

Faoa 'E=aEoFat+(¢—1)(aoFe)E—(¢—1)F(aoe'E)
e =ed = Pe

el = EFe

The following diagram is commutative

Fo 2 F

Fo ——F

6// o 6l o 6// — 6//

eoe’oe =¢

PO —— 1,

de! | /D
e//

o
PP <1
e"@l@%
(b €
(These two relations also imply ®e’ = e/® and Pe’ = e P.)
bz =20
€pe1 = e1€g
€pea = €2€q
€162 = €2€1
eol” = (q + (_1)6C])1F + (-1Dq(¢ — o Fe’
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23. e1F = (q+ (—1)°q)Fe + (—1)°q(q — 1)aco Fe'
24. eoF = (—1)¢ g —1)Fe+ ((-1)°+ g+ (-1)°¢ ' (¢ — 1)?)a o Fe'
Note also that these final three relations for egF', e; F', and exF' show that the endomorphisms of 15 do

not introduce any new endomorphisms of F.

5.2 Construction of Subspaces

Definition 5.1. Define the following R-linear subspaces, given in terms of generating sets.
o H(lp,1p) := (1,e) C Home(1g, 1p)
e H(1y,®) := (/) C Home(1lp, D)
o H(®,1p) i= (¢") C Home (@, 1)
o H(®,®):=(1,¢") C Home(P, )
o H(ls,1s) = (Ls, ehefel : i, j, k > 0) C Home(1s, 1s)
e Define H(F, F) C Hom¢(F, F) to be the subalgebra generated by {1p, Fe,a o Fe'}.

e Define H(FE, E) C Hom¢(E, E) to be the image of H(F, F) under the map

E €
Home (F, F) —s Home(E,E) : o s E 2" EFE 2% pre 2,
Under this map 1z corresponds to 1z, F'e corresponds to eF, o o F'e corresponds to

Eeso EaE o EFe’'EonygE = Feso EaEony®Eoe'E=aoc'E.

So H(E, E) has generating set {1g,eE,ace'E}.

e Define H(1g, F'E) to be the image of the map

H(F,F) —s Home(1s, FE) : ¢ <1SL>FELE>FE)

e Define H(FE,1g) to be the image of the map

H(F,F) — Home(FE, 1s) : ¢ — ( FE-2FrE 414 )
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e Define H(FE, FE) to be the image of the map

H(F,F)® H(F,F) — H(F,F) ® Home(F®, F)
— Home(F @ FO, F)

— Hom¢(FEF,F) — Home(FE,FE)

given by
(e.0) > (pyva) = (¢ woa)m (¢ woa)oFu ' (9B ($oa)E) o Fu~ Eo FEys.

Lemma 5.2. Suppose X is a 1-morphism in C. If X is not indecomposable, one can express X, up to

isomorphism, as a direct sum of the indecomposable 1-morphisms {1¢,15,®, E, F, FE} in a canonical way.

Proof. If X is a product of a single generating 1-morphism, then X is equal to one of 1y, 15, ®, E, of F, each
of which is indecomposable. Otherwise, let X be a product of generating 1-morphisms of C, X = G; --- Gy,

where G; € {®,E, F'}, with d > 2. Put X' =G3---Gy.

o If G; = G2 = ®, we put A(X) = X/, and §y = 2X": X' = A(X).

If Gy = ®, and Gy = F, we put A(X) = EX’ and 0% = aX': X = A(X)

If Gy =F and Gy = F, we put A(X) = X’ @ &X' and §y = p1X": X & A(X)

If Gy = F and Gy = ®, we put A(X) = FX’ and 6 = aX': X = A(X)

e fGi=F,Gys=F,and G3 = F, we put A(X) =FGy---Gq® FPGy---Gq and

S =Fu Gy Gy X =5 A(X).

When these assumptions do not hold, we have X € {1y, ®?,15, E, F, FE}, and we put A(X) = X, and
S =id: X = A(X).

This exhausts all cases, and in each case X is isomorphic to a direct sum of 1-morphisms expressible as a
composite of fewer non-identity generating 1-morphisms. Inductively, this process must eventually terminate
as a direct sum of indecomposable 1-morphisms.

This decomposition extends to direct sums as follows. Suppose X = @;:1 X;, where each X; is a
product of generating 1-morphisms. Put A(X) := @;_; A(X;), and % := &%, +--- + 0% . Inductively,
define A"(X) := A(A""1(X)), and 9% by 0% = % and
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n—1

8)('
X —— A" H(X)

’

A™(X).

Note that there exists some n such that A™(X) is a direct sum all of whose summands are either 1y, 1g,
®, E, F, or FE. Since §%, = 1x/ for each of these summands, it follows that for m > n, A™(X) = A™(X)
and 0% = 0%. Hence for any X which is a product of generating 1-morphisms, put dx := 0% for any n such
that A™(X) is a direct sum of irreducible 1-morphisms, which is well-defined by the previous observations.

Now suppose X =@, X; and Y =P j Y; are parallel 1-morphisms where each X; and Y} are indecom-

posable. Set
HX,Y):= P H(X;,Y;).
‘7j

Suppose X and Y are arbitrary 1-morphisms in C. As noted before, there exist ny, ng > 0 such that A™ (X)
and A™2(Y) are (possibly direct sums) of indecomposable 1-morphisms. Let n = max{ni,n2}, so that
A™M(X) =AM (X), A™(Y) = A™(Y), 6x = 0% = 0%, and oy = 0§ = 0y*. Then finally define H(X,Y") to
be the R-submodule of Hom¢(X,Y) given by

H(X,Y): =6, o HA™(X),A™(Y)) 0 dx := {0y 0 Aodx : A€ HA™(X),A"(Y))}.

5.3 Stability under Vertical Composition

Lemma 5.3. Suppose X € {1y,®,1s,E,F,FE,EF}, Y € {1y,®?,1s, FE,EF}. If X and Y are parallel,

and f: X — 'Y is a vertical composite of generating 2-morphisms, then f € H(X,Y).

Proof. Induct on n, the number of generating 2-morphisms in the composite f. If n = 1, f is simply a
generating 2-morphism. By definition, one immediately has ¢/ € H(1y,®), ¢’ € H(®,1p), « € H(F®, F),
z € H(® o ®,1y). Also, under the various maps defined above 1p € H(F,F) maps to ng € H(lg, EF),
to ¢g € H(EF,1p), tons € H(lg,FE), and to es € H(FE,1g). This covers all possibilities when f is a
generating 2-morphism.

Suppose n > 1. Decompose f = X —2— X’ L) Y , where x is a generating 2-morphism, and f’ is a

composite of n — 1 generating 2-morphisms, which is in H(X’,Y), by induction.

o If X = 1y, then z = € or x = nyg. If © = €/, then X’ = ®, and the only possibilities for Y are
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Y=13,Y =0, orY = EF. f Y = 1y, then ' € H(®,1p). But H(P,1p) is generated by e”,
and e’ oe’ = e € H(ly,1p), so that f = f'ox € H(1lp,1p). Y = &, then f' € H(P,P). Now
H(®,®) has generators 1¢ and e¢”. Precomposing with z, notice that 1g o ¢’ = ¢ € H(1ly, ®) and
e oe =¢€oe’oe =¢ € H(ly,P), and hence f € H(ly,®). Y = EF, f' € H(®,EF), so
plof' € H(®,15® ®). Denote this matrix by (a b)T, where a € H(®,1y), and b € H(®,®). Then
ptofloe = (a oe’ bo e’). Now e”oe’ = e € H(1y,1y) and cycling b over the generators of H(®, ®)
we see 1poe’ =€’ € H(1g,®) and ¢/ oe’ = e'oe”oe’ = ¢’ € H(1p,®). Hence u~tofoe’ € H(1p, 19@®),

so that f o€’ € H(1y, EF).

If x = ny, then X' = EF, and thus Y =13, Y =@, of Y = EF. If Y = 1y, then f' € H(EF,1p). We

get a diagram

1 i EF ! 1y
0
1p lyo® 1p
1 (a b)

0

where a € H(1y,1p) and b € H(®P,1y). Since the composite along the bottom row is simply a, by
definition f = f' ong € H(1g, 1p).

IfY = @, then f' € H(EF, ®). There is a similar diagram

M9 I’

1p

| - T

lp————1p) 0P ———— @
(1) (a b)
0

where a € H(1yp,®) and b € H(P,P). Since the composite along the bottom row is simply a, by
definition f = f' ong € H(1y, ®).

IfY = EF, then f' € H(EF,EF). There is a similar diagram

1 ur f

T

lp———— 1y ——— 1,0 O

I

30




where a € H(1y,1p), b € H(®,1y), ¢ € H(1yp,P), and d € H(P,P). Since the bottom horizontal
T
composite is (a c) e H(lg,1lg® ®), f = f'ong € H(1y, EF).

Suppose X = ®. Then z = €¢”, X’ = 1y, and the possibilities for Y are Y = 1y, ¥ = @, or
Y = EF. If' Y = 1y, it suffices to show p oe” € H(®,1p) for ¢ a generator in H(lp,1p). But
eoe’ =¢"oe 0 =€’ € H(D,1yp).

IfY = @, it suffices to check poe” € H(®, D) for ¢ a generator in H(1y, ®). By the defining relations,
eoe’=¢e" e H®, D).

If Y = EF, there is a diagram

o—<" 1, ! EF
T
[} 1@ 1@ D P

where a € H(1y,1y) and b € H(1y, ®). Since eoe” = e’ o€’ oe” =¢e” € H(P,1y) and e’ oe” =€ €

H(®,®), it follows f = f'oe” € H(1y, EF).
Suppose X = 1g. Possibilities for = are eq, ey, e, so that X’ = 1g, and either Y = 15 or Y = F'E.
Otherwise, x = ng, so that X’ = FFE, and either Y =1g or Y = FE.

Assume z =¢; for i = 0,1,2. If Y = 1g, it suffices to check poe;, € H(1g,1g) for ¢ € H(1g,1g), but

this is immediate.

So suppose x = eg, and Y = FE. It suffices to check ¢pE ongoeg € H(lg, FE) for ¢ a generator in
H(1lg,FE). If ¢ = 1p, by the defining relations we have

nsoey=eoFEons =[(q+ (=1)¢)lre + (=1)°q(¢ — 1)(a o Fe')E] o ng

= (¢4 (=1)qns + (=1)°qlg = D(eo Fe')Eons

which is in H(1g, F'E), since g and (oo Fe')E are in H(lg, FE) by definition. If ¢ = Fe,

FeEongoey= FeEoeyEF ong

=g+ (-DQFeE + (—1)°q(q — 1)(a o Fe')E] ong
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which is in H(1g, FE) since FeEong and (ao Fe')E ong are generators in H(lg, FE). If p = ao Fe’,

aFoFdEongoey=aEoFdEoeyEF ong
=aFo[(g+ (-1)q)Fe'E+ (—1)°q(¢ —1)Fe’EoaFE o Fe'E] ong
=g+ (=1)ql(ac0o FéYEons + (=1)°qlq — 1)[¢ *Fe"E +q 'FeE oaE]o Fe'E ong
= (-1)%(q—1FeEons+lg+ (~1)q+ (~=1)(¢ = 1)*)(ao Fe')Eons

which is in H(1g, FE).

Suppose z = e;. As above, if ¢ = 1p,

nsoey =e BFFong

=(qg+ (-1)qQ)FeEong + (—1)q(q — 1)(ao Fe')E ong

which is H(1g, FE). If ¢ = Fe,

FeEonsoe = (q+ (=1)q)FeEons + (—=1)°q(q — 1)(a o Fe')E ong
which is in H(1g, FE). If p = a o Fé/,

(o Fe'YEongoe; = (¢+ (—=1)°q) (a0 Fe)Eong + (—1)q(q — 1)(¢ ' Fe"E + ¢ ' (¢ — 1)FeE o aE)Fe'E o ng

= (=1)(¢g—1)FeEons+ (q+ (-1)q+ (-1)°(¢ — 1)*)(cv0 Fe')E o g

which is in H(1g, FE).

If © = eq, the reasoning works as in the case for x = ey, since e; F' and es F' are both linear combinations

of Fe and a o F'¢’ with coefficients in R.

Now suppose ¢ = ng. If Y = 1g, it suffices to check eg o pE ong € H(lg,1lg) for ¢ a generating
2-morphism of H(F, F'). This is automatic, for as ¢ ranges over {1p, Fe,ao Fe'}, g o oF ong ranges

over ey, e1, and eg, respectively, all of which are in H(1g,1g) by definition.

If Y = FE, then f' € H(FE,FE), so it suffices to show
(wE (o a)E) o Fu~'E o FEngong = ((pE (o a)E) o Fu lEongFEong

is in H(lg, F'E) as ¢ and v range over generators of H(F, F). Since H(lg, FE) is generated by 2-
morphisms of form pF o ng for ¢ € H(F,F), it suffices to show (@E (Yo a)E) oFu~'EonsFE
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has form pE for p € H(F, F'), and hence in turn it is enough to show (Lp (o a)) oFu~tongF isin
H(F,F) when ¢ and ¢ are in H(F, F'). First note any generator of form (go 0) yields

1 0
(Lp O)OF/,L’longF:(gp O)((f )oFﬂlonsF—qgo.
o

So generators (1F 0), (Fe O), and (aoFe’ O) correspond to ¢lp, qFe, and g(« o Fe'), all of
which are in H(F, F).

For generators of form <O o a), note

1p 0

(0 ¢oa)OFu_lonsF=(0 1/))0<0 N

) oFutongF

_ qlp
=0 v) <—1>f<q1F+q<q—1>aoFe'>>

=(-1)q¥+qlg—1)poaoFe
which is clearly in H(F, F), by previous computations.

If X = F or X = F, there are no generating 2-morphisms with source FE or F, so there is nothing to

prove.

If X = FE, then x = €5, and X’ = 1g. The possibilities for Y are Y = lgor Y = FE. f Y = 1g,
then f’ € H(lg,1s). By definition, H(FFE,1g) is generated by arrows of form eg o 9F, where ¢ is
a generating 2-morphism in H(F, F). If ¢ € H(lg,1g), then ¢ o es = €5 o YFE. Hence it suffices
to show that ¢ F is a linear combination of generating 2-morphisms in H(F, F'), with coefficients in
R. Any 2-morphism in H(lg,1g) is a sum of 2-morphisms of the form eée{elg, for ¢,5,k € Z>o. The

defining relations imply that Feo Fe = Fe, Feoao Fe' = ao Fe' o Fe = a o Fée/, and
(o Fe)o(aoFe)= (g 'Fe +q ' (¢—1)Feoa)Fe =q 'Fe+q *(q¢—1)ao Fe,

so that {1p,Fe,«a o Fe'} generates H(F,F) as a module. Since egF, e1F, and e2F are all linear

combinations of 1z, Fe, and a o Fe', with coefficients in R, it follows inductively that

ehelek = (eaF) o (e1F) o (egF)*

is also a linear combination of {15, Fe,a o Fe'} with coefficients in R[g™?], as required.
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If Y = FE, then ' € H(lg,FE). Since H(lg, FE) is generated by 2-morphisms of form pFE o ng, it
suffices to show that pEongoes = pEoesFEoFEng isin H(FE,FE) when p € H(F, F). Based on the
form of generators of H(F'E, FE), it is sufficient to show pEoegF'E has form (ng (o a)E) oFu~'E
for p,v € H(F, F'), and in turn it is enough to show poeg F' has form (gp o a) oFu~1, or equivalently,

poesFoFu= (gp ¢oa). But

poeSFoFu:poesFO(Fn@ FEQOan)(I))
:<p poesFoFanFn(D(I))
=<p poozoeSF@an@(I)>=<p poa),
so one can take p =Y = ¢.

e Suppose X = EF, so = ¢y, and X' = 1y. The possibilities for Y are Y =1y, Y =®, or Y = EF. If
Y =1y, then f' € H(1p,1p). There is a diagram

EF il 1p—7 1
T
lpo® 1p 1p

DR

which clearly shows f = ' oe € (EF,1y). The same argument shows that f = f'oey € H(EF,Y) for

the other possibilities of Y as well.

Lemma 5.4. The composition map
H(Y,Z)x HX,Y) — Hom¢(X,Z) : (g, f) = go f

takes values in H(X,Z) when X, Y, and Z are parallel indecomposable 1-morphisms in {1y, ®,1s, E, F, FE}.
Proof. First, consider the parallel 1-morphisms 1y and ® from () to (). There are eight cases.
e Suppose (X,Y,Z) = (1p, 14, 1p). Since e = e, it is clear H(1g, 1p) is closed under composition.

e Suppose (X,Y,Z) = (1p,1p,P). Since ¢’ ce = ¢’ o€’ oe’ = ¢, the composition map takes values in

H(1y, ®).
e Suppose (X,Y,Z) = (1p,P,1p). Since ¢’ o e’ = e, the composition map takes values in H(1g, 1p).
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e Suppose (X,Y,Z) = (®,1p,1p). Since eoe” = e’ o€’ oe” = €”, the composition map takes values in

H(®,1p).

e Suppose (X,Y,Z) = (1p, P, P). Since ¢ oe’ =€’ 0e” o€’ = ¢, the composition map takes values in

H(ly,®).
e Suppose (X,Y,Z) = (P, 1p,P). Since €’ oe” = €', the composition map takes values in H (P, D).

e Suppose (X,Y,Z) = (®,P,1p). Since ¢’ o’ =e" o€’ oe” =e”, the composition map takes values in
H(®,1p).
e Suppose (X,Y,Z) = (®,P, D). Since ¢’ oe”' =€ 0e” o€’ 0e” =€ o€’ =¢€”, the composition map

takes values in H(®, ®).

Second, the only indecomposable 1-morphism () — S is F. Consider the following pairwise compositions

of the nonidentity generators of H(F, F):
e FeoFe = Fe? = Fe.
e FeoaoFe =aoFe"oFe =aoF(¢"oe')=aoFe

e aoFeoFe=aoF(coe)=aoFe

aoFe oaoFe = (¢ 'Fe'" +q*(¢g—1)Feoa)o Fe'
=q 'Fe" oFe +q ' (¢q—1)Feoao Fe

=q 'Fe+q '(¢—NaoFe

These give the following multiplication table on the nonidentity generators of H(F, F'), and from this it

o H Fe ‘ ao Fe
Fe Fe ao Fe!
aoFe || aoFe | ¢ 'Fe+q tq—1)ao Fe

is clear that H(F, F) is closed under composition.
Similarly, the only indecomposable 1-morphism S — ) is E. Again pairwise composition of nonidentity

generators of H(E, E) gives
o cEoeE =¢e’E =¢F
e cEFodoeE=aoePFoeE=doce’"FoeE=ao(e"oe)E=aoceFE
e docFoeE =aoeE
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doe'EoaoedE= (g '¢"E+q ' (¢g—1)eEoa)oeE
=q ("o )E+q(g—1)eFoaoceFE
=q¢'eE+q ' (¢g—1)aoeE
yielding a multiplication table of nonidentity generators for H(E, F), and from this it follows that H(E, E)
is closed under composition.
o || eE | aoe'E

ek ek aoe'F
adocdE || aoeE | g leE+q (g—1)aoe'E

Fourth, the only indecomposable 1-morphisms S — S are 1g and FE.

e Suppose (X,Y,7Z) = (1g,1g, 1g). By definition, H(1g, 1g) is defined as the R-submodule of Hom¢(1g, 15)
generated by {eé,e{,e’; 4,4,k > 0}. Since ege; = ereq, egea = eazeg, and ereg = ezeq, H(lg,1g) may
also be described as the commutative R-subalgebra generated by {1g,eq,e1,€2}, and so H(1g,1g) is

closed under composition.

e Suppose (X,Y,Z) = (15,15, FE). An arbitrary composite has form ¢F ong oe; for i = 0,1,2, and
pe H(F,F). In Lemma arrows of this form are proven to be in H(1g, F'E).

e Suppose (X,Y,7) = (1g, FE,1g). An arbitrary composite 1l¢ — F'E — 1g has form
esopFoyYFEons =€egsopEong

for p=¢@ot € H(F,F). As p cycles over the three generators of H(F, F'), the above composite is eq,
e1, or eq, all of which are in H(1g,1g). Hence composition on H(FE,1g) x H(lg, FE) takes values
in H(ls, 15).

e Suppose (X,Y,Z) = (FFE,1g,1g). An arbitrary composite FE — 1g — 1g has form ) oeg o pF for
v € H(lg,1g) and ¢ € H(F, F). Note

YoegopE =egopFEopE =¢€so (YFop)E

and hence will be in H(FFE,1g) is wF o € H(F,F). Since ¢ € H(F,F), it is enough to show
YF € H(F,F) when ¢ € H(lg,1s), and this was already shown in Lemma [5.3]
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e Suppose (X,Y,Z) = (FE,FE,FE). To show H(FE, FE) is closed under composition, first note the

1g 0 1 qlp
EoEns =
(o @>°“ =S Q-Q%@E+q@_1manJ

_ ql
Fu'FoFEng = Lo TE -
(=D(gFa~" +q(qg - 1)Fe'E)

defining relation

it follows that

Then the generators for H(FE, FE) have explicit form
qoE + (—1)(qEoaEo Fa ' +q(q—1)¢YE o (ao Fe')E),

where @, 9 € H(F, F). Fixing ¢ = 0 and letting ¢ range over H(F, F), and vice versa, gives generators
qlrg, ¢FeE, q(ao Fe')E, (—l)e(an oFa '+ q(qg—1)(ao Fe’)E),

(-1)(¢FeEoaEoFa ' +q(g—1)FeE o (a0 Fe')E),

and

(-1)“(g(ao Fe'YEoaE o Fa~' +q(q — 1)(a o Fe)E).

Since ¢ is invertible, these generators may be replaced with the R-module generating set
{1pp, FeE,(ao Fe')E,aEo Fa ', FeEoaE o Fa ', (ao Fe)EoaFE o Fa'}.

We check that the composites aEo Fa~loFeE, aEoFa to(aoFe)E, and aEoFa loaEoFa™t
are again in H(FE, F'E). The other possible pairwise composites are either clearly in H(FE, FE), or

a quick consequence of these three. For the first two, note
aEoFa 'oFeE=aFEoF®eEoFa ' = FeEoaE o Fa™*

and
aEoFa 'oaEoFe'E=aEoca®Eo Fda o F'E

—aFEoa®PEoFe/®FE o Fa !
=aFEoadFE o Fbe'Fo Fa™!

= (o Fe)EoaF o Fa*,
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both of which are in the generating set. Also,

aEoFa'oaEoFa ' =aFoa®Eo Fba 'oFa™ = (aoca®)Eo F(®a toa™t)
=(¢'Fz+q '(¢g—1)aoFe oFz)EoF(qz"'E+ (1 - q)®a ' 0 €'E)
=lpp+q¢ (1 —qQ)FzE0 Fda ' oe'E+ (¢ —1)(ao Fe')E—q ' (q—1)*(ao Fe')Eo FzEo Fda o e'E

=lpp+q¢ (1 —q)FzEo F®a ' oe'E+ (¢ —1)(ao Fe')E—q ' (¢—1)?FeEoaE o Fa™'.

The only term which is not immediately in H(FE, FE) is FzE o F®a~! o ¢’E. From the defining

relations, and some of their immediate consequences, this term can be rewritten as

F2EoF®a 'oe E = FzEoFe'®EoFa™! = F(z0¢/®)EoFa ™! = Fe"EoFa ™! = qF (aoe' E)+(1—q)FeE.

Since FeFE is a generator of H(FE, FE), it follows (aE o Fa~')? € H(FE, FE) if and only if
F(aoe'E) e H(FE,FE). To see this,

(xoFeYEoaEoFa '+ ¢ '(g—1)FeE—q '(¢—1)FeEoaE o Fa™!

= (¢ 'F"E+q (g 1)FeEoaE)o Fa~' + ¢ (q—1)FeE —q (¢~ 1)FeEoaE o Fa™*
=¢ 'Fe"EcFa " +q Y (q—1)FeE

= (¢ 'Fe"E+q '(¢—1)FeEoFa)oFa™'

= (FaoFeEoFa)oFa™!

=F(ao€E)
so that F(aoe'E) € H(FE,FE). This shows that aEo Fa ! oaEo Fa~! is an R-linear combination
of the module generators, so is in H(FE, FE), and hence H(FE, FFE) is closed under composition.

Suppose (X,Y,Z) = (1, FE, FE). An arbitrary composite 1¢ — F'/E — FE has form
YopEong

where ¢ € H(F,F), and v € H(FE, FE). From the explicit generators of H(FE, FE) in the previous
case, one has that if x is a generator of H(F, F), then «FE € H(FE,FE). Since H(FE,FE) is closed
under composition, we have ¥ o oF € H(FE, FE). By Lemma it is further shown that whenever
f € HUFE,FE), then fong € H(lg,FE). Hence composition on H(FE,FFE) x H(lg, FE) takes
values in H(1g, FE).
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e Suppose (X,Y,Z) = (FE,1g,FE). An arbitrary composite FE — 1g — FE has form
YEonsoesopkE

for ¢, € H(F,F). However, in Lemma it is shown that ¢ F ong o eg € H(FE, FE) whenever
v € H(F,F). As noted previously, pE € H(FE,FE) when ¢ € H(F,F), so their composite is in
H(FE,FE) as H(FE, FE) is closed under composition.

e Suppose (X,Y,Z) = (FE,FE,1s). A composite FE — FE — 1g has form eg o pF oy where

v € H(FE,FE). Assuming ~ is a generator of H(FE, FE), this composite has form
esopEo (qu + (=) (qpEocaEocFa ' +q(g—1)¢E o (ao Fe’)E))

for some p, ¢, € H(F,F). Tobein H(FE,1g), the above composite must be an R-linear combination
of terms of form eg o oF for ¢ € H(F,F). Only the middle term eg o pE o E o aF o Fa~! is not
immediately of this form. From the relation Faoa 'E = aEoFa '+ (q¢—1)(acFe')E—(q—1)F(ace'E),

we have
esopEoaEoFa ' =esopEo(Faoa 'E+(1—q)(aoFe)E+ (¢—1)F(aoe'E)).
The middle term has the desired form, so we check the other two. For the first, note

esopEoFaoa'E =¢esopEoFEeso FEaE o Fng®FEoa 'E
—ego0esFEo FEaFE o Fy®FE o pdEoa 'E

=ego(esFoFEaoFnydopboa )E,
and furthermore,

esFoFEaoFnpy®opboa ™l =aoegFPoFny®opboa ™t =aopboal.

Hence €5 0 egFE o FEaE o Fny®E o p®F o o' E will be a sum of terms of form

esooE if aopPoa™t € H(F,F) for any p € H(F, F). Checking on generators, indeed

aoFeboat=aoFdeoa ! =Feoaoa™ =Fec H(F,F)
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and

aoaboFedoat=aocaboFde'oa' =aoaboa'®oFe =aoFe € H(F,F).

For the other term,

esopEoFaoFeE=¢cs0pEoFEego FEaE o Fng®E o Fe'E
=esoegFEo FEaE o Fny®FE o Fe'E o pE
=¢esoaEoegF®E o Fy®E o Fe'E o pE

=¢eso(aoFe)EopE.

For p € H(F,F), es o (oo Fe')E o pE will be an R-linear combination of terms of form eg o o E for

o € H(F, F). Thus the composition map on H(FE,1g) x H(FE, FE) takes values in H(FE,1g).
O

Remark 5.5. Observe that the composition map H(X,Y) x H(Y,Z) — Hom¢(X, Z) takes values in

H(X,Z). For given f € H(X,Y) and g € H(Y, Z), the composite g o f is given by pasting the diagrams

D Xi — D,V 5 Di %
’ (ajs) J (brj)

where @, X; is the canonical decomposition of X, etc. Writing A = (aj;) and B = (by;), then the bottom
row is given by the matrix C' = BA, which has components ¢,s = >, by¢ 0 ags. Then ¢, € H(X,, Z,) as
bre 0 ags € H(Xs, Z,) since the composite map H(Yy, Z,) x H(X;,Yy) — H(X;, Z,) is already known to
take values in H (X, Z,) when X, Yy, and Z, are indecomposable, by Lemma
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5.4 Stability under Horizontal Composition
5.4.1 Right Horizontal Composition

Suppose f € H(X,Y), and X,Y: () — 0. The only indecomposable endomorphisms of () are 15 and ®.

Hence there is a diagram

X Y

| &

1" @ @O N 1™ @ eome

for some ny,n2,my,me > 0, and (a;;) is a matrix with components in H(1y,1p), H(1y,®), H(®, 1p), or

H(®,®). This in turn gives another diagram

X A Yo

5Xq>l l&y@

PO P PPpoOn2 @) Ppdm P PPOm2

The bottom row of the above diagram does not consist of indecomposables. Extending the diagram using

the prescribed algorithm yields

Xo : Yo

lsXq)l l(;y‘b
(aj; ®)

PO p pPOn2 sy O™ @y PPDI™M2
diag(1§"1,z®n2)l ldiag(lgmlvze;mz)

PP @ 1572 ——— M @ 1772,

The left and right vertical composites in the above diagram are the prescribed decompositions for X ®
and Y'® into indecomposables. So for f® to be an arrow in H(X®,Y ®), necessarily the bottom arrow must
have components in H(1g, 1p), H(1p, ®), H(P,1y), or H(P, P). This amounts to checking four cases.

If aj; € H(1p,1p), consider

Since 1¢ € H(®, ®) and e® = ¢ € H(®, ®), the composite is in H(P, D).

If a;; € H(1y, ®), consider
1 a;i ® z

® b —— 0P

1p.

Since zoe'® =€’ € H(®D,1p), the composite is in H (P, 1y).
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If a;; € H(®,1p), consider
PP ——— @

1p

Since e"® 0 27t = ¢’ € H(1y, ®), the composite is in H(1p, ®).
If a;; € H(®,®), consider

—1 (ljiq>

lg = ®d " ¢d —2 1.

Since 1p € H(1p,1p) and zoe”Pozl = zo0e'®oe’Poz !t =e" o’ =e € H(ly,1p), the composite is in

H(1g,1p).

Proposition 5.6. Suppose X,Y : ) — 0 are parallel 1-morphisms in C. Then the map
H(X,Y) — Hom¢(XP,Y®): f— fO

takes values in H(X®,Y D).

In the same setting, appending F yields

XE YE
5xEl l(syE
a]‘iE
E®n @ o FOne2 ( )> E®m g § poma
diag(lgnlyé‘é@prw)l ldiag(l%nll,de)mQ)

Eom P Eone - s oML P Eom2

The left and right vertical composites are the decomposition maps dx g and dy g, respectively, so if the
bottom arrow has components in H(E, E), it follows that fE € H(XE,Y E).

If aj; € H(1p,1p), the corresponding component in A is given by 1g oaj;Eolg = a;; E. Since
lp € H(E,E) and eFE € H(E, E), the corresponding component in A is in H(E, E).

If aj; € H(1p, ®), the corresponding component in A is given by & oaj;Eolg. Since doe’E € H(E, E),
the corresponding component in A is in H(E, E).

If aj; € H(®,1p), the corresponding component in A is given by 1goaj; Eoa*. As consequences of the
defining relations, ¢”E o a~! = gae’E + (1 — q)eE € H(E, E), so the corresponding component in A is in
H(E,E).

If a;; € H(®, ®), the corresponding component in A is given by @ o a;;Foa~!. But

doe’"Eoa'=aocdFEoe’Eoa ! c H(E,E),
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since both G o €’E and €’ E o a~! are in H(FE, E), which is closed under composition. So the corresponding
component in A is in H(FE, E) as well.

Hence we have the following.

Proposition 5.7. Suppose X,Y : ) — () are parallel 1-morphisms in C. Then the map
H(X,Y) — Hom¢(XE,YE): f— fE

takes values in H(XE,YE).

Now suppose X,Y: ) — S, and f € H(X,Y). The only indecomposable 1-morphism from @ to S is F,

hence there is a diagram

x— .y

o | |

Fon ﬁ) Fom

for some n,m > 0. Appending ® on the right, and extending the diagram yields

xo—" vo

6x<bl J/éyfb

Foo" — s Fom

(a;ji®)
Q@Wi Lx@m

Fén —_ pom,

The vertical composites are the decomposition maps dx¢ and dy s, so it will follow that f® € H(X®,Y ®)
ifvoa;®oa~! € H(F,F) for a;; € H(F, F). Cycling over the generators of H(F, F'), note
aolpgoat=1p € H(F,F). Also, ao Feboa™ ! =aoFdeoat = Fe € H(F, F). Finally,

ao(aoFeYPoa ' =aocadoFddoa?
=g ' Fz+q Y g—1)aoFe oFzloFé®oa™!

=q 'Fe"oa '+ ¢ Y (g—1)aoFe oFe" oa™! € H(F,F)

since Fe'" oa™! = qao Fe' + (1 — q)Fe € H(F,F), and H(F,F) is closed under composition.

Proposition 5.8. Suppose X,Y : () — S are parallel 1-morphisms in C. Then the map
H(X,Y) — Hom¢(XP,Y®): f— fO
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takes values in H(X®,Y D).

Similarly, one can append E on the right, yielding a diagram

xE—% .vE

5xEl léyE

FE® — - PE®™,
(aj; E)

Now 6xE = dxg, 0y E = dyg, and FE remains indecomposable, so showing that fE € H(XE,YE)
reduces to showing that the map H(F, F) — Home/ (FE, FE) given by f — fE takes values in H(FE, FE).
Observe that under the definition of H(FE, FE), an element (,0) € H(F,F) @ H(F, F) maps to

_ qlre
E 0)oFu"'EoFEns = (pF 0)o — gpF.
<‘p K s =¥ ) (~1)(Fa' +q(¢—1)F¢E)) ¥
Since q is invertible, it follows that ¢ E € H(FE, FE) whenever ¢ € H(F, F').

Proposition 5.9. Suppose X, Y : ) — S are parallel 1-morphisms in C. Then the map
H(X,Y) — Hom¢(XE,YE): f— fE

takes values in H(XE,YE).

Now suppose X,Y: S — 0, and f € H(X,Y). The only indecomposable 1-morphism from S to 0 is F,

hence there is a diagram

x—1 .y

i | &

Eon ﬁ) Eom

for some m,n > 1, and a;; € H(E,FE). In turn,

xr— ' yp

6XFJ léyF

EF®" —__, EFom

(a;i F)
“IJ Jul

(Ip® (I))ea” —(lp® @)@m

Hence one needs to check that p='oaj;Fop € H(lg® ®,1yp & ®) when a;; € H(E, E), in order for
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fF € H(XF,YF). Checking on generators of H(FE, E), we have the following three diagrams

EF—''r . pp EF—<FF . pp EF (Goc B)F EF

d T T d

b —— 1@ d ped— s1,ed 1@ 1y & .
1"

o) b o)

This commutativity of the first diagram is clear. For the second, note

0
eEFopu= (eEFon@ eEFOanng)(I)) = (n@oe ann@q)oe”’) =po <e ”/>

since eEF o Eaony® = EFeo Eaong® = Fao EFe"” ony®. For the third, first note

0 —le//
po (e/ q_l(qq _ 1)6,/,> = (Ea omp®oe g lmoe’ +q 7 (g—1)EaomPo e”’)

and

(@oe'E)Fopu= (&Foe’EFon@ dFoe'EFOannmtI)>.

Comparing components, note
aFoeEFong=aFo®dnyoe = Faongdoce.

For the second component,

aF o EF oaF o®ny = [q '¢"EF 4+ ¢ (¢ — 1)eEF o aF] o &y
=q 'noe +q¢ (qg—1)EFeo Eaonyd
=q 'moe +q ' (¢g—1)Eaoc EFe" onyd

=q 'moe’ +q '(¢—1)EaonPoe".
Together, these give the following.

Proposition 5.10. Suppose X,Y : S — 0 are parallel 1-morphisms in C. Then the map
H(XF,YF) — Hom¢(XF,YF): f— fF

takes values in H(XF,YF).

45



Now suppose X,Y: S — S are l-morphisms in C, and f € H(X,Y). The only indecomposable 1-

morphisms on S are 1g and F'E, hence there is a diagram

X ! Y

5{ Py

15" @ FE®n2 - 19™ @ FE®™m:

for some ni,n9,mi,me > 0, and the a;; are arrows in one of H(lg,1lg), H(1g, FE), H(FE,1g), or

H(FE,FE). Appending F to the right, and applying the decomposition algorithm to the bottom row

yields

fF
XF YF

5XF 5yF

a]‘iF
Fom fa) FEF®n:2 % Fom P FEF®m2

diag(13"! Fu=t©"2) diag(1p™, Fut9™2)

Fom @ (F @ Fd)®n2 Fom g (F @ F®)om2

diag(lj‘?ml ,1%’"’2 ,a®m2)

diag(linl ,1?277,2 70‘@”2)

o P Fon2 P Fon2 - y Om P Fom2 P Fom2

As before, the left and right vertical composites are the decompositions dxr and dy r. For each of the

four choices for aj;, there are several subdiagrams which must be investigated.
If aj; € H(lg,1lg), the corresponding component in A is given simply given by a;;A. This amounts to

checking that a;,F € H(F, F) for a;; € H(1g,1g), which is clear from the defining relations for eoF, e1 F,

and ey F.
If a;; € H(1g, FE), the corresponding component in A is given

1
< F 0>OF/1,10(1J'Z'F.
0 «

Recall that H(1g, FE) is generated by arrows of the form ¢FE ong for ¢ € H(F,F). If ¢ = 1p, defining

relations imply

1 1
O P P ©rF €EH(F,F&F).
0 « (—=1)(qlr + (g — N)ao Fe’
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If o = Fe,

—_
|
(a]

o
Q

1p 0O
<F >OFM_10F6EFonSF
0 «

>0Fu_1OFEFeonSF

lr 0) oFu~tongFoFe
!

qFe
(=D(¢Fe+q(qg—1ao Fe')

_ qke
a (=1)(¢Fe+q(q—1)ao Fe' o Fe)

) €EH(F,FOQF).

If op=ao F¢,

1p 0 . , 1p 0\ {fa O Fe 0 1
F EF o Fe'EF onsF = F F
<0 oz)o poocanbe e Bt els (o a) <o a<1>><o Feo) "t 0

_(1p O\ fa O Fe 0 qlp
N0 af\o a®)\ 0 Fe&d) \(-1)(qa~t +q(qg—1)Fe)

Multiplying these out, the first component is gawo Fe’ € H(F, F'). The second is

(1) (qaoad o Fe'®oa™t +q(qg—1)aoad o Fe'®o Fe')
= (—=D(aoado Fbe' oa™ ' +q(g—1)aoado Fbe o Fe')
=(-1D(aoca®oa'®o Fe +qlqg—1)ao Fe oao Fe)

=(—1)(aoFe'+ q(¢ —1)ao Fe' oo Fe') € H(F, F).

If a;; € H(FE,1g), the corresponding component in A is

1 0
ajiFoFpuo (5 oz_1>‘

Recall H(FFE,1g) is generated by arrows of form eg o oF for ¢ a generator of H(F,F). First, observe
that for ¢ € H(F,F), we have o® o a™* = a~! o ¢. This is obvious if ¢ = 1p. If ¢ = Fe, then

Febdoa™l =F®coat=a"toFe If p=aoF¢,

(o FeYpoat =a®oFedoa ! =aboFdeoat =adoa '®oFe =atoaoFe.
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Then

1 0 ¢ 0 1 0
65Fo<pEFoF,uo<O a1>:€SFOFMO<O @@)(0 a1>
1
=egFoFpuo F (31 v 0
0 « 0 ¢
_ v 0 _
~ (1 1) (O ¢>—(¢ 5.

So the corresponding components in A are in H(F @ F, F).

Lastly, suppose a;; € H(FE, FE). The corresponding components of A are given by

1 0 1 0
0 at s F Fu 0 «

1
F@F—>F@F<I>i>FEF FEF FeFO ——FaF.

By the definition of H(FFE, FE), the generators have form

(b8 WoaE)oFu ' EoFEs = (¢F (boa)F) <(1)6(qu31+F§(q - 1)F€'E)>

=qpE + (-1)° (q(w oa)EoFat+q(qg—1)yYEoaFo Fe'E)

where ¢ and ¢ are in H(F, F). If ¢» = 0, the generators have form qpFE. Then

1 0 1 0 1 0 0 1 0
F OF/floqgoEFOFuo F s _ F . qp F 8
0 « 0 ot 0 ot 0 qpF 0 ot
_[a¥ 0 _[ar O
0 qaopdoa?! 0 qp
which has components in H(F, F). If ¢ = 0, the a;; has form
(-1)¢ (qu oaEoFa '+ q(qg—1)yYEo(ao Fe')E).

From the previous computation, the component corresponding to the summand ¥ E o (o o Fe')E is in
H(F, F) since the summand has form gFE for some g € H(F, F). Also, since the corresponding component

in A is given by conjugation by diag(1p,a) o Fu~!, it is sufficient that

1 0 1 0
N oFuto(aEoFa Y YFoFpuo N L
0 « 0 a”

has components in H(F, F'), as ¥ E already has the form considered previously. In fact, there is a commutative
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diagram

FEF FF popp EF, pRR

F}LIJ/ J{F,ul

FoFre FeFP
diag(lp,a)l ldiag(lp,a)
Feorl For.

(1—-q)aoFe 1
1p+(q—DaoF 0

To see this, first observe that

r 0
Fuo ((f _1> - (Fm, FanFnV,(I)oa_l)
(6%

1 0 1-— Fe
the counterclockwise composite Fa&F oa 'EF o Fuo " L (1= g)ao ke is given by (*)
0 o 1p+(g—1DaoF’

(1—q)FaFoFe¢ EFoFny+FaFoa 'EFoFaFoa 'EFoFny+(q—1)FaFoa 'EFoFaF oFe EF o Fry.

We rewrite some of the composites following the factors F'ny using the defining relations. Note

FaFoa 'EFoFaFoa 'EF = FaF o FdaF oa '®EFoa 'EF
=F(g'"2E+q¢ (q—1)aoeFEozE)Fo(qgFz*+ (1 —q)a '®o Fe')EF
=1lppr+(q—1)FaF o Fe'EF +q (1 - q)FzEF oo '®EF o Fe'EF + . ..
o= q¢ Y1 =q)?FaF o FéEF o FzEF oa '®EF o F¢'EF

=lppr+(@—1)FaFoFe'EF + ¢ '(1 —q)Fe"EF o Fa 'EF — ¢ '(1 — q)>FaF oa 'EF o FeEF
and

FaFoa 'EF o FaF o FeEF = FaF o FOaF oo '®EF o Fe'EF
=F(g"2E+q¢ ' (g—1)aoeEozE)Foa '®EF o F¢'EF
=q¢ 'F2EFoa '®EF o FéEF 4+ ¢ *(¢— 1)FaF o Fo¢"EF o a '®EF o F¢'EF
=q 'F2EF o FO'EF oa 'EF +q '(¢—1)FaF oo 'EF o F¢"EF o F¢'EF

=q¢ 'F'EFoa 'EF + ¢ '(¢— 1)FaF oa 'EF o FeEF.
. . . S 1r 0
Hence the equation (*) above is simply given by Fng, which is the first component of Fu o 0 )
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1 0 1
For the second component, F&F oa 'EF o Fuo < ; 1) ( 5) is given by
e
FaFoa 'EFoFny=FaF o Fdnyoa ' = FEao Fny®oa™ L.

So finally, we have the following.

Proposition 5.11. Suppose X,Y : S — S are parallel 1-morphisms in C. Then the map
H(X,Y) — Home(XE,YF): f— fF

takes values in H(XF,YF).
All the previous propositions can be collected more succinctly.

Proposition 5.12. If X and Y are parallel 1-morphisms in C, and Z is any appropriate 1-morphism, then

the map
H(X,Y) — Hom¢(XZ,YZ): f— fZ

takes values in H(XZ,Y Z).

5.4.2 Left Horizontal Composition

We can also compose generating 1-morphisms on the right without leaving the candidate spaces of form
H(X,Y). Suppose X,Y: ) — (. The decomposition maps dx and dy only ever act on the two left-most
factors, and any 1-morphism on ) has one of the following forms: 1y, ®, ®PX', PEX’ or EF X’ for some
appropriate 1-morphism X’. Then dx will be a product of matrices with components 1,,, 1¢, 2X’, &X', or

1 1 X’. There is a commutative diagram

%Y

J

GBZXZ(T]J}@JYJ

where X; and Y; are indecomposable 1-morphisms on §.

Postcomposing X and Y with @ still gives 1-morphisms on ), hence d¢ x is still a matrix composite with
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the same components. There is an extended diagram

(®aji)
@'L DX ——— @j Y;

@5)(1\ J@&;l
of

X — Y

6;4 Jﬁw

@r(q)X)T T> @s(q)y)s

As before, 55)1( is a matrix composite with components of form 1;,, le, 27X, pX', or a7 X/, and
Soy has components 11,, 1o, 2Y’, p='Y’, and aY’. Also, ®dx has components of form ®zX’, ®p~'X’,
®@, and ®d;' has components of form ®271Y’, duY’, ®a~1Y’. Lastly, the possibilities for ®a;; are 1g,
loa, Pe, e’, Pe’” and Pe’”. If each of these listed components is the appropriate space H(W, Z), then the
components of A will be in H(1g,1p), H(1g,P), H(P,1p), or H(P, D), so that &f € H(PX,PY). As seen

previously, we can append any necessary X’ or Y’ on the right, so it is sufficient to show the following.
Lemma 5.13. There are the following memberships.
1. 27t € H(1y,9®)
2. z€ H®D,1y)
3. ne Hly® ®,EF)
4. w e HEF, 15 © ®)
5. a€ H®E,E),
6. a~' € HE,®F)
7. &z € H(®DD, D)
8. 27t c H(®, D)
9. dp € H(® @ P, DEF)
10. dp~' € H(®PEF,® © )
11. da € H(PDE, PE)
12. da~! € H(PE,PDE)

13. ®e € H(®, D)
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14. ®¢' € H(®, )
15. ®¢" € H(®, D)
16. e € H(DD, dD)

Proof. The first six claims are immediate from the definitions. For the others, note that ®z € H(®PD, P)
since 2® € H(®PP,®), and 2® = ®z. The arguments applies to @21 since ®z~1 = 27 1.

We have the following commutative diagram

@ DD o SEF
J]&F
1
0 =z

D1y 1y @ .
0 g !
1 g ' g—1)

To see this, note
0 ¢ lo 0O —1 -1 /
Ko 1 / Z(ann@(b g ngoz+q (¢q—1)EaonyPoe oz).
L g (g=De’J\ 0 =
On the other hand, &F o &y = (Ea ong® aFo®FEao @n@(I)). However,

aF o ®Ea o ®ny® = aF o ®aF o Py
= (¢ '"2EF + ¢ (¢ —1)aF o € EF 0 zEF) 0 ®®n
= qilnﬂ °oz+ qil(q —1)aFo®nyoe oz

¢ 'poz+q (¢g—1)Eaon®oe oz

Hence & € H(® @ oD, PEF).
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Now ®u~! € H(PEF,® @ ®®) since the following diagram commutes:

—1
SEF —2 3o o

dFJ
1
BF ( 0)
0 =z
ull
lgpd—— PP 1.

(I—q) 1
q 0

This is equivalent to the commutativity of

PEF+— " 5 od

dFJ
1 0

|

TR P— Y P

(1—q)e 1
q 0

Calculating,

1 0 1—q)e 1
aF o®po (O _1> o <( a)e O) = ((1 —q)aFo®nyoe +qaF o PEao ®ngdo 2~} dFo@m,) .
z q

The first component simplifies as

(1—¢q)aF o ®nyoe + qaF o PEa o $nyd o 27 *

=(1—q)aFo®nyoe +q(ao®a)F onydPoz "

=(1—-qaFodnoe +q(g ' 2EF +q (¢g—1)aoce’EF 0 2zEF) o2 "EF oy
= 1p-

The second component is simply aF o ®ny = Ea o ng®P, so the above matrix is that of u. Hence

du~' € H(®EF,® ® ®%).
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For ®a € H(®PPE, PE), the following must be an arrow in H(E, E),

POE 2%, R
AT
E E

which is the case since @ o ®a o2 'E=q '1g+q (¢—1)aoe'E € H(E,E).

Similarly, ®a~! € H(®E, ®PE) if the following composite is an arrow in H(E, E),

dat
PF —— OOF
aﬂ JzE
E FE.

Indeed,
zF o (@@_1 o d_l) = q_llE +(1—¢q)zEo daloeE

=¢ Mg+ (1—-qzEoe®Eoa!
=q¢ Mg+l —-qe"Ecat
=q g+ (1—q)(gaoeE+(1—q)eE) € H(E,E).
The last four relations are clear since we can rewrite the arrows as ®e = e®, e’ = /P, Pe’ = ¥, and

Pe"' = Ped = eDDP. O

Proposition 5.14. Suppose X,Y : ) — () are parallel 1-morphisms in C. Then the map
H(X,Y) — Home(®X, DY) : f > Of

takes values in H(®X, PY).

In the same situation, we can postcompose with F' to yield a commutative diagram

(Faj;)
&, rx, " ry,

F(SXT JF&;I
Ff

FX —— 5 FY
6;4 Jéw

& (FX), — @, (FY)..

Now FX and FY are l-morphisms } — S, and any such 1-morphism is of the form F, F®X’, or
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FEFX' for some X’'. It follows that the decomposition arrow dpy consists of matrices with components
1p, X', or Fpu~'X’, and 5;§( consists of matrices with the inverse components 1p, a~'X’, and FuX'.
Similarly to the previous case, F'dy consists of matrices with components 1p, Fz~'X’, Fa~'X’, and FuX’,
and Fé}l consists of inverse components 1p, FzX’, FaX’ and Fu~'X’. The components of the Faj; are
1p, 1pe, Fe, Fe', Fe’, or Fe'". If each of these listed components is the appropriate space H(W, Z), then
the components of A will be in H(1p,1p), H(1p,®), H(P,1y), or H(®,P), so that F'f € H(FX,FY). As

before, it is sufficient to show the following.
Lemma 5.15. There are the following memberships.
1. Fz € H(F®3,F)
2. Fz=' € H(F,F®®)
3. Fue H(F & F®,FEF)
4. Fu~' € H(FEF,F & F®)
5. Fa € H(F®E, FE)
6. Fa—' € H(FO®E, FE)
7. Fe' € H(F, F®)
8. Fe" € H(F®, F)
Proof. By definition, Fz € H(F®®,F) if Fzoa '®oa~! € H(F, F). By the defining relations,
Fzoa '®oa™' =Fz(qFz '+ (1 — ¢)a™'® o Fe')
=qlp+(1—q)Fz0F®e oa™!

=qlp+(1—q)Fe oa™*

=qlp+ (1 —q)(quo Fe' + (1 —q)Fe) € H(F,F).
Similarly, Fz~! € H(F,F®®) if c o a® o Fz~! € H(F, F). By the relations,

aoa®oFz ' = (¢ 'Fz+q ' (¢g—1)aoFe oFz)o Fz ™t

=q¢ 'lr+q '(¢g—1aoFe € H(FF).
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For Fu, observe
FoFo " FEF

J{Fﬂl

diag(lp,a) FaFo

J/diag(lp,a)

FOF —FaF

diag(lp,lp)
Since diag(lp,1p) e HF ®F,F@®F), Fue H(F ® F®, FEF).

Similarly, since the following diagram commutes,

—1
FEF - \FaFs

Full

F®FD diag(1p,x)

stz )|

FOF—FoOF
dlag(lpﬂ.p)

indeed Fu=! € H(FEF,F & F®).
One has Fa € H(FO®E, FE) if Fooa™'E € H(FE,FE). By the defining relations,

Faoa 'E=aFoFa '+ (¢g—1)(aoFe)E —(q¢—1)F(aodE).

From the prior results, since « o Fe’ € H(F, F), then (a0 Fe')E € H(FE,FFE). By the definition of
H(FE, FE), the image of (0 1 F) in H(FE, FE) is given by

(—D)(qaE o Fa~' 4 q(g —1)(cvo Fe')E)
so that aE o Fa~! € H(FE, FE). Third, the image of (O Qo Fe’) in H(FE, FE) can be computed as

(—=1)(q(ao FeYEoaE o Fa~' 4+ ¢q(q—1)(ao F¢'YEoaFE o F¢'E)
—1)(q(q_1e”E +q¢ Y qg—1)FeEoaE)Fa * +qlqg—1)(g 'Fe"E+q '(¢g—1)FeE o aE)Fe’E)
)(qF(Go€eE)+ (1—q)FeE+ (¢—1)FeEoaEoFa ' + (¢ —1)FeE + (g — 1)*(a 0 F¢')E)

—~1)*(qF (@ o €'E) +(q—1)FeanEoFd_1—|—(q—1)2(aoFe’)E).

Since Fe € H(F,F), FeE € H(FE,FE), and so FeE oaE o Fa~! € H(FE,FE). This implies
F(ao¢'E) € H(FE,FE), so that Faoa 'E € H(FE, FE), and thus Fa € H(FOE, FE).
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Also, Fe' € H(F,F®) if a« o Fe' € H(F, F), which is indeed the case by the definition of H(F, F).
Lastly, Fe” € H(F®,F) if Fe” oa™! € H(F, F), and this is the case since

Fe"oa ' =q(aoFe')+ (1 — q)Fe € H(F,F).

Proposition 5.16. Suppose X,Y : ) — () are parallel 1-morphisms in C. Then the map
H(X,Y) — Hom¢(FX,FY): f— Ff

takes values in H(FX,FY).

Now suppose that X,Y: ) — S are parallel arrows in C. Any such 1-morphisms must have form F,

F®X' or FEFX' for some appropriate 1-morphism X’. There is a diagram

%Y

J

where 6x and &y consist of matrices with components of form 1, aX’ or Fu~'X’. The only inde-
composable arrow ) — S is F, so the components aj; are in H(F,F). There is a larger commutative
diagram

Ea~i
@, 5%, -5, @ By,

E(;XT lEé;l
Ef

EX ——FEY

%ﬁ Jém

@, (EX), —— @, (EY).,

Now EX and EY are 1-morphisms on (), so as seen before, dgy is a product of matrices with components
of form 1;,, 1e, 2X’, &X', or p~'X’, and 5,3( will have inverse components. Also, Edx is a product of
matrices with components of form 1z, FaX’, and EFp~'X’, and Eé{,l will have inverse components. As

before, the components of A will be in the appropriate candidate spaces if the following memberships hold.
Lemma 5.17. There are the following memberships.

1. Ea € H(EF®, EF)
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2. Ea~' € H(EF,EF®)
3. EFpe€ HEF @ EF®, EFEF)
4. EFp~' € HHEFEF,EF @ EF®)
5. EFec H(EF,EF)
6. E(ao Fe') € H(EF,EF).

Proof.

1. The following diagram commutes

Fa

EF® EF
u‘I’T
D P PP w
diag(l,z)l
PPy 1p @ ©.

To see this, note

Eaoud = (Ea om® EaoEado n@qxp) .
In the other direction,
. 0 g ! 10 ( . q)) 0 q 'z
— o 0
#o\1 g g—1e' ) \O =2 o o 1 ¢gg—1) oz
= (Ea om® ¢ lmoz+q(g-1)Eaomdoe o z) .

The first entries of these matrices are equal, so it remains to check the second entry. By the generating

relations, note

E(aoa®)ond® =FE(qg 'Fz+q '(¢—1)oaoFe o Fz)ondd
=q 'EFzony®®+4 ¢ '(¢—1)Eao EFe’ o EFz o ny®d®

=q 'moz+q (¢g—1)Eaomdoe oz
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so that the second entries are equal. Hence

EF® Ea EF
uld’l
DD PP pt
diag(l,z)l
dD 1y lyo®
.
1 g '(g—1)¢
commutes, so by definition, Fa € H(EF®, EF).
2. Note Ea~! € H(EF, EF®) if the following diagram commutes:
EF o EF®
-
pot DO
Jdiagu,z)
lyo @ D1y
((1 —q)e 1)
q 0
Equivalently, one must show that
EF P EF®
;
z P PP
Tdiag(l,zl)
1, @@ DD 1y

commutes. Computing the counter-clockwise composite yields

1 0 1—¢q)é 1
Eaopdo (0 1> <( ae 0) = ((1 —q)Eaong®oe +qFEao Ea®onyd®oz"! Eao 77@<I>) .
z q

59



Using the previous computation, the first entry of this matrix simplifies as

(1-q)Baondoe +[(g—1)Eaom®oe +mlozoz"" =

and hence the entire composite is equal to (17@ Fao ng)(I)) = U.

. Showing EFu € H(EF ® EF®, EFEF) is equivalent to showing that FFny € H(EF, EFEF) and
EFFEao EFng® € H(EF®, EFEF). However, if EFny € H(EF, EFEF), then

EFny® € H(EF®, EFEF®), so it is sufficient to show EFEa € H(EFEF®,EFEF) to conclude
that EFEa o EFny® € H(EF®, EFEF).

First, EFng € H(EF, EFEF) if there is a matrix M with components in H(1¢, 1p), H(1g, ®), H(®, 1),

or H(®,®) such that the following diagram commutes

EF— "™ . pFEF
uw rEF
EF & ®FEF
pt diag(p~',a&F)
(1p® ®) & EF
diag(1,u~")

(1Ip ® ) T} (Ipg® @)@ (1 ® D).

This diagram may be simplified to

m 0
0 ®ny

(1p @ @) EF ® ®EF

Jdiag(u—l,&F)
(1@ &) ‘b) ®FEF

Jdiag(l,ul)

(g ®)d(1g@ ).

However, the components of the rightmost matrices are already in their respective candidate morphism

spaces, so it is enough to show 1y € H(1ly, EF), and ®ny € H(®,PEF). First, ng € H(ly, EF) since
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the following clearly commutes

Secondly, the following commutes

le FEF
5
1,0
0
1

since

0
o <1> = Faony® = aF o Pyy.

Furthermore, EFEa € H(EFEF®, EFEF) if there is a matrix M with components in H(1g, 1),
H(1p,®), H(®,1p), or H(P,P) such that the following diagram commutes

EFEx

EFEF® EFEF
pt pt
EF® o PEF® EFF @ ®EF
diag(p~'®,aF®) diag(p~t,aF
(P PP)® EFD (lp®®)® EF
diag(1g,z,u "1 ®)
PPl PP 2P diag(1,u~1)
diag(1,1,1,2)
PDlydD 1y v lpyo®D 1y @ P.
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This diagram can be extended and rewritten as

EFEF® EFBa EFEF
1 Eo 0 =
0 ®F«
EF® ® ®EF® EF @ ®EF
diag(1l,aF®) Ea 0 diag(1l,&F
0 Fu«
EF® ® EF® EF & EF

diag(p™' @, )
CPPPD PP PP diag(p~",n"")

diag(1,z,1,2)

PP D 1y

— yodolyod.

So M is a product of diagonal matrices, and the nonzero blocks are given by

-1
p~toEaoudo ' 91 - (" —1q /
0 =z 1 g '(g—1e

as seen in the proof that Fa € H(EF®, EF). Altogether, this shows EFu € H(EF @ EF®, EFEF).

4. Tt is the case that EFu~! € H(EFEF,EF & EF®) if there is a matrix M with components in
H(1p,1p), H(1g,®), H(®,1p), or H(P, P) such that the following diagram commutes

EFEF EF 3 EF®
-1
pt H 0 diag(p~"',u~ ' ®)
0 dut
EF & OEF (1p ® ®) & (& D)

diag(p~t,aF)
(lp@®)@e EF diag(1,1,1,2)

diag(1,1,p7")

lpe®)s (g ) (Ip @) (2 1y).

The upper square clearly commutes, and solving for M, if it exists, the only components which are not

obviously in H(1g,1p), H(1y,®), H(®,1y), or H(P, P) are given by the composite morphism

lg O
(; >o¢’,u_1oo~z_1Fo,u:1@@<I>—><I>@1@.
z
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The following also commutes

OEF _ FER )

To see this, note the left vertical composite & 1F oy is given by
(orlF oy @ 'FoFEao m@) - (d*lF ony & 'FoaFo ‘an) - (d*lF o1 qm@)

whereas

1 0 1—q)e 1
dp o ( _1> <( 9)e > = ((1 —q)®npoe +qPEa o Pnyd oz ! @n@) .

However, note

(1—¢q)aF o ®ngoe + qaF o ®Fao dnyd oz ?
=(1—q)aF o®nyoe + qaF o PaF o PaF o ddPyyo 2"
=(1-q)aFodnoe +q(g ' 2EF +q '(¢g—1)(@oe'E)FozEF) oz 'EF oy
=(1—-q)aFoeEFony+ny+(q—1)aFoeEF ony
=1
so that @ 'Fony = (1 —q)Pngoe + qPEao Pnyd oz~ 1.

5. Since the diagram

lg@®d—— 1@

e 0
O e//l

6. Since it has already been shown that Fa € H(EF®, EF), it is enough to show EFe’ € H(EF, EF®)

commutes, EFe € H(EF,EF).
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to conclude E(ao Fe') = Eao EFe’ € H(EF,EF). Since the following diagram commutes,
EF—" L EFo
e 0
0 ¢

IRRCE AN, ¥ ¥

= diag(1,z)

hEd— b1,
e 0
0 e//

indeed EFe’ € H(EF,EF®).

Proposition 5.18. Suppose X,Y : ) — S are parallel 1-morphisms in C. Then the map
H(X)Y) — Hom¢(EX,EY): f— Ef

takes values in H(EX, EY).

Suppose X,Y : S — () are parallel 1-morphisms in C. Any such 1-morphism must have form FE, ®EX’,
EFX', or ®®X’ for some appropriate X'. Let f € H(X,Y), so there is a diagram

%Y

J

where X; and Y; are indecomposable 1-morphisms S — ). The only such arrow is E, so for each component

we have a;; € H(E, E). Postcomposing with ® yields a commutative diagram

‘baji
®, ox, 2 gy

Y
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for some matrix A. Based on the form of 1-morphisms S — @), ®dx is a product of matrices with
components of form log, ®PaX’, ®2X’, and &' X', and @(5;1 is a product of matrices with components

the inverses of those arrows. Likewise, since ®X and ®Y are still 1-morphisms S — ), dpy is a product

/

of matrices with components 1g, aX’, zX’, or p~'X’, and 6;)1( is a product of matrices with inverse

components. If each of these components is in the appropriate candidate space, and each ®aj; € H(E, E)

for a;; € H(E, E), it follows that each component of A will be in H(E, E), so that ®f € H(®X, PY).
Lemma 5.19. There are the following memberships.

1. oz € H(®DD, D)

2. ®271 € H(®, dD)

3. & € H(PPE, DE)

4. ®a~' € H(QE, PDE

5. dp e H(® o DD, DEF)

6. byt € H(®EF, & dd)

7. ®eE € H(QE, PF)

8. d(doe'E) € H(DE, BE)
Proof.

1. By the relations, ®z = 2®, so Pz = 2P € H(PDP, D).

2. That ®2~! € H(®,®PP) as the above.

3. One has @& € H(PPFE, DE) if there exists M € H(FE, E) such that the following diagram commutes

PDE 2% OF

Solving for M yields

do®aoz 'E= (¢ '2E+q ' (¢—1)aoceEozE)oz 'E=q¢ Y 1p+q¢ (g—1)aceE € H(E,E).
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4. One has ®a~! € H(®E, PPE) if there exists M € H(E, E) such that the following diagram commutes

oE 2 9oF

E——F.
M

From the defining relation for ®a o &, one can conclude ®a~toa !t =¢ 127 'E+ (1 —q)®a ' oe'E.

Then note

zF o (q)d_l o d_l) = q_llE +(1—¢q)zFEo0 daloeE
=q'lg+(1—-q)zEo0e®Eoa™?
=q'lg+(1—qe'Eoa?

=q 'l +(1—q)(gaoeE+(1—q)eE)c H(E,E).

5. Note ®u € H(® @ @@, PEF) since the following commutes

o@D o OEF
ldp

diag(1,z) EF
.

o1, 1y ®.

To see this, note

-1
0 q 10 -1 -1 /
1o 0 - :<E040770‘I> g 'mpoz+q¢ Hg—1)Eaondoe oz)

whereas

&Fo@u:(&Fo@W &Fo@an@m@>:<anW¢ dFo@dFo@@W).
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Comparing the second entry of these matrices, note

(@0 ®a)F o dPny = (¢ '2EF +q (¢ —1)aF o e’ EF 0 2EF) o ®®1)
=q lpoz+q l(g-1)aFodpoe oz

=q 'mpoz+q (qg—1)Eadndoe oz

6. Note ®u~t € H(®EF,® @ ®®) since the following commutes

SEF or d DD

&Fl
1
Er ( O)
0 =z
ull
lyod® Pplyd®.

(I—gqe" 1
q 0

To see this, note

1 0\ [{(1-qe¢ 1
dFo(I);w(O ><( a)e 0):((1—q)&Focpn@oe/+quo®an¢n@q>oz—1 anm@).
< q

The first component simplifies as

(1—q)aF o®nyoe +q(do®a)F onyddoz!

=(1—-qaFo®nyoe +q(q ' 2EF +q '(¢—1)aF o EF 0 zEF) 0 27 'EF oy = 1y

and hence the above matrix is (77@ Fao W‘I)) = L.

7. Since e® = Pe, PeE € H(PE, PFE) since

dodeEoa ' =aoedEoa ' =aoa toeE =¢E € H(E,E).

8. It is sufficient to show ®e'E € H(PE, PDE) to conclude ®(aoe’'E) € H(PE, PE) since it has already
been shown ®a € H(®PE, PE). First, 2Eo®e’Foa™! = (z0®e/)Eoa~! = ¢’Foa 'E. Rearranging
the relation @oe’Eoa =q 'e¢"E+q (¢ —1)eEoa shows e’Eoa~! = qgaoe E+ (1 — q)eE, which
isin H(E,E). Hence ®¢'E € H(PE, PDE).
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Proposition 5.20. Suppose X,Y : S — 0 are parallel 1-morphisms in C. Then the map
H(X,Y) — Hom¢(®X,2Y) : f— Of

takes values in H(®X, dY).

We can also compose with F, yielding a commutative diagram for some matrix A

(Faj;)
P, FX; —>@j FY;

FéXT JF&;I
Ff

FX ————FY

5;% Jéw

D, (FX), —— @,(FY)..

Similarly to before, Féx is a product of matrices with components of form 1pg, F&, FzX', or Fu~' X/,
and F' 5{,1 is a product of matrices with components with the inverse components. Now, FF.X and FY are
l-morphisms S — S, and any such l-morphism must have form 1g, FE, FEFX', or F®X' for some
X'. Tt follows that dry is a product of matrices with components 114, 1rg, Fu='X’, or aX’, for some
appropriate X', and 5;& is a product of matrices with components with the inverse components. Lastly,
for A to have components in the appropriate candidate spaces, on also requires FeFE € H(FE,FFE), and
F(ao€e'E) € H(FE,FFE). All these components are in their corresponding candidate spaces by the proof
of the case for FX and FY, when X,Y: ) — 0.

Proposition 5.21. Suppose X,Y : S — 0 are parallel 1-morphisms in C. Then the map
H(X,Y) — Hom¢(FX,FY): f— Ff

takes values in H(FX,FY).

Suppose X,Y: S — S are parallel 1-morphisms in C’. Let f € H(X,Y), so there is a diagram

%Y

J |

The X; and Y; are indecomposable 1-morphisms S — S, the only such of which are 1g and F'F, so each

component a;; is either in H(1g,1g) or H(FE, FE). Postcomposing with E yields a commutative diagram
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for some matrix A

Faj;
&2, -7\ @

E(SXT JE&;I
Ef

EX ——FEY

54 Jém

D, (EX)r — = D (EY):s.

Now EX,EY: S — (), and as seen before, any such 1-morphism has form E, ®EX’', EFX’, or ?®X'
for some appropriate X’. All the components in the matrices comprising SEX ' and dzy are in their
corresponding candidate space by previous cases.

On the other hand, the components of matrices comprising dx and dy are either 114, 1pp, Fu=tX’, or
aX' for some appropriate X’. Hence Edx is a product of matrices whose components consist of 1z, 1gprg,
EFu~—'X', or EaX’', and Ed;l is a product of matrices with inverse components. By previous cases, all
these components are in their corresponding candidate spaces. Furthermore, for A to have components in the
appropriate candidate spaces, necessarily Ea;; € H(E, E) for a;; € H(lg,1g), and Ea;; € H(EFE,EFE)

for a;; € H(FE, FE). To this end, there is the following lemma.
Lemma 5.22.
1. Ifaj; € H(1g,1g), then Eaj; € H(E, E).
2. Ifaj; € H(FE,FE), then Eaj, € HUEFE,EFE).
Proof. Recall that H(1g, 1g) is generated by 11, eg = €gong, e; = esoFeong, and e; = ego(ao Fe’')Eong.

Clearly Fl1, =1g € H(E, E). For Eeq = Feg o Eng, note that commutativity of

E-2"  EFE

s
qle EooE
(—1D)¢(qlg 4+ q(qg— 1)ao'E) ldiag(l,&)

EoFE
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is one of the defining relations, hence Engs € H(E, EFE). Furthermore, the following commutes

EFE-2“,E

ulEl
EooF <1E 1E>

diag(l,&)l

EoFE

since

10
Eesou'Eo (0 ~1) - (Eegon@E EeSoEann@@EOd‘l)
«

=1z aoa)=(1p 1n).
Thus Ees € H(EFE,E), and so Eey € H(E,E). Since EFe € H(EF,EF), it follows Ee; € H(E, E).
Also, it has previously been shown that E(a o Fe') € H(EF,EF), so Fes € H(E, E) as well. This proves
the first claim.

For the second, recall that H(FE, F'E) is generated by morphisms with form

(goE (Wo a)E) o Fu=tE o FEng for p,v € H(F,F). By the defining relations, one has

-1, _(1re 0 91rE _ 4lre
FpEoFEns ( 0 Fd_1> ((—1)6(Q1FE+Q(q_1)F(doe/E))> ((—1)6(qF07‘1+CI(q—1)F€'E)~>

So we can assume any morphism Eaj; for aj; € H(FE, FE) has form

qlerE
(EQOE E(?j} o Oé)E) <(_1)6(qEF&1 + (](q — ]_)EFG/E)> .

However, from previous cases, it is immediate that E@FE € H(EFE, EFE) when ¢ € H(F, F),
EaF € H(EFOE,EFE), and EFe'E € H EFE, EF®E). It remains to check that
EFa~! € H(EFE,EF®E) in order to conclude Eaj; € H(EFE,EFE). Indeed, the following diagram

commutes
EFE 2L EFOE
~—1
HIEJ a 0 LL%E
0 a1t
E®OF PE D POE
diag(l,&)l ldiag(&,zE)
EF®F EFEDFE.
1g 0
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Previous computations have shown that

zEo(®atoa ) =qlp+(1—q)(gaoeEo(l —q)E € H(E,E)

so that EFa~! € H(EFE, EF®E).

Proposition 5.23. Suppose X,Y: S — S are parallel 1-morphisms in C. Then the map

H(X,Y) — Hom¢(EX,EY): f — Ef

takes values in H(EX, EY).
As before, these propositions can be collected more succinctly.

Proposition 5.24. If X and Y are parallel 1-morphisms in C, and Z is any appropriate 1-morphism, then
the map
H(X,Y) — Hom¢(ZX,ZY): f— Zf

takes values in H(ZX,ZY).

5.5 Closure

Corollary 5.25. Suppose f: X — Y is either a generating 2-morphism in C, or one of o™, @1, u=*, or

271, Then for any 1-morphisms A and B such that AXB and AY B are defined, the 2-morphism AfB is
an element of H(AX B, AY B).

Proof. If f is any of the aforementioned 2-morphisms, then in all cases f € H(X,Y). Then AfB is the

image of the composite

H(X,Y)— H(XB,YB) — H(AXB,AYB) : f > fB s AfB.

Theorem 5.26. For any parallel 1-morphisms X andY in C, H(X,Y) = Hom¢(X,Y).

Proof. Pick f € Hom¢(X,Y). Observe that f is a composite of 2-morphisms of form AxB, where z is a

1

generating 2-morphism, or one of a~!, &1, u=1, or z7!. Induct on the number of such factors. If f = AzD,

the previous corollary shows f = AzB € H(X,Y). If f is a composite of more than 1 such factor, write
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f = f' o AxB, for a nontrivial 2-morphism z: C — C’. By the corollary, AxB € H(X, AC’'B), and since
f" is a composite of fewer factors, the induction hypothesis implies ' € H(AC'B,Y). Since the candidate

spaces are closed under composition, f € H(X,Y). O

5.6 A Functor into the 2-Category of Bimodules

Let Bimod denote the usual 2-category of bimodules, with 0-morphisms rings, 1-morphisms bimodules, and
2-morphisms bimodule homomorphisms. Let G = SL2(q) and let k be a field of appropriate characteristic
such that ¢ and ¢ — 1 are invertible in k. Let B denote the standard Borel subgroup of GG, and write B = UT
be the Levi decomposition, for T" a maximal torus and U the unipotent radical. Let ey and er denote the
idempotents in kG corresponding to U and T, respectively. Let (W, II) be the corresponding Weyl group of
rank 1, with simple reflection s. Let m: N — W be the canonical projection onto W, and let n,, denote a

preimage in N of w € W.

Definition 5.27. Define a 2-functor .#: ¢’ — Bimod as follows. On 0-morphisms, put .#(0) = kT, and

Z(S) = kG. On generating 1-morphisms, put with the obvious bimodule structures,

o Z(1y) = kT
o F(lsg) =kG
o Z(F)=kGey

o #(E)=eukG

F(®) = kT. As a kT-bimodule, the left action - on kT is given by ¢ -t = (*¢)t = §t's~'t. The right

kT-action is the usual multiplication.
On generating 2-morphisms, set
o F(e): kT — kT :1— ep
o Z(e"): kT — kT : 1 er
o F(a) =kGey Qrr 4T — kGey 1 ey @ 1 — epsey
o F(2)= kT @7 T — kT :a®@b— (‘a)b
o F(ng): kT — epkG Qpg kGey : 1 ¢ ey @ ey)

o F(ns): kG = kGey Qkr eykG : 1 — deG/B geu ® eyg~ !, where g ranges over a complete set of

coset representatives in G/B.

72



] eQf(ﬁs)I kGey Qrr eukG — kT : ey ® ey — qey

ny if m(ny) =1,
. 9\(69): evkG Qra kGey — kT : eynyey —

0 otherwise.

For the last definition of .Z (e ), we have identified ey kGRrckGey ~ eykGey, and as a kT-bimodule map,
Z (¢p) is completely determined by its images on elements of form eyny ey, by the Bruhat decomposition.
Note also that the definition of # on the adjunctions (eg,7g) : F < F and (eg,ns) : E 4 F follows from the
standard adjunctions on self-dual pairs of exact bimodules, as found on p. 158 in [5], and hence still satisfy
the triangle relations in Bimod.

To reduce notation, if M is an (A, B)-bimodule, no distinction will be made between A ® 4 M and M,
or M ®g B and M.

Theorem 5.28. The 2-functor #: C' — Bimod induces a 2-functor C — Bimod, also denoted by F.

Three main properties need to be verified. First, that the morphisms % (u), % (), &, and p are invertible
in Bimod, second, that .# preserves the defining relations of C, and third, that the standard maps induced

by the adjunctions on Hompgimed (:-# (F'), % (F')) — Hompimed(:-# (E), Z (E)), etc., coincide.

Proposition 5.29. The morphisms F(u), F(«), F (&), and F(z) are invertible in Bimod, with the fol-

lowing inverses. One has
o Z(u)~t:epkGey — kT @ kT : eytey — (qt,0), eystey — (0, qt)
o 7(a)7t: kGey — kGey @it KT : gey — geréo ® 1
o 7(a)7 ! epkG — kT Qur evkG : eyg — 1 ® oepyg
o Z(2) 1 kT — kT @ JT: t— 1@t

Proof. First observe that .#(u), 7 (), Z (&) and % (z) are invertible in Bimod. Beginning with .7 (1), let
KT have ordered basis (t1,...,t,-1) and (kT have ordered basis (,...,t, ;). By the definition of u, for
t; € kT,

F(u)(t:) = -F (ng)(t:) = q evtie,

and for t; € kT,

T ()(t;) = F (BEaony®)(t;) = F(Ea)(q ey ® ey @ t;)

1

=q ey @ F(a)(ey @ )t = ¢ tey ® epsept, = ¢ teystiey.
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Since G = BUUS$B, eykGey has a k-basis {eyt;ey, eUétieU}f;l, and an explicit inverse

evkGey — kT @ kT for F(u) is defined on this basis as
evtiey — (gt;, 0), ey stiey — (0,qt;).

By Theorem 2.3 of [I0], recall that if (W,II) is a Coxeter system for a group G with BN-pair with

parabolic subgroup P = UL, then the following holds.

Theorem 5.30. Let J CII and w € W be such that K = w.J CII. Then there is a linear isomorphism
¢: RGey,, — RGey, : £ — ey wey,

satisfying d(gev,t) = gd(ey, )t* for all g € RG and t € RL. The inverse is given by right multiplication by
suitable & € ey, RGeyy , as there exists such & satisfying {oevwey, = ey, and ey, wey, o = eyy -
In our case, with K = J =0, Uy = Ux = U, and w = 3, so that {geysey = ey = eysey&y. Additionally,

¢l kGey — kGey : € — &€ is a (kG, kT)-bimodule map, and for t € T,

téy = teylo = eytéo = ¢ (ept) = ¢71(€U)lﬁsl_1 = ep&ot’ =&t .

So define

B: kGey — kGey Qur kT : gey — geyéo ® 1.

Then S is clearly a left kG-module map, and is also a right kT-module map as from the above commutativity

relation,
Blevt) = Bltey) =tepbo @ L =eytég @1 = eyt @1 =epéo ® *t- 1 =epéy ® Ty
=eyé @t =(ev§®1)-t=p(ev)t.
Also,
BoZ(a)ley ®1)=p(evsey) =eyseréo®@1=ey ®1
and

Z(a)Bev) = F(a)(evéo @ 1) = {evser = ev,
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so that 8 is the inverse of .#(«). Similarly,
F(a): kT Qpr evkG — epkG : 1 ® ey — eysey

has inverse given by

B:evkG — kT Qur evkG :epg — 1 ® &epg.

Lastly, define

C: kT — KT Qpr KT :t— 11
This is easily checked to be a kT-bimodule map, and the inverse to % (z). O
Proposition 5.31. The defining relations of the category C are preserved by 7 .
Proof.

1. For the first relation, consider .7 (ep) o Z (ng): kT — kT. One a generator 1 € kT,
F(e9) 0 F (n9)(1) = F(eo)(q ™ ev @ ev) = ¢
and

F(ep) o F(Ea) o F(ny®)(1) = F(ep) 0o F(Ea)(q ey @ ey @ 1) = .F(eg) (¢ ev @ evsey) = 0.

2. For the second relation, first note that since G = Bl US$B, one has G/B = {B,u$B},cy. Then the

relative Casimir element in kGey Qur ey kG is

Z gey ®epg !t = (ev @ ey) + Z usey @ eys tuTl.
geG/B uelU

The composite

F(E F(u 'E diag(F \F (&
E (Ens) EFE (k ) EooE g(F(1k) ()),E@E

q7 (1g)

s given by ((—nf(qmm Falg—1).F (@0 dE))

> where ¢ is determined by §2 = (—1). Explicitly,

75



first observe

F(u'E)o F(Ens)(ev) = F(u'E) [ev® Y gev @epg™"
geG/B

F(u'E) (eU Rey ey + Z ey @ usey ® eUé_lu_1>
uelU

y(uilE <€U R ey + Z eysey ® eU,élul)
uelU

(Ao (7 oruia
o)
(v

QCeyseys e

Applying diag(F (1g), #(&)) yields ) . The first component is thus given by ¢.% (1g).

For the second component, note
Pepseys tey = ¢2(—1)(eyser)? = (—1)%(gev + qlqg — Veyserey)

and the arrow

Z(e'E) F(a

cokG KT @ur kG —22 s epka

corresponds to ey — er ® ey — ereysey = eyserey. Hence the second component is given by

(—1)%(¢Z (1) + q(¢ — 1) F (G o 'E)).
3. For the third relation,

F F -1 diag(ZF# ,F(a
F (nsF) FEF (Fp™") FoFd g(F (1r),Z (o)) FoF

76



q.7 (1)

s e by ((—nf(q&‘(m Falg - ) F (oo Fe'>>> e

F(Fu~ ) o Z(nsF)(ev) = Fu Z gev ®epg ' ey
geG/B

=Z(Fu™) (Z usey @eps uT ®ey +ey ®ey @ eU>
uelU

=F(Fu ") ((-1)°gevser ® epey + ey ® ey)

= (=1)°qevser ® <O> +ey ® <q>
q 0

Applying diag(F (1r), Z (o)) yields v
(—1)*q%evsey sey

qZ(1F). For the second, as computed before, (—1)°¢*(epser)? = (—1)°(qev + q(q — 1)eyserer),

). The first component is then given by

viewed as elements of kGey, instead of ey kG. The arrow

F(Fe' F(a
kGey —2T kGey @pr T —2 4 kGey

is the map ey — eperey — ey serey, thus verifying the second component.

. For the fourth relation, explicit computation shows that £y = gepysey — (¢ — 1)eyerey. Then

F(ng) F(& 'F) F(Peg)

kKT —————— epkGey —— S]{JT Qrr evkGey kT

S

is given by ¢~ 1(1 — ¢q).Z (¢'), since

F (®eg) o F(a'F) 0 Fny)(1) = F(Dey) 0 F (@ F) (g ev @ ev)
= F(Pep)(q " @& @ ev)
= F(®6p)(q" @ (qevser — (g — 1)everer))
=q (1 - qler

and 1+~ ep corresponds to .Z(e): kT — kT
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5. Note
F(®) 0 F(Ea~) 0 Z(mp)(1) = F(4®) 0 F(Ba™") (g ev ® ev)

=Z(ep®)(q 'er @& ® 1)
= q’l(l —qler®1= q*1(1 —q)er.

Similarly to the above, this morphism is given by ¢=1(1 — q).% (¢/).

6. Note

F(&) 0 F(¢E) 0 F(@)(10 e) = F(a) 0 F(¢'E) (evriey)
F(a)(er @ eysey)

= eT(eUSeU)2 = eT(q_leU + q_l(q — Deyserey)
=q 'everey +q ' (q— Levserey.

Since Z(e"E) is given by 1 ® ey — eperey and Z(eE) o Z (&) is given by 1 ® ey — eyserey as

morphisms kT ®pr ez kG — eykG, and so

F(aodEoa)=q L7 ("E)+q Yq—1)F(eEoca).

7. Similarly,
aoF(Fe)o F(a)ley @1)=.F(a)o F(Fe)(eyser)

=7 (a)(evsey ® er)
= (epsey)’er
=q 'everey + ¢ (g — Deyserey.

Since F (Fe) is given as ey ® 1 — eyerey and F (Feoa) is given by ey ® 1 — ey serey as morphisms

kGey Qrr skT — kGey, one has

F(aoFe oa)=q ' Z(F)+q ' (q—1)F(Feoa).

8. Observe
F(a)o F(aP)(epy ®1®@1) = F(a)(epsey @ 1)

1

= (epser)? = q ey + ¢ (g — ey serey.

But as morphisms kGey Qi kT Qpr 4T — kGey, F(Fz) is given by ey ® 1 ® 1 +— ey7, and
F(a)o F(Fe')o F(Fz)ley @1 ®1) = F(a)o F(Fe)(ey ®1) = F(a)(ey @ er) = eyserey.
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Hence

Flaoad)=q ' F(Fz)+q ' (¢q—1)F(ao Fe o Fz).

9. Observe
F(@)o F(@6) (1018 ey) = F(a)(1 ® eyiey)

= (epser)? = q ey + ¢ (g — 1eyserey.

But as morphisms kT Qi kT Qrr evkG — eykG, F(z2E) is given by 1 ® 1 ® ey — ey, and

F(@)o F(€E)o F2EY1®1®ey)=F(a)o F(e€E)1@ey) = F(a)(er ® ey) = eyserey.

Hence

F(@o®d)=q ' F(2E)+q '(¢—1)F(doeEczE).
10. First note that as an endomorphism of kGey Qi1 ey kG, we have

F(Fa) o F(a  E)(ey @ ey) = F(Fa)(& @1 ey)
=&y Reysey

= qeysey ® eysey — (g — eperey ® eysey
On the other hand,

F(aE)o F(Fa ) (ev ®ey) = F(aE)(ey @ 1® &)
= F(a)(ev ®1) ® &
=eysey ® &o

= gepysey ®eysey — (g — ey sey ® eyerey

and

F(aE)o F(FEE)(ey @ ey) = F(aE)(ey @ er @ ey) = eyserey ® ey.
Together, these imply

F(Faoa 'E)=F(aEoFa '+ (¢—1)(aoFe)E - (¢q—1)F(ao €' E)).

11. The morphism % (¢") = F () o F#(e') on (kT is given by 1 — er. Since .#(e®)(1) = er ® 1 and
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12.

13.

14.

15.

16.

17.

18.

er ® 1 = er under the identification kT ®pr kT ~ kT, it follows that .F (") = F (e®).

As morphisms on ey kGey, Z (eEF)(eygey) = er®eygey and F (EFe)(eygey) = eygey Qe for any

g € G. But er ® eygey = eyergey = eygey Q er. To see this, for any group G with split BN-pair,

by the Bruhat decomposition
G= || BiB= || UTWU.

weWw weWw

Writing g = utwu’ for some w, then
ereygey = ereyutin’ey = ereytiey = eytieyer = eygeyer

since ep commutes with e, ¢ and w. Thus #(eEF) = % (EFe).

Note
F(Fe)o F(a)(ley @ 1) = F(Fe)(eyser)

=eysey ®er
= Z(a)(ev ® er)

F(a)o F(Fe")(ey @ 1)

so that #(Fe) o #(a) = F(a) o F(Fe').
It is clear that .Z (¢ o€’ oe”) = F(e") since er is an idempotent.
Same as above.

Note

F(2)o F(®)(1) = F(2)(er ® 1) = seps™ ! = ezpg—1 = er.
Hence .#(z 0 e/®) = .7 (e"). The same relation holds with e’® replaced with ®e’.

Note
F('®)o F(zH(1)=F("0)(1®1) =er @1 =ep

and hence .7 (e”® o z71) = .Z(¢’). Again, the same relation holds with e”® replaced with ®e”.

That F(®z) = % (2®) follows quickly from

F(@)(1elel)=101=2:0)(11x1).
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19. First note that

F(eo)(1) = F(es) o Fns)(1) = Fles) | D gev@evg™ | =a Y gevg™ "
geG/B geG/B

Since >_ ¢ /B gerg~ ! is a central element in kG, .# (eg) acts a multiplication by a central element,

and hence F(eg) o F(e1) = F(e1) o F(eo).
20. By the same reasoning above, .#(eg) o .Z (e2) = F(e2) o .Z (eg).

21. Observe that
F(e1) = F(es) o F(FeE) o F(ns)(1)

Feg) o F(FeE) Z ger @ epg !
geG/B

= F(es) Z gey Qer @ epg
geG/B

=q| > gerevg™ | =q| > geng™’

geG/B geG/B
Hence % (e1) is given by multiplication by a central element in kG, hence

F(e1) o F(eg) = F(e2) o F(eq).

22. Note

F(eoF)(ev)=q Y gevg ' @eu
9eG/B

=qeu Z gevg™' | ev ®ey
geG/B

= q(ey + (—1)°qev sevsey) @ ey
= (gev + (—1)°¢*(evdev)?) @ ev
= gev @ ey + [(=1)qev + (=1)%q(q — Depdep] @ ev
=lg+ (=Dqlev + [(=1)%alg — Dlepses
As endomorphisms of kGey, F(1r) is the identity, and .% (« o Fe¢’) is defined by

ey — ey serey = egsep, and hence

F(eoF) = (¢+ (-1)q) F(1r) + (-1)°q(q — 1)-F (a0 Fe').
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23. Note

Flev)=q| Y. gepg' | ®ev
geG/B

=qeu Z gerg ™ | ev ®ev
9eG/B

= q(eB + (71)6q63563.§63) X ey
=qep +q¢°(-1)(¢" (¢ — Depsep + ¢ 'ep) ®ey

=[q¢+ (—=1)°qlep + (—1)°q(q — 1)epsep

and since as an endormorphism of kGey, .#(Fe) is given by ey — eperey = ep, it follows that
F(erF) = (q¢+ (-1)°q) F(Fe) + (-1)%q(q — 1) F (a0 Fe').

24. Finally, note

ey = q Z gepdepg " | @eu
geG/B

=q(epsep + q(—1)‘epsepsepsep) ® ey
= gepsen + (—1)%ql(qg > (¢ — 1)* + ¢ epsen + ¢ *(¢ — Des] @ ey
e —1

=[(=1)% " (¢=Dles + [(-1)* + g+ (=1)°¢"" (¢ = 1)*]epéep

so that
F(eaF) = (1) g = 1)Z(Fe) + ((-1)* + ¢+ (~=1)%¢ (¢ = 1)) F(a o Fe').

O

Third, before proving the equality of the two usual maps Endgimed (-% (F')) — Endgimed(-Z (F)) induced
by the adjunctions, first recall that if M is an exact (A, B)-bimodule, the functor M ®p — is both left and

right adjoint to M* ®4 — (c.f. Proposition 2.4 of [13]).

Proposition 5.32. Suppose A and B are symmetric K-algebras, for K a field, and M is an exact (A, B)-
bimodule, so that the functor M @ — is left and right adjoint to M™* ® 4 —, say with fized adjunctions

(e,m) : M@p—AM*®@s— and (¢,7): M*®@4— 1 M®p—. Then, writing M@p—=® and M*®@,— =T,

82



the induced maps End(®) — End(¥) given by

o Teo Ul on'U and ¢ — €W o Tl oWy

coincide. Analogously, the induced maps End(¥) — End(®) coincide.

Proof. Since A and B are symmetric algebras over field K, fix symmetrizing forms t4 and tp, respectively.
Let {a;} and {a}} be dual bases for A with respect to ta, i.e., ta(a;a}) = d;j, and likewise define {b;} and

{b;}. There is an isomorphism of right A-modules

Homy(M,A) - M*: f—tpof

with inverse sending u € M* to x — ), aju(a;x). Note this gives u = >, ta(aju(a;—)) (c.f. Proposition
2.10 of [5]). There is a similar isomorphism Homp(M, B) — M*. On bimodules, the adjunctions are given

as

earMe@p M — A:meE&— ), aif(a;m)

. nB:B—>M*®AM:1»—>Zk(tAoak)®mk

€g: M*®a M — B:{@m— 3, b.&(mbj)

Ny: A—MepM*:1— % ,m® (tg o f)

On bimodules, the triangle equation e M o Mnp = 1, translates to

m=m Z(tA o ay) ® my — Za;tAak(aim)mk = Zak(m)mk =m
k ik k

and Meé oy M = 1, translates to
mr—>Zm5® tBOﬂg)@)m'—)ngb tp ﬂ/ mb meﬁg
0 4,5
Observe also that since ay(mb;) € A, we can write o (mb;) = >, ¢;a; for some ¢; € k. Hence

ta(a,.op(mb;) Zc,tA ara;) = c;.

Thus ai(mb;) = >, ta(ajar(mb;))a;. Applying tp(Be(— - 1(my))), for ¢ an (A, B)-endomorphism of M,
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yields
ZtA(aﬁak(mbj))tB(ﬁe(aiw(mk))) = tp(Be(ar(mbj)y(my))).

K2

Suppressing the tensor product notation, observe that the following diagram commutes,

MM*M M} MM*MM*M M MM*MM*M M) MM*M

UQMT lMG%

M M

Indeed, following the five maps up and around the top of the diagram, one has

m'—)ng@)(tBOﬁg)@m
£

'—>Zme®(tAOOék)®mk®(tBoﬁé)®m
ok

'_>Zm£®(tAOak)®1/)(mk)®(tBoﬂz)®m
k4

— Z my @ (ta o ax) @ aj(tp o Be)(aip(my))m
ikt

— Z meb(ta o ar)(a;(ts o Be)(ai)(my))mb;)

,5,k,€

Using the equation derived prior to the diagram, this last quantity can be simplified as

D meb(ta o ax)(@j(tp o fe)(as(my))mbs) = Y mebly(ta(ar(aimb;)))ts(Be(ait(my)))

,3,k,L i,5,k,¢

= > meblj(ta(ajor(mb;)))ts(Be(ait(my)))

i,5,k,¢

= Z mbt g (Be(ow (mby)ib(my))).

Jik,t

Focusing on the sum only over the index k,

> an(mby)v(my) = (Z ak(mbj)mk> = p(mbj) = Yp(m)b;
k k

so this, in conjunction with the triangle equations on bimodules, shows that the above simplifies to

> mebitp(Be((m)bs)) = > mefe((m)) = v(m).
L

gt
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Hence the map

Hom(M, M) —s Hom(M*, M*) : ¢ s M* 7220 ap e a2 nparage 2254 e

is inverse to

M*é
Hom(M*, M*) —s Hom(M, M) : & — M 25 prarear 2% arare v 222 .

However, it is standard that

Hom (M, M) —s Hom(M*, M*) : s M* 2% ap a2 vpearars <25 ape

is also an inverse, hence they are the same map. By symmetry, we also find that for any ¢: M — M,

MM e MM e 2B ar = o 2 e 2N a4

O

Remark 5.33. With A and B symmetric K-algebras as above, suppose that (M, N) is a selfdual pair of
exact bimodules. The duality gives an isomorphism N ~ M* of (B, A)-bimodules, so Proposition holds

when M* is replaced with any (B, A)-bimodule N such that (M, N) is a selfdual exact pair.

Example 5.34. Let G be any finite group, U a subgroup of G, and T a subgroup contained in the normalizer
Ng(U) of U. Then the pair of bimodules (kGey, epkG) is selfdual.

Proof. Let A = kG and B = kT. These are both symmetric algebras with the canonical symmetrizer
> gec Cgg €1 sending an element of the respective group ring to the coefficient of the identity element.
Then kG is a natural (A, B)-bimodule under left and right translation, and is clearly finitely generated and
projective either as a left A-module or right B-module.

Define a k-linear pairing by

1 ifeyg =evg™,

(gev,evd’) =
0 otherwise.
The induced map kGey — (eykG)* : m — (m,—) has inverse given as follows. Fix a complete set
{90 =1,¢1,...,9n} of right coset representatives of U in G, so that {go_l, gt ..., 9.t} is a complete set of left
coset representatives. A functional ¢ € (eykG)* then corresponds to the element 3, o(errg:)g; 'ev € kGey,

giving the inverse (egkG)* — kGey. O
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It follows now that maps End g k1) (kGer) — End e pry(kGey) induced from either pair of adjunc-
tions coincide, and likewise for End,r rq)(evkG) — Endr ra)(evkG), and Theorem is proven. In

particular, this shows that the category C is not trivial.
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6 Relation to Marin’s Algebra

In [12], for a given Coxeter system (W, S), Marin constructs an algebra Cy defined in terms of generators
and relations extending the usual Iwahori-Hecke algebra. As noted below, if W is the Weyl group of a
Chevalley group G, the Yokonuma-Hecke algebra associated to the unipotent radical of G has generators
indexed by S, and others by the elements of a maximal torus. In [II], Juyumaya and Kannan introduce
some new generators {gs}secs for the Yokonuma-Hecke algebra, such that the quadratic relation involves
an idempotent sum e, of elements of the torus. These generators {gs, €s}scs generate a subalgebra of the
Yokonuma-Hecke algebra, of which Cyy is a presentation. When W is finite, C'y has finite rank dependent on
the number of reflection subgroups of W, but independent of the characteristic of the ground field. Following
Marin quite closely, we construct an similar algebra which contains generators which track sign changes when

representatives of S may square to —1 in G, e.g., when G = SLs(q).

6.1 Constructing a Representation

Let k = Fg4, and let G a simple, simply connected Chevalley group over k. Let 1" denote a maximally split
torus of G, B a Borel subgroup containing 7', and U the unipotent radical of B.

Let ® denote the set of roots with respect to T, and let A = {a,...,a;} be the set of simple roots. Put
N = N¢(T), so that W = N/T is the Weyl group of G with S = {s, : @ € A} the set of simple reflections.
Then (W, S) is a Coxeter system, and let m;; denote the order of s4,5,, in W.

Let 7: N — W denote the canonical projection. The Weyl group W acts on T via w(t) = w -t = wti !,
where w € N is an element such that 7(w) = w. Recall also that for any a € ®, there exists §, € N such

that 7($4) = Sa, and a homomorphism ¢, : SLa(k) — G such that

for r € k*.

The Yokonuma-Hecke algebra #;,(g) is the endomorphism algebra
P,(q) = Endeo(Indf (10)).-
We can identify %;,(q) = ey CGey, where ey = ﬁ > wey U From the Bruhat decomposition

G=||Uvnv

neN
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there is the standard basis {R,, : n € N}, where R, = eyney. If n = §,, write R, := R;_, and if n = aV(r),

denote R, by H,(r), and define E, as
Eo =Y Har)

rekx

for a € ®. Then the E, pairwise commute, and E2 = (¢ — 1) E,. Recall the following theorem of Yokonuma

[14].
Theorem 6.1. The Yokonuma-Hecke algebra %,(q) is generated as an algebra by (Ra)aco and (Ri)ier.
The following relations among the generators give a presentation for %,(q).

1. R?2 = qH,(—1)+ R.E,

2. RyRgRo--- = RsRoRg -

Mag Map

3. RiRy = Ry R;, (t) forteT

4. RyRy, = Ryy foru,veT.

Following Juyumaya and Kannan [IT], notice that W induces an action on {E, }nco by defining

EY =3 Hy(r)

rekX

where v = w(a). From Yokonuma’s theorem, it follows that if s = s,, then EgR, = RQEE. It follows that

R? commutes with all Eg. Observe

EgR? = qFEsH, (1) + EsRoEy = R2Eg = qHo\(—1)Eg + Ry Eo Ep.

Hence

Ho(~1)Ep = EgHo(—1) + ¢~ (EgBaRa — E3EqRa)
= EgHo (1) + ¢~ '(Es — E5)EqRa.

This gives the relation
Ho(—1)Eg = EgHo(—1) 4+ ¢~ '(Es — E$)EqRaq.

Note for a € ®, B, = E_o. We have E_, = >, jox k(—a)v(t) = Dt K(sa(a))v(t)- But
{sa(@)V(t): t € K*} = {waa" (Hw, 't € K*}.
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Computing,

N 0O 1\ ([t O 0 —-1)\}) t_lo_vfl
R (R[5 R G e

Since t > t~! is a bijection on K*, we get E_, = E,.
It follows that E,Ep = EoE; (g for any o, 3 € ®. If 3 € {£a}, this follows by the above. Otherwise,

54(B8)Y = BY + maV for some m. Then

a’(t)(saf) (u) = a’(t)(B” + ma’)(u)

=a’(t)B" (wa’ (u)™ = o’ (tu™)3" ().

So

BoEap= Y kavwkapy = Y. Kaviumksvw = BaEg

t,uc KX t,ue KX
since (t,u) <> (tu™,u) is a bijection on (K *)2.
Since the E, commute amongst themselves, this implies if s = s, is the reflection corresponding to «,
then

(Es — E3)Eo = EgEo — E, (5 Ea = 0.

Then the above relation simplifies to Ho(—1)Eg = EgH,(—1).

Also, if ¢ — 1 is invertible, then setting e, = q—ilEa yields

2 _ 1 Ezf(‘]*l)E

T gmEe T g

= €q-

By the above, eqes = eaes, (). Then if J C P¢(R), and e; =[], et, then it makes sense to define
ej = ew,, where Wy = (J), under the identification e, = e; . With this scaled generator, the quadratic

relation R?2 = qH,(—1) + R, E, can be rewritten as
R? = qHo(—1) + (g — 1)Rpeq.

Drawing from the computations above, define the following algebra.

Definition 6.2. Let G be a simple, simply connected Chevalley group defined over the field k¥ = F,. Fix
a maximally split torus 7', Borel subgroup B. Let ® denote the corresponding set of roots, and A =
{a1,...,a,} the set of simple roots, and let R denote the set of reflections. If 3 € &+, let wg denote the

corresponding reflection in R. If 5 € A, the corresponding reflection will also be denoted sg.
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Define a k-algebra A with generators {7s}scs, {ta}aca, and {e, }wer subject to the following relations.
o 72 =quoa+ (¢ — D)7y, forallae A

e c?=¢ forallteR

® ¢ 6, =66, foralltyto €R

o ciep, =epey -1 forallt, iy € R

e 2=1forallaecA

® Too,Tso, Tsa;, """ = Tsa, Tsa, Tsa, - for all @i, 05 € A

Lz ™My

e T & =€ —1T,
Sa; “W8 Sa;WBSa; S

® lola; = lajla, for all a;,a; € A,
° Tsabg = Lsa(B)Tsa
® L,Cy = Eyla

LaCw, = Cwy

By Matsumoto’s Theorem, if w € W has a reduced expression w = sy - - - s, define 7, = 75, - - - 75,. Also
if B =73, cias, is an expression of a root 3 in terms of simple roots, then put ¢z = [] LSJ%. Also, for finite
JCR,set eg =]],c;es. Fors,t € J, ese; = eserer = esespsey, so it follows that ey = ey, where (J) is the
generated subgroup in W.

Note that any product of generators in A can be written in form e (Hﬁzl LE{) Tw, for J C R, €; € {0,1},
and w e W.

First, fix a simple root a; € A, and define integers ny by the equations s,,(ar) = ar + npa; for
k=1,...,1. Observe the effect of left multiplication by 7,, on a product of form e; (Hézl Lg) Tw-

Suppose £(sq,w) = £(w) + 1. Then

l l
To, €0 * H Lah " Tw = €s, Jsa, H ini(ak) *Tsa, Tw
k=1

k=1

l
_ || €k .
- esai‘]sai : Lak+nkai Tsaiw
k=1

l

— . €k NEEL |

= oo [T T
k=1

€D pozs LT .
= Csq;Jsa; " la; : I | bay " Tsa;w-
ki
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Suppose now £(sq,w) = f(w) — 1. Write w = s,,w’ where £(w’) = ¢(w) — 1. Then

l
€Y i ERME
€k — i ki € 2
TSa,i ey - Hbak 'Tw_esaiJSaibai HLO% - T Tw’
k=1

Sa;
ki

€D pzs ERNE €
= €sq,; Jsa; ba ’ H L(yi (q[/ai + (q - 1)7_3%. €sa, )Tw’
ki
€i+zk¢i ERNE €k €i+zk¢i E€LNE €k
= qesai ENS Lo H Lak CTw T+ (q - 1)65% Jsaiu{sai }l’ai H Lak *Tw-
k#i k#i

For right multiplication, observe that if ¢(ws,,) = ¢(w) 4+ 1, then

l l
€ — €5
[ Lai'TwTSai =€y - Lai'Twsai'
k=1 k=1

If l(wsa,) = l(w) — 1, write w = w's,, with {(w’) = ¢(w) — 1, and assume w(o;) =), cxap. Then

l i
€L . _ €K . 2
ey H lay * TwTsa, = €J H Loy " Tw' Ts,,
k=1 k=1

l
= ey [ [ v mur (@a, + (¢ = D7 €5.)
k=1

l

!
€ €
=gqey H Lk b () Tw + (@ — 1)eg H Lo T/ Tsy, €5,
k=1 k=1

l l
€ €
=dqgeyg H LOZ@ . Lw(—ai)Twsai + (q - l)eJ H L(;CkewsaiwflTw
k=1 k=1

l l l
— €k —Ck €k
=qey H bag, * H bay Twsa, + (q - 1)6Ju{wsaiw*1} H Lo, Tw

l

l
— €xtc €
=qey H Lakk. ke Twsa, + (q - 1)6Ju{wsaiw_l} H Loékk *Tw-
k=1 k=1

Now let V be a free k-module with basis

(UJ’(Ek),w :JCR, () € ]FZQ, w e W)

where we declare v (¢,).w = VK (¢ If w=w', (J) = (K), and if e # €}, then s,, € (J) = (K).

With the same Coxeter system (W, .S) as before, define the following k-linear operators on V.

Definition 6.3. Fix «; € A, and let integers nj be determined by the equations s, (ag) = ag + nga;.
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Define Ty, := Ty, € Endy (V) by

USQiJSai 9 (617 ey € + Zk;ﬁl EpNiy e v vy 6[)7 saiw
if (s, w) = L(w) + 1,

quaj Jsaji(€17"‘7€’i+1+zk#i €knk,---7€n)75aiw + (q - l)vsai JsaiU{Saj},(el,4..,51'—&-2,‘:#1. Cknkv---afn)aw

if £(sq,w) = L(w) — 1.

S

Similarly define T}, := T, € Endy(V) by

VJ,(er),wsa. if é(wsai) = (’LU) + 1)’
Tél (’UJ7(Ek)7w) _ ( k) i

QU (ex+ex)wsa, T (7 — 1)ve‘,u{w5aiu,_1},(ek),w if L(wsq,) = l(w) — 1.
where the integers c;, are determined by the equation w(o;) =Y, crog.
Lemma 6.4. For any o, a; € A, T, Ty, =Tp, Ta, .
Proof.

1. First suppose £(sq,w) = l(wsy,;) = L(w) + 1.

e Suppose also that £(sq,wsa,) = {(wsa,) + 1 = £(5q,w) + 1. Then

/ _ —
TaiTaj (/UJ,(ek),w) = Tozi (UJ,(ek),wsaj) - ’UsaiJsai,(el,...,ei—i-Zk#i eknk,.,.,en),saiwsaj
and
/ _ v
Taj TOti (vJ7(6k)77U) - Tocj (UsaiJSai,(Elw-&r‘rEk# €kMyeens€n )8y, w)

- Us(,l.Jsai,(el,...,ei—i-Zk#i sknk,...,en),saiws(,j

which are both equal.

e Suppose instead £(sq, wsa;) = £(5q,w) — 1 = £(ws,,;) — 1. Then

TaiTc/yj (UJ,(ek),w> =Ty, (UJ,(ek),wsaj )

= quaiJsai,(sl,...,ei-l—l—i-zk#i eknk,...,en),sajwsaj + (q - l)vsaiJsaiU{sai},(61,...,6i+zk#i €LNE,
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Let the integers ¢j be determined by the equation (sq,w)(c;) = >, croy. Then

/ o
TajToci (U,],(ek),w) - Taj (Usai Jsai,(el,...,eiJer#j Eknk,...,en),saiw)

= QUsq, Isa; (e1ter it cit Yoy erni, o enten),Sa; Wa, +

(q - 1)U3ai7J‘saiU{saiwsa]‘ w’lsai},(ﬁ,m,ez‘-&-z;@#i Gknkv---afn)asaiw'

To see that the first terms in each computation are equal, we have to consider the discrepancy of
€+ 14> exng and € + ¢+, exng. Since £(ws,,;) = L(w) +1, it follows that w(a;) € @,
but {(sq,wsa,;) = L(wsa,) — 1, so that (sq,w)(a;) € ®~. Thus w(ay) is a positive root made

negative by sq,, and so w(e;) = «;. Thus

> kg = (sa,w) () = 0, () = —
k

so that ¢; = —1, and ¢ = 0 for k # i. Hence the first terms are equal since

ei—&—l—i-Zeknk =¢ —1+Zeknk
ki ki

in FQ.
To see that the second terms are equal, ((sq,wss, = £(w) and l(s,,w) = £(ws,,) together
imply Sa,w = wWsq,. This in turn implies Sq,WSa, W™ Sq, = WSa,Sa, W™ 'Sa,

i i

= S4,, so that

Sa;JSa, U{sa,} and sq,Jsq, U{sa,wsa,w s, } clearly generate the same subgroup.

2. Suppose £(sq,w) = £(w) + 1 and L(ws,,;) = L(w) — 1. It follows that necessarily £(sq,wsq,) = £(w), for
otherwise £(sq,wsq,) = £(w) —2, implying £(sq,w) < £(w)—1, a contradiction. Write w(c;) = ), crou

for some ¢ € Z. Then

TaiT;cj (UJ,(ek),w) =T, (q/UJ,(Ek“’Ck)ﬂUSaj +(q— 1)”JU{wSajw‘1}7(6k),w)

= QUsq, Jsa, (e1ter,eiteitdy (e ter)ne, . .enten),sa,; wa, +

(q - 1)’03&7‘,JSOLq‘,U{s("iw‘SaJ’w_lsal}7(617""6'L+Zk¢i €RMe e r€n ) Sy, W

Write sq,w(o;) = >, droy. Then
T(;j Tou‘, (UJ,(ek),w) = T(/xj (Usai Jsa, ,(61,44.7671+Ek#i eknk,...,en),saiw)

= QUsq, Jsa;s(e1tdi,eitdit Y 4y €xnps,sentdn),sa; wWsa; +

(q - 1)1)5%Jsa,iU{saiwsujwflsai},(61,...,5i+zk¢i eknk,...,en),saiw'
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The final second term of each computation is identical. To check equality of the first term, note

deak = Sq,W(j) = Sq, <Z ckak> = Sq, (Ciay) + chsai (ak)
k k

ki

= —c;oy + Z cp(ag +nrpa;) = | —¢; + Z ceng | o + Z CrOl;.
ki ki ki

Hence d; = —¢; + Zk# cgng and dy, = ¢ for k # 4. This shows ex + ¢, = €x + dj, for k # i. Comparing

the ith entry as elements of Fo,

eitcit > (et =e—cit+ > (e +cr)nk

k#i ki
=€ —C Jrzéknk +chnk
ki ki
=€ +d; + Zeknk.
ki

3. Suppose £(sq,w) = L(w) — 1 and L(ws,;) = £(w) 4 1. Necessarily £(sq,wsq,) = £(w). Then

Tai Téj (U‘L(ek)}w) = Toq, (’UJ,(ek),wsaj )
= quai Jsa; (€150 Ei+1+zk¢i €RMNserr€n) 80 WSa +
(q - 1)”5%Jsaiu{sai},(61,...,E¢+Zk# €kTEy 1€n ), WS
and
Tglijai (UJ,(ek),w> = T(;j (quai Jsai,(el "'*€i+1+2k¢7‘, €RMynens En),saiw""
(q - l)vsai JsaiU{sai},(61,...,ei+zk#i eknk,...,en),w)
= quﬂz‘ Jsa, ,(61,...76i+1+2k¢i eknk,...,en),saiwsaj +
(q — l)vsai Jsaiu{sai}=(€17~~-7€i+zk¢i eknk,...,e"),wsaj)

which are identical.
4. Suppose £(sq,w) = L(w) — 1 = L(wsqy, ).

o Suppose (sq,wsqa,) = L(wsa,;) — 1 = (s5q,w) — 1. Write w(a;) = >, cxop and
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Sq,w(aj) =Y, dioy,. Then

/ —
TaiTaj (UJ,(ek),w) = Tai (qUJ,(ek+ck),wsaj + (q - 1)’UJU{wsa]. w*l},(ek),w)
= Q[quaiJsai,(51+c1,...,ei+ci+1+zk#i(ek-‘rck)nk,...,en-i-cn),saiwsaj
+ (g — 1)U5aiJscxiU{Sai}7(51“1’51;»--1€i+ci+zk¢i(5k+ck)nk7---15n+cn)7w5a]-]

+ (q - 1)[quaiJsaiu{saiwsajw*lsai}7(61,‘..,6i+1+2k¢i eknk,...,en),saiw

+(¢— 1)”8%JsaiU{saiwsajuflsai,sai},(e1,--~7ei+2k¢i ewk7~--,€n),w]'

Now write sq,w(cj) = >, dray, for some dj, € Z. Then

T(;jTa,: (UJ7(ek),w) = T&j (qvSQiJSQi,(61,...,61+1+Zk¢i €T, y€n )y S, W
+ (g — 1)UsaiJsaiU{sazphai}7(61,---,Ei+2k¢,; kT erEn) W)
= Q[qu%‘ JIsa, ,(€1+d17...,€i+di+1+zk#i eknk,..‘,en—kdn),saiwsaj +
+ (q - 1)UsaiJsaiU{saiwsajw—lsai,(el,“.,ei—&-l—&-zk#i eknk,...,en),saiw]

+ (q - 1)[(']1]5%' JsaiU{Sai}7(€1+017~~>€i+0i+zk¢i eknk,...,en-&-cn),wsaj

+ (q - 1)UsaiJsaiU{saiwsajw*l},(el,“.,eﬁ-zk#i eknk,...,en),w]‘

The first terms of each final computation are equal. As before, d; = —c¢; + Zk# ceny and d, = ¢

for k # 4. Thus ex + di, = € + ¢, for k # i, and in Fo the ith entries are equal since

€i+di+1+zﬁknk =€ —ci—i-anck +Zeknk
ki ki ki

=¢—c+1+ Z(ek + cp)ng
ki

=¢+c+1+ Z(ek + ¢ )ng.
k#i
The second term of the first computation is equal to the third term of the second computation,
although the ith coordinates differ, as this coordinate corresponds to the reflection s,,, which is

in the subgroup generated by s, Jsa, U {Sa,}, so these basis vectors are equal, regardless.
The third term of the first computation is identical to the second term of the second expression.

Lastly, the fourth terms of both computations are equal since

-1
(Sa;JSa;s Says Sa;Wsa, W " Sa,

i

) = (Sa;JSass Say, WSa,w ).
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e Suppose {(sq,wsqa;) = L(w) = L(sq,w) + 1 = £(wsy,) + 1. Since (s, w) = £(wsy,), necessarily

Sa,W = WSy, . Write w(a;) =", cpag. Then

!/
TaiTaj (’UJ>(EIC)7U)) =T, (qUJ,(Ek+Ck),wsaj +(q— 1)UJU{wsajw*1},(6k),w)
= QUsq, Jsa, (e1ter,eiteitd i (enter)ne, . .enten),sa; Wa,

+ (q - 1)quaiJsaiu{saiwsajwflsai},(51,..4,e,3+1+2,€#ieknk,...,en),saiw

2
+ (q - 1) UsaiJsaiU{saiwsajwflsai,sai},(el,...,eiJer#i €RMyerey€n ), W

and
’ o
1., Ta, (v () w) = Ty, (quai Tsa; (€1, €t 14D sy €RTlks o160 ) Sy W
+ (q - ]‘)Usai JsaiU{sai}7(517---15i+2k¢i 5k”k1'“75n)7w)
= QUsq; Jsa; (€1t 1430y €kNises€n) S0, Wsa,
+ (q - 1)quaiJsaiU{sai},(el+cl,.4.,ei+ci+zk#i eknk,.“,en+cn),wsa].
2

+ (q - 1) ’Usal.Jsal.U{wsajwfl,sai},(61,...,e7¢+2k¢i €Mk yerer€n ), W*

Since L(wsq,;) = £(w) — 1, w(a;) € @7, and since (54, wSq,) = £(5q,w) +1, 5o, w(;) € F. Thus

w(cy) is a negative root made positive by sq,, so w(e;) = —a;. Hence ¢; = —1 and ¢, = 0 for

k # i. Hence as elements of Fa,

ei—l—ci—&—Z(ek—&—ck)nk =€ —1+Zeknk zei—l—l—i—Zeknk
ki ki ki

which gives equality of the first terms.
Comparing the second terms of each computation, it was noted before that s,,w = wss;. It

remains to check (sq,Jsq,, smwsajw’lsa“sm) = (Sa; JSaus» Sa; )» DUt this is clear since as before,

Sa; W = WS4, implies saiwsajwflsav

i = Say-

Finally, the third terms are equal since (Sa,JSa,, Sa, WSa, W ' Sa,, Sa;) = (Sa,JSay, Sa;, WSa,w ™).

So T, T}, =T}, T.

7 Al

Definition 6.5. For K C R, define an operator Ex € End; (V') by

Ex (Vi (ep)w) = VIUK,(ex)sw-

If K = {w} is a singleton, write Ex = E;.
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Definition 6.6. For ; € A, define I,,, € Endg (V) by

Lo, (V) w) = Va(erommsitl,men) -

Then clearly for a;, a; € A, In;lo; = Lo, Lo, s0 if B =3, cpag, write Ig =[], IS

ag”

We check that these operations satisfy the relations TS@ =ql,, + (¢ — 1)TOM,ES%7 To;Bx = Es, k5., Tos

Tolo, = sai(aj)Tai, and Ty, To, T, -+ = To;Te, T, - - - That the Fy, Ty, and I, satisfy the other relations

mMij Mij

analogous to those satisfied by the e;, 75,1, in A is clear.

Lemma 6.7. For a; € A and s, € S, the relation
Ti‘, = qI!li + (q - 1>TaiEsai

holds in Endy (V).

Proof. Suppose (s, w) = £(w) + 1. Then

2 —
Tai (’UJ,(ek),w) = Tai (Us,,iJsai,(61,‘..,ei+zk¢i eknk,...,en),saiw)
= qUj (eq,...,e;4+14+2 Zk;ﬁi €kMkyernr€n ), W + (q - 1)vJu{sai},(el,...,ei+2 Zk#i €RNEyeees€n ) 80, W

= QUi lien)w T (4= D)VIULs0, }(er) 50,0

Observe

Lo, (UJ,(ek),w) = UJ(e1,eer€itl,ren),we
Also,
To, Es,, (V1(e0)w) = Tai (V1050 }(ex) )
= VUsa,Is0; U{sa; (€1, €2 gosi €6ME s 1En) Sa; W
= VJUfsa, },(ek)s50,w
where the last equality follows since (sq, JSq;; Sa;) = (J U {sq;}), and the discrepancy that possibly

€ 7 €+ Zk# exny is irrelevant since s, € (J U {sq, })-
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Suppose instead £(s,,w) = £(w) — 1. Then

2 _
T7, (U-L(Ek),w) =T, (quaitlsai1(511-'~7€i+1+zk¢i kNkyensEn)sSayw T (q— 1>U5aiJsaiu{scxi},(elw-wfi Sk eknk,n-,en)w)
= Q'UJ7(51,___7Q+1+2 Zk#i €kMseeer€n),W
+ (q - 1>q,UJU{5cxi}’(51’~~a5i+1+2 D hoti €kTlk s s€n ), S, W
+(¢—1)%
q Sa;Jsa;U{sa, }s(€1,-, €42 Zk#i €kMhserny€n ), W
= qUJ7(El’~~a5i+1u~~~7€n)7w + (q - 1)quU{Sai}1(51uv~w€i+1g~-’5n)75aiw
+(¢—1)%
q saiJsaiu{sai}7(517~--15ia“~75n)7w'
However,
Tozi Esai (UJ,(ek),'w) = Taq‘, (UJU{Sai}7(€k)7W)
= QUsq, Isa;U{sa; (€1, et 143y €k esen) Sa, w
+ (q - ]-)UsaiJsaiu{sai},(51,..47613—&-2,@,#eknk,...,en),w~

O

The discrepancy at the ith coordinate is irrelevant since (sq, JJSq;, Sa;) = (J, 84, ). The claim now follows.

Lemma 6.8. For any K C R and any o; € A, the relations T,,, Ex = EsaiKsaiTOéi and T,;iEKTéi hold in

Proof. Suppose {(sq,w) = ¢(w) + 1. Then

TajEK(fUJ,(ek),w) = Tai (UJUK,(ek)w)
= ’Usai(JUK)sai,(el,...,eiJer#i €RMEy-1€n), Sy W
= EsaiKsmi (vsai Jsai,(el,...,ei-i-zk#i eknk,.“,en),saiw)

= EsaiKs(”Tai (UJy(Elc)’U))'
If £(8q,w) = £(w) — 1, then

To, Ex (v er)w) = Tai (Vs0K (e)w)
= quai(JUK)Sai7(617'~x€i+1+zk¢i €RMk e 1€n) Sy W
(4 = D)Vs o, (JUR) 0, Ul bo(€x it S sy €xmiiseosen)ow
= EsaiLsai (quaiJsai,(el,...,eiJrlJer# eknk,..‘,en),saiw)
+ EsaiKsai ((q - ]-)vsai Jsal.U{sni},(el,...,ei—}-zk#i eknk,...,en),w)

= Esai Ksa, T, (UJ,(ﬁk)ﬂv)'
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That Ex commutes with T/, is immediate.
Lemma 6.9. For a;,a; € A, the relation Ty, 1o, = I, (a;)Ta; holds in Endg (V).

Proof. Suppose £(sq,w) = ¢(w) + 1. Then

ToziIozj (UJ,(ek),w) = Toz;, (U.],(el,...,ej-&-l,...,en),w)

UsayJsays(€15m€itni+3 sy €n) €41 n) 50, w:

On the other hand, recall sq,(o;) = a; + nja;. Then

Isai (Oéj)TCEi (UJ,(ek),w) = Ia,--i—nkocj (Us% Jsa, ,(61,.‘.7€i+zk¢i eknk,...,e",saiw)

- vsaiJS(,W(El,,..,ei—‘r’rLj—‘er#i eknk,...,ej+1,...,en),saiw

and the claim follows. If £(s,,w) = ¢(w) — 1, then

TaiIaj (UJ,(ek),w) = Tai (UJ,(el,4..,ej+1,...,en)w)
= q’Usai Jsal.,(el,‘..,emtz,c#i RNk €51, €n) 80, W
+ (q - 1)1)504,;Jsaiu{sai}7(517---75i+nj+zk¢1 €xNky--r€i+1,.. 60 )W
= Iaj+njai (quai Jsai,(el,...,ei+1+zk¢i €RNyeees€jyeens€n),Sa; W
+ (q - 1)1}504,;Jsaiu{sai}7(517---75i+zk¢i sknk,“.,ej,...,en),w)

= Isai (aj)Tozi (UJ,(ek),w)-
Hence Ty, In; = I, (a;)Ta,, and it follows that Tgl, = I,,,(,)Tp for any roots 3,7 € 9.
Lastly, we check the braid relation.

Lemma 6.10. For o, € A, the relation

T T5Ty - =TT Ts - -

Mag Mapg
holds in Endg (V).

Proof. Put u = 545854 -+ = 585453 - -+ € W. Observe
—_———— ———

Ma Magp
ToTsTo (Vg 5.1) = V0,6,505550 - = Y0,5,8af--- = 18TaTs (Vg 51)-
Mapg meg mag mMag
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Let w € W have reduced expression t; - - - t,.. Using the prior relations and that fact that the operators

T and T commute, (and suppressing the m,z underbrace notation below where it is clear), observe

TaTBToz o '(UJ,(ek),w) = TQTBTa te TtIT e Tt/ (’UJ,(ek),l)
—_———

1

Mmag

=T, - T} TaT5Ts (HI”) Vg.5.1)

= Eyju-t <H IZ’Za@) T, - T, ToTpT - (v 51)
k=1

= By ju-t (H IZ’Z%)> T, - T{ TeTuTs - (vg5,4)
k=1

=FE, .1 <H IZ’@)) TsT Tg--- Ty - T, (Vg5.1)
k=1

= LyJgu—1 <HIZ’ZO%)> TBT‘XT5' (UQ)Ow)
k=1

=TT, T5---Ejy (H I;’Z) (V9.6.0)

k=1
= TpTaTp (Vs (e w)
Mag
So ToTpTy - =TsToTps - - -. O
Mag Maj

Proposition 6.11. The algebra A is a free k-module with basis

B=/{ey; <H Lf;’i> Tw : J CR finite, €, € {0,1} and ¢, =0 if 5o, € (J), w € W}.
i=1
Proof. From the preceding lemmas, it follows that there is a k-algebra map

0: A= End(V): 75 = Ty, ta = Ly, €= Ey.

¥ <€J (H LZ}) Tw> ”001 (H Iek> 'U@Ol) VT (ex) s
k=1

so that ¢ is surjective onto V. Moreover, suppose » (CJ,(ek)7w€J (szl LZ’Z) Tw) € ker ¢ is a k-linear combi-

Observe that

nation of elements of B, for some scalars cj )« Then applying ¢

ZCJ,(ek),w : (H Iek) =0
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and evaluation at V951 yields

ZCJV(Ek)7w ’ /UJv(Ek)vw = O
so that each coefficient cj (). = 0, and so ¢ is injective. O

The above proposition shows that A has dimension dependent on the cardinality of W and the structure
of its reflection subgroups, not on the characteristic of the field of definition of the original Chevalley group.

As in the rank 1 case, this algebra should fit into a diagram of form

A ———— End (s (9),% @) (H5(0))

| |

Endra 17y (EG/U) —— End s (q),,(9) (75 (q))-

This algebra A then serves as a conjectural definition of the 2-endomorphism algebra of F@g in the context
of a W-categorification. As in Section 5.2, the counit-unit adjunctions induce corresponding conjectural
definitions for the k-vector spaces of 2-homomorphisms between parallel morphisms involving Fég , E(;f , 1g,
and 1g. However, further investigation is required to determine a conjectural definition of the endomorphism

algebra of FY when ) C 1 C JCS.
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