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ABSTRACT OF THE DISSERTATION

Endomorphism Algebras in Coxeter Categorifications

and Harish-Chandra 2-Categories

by

Benjamin William West

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Raphaël Rouquier, Chair

Given the data of a Coxeter system (W,S), a Coxeter categorification is a 2-category in which the

objects are subsets of S, the generating 1-morphisms categorify induction and restriction functors associated

to parabolic subgroups, and the generating 2-morphisms impose certain coherence conditions and structural

properties among the 1-morphisms. Of particular interest is the structure of the 2-homomorphism spaces of

these 1-morphisms. Furthermore, given a connected, reductive, algebraic group G over an algebraically closed

field k, a chosen Frobenius endomorphism F : G → G determines a parameter q ∈ k×, and the Weyl group

of G gives rise to a Coxeter system. When this system is of rank 1, we construct by generators and relations

an extension of the Coxeter categorification, independent of q, where the 2-homomorphism spaces are free

modules of finite rank over the ring of Laurent polynomials with integer coefficients. An explicit description

of the 2-homomorphism spaces between generating 1-morphisms is given, along with an algorithm lifting

these descriptions to the 2-homomorphism spaces of arbitrary 1-morphisms. Then a nontrivial 2-functor

from this 2-category is constructed into the 2-category of bimodules. Some conjectural constructions are

given in the case that W has arbitrary finite rank, in particular a proposal for the endomorphism ring of the

generating 1-morphism from ∅ to S that is an extension of an algebra introduced by Marin.
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1 Introduction

Suppose G is a reductive group defined over Fp, an algebraic closure of the finite field of p elements, with an

isogeny F : G → G such that some power of F if a Frobenius endomorphism of G. Let GF denote the set

of fixed points, and let K0(CGF -mod) denote the Grothendieck group of the category of finite dimensional

CGF -modules. In the late 1970s and early 1980s, Alvis and Curtis introduced the Alvis-Curtis duality, an

involution

DG : K0(CGF -mod) −→ K0(CGF -mod)

given as a particular alternating sum of compositions of parabolic inductions and restrictions over F -stable

parabolic subgroups of G with respect to a chosen F -stable Borel subgroup.

In 1990, Broué showed that DG is a perfect isometry, i.e. a type of generalized induction associated

to a perfect character (c.f. Definitions 1.1 and 1.4 of [1]), in all characteristics other than p. This result

was a reflection of a fact of categorical flavor first conjectured by Broué, namely that DG is induced by

a self-equivalence of the bounded derived category Db(RG-mod) of the category of finitely generated RG-

modules, where R is a complete discrete valuation ring with residue field of characteristic other than p.

This conjecture was proven in slightly greater generality by Cabanes and Rickard in [2] using a coefficient

system of Z[p−1]G-bimodules. The crux of the proof involves applying parabolic induction to a cuspidal

module, and then determining its image in the bounded homotopy category after tensoring with various

chain complexes associated to the aforementioned coefficient system. To quote the authors, an “essential

ingredient” is a result of Howlett and Lehrer that parabolic induction and restriction are independent of the

choice of parabolic subgroup.

Similar situations have arisen elsewhere, e.g. Chuang-Rouquier [4], and inspired by this, Dreyfus-Schmidt

develops in his thesis a new categorical framework called the Coxeter complex categorification. This setting

is used to categorify the Alvis-Curtis duality, as well as provides a category theoretic schema for both

Harish-Chandra and Howlett-Lehrer theory.

To begin, Dreyfus-Schmidt associates to a finite Coxeter system (W,S) a family of linear, abelian cat-

egories AI parametrized by the subsets of I ⊆ S. Among other things, for any I ⊆ J ⊆ S, there exist

exact biadjoint functors F JI : AI � AJ : GJI , akin to the Harish-Chandra induction and restriction func-

tors. Additionally, there are distinguished natural isomorphisms that encode categorical analogues of the

standard properties of such functors, namely transitivity, independence of the choice of parabolic subgroup,

and transport of structure. Dreyfus-Schmidt refers to this initial premise as a weak W -categorification,

but upgrades this definition to a genuine W -categorification if the aforementioned natural isomorphisms are

subject to several coherence conditions, one of which provides a notion of a Mackey decomposition like that
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of the usual Mackey formula for induction and restriction. By his own remark, Dreyfus-Schmidt notes that

several of the coherence conditions in the definition of a W -categorification are not needed for the aim of

categorifying the Alvis-Curtis duality, but would be useful in elucidating the structure of the endomorphism

algebras of cuspidal objects. In fact, in this work this initial definition is enlarged. For instance, for each

I ⊆ J , Dreyfus-Schmidt fixes an adjunction (εJI , η
J
I ) : F JI a EJI realizing F JI as a left adjoint to EJI , but fixes

no specific adjunction witnessing EJI as a left adjoint to F JI . Our extended definition does fix such an ad-

junction, and imposes an additional coherence condition such that the two induced maps between End(F JI )

and End(EJI ) by these two choices of counit-unit pairs coincide. This is not a particularly unnatural require-

ment, as frequently the functors F JI and EJI correspond to a generalized induction or restriction given by a

symmetric algebra, and the corresponding algebra morphisms corresponding to the units and counits satisfy

the same coherence conditions. In this vein, we hope to describe the endomorphism algebras of the F JI , and

consequently those of the GJI once a fixed counit-unit adjunction is chosen.

Algebras similar to possible candidate endomorphism algebras have been studied for some time. A close

analogue of the familiar Iwahori-Hecke algebra is the Yokonuma-Hecke algebra Y , that is, the endomor-

phism algebra of the permutation representation of a Chevalley group G with respect to a chosen maximal

unipotent subgroup U . In 1967, Yokonuma gave a presentation of this algebra in terms of standard gen-

erators parametrized by double coset representatives of U , and such generators satisfy the expected braid

relations, as well as a slightly different quadratic relation. Some decades later, Juyumaya and Kannan gave

a new presentation of the Yokonuma-Hecke algebra. After choosing a Borel subgroup and maximal torus,

for each corresponding root they modify the coefficients of a linear combination of Yokonuma’s standard

generators with a fixed additive character of the underlying field of definition. The new quadratic relation of

this nonstandard presentation then involves an idempotent which is in turn a linear combination of standard

generators parametrized by the image of the corresponding coroot.

These new generators and the idempotents that appear in the quadratic relation thus generate a subal-

gebra of Y , and Marin has determined a presentation for it in recent work [12]. To explain this setup, let

(W,S) denote the Coxeter system for the above G, and let R denote the set of reflections in W . For ease

of notation, assume that the isogeny F acts trivially on W , so that W = WF . Marin then constructs an

associative algebra CW (q̃) over a commutative, unital ring k, where q̃ = (q̃s)s∈S is a family of parameters

such that q̃s = q̃t whenever s, t ∈ S are conjugate. The algebra CW (q̃) is defined by generators {gs}s∈S and

{et}t∈R subject to some relations, two of which together impose the condition that the et are commuting

idempotents. The coefficients in the relations only involve the parameters q̃s and the unit 1, so for our

purposes specializing each q̃s to q̃, we may assume a simpler setting where CW (q̃) =: CW is defined over

Z[q̃, q̃−1]. Thus given a finite subset J ⊆ R, one can put eJ =
∏
t∈J et without ambiguity. It is a further
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consequence of the relations that for J,K ⊆ R finite, eJ = eK whenever J and K generate the same reflection

subgroup. Furthermore, CW is freely generated as a module by the products eJgw for J ⊆ R finite, and

w ∈ W . It thus follows that when W is finite, CW has rank m |W |, where m is the number of reflection

subgroups of W . In particular, the rank of CW is independent of the field of definition of the original group

G.

With this result of Marin in mind, our aim to is provide endomorphism algebras of the biadjoint functors

in Dreyfus-Schmidt’s W -categorification setting in such a way that their dimension is independent of the

characteristic of the underlying field of definition of the associated group. To explain this in more detail,

first consider a root datum R = (X∗,Φ, X∗,Φ
∗) and an algebraically closed field k. Up to isomorphism, R

uniquely determines a split reductive group (G,T ), where G is a reductive algebraic group over k satisfying

the usual commutator relations, and T is a split maximal torus. Let (W (R), S) be the associated Weyl

group, which is an instance of a Coxeter group. Furthermore, G is an algebraic group with split BN -pair,

and for each J ⊆ S, the standard parabolic subgroup PJ has the Levi decomposition PJ = LJ o UJ , where

LJ is the standard Levi subgroup, and UJ is the unipotent complement. The Levi subgroup LJ is itself

an algebraic group with split BN -pair satisfying the commutator relations, and thus has its own standard

parabolic subgroups PI ∩ LJ for I ⊆ J . In turn, PI ∩ LJ has Levi decomposition

PI ∩ LJ = LI o (UI ∩ LJ).

Additionally, that LJ has a split BN -pair is witnessed by subgroups BJ and NJ , defined by BJ = U(w0)J oT

and NJ/T = WJ , where U(w0)J is the product of root subgroups corresponding to the positive roots with

respect to J .

Now consider a general Coxeter system (W,S), a commutative ring R̃ = Z[q̃, q̃−1], and q̃ ∈ R̃ an inde-

terminate. If M = (mst) denotes the Coxeter matrix, the Hecke algebra HS(q̃) associated to this Coxeter

system is the R̃-algebra with generators Ts, for s ∈ S, subject to the relations

1. TsTtTs · · ·︸ ︷︷ ︸
mst

= TtTsTt · · ·︸ ︷︷ ︸
mst

,

2. (Ts − q̃)(Ts + 1) = 0, for all s ∈ S.

To this Coxeter system (W,S) and arbitrary parameter q̃, there is associated a Hecke 2-category HeckeR̃,q̃(W ),

realized as a subcategory of the usual 2-category Bimod of bimodules. The 2-category HeckeR̃,q̃(W ) has as

objects the Hecke algebras HJ(q̃) for J ⊆ S, morphisms generated by (HJ(q̃),HK(q̃))- and (HK(q̃),HJ(q̃))-

bimodules HJ(q̃) for any K ⊆ J ⊆ S, and the 2-morphisms are the usual bimodule homomorphisms.

However, since (W (R), S) is not only a Coxeter system, but arises as the Weyl group of a reductive
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algebraic group G, we can associate to it another 2-category, the Harish-Chandra 2-category HC(W (R))

which is given as follows. The objects of this category are the algebras kLJ , for J ⊆ S, where LJ is

the standard Levi subgroup of G corresponding to J defined above. The morphisms are generated by

the (kLJ , kLI)-bimodules k[LJ/(UI ∩ LJ)] and the (kLI , kLJ)-bimodules k[(UI ∩ LJ)\LJ ] for I ⊆ J ⊆ S.

As above, the 2-morphisms are the usual bimodule homomorphisms. Note, of course, that the generating

1-morphisms are the bimodules inducing the Harish-Chandra induction and restriction functors

RLJLI = kLJ/(UI ∩ LJ)⊗kLI − : kLI -mod −→ kLJ -mod

and

∗RLJLI = k[(UI ∩ LJ)\LJ ]⊗kLJ − : kLJ -mod −→ kLI -mod.

For the group G above, again let F : G → G denote a Frobenius endomorphism. The pair (G,F )

determines a parameter q ∈ k×. Let Heckek,q(W (R)) denote the Hecke 2-category defined in the same

fashion as HeckeR̃,q̃(W (R)) above, with k in place of R̃, and q in place of q̃. Then there is a 2-functor F

from HC(W (R)) to Heckek,q(W (R)) via the following commutative diagrams, for I ⊆ J ⊆ S,

kLI -mod
Hom(kLI/BI ,−)

//

R
LJ
LI

��

HI(q)-mod

Ind
HJ (q)

HI (q)

��

kLJ -mod
Hom(kLJ/BJ ,−)

// HJ(q)-mod

and

kLJ -mod
Hom(kLJ/BJ ,−)

//

∗R
LJ
LI

��

HJ(q)-mod

Res
HJ (q)

HI (q)

��

kLI -mod
Hom(kLI/BI ,−)

// HI(q)-mod.

Furthermore, a ring morphism ϕ : R̃→ k such that ϕ(q̃) = q induces a functor G from HeckeR̃,q̃(W (R))

to Heckek,q(W (R)) via specializing q̃ to q. This gives the diagram

HeckeR̃,q̃(W (R))

G

��

HC(W (R))
F
// Heckek,q(W (R)).
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To the root datum R, we wish to construct an R̃-linear 2-category S (R) yielding a diagram

S (R) //

��

HeckeR̃,q̃(W (R))

G

��

HC(W (R))
F
// Heckek,q(W (R))

where the functor S (R) −→ HC(W (R)) is given by specialization.

The 2-category S := S (R) should consist of the following data. To the root datum R, there is an

associated finite Coxeter system (W (R), S), where S is a fixed set of generators. Briefly, the 2-category

S has objects subsets of S. The 1-morphisms are generated by the following: given subsets I ⊆ J ⊆ S,

there is a pair of biadjoint arrows F JI : I � J : EJI , and in cases where w ∈ W and wI ⊆ S, isomorphisms

ΦI,w : I
∼−→ wI. Additionally, there are 2-morphisms which encode some coherence conditions amongst the

generating 1-morphisms. Precise definitions will follow in the body.

Suppose that a Borel subgroup B of G is chosen containing the torus T . Since G is split, the factorization

B = U o T gives a unipotent group U . Within the category HC(W (R)), there are objects L∅ = T , LS = G,

and the morphism kG/U viewed as a (kG, kT )-bimodule. The 2-endomorphism algebra of this morphism is

Y (q) := End(kG,kT )(kG/U) = EndkG(kG/U)T ,

which can be viewed as the subalgebra of the (opposite) Yokonuma-Hecke algebra EndkG(kG/U) fixed under

the conjugation action induced by T . The functor F sends kG/U to the (HS(q),H∅(q))-bimodule HS(q),

and so F (Y (q)) is a subalgebra of End(HS(q),H∅(q))(HS(q)) =: H in Heckek,q(W (R)). This endomorphism

algebra H is the image of the analogous algebra H̃ = End(HS(q̃),H∅(q̃))(HS(q̃)) in HeckeR̃,q̃(W (R)), which

is sent to H by the functor G . This indicates that the category S should contain some 2-endomorphism

algebra AS∅ fitting into a diagram

AS∅
//

��

H̃

��

Y (q) // H

where each arrow is given by the application of the previously introduced functors on the level of 2-morphisms.

So far, a complete construction is given only in the case where |S| = 1.

For a Coxeter system (W,S) arising from a Chevalley group defined over a field of q elements, the

corresponding Yokonuma-Hecke algebra, introduced by Yokonuma in [14], has generators indexed by the

elements of S, and others by elements of the torus, and hence has dimension dependent on q. This necessitates

5



some algebra such as A above, which can be defined in terms of a generic parameter q̃, which is not possible

with Y (q).

Lastly, a brief comment on the layout of this thesis. In Section 2 we recall some of the basic algebraic ma-

chinery, including proper definitions of the types of Hecke algebras mentioned above. Section 3 investigates

some motivating examples concerning typical groups such as SL2(q) and GL2(q). For convenience, Section

4 provides a complete and slightly modified definition of Dreyfus-Schmidt’s W -categorification, as this defi-

nition first appeared in [7], which is unpublished as of this writing. Section 5 defines a 2-categorical setting

centered around a 2-category C′, with a biadjoint pair of 1-morphisms, and explicitly constructs endomor-

phism algebras in the case of rank 1. The first main result is Theorem 5.26, which determines a description

of the space of 2-morphisms between any parallel 1-morphisms. Roughly, the Mackey decomposition ax-

iom of a W -categorification yields a decomposition of any 1-morphism as a direct sum of indecomposable

1-morphisms, of which there are only finitely many. A subspace of the space of 2-morphisms between inde-

composable 1-morphisms is simply chosen, and then an algorithmic process allows one to lift these choices to

a subspace of the space of 2-morphisms between arbitrary 1-morphisms. Some extensive case checking shows

these potentially proper subspaces are actually the full spaces of 2-morphisms in the generated 2-category.

Subsequently, in Theorem 5.28, a 2-functor is constructed from C′ into the 2-category of bimodules, with

image a nontrivial sub-2-category, showing that the 2-category C and a particular quotient are themselves

nontrivial. Lastly, Section 6 proposes a candidate algebra for the endomorphism algebra for larger rank.
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2 Background

In this section, we briefly recall some definitions and basic theorems which will be used throughout.

2.1 Groups with BN-pair

Definition 2.1. An abstract group G is said to be a group with a BN -pair if it contains subgroups B,N ⊆ G

such that the following conditions hold:

1. G = 〈B,N〉

2. T := B ∩N is a normal subgroup of N , and the quotient group W := N/T is generated by a set S of

elements of order 2

3. ṡBṡ 6= B, where s ∈ S, and ṡ denotes a representative of S in N

4. ṡBn ⊆ BṡnB ∪BnB for any s ∈ S and n ∈ N

5.
⋂
n∈N nBn

−1 = T .

In addition to writing ẇ for a preimage in N of w ∈W , we will occasionally use the notation nw.

Definition 2.2. A group G with a BN -pair is said to have a split BN -pair if there is a normal subgroup

U EB such that

1. For T := B ∩N , B = UH and U ∩ T = {1}. That is, B = U o T .

2. For any n ∈ N , n−1Un ∩B ⊆ U .

Theorem 2.3. (Bruhat decomposition) A group G with BN -pair has the double-coset decomposition

G =
⊔
w∈W

BnwB.

Theorem 2.4. Let G be a group with a split BN -pair such that W is finite. Let w0 denote the longest

element of W . For w ∈W , put

Uw := U ∩ n−1
w0wUnw0w.

Any g ∈ BnwB has a unique expression of form g = bnwu, for b ∈ B, w ∈W , and u ∈ Uw. Hence

G =
⊔
w∈W

BnwUw.

Proofs of the above two theorems can either be found in [8] or [6], for instance.
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2.2 Symmetric Algebras

Let R be a commutative, unital ring, and let A be an R-algebra. A morphism t ∈ HomR(A,R) is said to be

a central form if t(ab) = t(ba) for all a, b ∈ A. Such t induces an (A,A)-bimodule morphism

t̂ : A −→ HomR(A,R) : t 7→ t̂a

where t̂a(b) = t(ab) for all b ∈ A. Also, for any R-module M , let M∗ := HomR(M,R).

Definition 2.5. An R-algebra is said to be symmetric if A is finitely generated and projective as an R-

module, and additionally if there exists a central form t ∈ A∗ such that t̂ : A −→ A∗ is an isomorphism of

(A,A)-bimodules.

Such a form t above is called a symmetrizing form on A. In the following definitions, A and B are

symmetric algebras.

Definition 2.6. An (A,B)-bimodule M is said to be exact if M is finitely generated and projective as a

left A-module, and as a right B-module.

Definition 2.7. If M is an exact (A,B)-bimodule and N is an exact (B,A)-bimodule, then the pair (M,N)

is said to be a selfdual pair of exact bimodules if there is an R-bilinear map 〈 , 〉 : M ×N −→ R such that

〈amb, n〉 = 〈m, bna〉 for all m ∈ M , n ∈ N , a ∈ A, and b ∈ B, and furthermore this map induces bimodule

isomorphisms

M −→ N∗ : m 7→ 〈m,−〉 and N −→M∗ : n 7→ 〈−, n〉.

More details concerning symmetric algebras can be found in Chapter 2 of [5]. The theory of symmetric

algebras plays a role in this paper as the group algebra RG of a finite group G over a ring R is always a

symmetric algebra. The canonical symmetrizing form on RG is the projection

RG→ R :
∑
g∈G

rgg 7→ re

sending a formal sum to the coefficient of the identity element e ∈ G.

2.3 Hecke Algebras

2.3.1 Generic Iwahori-Hecke Algebras

Let (W,S) be a finite Coxeter system with Coxeter matrix M = (mst)s,t∈S . Let q := {qs}s∈S be a family of

indeterminates such that qs = qt whenever s and t are conjugate in W .
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Definition 2.8. A generic Iwahori-Hecke algebra Hq(W,S) associated to the Coxeter system (W,S) is the

Z[qs, q
−1
s : s ∈ S]-algebra generated by elements {Ts}s∈S subject to the following two relations, referred to

as the quadratic and braid relations, respectively:

• (Ts − qs)(Ts + 1) = 0 for all s ∈ S,

• TsTtTs · · · = TtTsTt · · · when sts · · · = tst · · · in W .

For any s ∈ S, the quadratic relation may be expanded as T 2
s = (qs − 1)Ts + qs, so that Ts is invertible

in Hq(W,S) with inverse T−1
s = q−1

s Ts + q−1(1 − q). Furthermore, if w ∈ W has a reduced expression

w = s1 . . . sr, define Tw := Ts1 · · ·Tsr . From the braid relations, Matsumoto’s lemma implies that this

expression is independent of the chosen reduced expression of w.

Theorem 2.9. The set {Tw}w∈W constitute a Z[qs, q
−1
s : s ∈ S]-basis of Hq(W,S).

Proof. See Theorem 4.4.6 of [9].

2.3.2 Unipotent Hecke Algebras

Suppose G is a finite Chevalley group, and U is a maximal unipotent subgroup of G. Let χ : U −→ C× be

a linear character. The unipotent Hecke algebra H (G,U, χ) is the endomorphism algebra

H (G,U, χ) = EndCG(IndGU (χ)).

Let eχ = 1
|U |
∑
u∈U χ(u−1)u be the idempotent in CG. Since IndGU (χ) is afforded by the CG-module

CGeχ, there is the standard isomorphism EndCG(IndGU (χ))op ' eχCGeχ of algebras. In this way, we will

often identify H (G,U, χ) with eχCGeχ. Of particular interest is the case where χ = 1U , the trivial character

on U . In this case, the unipotent Hecke algebra H (G,U, 1U ) is referred to as the Yokonuma-Hecke algebra.
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3 Preliminary Observations and Examples

3.1 Fixed Points and Orbit Sums

Let k be a field, and let G be a group with split BN -pair. In this section, we will view (kG, kT )-bimodules

as modules over k[G×T ], with T acting on the right. The group ring k[G/U ] is then a k[G×T ]-module via

the left and right translation actions of G and T , respectively. Let

∆(T ) = {(t, t−1) ∈ G× T : t ∈ T}.

The fixed points of k[G/U ] under the action of the subgroup H := (U × {1}) o ∆T , denoted k[G/U ]H ,

determine the maps in Endk[G×T ](k[G/U ]) as follows.

Proposition 3.1. Let G be a group with split BN -pair as above. There is a bijection

k[G/U ]H −→ Endk[G×T ](k[G/U ]) : x 7→ (U 7→ x).

Proof. Let H := (U × {1}) o ∆T . First, there is a bijection

k[G/U ]H −→ HomkH(k,Res
k[G×T ]
kH k[G/U ]) : x 7→ ϕx

where k is the trivial kH-reprsentation, and ϕx is defined by ϕx(1) = x. This assignment is injective since a

kH-map k → Res
k[G×T ]
kH k[G/U ] is determined by its image on 1. If ϕ is a kH-map, then ϕ(1) is fixed under

H, since (ut, t−1) · ϕ(1) = ϕ((ut, t−1) · 1) = ϕ(1), and hence this assigment is surjective.

Second, there is a bijection

HomkH(k,Res
k[G×T ]
kH k[G/U ]) −→ HomkH(k,Homk[G×T ](k[G× T ], k[G/U ]))

induced by the usual isomorphism of kH-modules Homk[G×T ](k[G × T ], k[G/U ]) ' Res
k[G×T ]
kH (k[G/U ]),

determined by sending a morphism f to its value f(1), and conversely, sending x ∈ k[G/U ] to the k[G× T ]-

map mapping 1 to x.

Third, the usual adjunction gives a bijection

HomkH(k,Homk[G×T ](k[G× T ], k[G/U ])) ' Homk[G×T ](k[G× T ]⊗kH k, k[G/U ]) : ϕ 7→ [a⊗ b 7→ (ϕ(b))(a)].

Tracing through these bijections, a point x ∈ k[G/U ]H determines a kH-map ϕx : k → k[G/U ] such that
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ϕx(1) = x. This corresponds to a kH-map

ϕ̃x : k −→ Homk[G×T ](k[G× T ], k[G/U ]) : 1 7→ (1 7→ x).

The adjunction then gives a k[G× T ]-map

τ(ϕ̃x) : k[G× T ]⊗kH k −→ k[G/U ] : a⊗ b 7→ [ϕ̃x(b)](a).

Note

[ϕ̃x(b)](a) = (b · ϕ̃x(1))(a) = [ϕ̃x(1)](ab) = ab · [ϕ̃x(1)](1) = ab · x.

Furthermore, as k[G× T ]-modules,

k[G× T ]⊗kH k = Ind
k[G×T ]
kH k ' k[(G× T )/H] ' k[G/U ]

where the first isomorphism is given by (g, t) ⊗ 1 7→ (g, t)H, and the second is given by (g, t)H 7→ gtU .

Identifying k[G× T ]⊗kH k with k[G/U ], one can view τ(ϕ̃x) as a morphism in Homk[G×T ](k[G/U ], k[G/U ])

defined by

τ(ϕ̃x)(U) = τ(ϕ̃x((1, 1)⊗ 1) = (1, 1) · x = x.

Suppose now that k is a field such that |U | is invertible in k. As noted before, let

eU :=
1

|U |
∑
u∈U

u ∈ kG.

There is an isomorphism of k[G× T ]-modules k[G/U ] ' kGeU given by gU ↔ geU , and so

Endk[G×T ](k[G/U ]) ' Endk[G×T ](kGeU ).

Since eU is an idempotent in kG, there is the standard anti-isomorphism of kG-modules

EndkG(kGeU ) −→ eUkGeU : ϕ 7→ eUϕ(eU )eU .

This anti-isomorphism then sends the subalgebra Endk[G×T ](kGeU ) of EndkG(kGeU ) to a subalgebra of the

Yokonuma-Hecke algebra eUkGeU . As noted before, a fixed point x ∈ K[G/U ](U×{1})o∆T determines a
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k[G × T ]-endomorphism τx on kGeU , where if x =
∑
i cixiU , for xi ∈ G, ci ∈ k, then τx is determined

by τx(eU ) =
∑
i cieUxieU in kGeU . In particular, the image of Endk[G×T ](kGeU ) in eUkGeU is the points

eUτx(eU )eU , for x ∈ k[G/U ](U×{1})o∆T .

The fixed points in k[G/U ] under the action of (U ×{1})o∆T are precisely the orbit sums of an element

in G/U . Since B = TU , from the refined Bruhat decomposition it follows that if gU is a coset in k[G/U ],

g = huẇv for unique h ∈ T , u ∈ U , w ∈ W , and v ∈ Uw, so that gU = huẇvU = huẇU . With a view

towards algebraic groups, from now on assume the subgroup T is abelian.

Proposition 3.2. Let G be a group with split BN -pair, with B = U o T such that T := B ∩N is abelian.

The orbit of a coset huẇU ∈ G/U in k[G/U ] for h ∈ T , u ∈ U , w ∈W under the action of (U ×{1})oT is

[T, ẇ]hUẇU := {[t, ẇ]hvẇU : t ∈ T, v ∈ U}.

Proof. Let (t, t−1)(u′, 1) be an arbitrary element of (U × {1}) o ∆T . Since T normalizes U , u′h = hu′′ for

some u′′ ∈ U . Then observe

(t, t−1)(u′, 1) · huẇU = tu′huẇUt−1 = thu′′uẇt−1U

= thu′′u′(ẇt−1ẇ−1)ẇU = t(ẇt−1ẇ−1)hu′′′ẇU for some u′′′ ∈ U

= [t, ẇ]hu′′′ẇU

where the penultimate equality follows since u′′u′ ∈ U , and ẇt−1ẇ−1 ∈ T . Hence the orbit of huẇU is

contained in {[t, ẇ]huẇU : t ∈ T, u ∈ U}.

Conversely, suppose [t, ẇ]hvẇU for t ∈ T , v ∈ U . As before, there exists u′ ∈ U such that u′h = hvu−1.

Then

(u′, 1) · huẇU = u′huẇU = hvu−1uẇU = hvẇU.

Hence the action of U × {1} shows that any point of form hvẇU is in the orbit of huẇU . Likewise, there

exists u′′ ∈ U such that u′′(ẇt−1ẇ−1) = (ẇt−1ẇ−1)v. The previous computation shows

(t, t−1)(hu′′ẇU) = [t, ẇ]hvẇU.

Note that since T is abelian, for any ẇ ∈ N the set of commutators [T, ẇ] := {[t, ẇ] : t ∈ T} is a subgroup
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of T . Indeed, if a, b ∈ T , then

[a, ẇ][b, ẇ] = a(ẇa−1ẇ−1)b(ẇa−1ẇ−1) = ab(ẇa−1ẇ−1)(ẇa−1ẇ−1) = abẇa−1b−1ẇ−1 = [ab, ẇ]

and

[a, ẇ]−1 = [ẇ, a] = (ẇaẇ−1)a−1 = a−1ẇaẇ−1 = [a−1, ẇ].

Corollary 3.3. Let G be a group with split BN -pair, such that T := B ∩N is abelian. The (U ×{1})o∆T

orbits in k[G/U ] are paramterized by
⊔
w∈W T/[T, ẇ], where a coset [T, ẇ]h determines the orbit

[T, ẇ]hUẇU = {[t, ẇ]huẇU : t ∈ T, u ∈ U}.

Proof. Certainly if [T, ẇ]h = [T, ẇ]h′, then these cosets determine the same orbit. Conversely, suppose

[T, ẇ]hUẇU = [T, ẇ′]h′Uẇ′U are equal orbits. It follows that

[t, ẇ]huẇ = [t′, ẇ′]h′u′ẇ′v

for some v ∈ U , and the other elements are in the obvious subgroups. These elements are in the double

cosets BwB and Bw′B, so by the Bruhat decomposition w = w′.

For clearer notation, let nw also denote a preimage of w ∈ W in N , i.e., ẇ = nw, and let w0 denote the

longest element of W . Set Uw = U ∩ n−1
w0wUnw0w. From the factorization U = Uw0wUw, one can express

v ∈ U as v = (n−1
w v′nw)(n−1

w0wv
′′nw0w) ∈ Uw0wUw, for some v′, v′′ ∈ U . Then

[t, nw]hunw = [t′, nw]h′u′nwv

= [t′, nw]h′u′nw(n−1
w v′nw)(n−1

w0wv
′′nw0w)

= [t′, nw]h′u′v′nw(n−1
w0wv

′′nw0w).

Now [t, nw]hunw ∈ BnwUw and [t′, nw]h′u′v′nw(n−1
w0wv

′′nw0w) ∈ BnwUw, so by uniqueness of expression,

[t, nw]hu = [t′, nw]h′u′v′ in B. Since B = T n U , uniqueness of expression in B further implies [t, nw]h =

[t′, nw]h′, so that [T, ẇ]h = [T, ẇ]h′.

To summarize, suppose G is a group with split BN -pair, such that T := B ∩N is abelian, and B = UT .

For each w ∈ W , a coset in [T, ẇ]h in T/[T, ẇ] determines a (U × {1}) o ∆T -orbit in G/U , and the sum

of this orbit gives a fixed point x in k[G/U ]. This fixed point x determines a k[G × T ]-endomorphism of

k[G/U ], defined by sending the trivial coset U to x. If x =
∑
i cixiU ∈ k[G/U ], for ci ∈ k, and xi ∈ G, this
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endomorphism corresponds to an element eU (
∑
i cixieU ) eU in eUkGeU , and the subset of such elements

forms a subalgebra isomorphic to Endk[G×T ](k[G/U ]).

3.2 Some Examples with Small Groups

Example 3.4. Suppose q is an even prime power, and G = SL2(q), the special linear group with entries in

the field Fq of q elements. Suppose k is a field of approriate characteristic such that q and q−1 are invertible

in k. Let T = {diag(a, a−1) : a ∈ k×}, and U is the set of upper unitriangular matrices. The roots of G are

Φ = {±α} where α : T −→ F×q : diag(a, a−1) 7→ a2 and the coroots are Φ∨ = {±α∨} where

α∨ : F×q −→ T : a 7→ diag(a, a−1).

The Weyl group W ' Z/2Z = {1, s}, where ṡ =

(
0 1

−1 0

)
. Then

⊔
w∈W

T/[T, ẇ] = T/[T, 1] t T/[T, ṡ] = T t T/[T, ṡ].

Computation shows

[diag(a, a−1), ṡ] = diag(a2, a−2).

Hence [T, ṡ] = {t2 : t ∈ T}, and [T, ṡ] is in bijection with the set of squares in F×q .

Since q is even, every element of F×q is a square, and thus [T, ṡ] = T . So the (U × {1}o ∆T -fixed points

of k[G/U ] are in bijection with T t {1}. If h ∈ T , the corresponding orbit is

[T, 1]huU : t ∈ T, u ∈ U} = {hU : t ∈ T, u ∈ U} = {hU},

and the fixed point in k[G/U ] is the coset hU . This corresponds to the element heU = eUheU ∈ eUkGeU .

The coset [T, ṡ] = T in T/[T, ṡ] has orbit

{[t, ṡ]uṡU : t ∈ T, u ∈ U} = {tuṡU : t ∈ T, u ∈ U}

Since G is of rank 1, U = Us, so we have uniqueness of expression, and the corresponding orbit sum is

x =
∑

t∈T, u∈U
tuṡU.
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The corresponding point in eUkGeU is then

eU

 ∑
t∈T, u∈U

tuṡeU

 eU = q(q − 1)eUeT ṡeU .

For t ∈ T , put bt = eU teU , and put bs = eUeT ṡeU . Then the {bt}t∈T and bs generate a subalgebra in

eUkGeU isomorphic to Endk[G×T ](k[G/U ]).

One can compute multiplication relations among these generators. To do so, recall that the Yokonuma-

Hecke algebra eUkGeU has basis {Tw : n ∈ N}, where Tw = eU ẇeU , with relations

TṡTw =


Tsw if `(sw) = `(w) + 1,

q−1Tα∨s (−1)sw + q−1
∑
a∈F×q Tα∨s (a)w if `(sw) = `(w)− 1.

ThTw = Thw, h ∈ T, w ∈W

and

ThTk = Thk, h, k ∈ T.

In particular,

(eU ṡeU )2 = q−1eUα
∨(−1)eU + q−1eU ṡeU

∑
a∈F×q

eUα
∨(a)eU = q−1eU + q−1(q − 1)eU ṡeT eU

since α∨(−1) = −I2 = I2 in characteristic 2, and α∨(a) = diag(a, a−1), so that
∑
a∈F×q α

∨(a) =
∑
t∈T t.

The generators bt for t ∈ T , and bs then satisfy the following relations.

• btbt′ = bt′bt = btt′ for t, t′ ∈ T .

• btbs = bsbt = bs for t ∈ T .

• b2s = q−1(q − 1)
∑
t∈T bt + q−1(q − 1)bs.

Note

b2s = (eUeT ṡeU )2 = eT (eU ṡeU )2 = eT (q−1eU + q−1(q − 1)eU ṡeT eU )

= q−1eUeT eU + q−1(q − 1)eUeT ṡeU

= q−1(q − 1)
∑
t∈T

bt + q−1(q − 1)bs.

Example 3.5. Suppose that G = SL2(q), with q an odd prime power instead. By the previous example,

[T, ṡ] is the set of squares in T and is in bijection with the squares of F2
q. Since q is odd, half the elements
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of F×q are squares, so T/[T, ṡ] ' Z/2Z.

As before, an element t ∈ T corresponds to an element eU teU ∈ eUkGeU . For the coset [T, ṡ] in T/[T, ṡ],

one gets an orbit

[T, ṡ]UṡU := {[t, ṡ]uṡU : t ∈ T, u ∈ U} = {t2uṡU : t ∈ T, u ∈ U}.

This corresponds to the element

eU

 ∑
t∈T a square

u∈U

tuṡeU

 eU = q

 ∑
t∈T a square

t

 eU ṡeU .

The other coset is [T, ṡ]h, where h is not a square in T . The corresponding orbit is then

{tuṡU : t /∈ T 2, u ∈ U},

and the corresponding element in eUkGeU is

q

 ∑
t∈T a nonsquare

t

 eU ṡeU .

Write

bs,+ =
∑

t∈T square

teU ṡeU and bs,− =
∑

t∈T nonsquare

teU ṡeU .

Then the subalgebra of eUkGeU isomorphic to Endk[G×T ](k[G/U ]) is generated by bt for t ∈ T , bs,+ and

bs,−. The multiplication relations between generators depends on whether −1 is a square in Fq, and hence

on whether q ≡ 1, 3 (mod 4).

In the first case, suppose q ≡ 1 (mod 4), so that −1 is a square in Fq. There are relations

• btbt′ = bt′bt = btt′ for t, t′ ∈ T .

• bs,+bt = btbs,+ = eU teU

 ∑
a∈T square

a

 eU ṡeU =
∑

a∈T square

taeU ṡeU =


bs,− if t nonsquare,

bs,+ if t square.

• bs,−bt = btbs,− =


bs,− if t square,

bs,+ if t nonsquare.

• (bs,+)2 = q−1(q−1)
2

∑
t∈T square bt + q−1(q−1)2

4 bs,+ + q−1(q−1)2

4 bs,−.
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Note

(bs,+)2 =
∑

a∈T square

aeU ṡeU ·
∑

b∈T square

eU ṡeU =
q − 1

2

∑
a∈T square

a(eU ṡeU )2

=
q − 1

2

∑
a∈T square

a(q−1eUα
∨(−1)eU + q−1eU ṡeU

∑
c∈F×q

eUα
∨(c)eU )

=
q − 1

2

∑
a∈T square

a(q−1eU (−I2)eU + q−1

(∑
t∈T

t

)
eU ṡeU )

=
q−1(q − 1)

2

∑
a∈T square

(−a)

eU +

 ∑
b∈T square

b+
∑

c∈T nonsquare

c

 eU ṡeU


=
q−1(q − 1)

2

∑
a∈T square

aeU +
q−1(q − 1)2

4

∑
b∈T square

beU ṡeU +
q−1(q − 1)2

4

∑
c∈T nonsquare

ceU ṡeU

=
q−1(q − 1)

2

∑
t∈T square

bt +
q−1(q − 1)2

4
bs,+ +

q−1(q − 1)2

4
bs,−.

• Similarly,

(bs,−)2 =
q−1(q − 1)

2

∑
t∈T nonsquare

bt +
q−1(q − 1)2

4
bs,− +

q−1(q − 1)2

4
bs,+.

• bs,−bs,+ = q−1(q−1)
2

∑
b∈T nonsquare bt + q−1(q−1)

4 bs,+ + q−1(q−1)
4 bs,−.

Note

bs,−bs,+ = bs,+bs,− =
∑

a∈T square

eU ṡeU ·
∑

b∈T nonsquare

beU ṡeU =
∑

a∈T square
b∈T nonsquare

ab(eU ṡeU )2

=
q − 1

2

∑
b∈T nonsquare

b(q−1eUα
∨(−1)eU + q−1eU ṡeU

∑
a∈F×q

eUα
∨(a)eU )

=
q−1(q − 1)

2

∑
b∈T nonsquare

(−b)eU +
q−1(q − 1)

2

∑
b∈Tnonsquare

b
∑
t∈T

teU ṡeU

=
q−1(q − 1)

2

∑
b∈T nonsquare

beU +
q−1(q − 1)2

4

∑
t∈T

teU ṡeU

=
q−1(q − 1)

2

∑
b∈T nonsquare

bt +
q−1(q − 1)

4
eUeT ṡeU

=
q−1(q − 1)

2

∑
b∈T nonsquare

bt +
q−1(q − 1)

4
bs,+ +

q−1(q − 1)

4
bs,−.

If q ≡ 3 (mod 4), then −1 is not a square in Fq. The last three relations change slightly, as multiplication

by −1 swaps the sum of squares in T to the sum of nonsquares in T , and vice versa. The analogous relations

are
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•

(bs,+)2 =
q−1(q − 1)

2

∑
t∈T nonsquare

bt +
q−1(q − 1)2

4
bs,+ +

q−1(q − 1)2

4
bs,−.

•

(bs,−)2 =
q−1(q − 1)

2

∑
t∈T square

bt +
q−1(q − 1)2

4
bs,− +

q−1(q − 1)2

4
bs,+.

•

bs,−bs,+ =
q−1(q − 1)

2

∑
b∈T square

bt +
q−1(q − 1)

4
bs,+ +

q−1(q − 1)

4
bs,−

Example 3.6. Suppose G = GL2(q). Then T = {diag(a, b) : a, b ∈ F×q }, U is the set of upper unitriangular

matrices, and a representative for the nontrivial element of W is ṡ =

(
0 1

1 0

)
. The corresponding coroot is

α∨ : F×q −→ T : a 7→

(
a 0

0 a−1

)
.

Computation shows

[diag(a, b), ṡ] =

(
ab−1 0

0 a−1b

)
.

It follows that [T, ṡ] = T ∩ SL2(q), and T/[T, ṡ] is in bijection with F×q via

T/[T, ṡ] −→ F×q :

(
a 0

0 b

)
[T, ṡ] 7→ ab

with inverse a 7→ diag(a, 1)[T, ṡ].

Let h = diag(a, 1) be a representative in T/[T, ṡ]. The corresponding orbit is

{[t, ṡ]huṡU : t ∈ T, u ∈ U} = {tuṡU : t ∈ T, det(t) = a, u ∈ U}.

The corresponding element in eUkGeU is

eU

 ∑
det(t)=a
u∈U

tuṡeU

 eU = q
∑

det(t)=a

teU ṡeU .

So for a ∈ F×q , set bs,a = eU
∑
t∈T, det(t)=a tṡeU . Then the bt, t ∈ T , and bs,a for a ∈ F×q , generate a

subalgebra of eUkGeU isomorphic to Endk[G×T ](k[G/U ]).

Multiplication of these generators is given as follows.
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• btbt′ = bt′bt = btt′ for t, t′ ∈ T .

• bs,abt = btbs,a = bs,det(t)a.

Note

btbs,a = (eU teU )(eU
∑

det(t′)=a

t′ṡeU ) = eU
∑

det(t′)=a

tt′ṡeU = eU
∑

det(r)=a det(t)

rṡeU = bs,det(t)a.

• bs,abs,b = q−1(q − 1)2bṡ,ab + q−1(q − 1)
∑

det(t)=ab bt.

Note

bs,abs,b = eU
∑

det(t)=a

tṡeU · eU
∑

det(t′)=b

t′ṡeU

= eU

 ∑
det(t)=a

t
∑

det(t′)=b

t′

 (eU ṡeU )2

= (q − 1)eU
∑

det(t)=ab

t[q−1eUα
∨(−1)eU + q−1eU ṡeU

∑
r∈F×q

eUα
∨(r)eU ]

= q−1(q − 1)eU
∑

det(t)=ab

teU (−I2)eU + q−1(q − 1)
∑

det(t)=ab

teU ṡeU
∑
r∈F×q

(
r 0

0 r−1

)
eU

= q−1(q − 1)eU
∑

det(t)=ab

eU + q−1(q − 1)2eU
∑

det(a)=ab

tṡeU

= q−1(q − 1)
∑

det(t)=ab

bt + q−1(q − 1)2bs,ab.

Since det : T → F×q is surjective, for any a ∈ F×q , there exists t ∈ T such that btbs,1 = bs,det(t) = bs,a.

Hence Endk[G×T ](k[G/U ]) is in fact generated by bt for t ∈ T , and bs,1.
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4 W-Categorification

The following categorical framework of this section was first defined by Dreyfus-Schmidt in [7]. It is re-

presented here with some minor modifications and additions.

4.1 Axioms of a W-categorification

Let R be a commutative, unital ring, and let A denote an artinian and noetherian R-linear abelian category.

Let (W,S) be a finite Coxeter system. For any I ⊆ S, let WI = 〈s : s ∈ I〉 be the parabolic subgroup in W

corresponding to I. Let

DI = {w ∈W : `(sw) > `(w) for all s ∈ I},

where ` denotes the length function on W . Write D−1
I = {d−1 : d ∈ DI}, and for I, J subsets of S, write

DIJ = DI ∩D−1
J . Lastly, if I ⊆ J ⊆ S and K ⊆ S, put WK(I, J) = {w ∈ WK : wI ⊆ J}, where wI is the

conjugate wIw−1. The subscript is omitted if K = S.

Definition 4.1. Given a Coxeter system (W,S), a weak W -categorifcation on an abelian category A is the

data of a decomposition A =
⊕

I⊆S AI , biadjoint functors (F JI : AI � AJ : EJI )I⊆J⊆S , and equivalences

ΦI,w : AI
∼−→ AwI, w∈W (I,S), with the additional natural isomorphisms,

• For all I ⊆ J ⊆ K ⊆ S, γI,J,K : FKJ F
J
I
∼−→ FKI ,

• For all I ⊆ S and w ∈WI(I, S), ϕI,w : ΦI,w
∼−→ IdAI ,

• For all I ⊆ J ⊆ S and w ∈W (J, S), αI,J,w : F
wJ
wI ΦI,w

∼−→ ΦJ,wF
J
I .

The above are further subject to the conditions that for all I ⊆ S, w ∈ W (I, S), and w ∈ W (vI, S),

ΦvI,w ◦ ΦI,v = ΦI,wv, and for all I ⊆ S, F II = IdAI = EII .

Additionally, for each I ⊆ J ⊆ S, fix two counit-unit pairs witnessing the fact that F JI and EJI are

biadjoint: put (εJI , η
J
I ) : F JI a EJI , and put (εJI , η

J
I ) : EJI a F JI .

These counit-unit pairs must be such that the following diagram commutes for any natural transformation

ϕ : F JI −→ F JI , (the J
I notation below is suppressed for readability)

E

Eη

��

ηE
// EFE

EϕE
// EFE

Eε

��

EFE
EϕE

// EFE
εE

// E
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and for any natural transformation ψ : EJI −→ EJI , the following commutes:

F

ηF

��

Fη
// FEF

FϕF
// FEF

εF

��

FEF
FϕF

// FEF
Fε

// F.

Remark 4.2. The final condition on the counit-unit pairs states that the usual transpose maps

Hom(F JI , F
J
I ) −→ Hom(EJI , E

J
I )

induced by the adjunction coincide, regardless of whether the map is induced by (εJI , η
J
I ) or (εJI , η

J
I ). Hence

for ϕ ∈ Hom(F JI , F
J
I ), let ϕ∗ ∈ Hom(EJI , E

J
I ) denote the transpose natural transformation. Of course, the

analogous statements are also assumed with the roles of F JI and EJI reversed. The ∗ notation also applies

to any generated biadjoint natural transformations, e.g., FKJ F
J
I is biadjoint to EJI E

K
J via

εKJ ◦ FKJ εJIEKJ : FKJ F
J
I E

J
I E

K
J −→ IdAJ , EJI η

K
J F

J
I ◦ ηJI : IdAI −→ EJI E

K
J F

K
J F

J
I .

By functoriality of the mate correspondence, in this case we have the following particular isomorphisms in a

weak W -categorifcation,

• For all I ⊆ J ⊆ K ⊆ S, γ∗I,J,K : EKI
∼−→ EJI E

K
J

• For all I ⊆ J ⊆ S and w ∈W (J, S), α∗I,J,w : EJI Φ−1
J,w

∼−→ Φ−1
I,wE

wJ
wI .

Definition 4.3. AW -categorification onA is a weakW -categorification that satisfies the following coherence

conditions.

• For all I ⊆ J ⊆ K ⊆ L ⊆ S, the following diagram commutes:

FLKF
K
J F

J
I

FLKγI,J,K //

γJ,K,LF
J
I

��

FLKF
K
I

γI,J,K

��

FLJ F
J
I γI,J,L

// FLI
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• For all I ⊆ S, and all v, w ∈WI(I, S), the following diagram commutes

ΦI,wΦI,v
ϕI,wΦI,v

//

ΦI,wϕI,v

��

ϕI,wv

((

ΦI,v

ϕI,v

��

ΦI,w ϕI,w
// IdAI

Note that since v ∈WI , then vI ⊆ S implies vI = I, so the composition of functors is defined.

• For all I ⊆ J ⊆ S, v ∈W (J, S), and w ∈W (vJ, S), the following diagram commutes

F
wvJ
wvI ΦvI,wΦI,v

αvI,wJ,wΦI,v

��

// F
wvJ
wvI ΦI,wv

αI,J,wv

��

ΦvJ,wF
vJ
vI ΦI,v

ΦvJ,wαI,J,v

��

ΦvJ,wΦJ,vF
J
I

// ΦJ,wvF
J
I .

• For all I ⊆ J ⊆ K ⊆ S, and all v ∈W (K,S), the following diagram commutes

F
vK
vJ F

vJ
vI ΦI,v

γvI,vJ,vK

��

F
vK
vJ

αI,J,w
// F

vK
vJ ΦJ,vF

J
I

αJ,K,v

��

F
vK
vI ΦI,v αI,K,v

// ΦK,wF
K
I ΦJ,vF

K
J F

J
IγI,J,K

oo

• For all I ⊆ J ⊆ K ⊆ S, the following diagram commutes

IdAI

ηKI

((

ηJI // EJI F
J
I

EJI η
K
J F

J
I // EJI E

K
J F

K
J F

J
I

γ∗−1
I,J,KγI,J,K

��

EKI F
K
I

The analogous statement for the other adjunction is assumed to hold as well.

22



• For all I ⊆ J ⊆ K ⊆ S, the following diagram commutes

FKI E
K
I

γ−1
I,J,Kγ

∗
I,J,K

��

εKI // IdAK

FKJ F
J
I E

J
I E

K
J

FKJ ε
J
IE

K
J

// FKJ E
K
J

εKJ

OO

The analogous statement for the other adjunction is assumed to hold as well.

• (Mackey Axiom) For all I ⊆ J ⊆ K ⊆ S, there is an isomorphism

⊕
w∈WK∩DIJ

F IwJ∩IΦJ∩wI,wE
J
J∩Iw

∼−→ EKI F
K
J

induced by the component maps (with the identity transformations suppressed)

F IwJ∩IΦJ∩wI,wE
J
J∩Iw

ηKI−−→ EKI F
K
I F

I
wJ∩IΦJ∩wI,wE

J
J∩Iw

γwJ∩I,I,K−−−−−−−→ EKI F
K
wJ∩IΦJ∩Iw,wE

J
J∩Iw

αJ∩Iw,K,w−−−−−−−→ EKI ΦK,wF
K
J∩IwE

J
J∩Iw

ϕK,w−−−→ EKI F
K
J∩IwE

J
J∩Iw

γ−1
J∩Iw,J,K−−−−−−−→ EKI F

K
J F

J
J∩IwE

J
J∩Iw

εJJ∩Iw−−−−→ EKI F
K
J .

Example 4.4. Suppose (W,S) is a Coxeter system of type A1, so that S = {s}. Then a W -categorification

is the data of a decomposition A = A∅ ⊕AS , and pair of biadjoint functors F : A∅ � AS : E with two fixed

adjunctions (ε, η) : F ` E and (ε, η) : E ` F . There is an automorphism Φ∅,s : A∅ −→ A∅. Furthermore,

since ΦS,s ' IdAS , there is an isomorphism α : FΦ −→ F , and the Mackey axiom implies EF ' IdA∅ ⊕ Φ.
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5 Constructing a 2-category

This section contains an explicit construction of a 2-category extending that of a W -categorification in

type A1. Additional 2-morphisms e′, e′′, z, and α̃ are introduced below, which are not present in Dreyfus-

Schmidt’s definition of a W -categorification. Moreover, a large list of explicit addition relations are given for

the generating 2-morphisms, and allows one to write explicit (module) generating sets for the endomorphism

algebras of the generating 1-morphisms of the 2-category.

5.1 Definitions

Put R = Z[q±1], for q an indeterminate. Let C′ be the strict, R-linear 2-category with two objects, ∅ and S,

and 1-morphisms generated by

• F : ∅ −→ S

• E : S −→ ∅

• Φ: ∅ −→ ∅

and 2-morphisms generated by

• e′ : 1∅ −→ Φ, e′′ : Φ −→ 1∅

• α : F ◦ Φ −→ F ,

• z : Φ ◦ Φ −→ 1∅

• 1∅
η∅ // EF

ε∅ // 1∅

• 1S
ηS // FE

εS // 1S

where the final two bullets are fixed counit-unit adjunctions for the biadjoint 1-morphisms F and E. Impose

the condition that α and z are invertible. Also, set e = e′′ ◦ e′, and e′′′ = e′ ◦ e′′, and label the following

endormophisms of 1S by setting e0 = εS ◦ηS , e1 = εS ◦FeE ◦ηS , and e2 = εS ◦αE ◦Fe′E ◦ηS . Furthermore,

impose the condition that for any ϕ ∈ HomC′(F, F ), we have

EεS ◦ EϕE ◦ η∅E = ε∅E ◦ EϕE ◦ EηS .

so that the two usual maps HomC′(F, F ) −→ HomC′(E,E) induced by the adjunctions coincide. It then

follows that the usual maps from HomC′(F, F ) to HomC′(E,E) are equal, as are those from HomC′(E,E) to

HomC′(F, F ).
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Note also that there are two 2-morphisms

µ := (η∅, Eα ◦ η∅Φ): 1∅ ⊕ Φ −→ EF

and

α̃ := EεS ◦ EαE ◦ η∅ΦE : ΦE −→ E.

Now let C be the strict R-linear category obtained from C′ by inverting the 2-morphism µ, as well as α,

α̃, and z.

These arrows are subject to the following relations:

1.

1∅ ⊕ Φ
µ
// EF

ε∅ // 1∅

is given by
(
q−1 0

)
. Note this is specifically the two relations ε∅ ◦ η∅ = q−1, and ε∅ ◦ Eα ◦ η∅Φ = 0.

2.

E
EηS // EFE

µ−1E
// E ⊕ ΦE

diag(1E ,α̃)
// E ⊕ E

is given by

(
q1E

(−1)ε(q1E + q(q − 1)α̃ ◦ e′E)

)
where ε ∈ {0, 1}.

3.

F
ηSF // FEF

Fµ−1

// F ⊕ FΦ
diag(1F ,α)

// F ⊕ F

is given by

(
q1F

(−1)ε(q1F + q(q − 1)α ◦ Fe′)

)
where ε ∈ {0, 1}.

4.

1∅
η∅ // EF

α̃−1F // ΦEF
Φε∅ // Φ

is given by q−1(1− q)e′.

5.

1∅
η∅ // EF

Eα−1
// EFΦ

ε∅Φ // Φ

is given by q−1(1− q)e′.

6.

ΦE
α̃ // E

e′E // ΦE
α̃ // E

is given by q−1e′′E + q−1(q − 1)eE ◦ α̃.
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7.

FΦ
α // F

Fe′ // FΦ
α // F

is given by q−1Fe′′ + q−1(q − 1)Fe ◦ α.

8. α ◦ αΦ = q−1Fz + q−1(q − 1)α ◦ Fe′ ◦ Fz

9. α̃ ◦ Φα̃ = q−1zE + q−1(q − 1)α̃ ◦ e′E ◦ zE

10. Fα̃ ◦ α−1E = αE ◦ Fα̃−1 + (q − 1)(α ◦ Fe′)E − (q − 1)F (α̃ ◦ e′E)

11. e′′′ = eΦ = Φe

12. eEF = EFe

13. The following diagram is commutative

FΦ
α //

Fe′′′

��

F

Fe

��

FΦ
α
// F

14. e′′ ◦ e′ ◦ e′′ = e′′

15. e′ ◦ e′′ ◦ e′ = e′

16. ΦΦ
z // 1∅

Φ

Φe′ e′Φ

OO

e′′

EE

17. ΦΦ

Φe′′e′′Φ
��

1∅
z−1
oo

e′vv
Φ

(These two relations also imply Φe′ = e′Φ and Φe′′ = e′′Φ.)

18. Φz = zΦ

19. e0e1 = e1e0

20. e0e2 = e2e0

21. e1e2 = e2e1

22. e0F =
(
q + (−1)εq

)
1F + (−1)εq(q − 1)α ◦ Fe′
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23. e1F =
(
q + (−1)εq

)
Fe+ (−1)εq(q − 1)α ◦ Fe′

24. e2F = (−1)εq−1(q − 1)Fe+
(
(−1)ε + q + (−1)εq−1(q − 1)2

)
α ◦ Fe′

Note also that these final three relations for e0F , e1F , and e2F show that the endomorphisms of 1S do

not introduce any new endomorphisms of F .

5.2 Construction of Subspaces

Definition 5.1. Define the following R-linear subspaces, given in terms of generating sets.

• H(1∅, 1∅) := 〈1, e〉 ⊆ HomC(1∅, 1∅)

• H(1∅,Φ) := 〈e′〉 ⊆ HomC(1∅,Φ)

• H(Φ, 1∅) := 〈e′′〉 ⊆ HomC(Φ, 1∅)

• H(Φ,Φ) := 〈1, e′′′〉 ⊆ HomC(Φ,Φ)

• H(1S , 1S) = 〈1S , ei0e
j
1e
k
2 : i, j, k ≥ 0〉 ⊆ HomC(1S , 1S)

• Define H(F, F ) ⊆ HomC(F, F ) to be the subalgebra generated by {1F , Fe, α ◦ Fe′}.

• Define H(E,E) ⊆ HomC(E,E) to be the image of H(F, F ) under the map

HomC(F, F ) −→ HomC(E,E) : ϕ 7→ E
η∅E // EFE

EϕE
// EFE

EεS // E

Under this map 1F corresponds to 1E , Fe corresponds to eE, α ◦ Fe corresponds to

EεS ◦ EαE ◦ EFe′E ◦ η∅E = EεS ◦ EαE ◦ η∅ΦE ◦ e′E = α̃ ◦ e′E.

So H(E,E) has generating set {1E , eE, α̃ ◦ e′E}.

• Define H(1S , FE) to be the image of the map

H(F, F ) −→ HomC(1S , FE) : ϕ 7→
(

1S
ηS // FE

ϕE
// FE

)

• Define H(FE, 1S) to be the image of the map

H(F, F ) −→ HomC(FE, 1S) : ϕ 7→
(
FE

ϕE
// FE

εS // 1S

)
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• Define H(FE,FE) to be the image of the map

H(F, F )⊕H(F, F )→ H(F, F )⊕HomC(FΦ, F )

→ HomC(F ⊕ FΦ, F )

→ HomC(FEF,F )→ HomC(FE,FE)

given by

(ϕ,ψ) 7→ (ϕ,ψα) 7→
(
ϕ ψ ◦ α

)
7→
(
ϕ ψ ◦ α

)
◦ Fµ−1 7→

(
ϕE (ψ ◦ α)E

)
◦ Fµ−1E ◦ FEηS .

Lemma 5.2. Suppose X is a 1-morphism in C. If X is not indecomposable, one can express X, up to

isomorphism, as a direct sum of the indecomposable 1-morphisms {1∅, 1S ,Φ, E, F, FE} in a canonical way.

Proof. If X is a product of a single generating 1-morphism, then X is equal to one of 1∅, 1S , Φ, E, of F , each

of which is indecomposable. Otherwise, let X be a product of generating 1-morphisms of C, X = G1 · · ·Gd,

where Gi ∈ {Φ, E, F}, with d ≥ 2. Put X ′ = G3 · · ·Gd.

• If G1 = G2 = Φ, we put ∆(X) = X ′, and δ′X = zX ′ : X ′
∼−→ ∆(X).

• If G1 = Φ, and G2 = E, we put ∆(X) = EX ′ and δ′X = α̃X ′ : X
∼−→ ∆(X)

• If G1 = E and G2 = F , we put ∆(X) = X ′ ⊕ ΦX ′ and δ′X = µ−1X ′ : X
∼−→ ∆(X)

• If G1 = F and G2 = Φ, we put ∆(X) = FX ′ and δ′X = αX ′ : X
∼−→ ∆(X)

• If G1 = F , G2 = E, and G3 = F , we put ∆(X) = FG4 · · ·Gd ⊕ FΦG4 · · ·Gd and

δ′X = Fµ−1G4 · · ·Gd : X
∼−→ ∆(X).

When these assumptions do not hold, we have X ∈ {1∅,Φ, 1S , E, F, FE}, and we put ∆(X) = X, and

δ′X = id: X
∼−→ ∆(X).

This exhausts all cases, and in each case X is isomorphic to a direct sum of 1-morphisms expressible as a

composite of fewer non-identity generating 1-morphisms. Inductively, this process must eventually terminate

as a direct sum of indecomposable 1-morphisms.

This decomposition extends to direct sums as follows. Suppose X =
⊕r

i=1Xi, where each Xi is a

product of generating 1-morphisms. Put ∆(X) :=
⊕r

i=1 ∆(Xi), and δ′X := δ′X1
+ · · · + δ′Xr . Inductively,

define ∆n(X) := ∆(∆n−1(X)), and ∂nX by ∂1
X = δ′X and
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X

∂nX ##

∂n−1
X // ∆n−1(X)

δ′
∆n−1(X)

��

∆n(X).

Note that there exists some n such that ∆n(X) is a direct sum all of whose summands are either 1∅, 1S ,

Φ, E, F , or FE. Since δ′X′ = 1X′ for each of these summands, it follows that for m ≥ n, ∆m(X) = ∆n(X)

and ∂mX = ∂nX . Hence for any X which is a product of generating 1-morphisms, put δX := ∂nX for any n such

that ∆n(X) is a direct sum of irreducible 1-morphisms, which is well-defined by the previous observations.

Now suppose X =
⊕

iXi and Y =
⊕

j Yj are parallel 1-morphisms where each Xi and Yj are indecom-

posable. Set

H̄(X,Y ) :=
⊕
i,j

H(Xi, Yj).

Suppose X and Y are arbitrary 1-morphisms in C. As noted before, there exist n1, n2 ≥ 0 such that ∆n1(X)

and ∆n2(Y ) are (possibly direct sums) of indecomposable 1-morphisms. Let n = max{n1, n2}, so that

∆n(X) = ∆n1(X), ∆n(Y ) = ∆n2(Y ), δX = ∂nX = ∂n1

X , and δY = ∂nY = ∂n2

Y . Then finally define H(X,Y ) to

be the R-submodule of HomC(X,Y ) given by

H(X,Y ) := δ−1
Y ◦ H̄(∆n(X),∆n(Y )) ◦ δX := {δ−1

Y ◦A ◦ δX : A ∈ H̄(∆n(X),∆n(Y ))}.

5.3 Stability under Vertical Composition

Lemma 5.3. Suppose X ∈ {1∅,Φ, 1S , E, F, FE,EF}, Y ∈ {1∅,Φ, 1S , FE,EF}. If X and Y are parallel,

and f : X −→ Y is a vertical composite of generating 2-morphisms, then f ∈ H(X,Y ).

Proof. Induct on n, the number of generating 2-morphisms in the composite f . If n = 1, f is simply a

generating 2-morphism. By definition, one immediately has e′ ∈ H(1∅,Φ), e′′ ∈ H(Φ, 1∅), α ∈ H(FΦ, F ),

z ∈ H(Φ ◦ Φ, 1∅). Also, under the various maps defined above 1F ∈ H(F, F ) maps to η∅ ∈ H(1∅, EF ),

to ε∅ ∈ H(EF, 1∅), to ηS ∈ H(1S , FE), and to εS ∈ H(FE, 1S). This covers all possibilities when f is a

generating 2-morphism.

Suppose n > 1. Decompose f = X
x // X ′

f ′
// Y , where x is a generating 2-morphism, and f ′ is a

composite of n− 1 generating 2-morphisms, which is in H(X ′, Y ), by induction.

• If X = 1∅, then x = e′ or x = η∅. If x = e′, then X ′ = Φ, and the only possibilities for Y are

29



Y = 1∅, Y = Φ, or Y = EF . If Y = 1∅, then f ′ ∈ H(Φ, 1∅). But H(Φ, 1∅) is generated by e′′,

and e′′ ◦ e′ = e ∈ H(1∅, 1∅), so that f = f ′ ◦ x ∈ H(1∅, 1∅). If Y = Φ, then f ′ ∈ H(Φ,Φ). Now

H(Φ,Φ) has generators 1Φ and e′′′. Precomposing with x, notice that 1Φ ◦ e′ = e′ ∈ H(1∅,Φ) and

e′′′ ◦ e′ = e′ ◦ e′′ ◦ e′ = e′ ∈ H(1∅,Φ), and hence f ∈ H(1∅,Φ). If Y = EF , f ′ ∈ H(Φ, EF ), so

µ−1 ◦ f ′ ∈ H(Φ, 1∅⊕Φ). Denote this matrix by
(
a b

)T
, where a ∈ H(Φ, 1∅), and b ∈ H(Φ,Φ). Then

µ−1 ◦f ′ ◦e′ =
(
a ◦ e′ b ◦ e′

)
. Now e′′ ◦e′ = e ∈ H(1∅, 1∅) and cycling b over the generators of H(Φ,Φ)

we see 1Φ◦e′ = e′ ∈ H(1∅,Φ) and e′′′◦e′ = e′◦e′′◦e′ = e′ ∈ H(1∅,Φ). Hence µ−1◦f ′◦e′ ∈ H(1∅, 1∅⊕Φ),

so that f ′ ◦ e′ ∈ H(1∅, EF ).

If x = η∅, then X ′ = EF , and thus Y = 1∅, Y = Φ, of Y = EF . If Y = 1∅, then f ′ ∈ H(EF, 1∅). We

get a diagram

1∅
η∅ //

=

��

EF

µ−1

��

f ′
// 1∅

=

��

1∅ 1

0


// 1∅ ⊕ Φ (

a b
) // 1∅

where a ∈ H(1∅, 1∅) and b ∈ H(Φ, 1∅). Since the composite along the bottom row is simply a, by

definition f = f ′ ◦ η∅ ∈ H(1∅, 1∅).

If Y = Φ, then f ′ ∈ H(EF,Φ). There is a similar diagram

1∅
η∅ //

=

��

EF

µ−1

��

f ′
// Φ

=

��

1∅ 1

0


// 1∅ ⊕ Φ (

a b
) // Φ

where a ∈ H(1∅,Φ) and b ∈ H(Φ,Φ). Since the composite along the bottom row is simply a, by

definition f = f ′ ◦ η∅ ∈ H(1∅,Φ).

If Y = EF , then f ′ ∈ H(EF,EF ). There is a similar diagram

1∅
η∅ //

=

��

EF

µ−1

��

f ′
// EF

µ−1

��

1∅ 1

0


// 1∅ ⊕ Φ a b

c d


// 1∅ ⊕ Φ
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where a ∈ H(1∅, 1∅), b ∈ H(Φ, 1∅), c ∈ H(1∅,Φ), and d ∈ H(Φ,Φ). Since the bottom horizontal

composite is
(
a c

)T
∈ H(1∅, 1∅ ⊕ Φ), f = f ′ ◦ η∅ ∈ H(1∅, EF ).

• Suppose X = Φ. Then x = e′′, X ′ = 1∅, and the possibilities for Y are Y = 1∅, Y = Φ, or

Y = EF . If Y = 1∅, it suffices to show ϕ ◦ e′′ ∈ H(Φ, 1∅) for ϕ a generator in H(1∅, 1∅). But

e ◦ e′′ = e′′ ◦ e′ ◦ e′′ = e′′ ∈ H(Φ, 1∅).

If Y = Φ, it suffices to check ϕ ◦ e′′ ∈ H(Φ,Φ) for ϕ a generator in H(1∅,Φ). By the defining relations,

e′ ◦ e′′ = e′′′ ∈ H(Φ,Φ).

If Y = EF , there is a diagram

Φ
e′′ //

=

��

1∅

=

��

f ′
// EF

µ−1

��

Φ
e′′

// 1∅ a
b


// 1∅ ⊕ Φ

where a ∈ H(1∅, 1∅) and b ∈ H(1∅,Φ). Since e ◦ e′′ = e′′ ◦ e′ ◦ e′′ = e′′ ∈ H(Φ, 1∅) and e′ ◦ e′′ = e′′′ ∈

H(Φ,Φ), it follows f = f ′ ◦ e′′ ∈ H(1∅, EF ).

• Suppose X = 1S . Possibilities for x are e0, e1, e2, so that X ′ = 1S , and either Y = 1S or Y = FE.

Otherwise, x = ηS , so that X ′ = FE, and either Y = 1S or Y = FE.

Assume x = ei for i = 0, 1, 2. If Y = 1S , it suffices to check ϕ ◦ ei ∈ H(1S , 1S) for ϕ ∈ H(1S , 1S), but

this is immediate.

So suppose x = e0, and Y = FE. It suffices to check ϕE ◦ ηS ◦ e0 ∈ H(1S , FE) for ϕ a generator in

H(1S , FE). If ϕ = 1F , by the defining relations we have

ηS ◦ e0 = e0FE ◦ ηS = [(q + (−1)εq)1FE + (−1)εq(q − 1)(α ◦ Fe′)E] ◦ ηS

= (q + (−1)εq)ηS + (−1)εq(q − 1)(α ◦ Fe′)E ◦ ηS

which is in H(1S , FE), since ηS and (α ◦ Fe′)E are in H(1S , FE) by definition. If ϕ = Fe,

FeE ◦ ηS ◦ e0 = FeE ◦ e0EF ◦ ηS

= [(q + (−1)εq)FeE + (−1)εq(q − 1)(α ◦ Fe′)E] ◦ ηS
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which is in H(1S , FE) since FeE ◦ηS and (α◦Fe′)E ◦ηS are generators in H(1S , FE). If ϕ = α◦Fe′,

αE ◦ Fe′E ◦ ηS ◦ e0 = αE ◦ Fe′E ◦ e0EF ◦ ηS

= αE ◦ [(q + (−1)εq)Fe′E + (−1)εq(q − 1)Fe′E ◦ αE ◦ Fe′E] ◦ ηS

= [q + (−1)εq](α ◦ Fe′)E ◦ ηS + (−1)εq(q − 1)[q−1Fe′′E + q−1FeE ◦ αE] ◦ Fe′E ◦ ηS

= (−1)ε(q − 1)FeE ◦ ηS + [q + (−1)εq + (−1)ε(q − 1)2](α ◦ Fe′)E ◦ ηS

which is in H(1S , FE).

Suppose x = e1. As above, if ϕ = 1F ,

ηS ◦ e1 = e1EF ◦ ηS

= (q + (−1)εq)FeE ◦ ηS + (−1)εq(q − 1)(α ◦ Fe′)E ◦ ηS

which is H(1S , FE). If ϕ = Fe,

FeE ◦ ηS ◦ e1 = (q + (−1)εq)FeE ◦ ηS + (−1)εq(q − 1)(α ◦ Fe′)E ◦ ηS

which is in H(1S , FE). If ϕ = α ◦ Fe′,

(α ◦ Fe′)E ◦ ηS ◦ e1 = (q + (−1)εq)(α ◦ Fe′)E ◦ ηS + (−1)εq(q − 1)(q−1Fe′′E + q−1(q − 1)FeE ◦ αE)Fe′E ◦ ηS

= (−1)ε(q − 1)FeE ◦ ηS + (q + (−1)εq + (−1)ε(q − 1)2)(α ◦ Fe′)E ◦ ηS

which is in H(1S , FE).

If x = e2, the reasoning works as in the case for x = e1, since e1F and e2F are both linear combinations

of Fe and α ◦ Fe′ with coefficients in R.

Now suppose x = ηS . If Y = 1S , it suffices to check εS ◦ ϕE ◦ ηS ∈ H(1S , 1S) for ϕ a generating

2-morphism of H(F, F ). This is automatic, for as ϕ ranges over {1F , Fe, α ◦ Fe′}, εS ◦ϕE ◦ ηS ranges

over e0, e1, and e2, respectively, all of which are in H(1S , 1S) by definition.

If Y = FE, then f ′ ∈ H(FE,FE), so it suffices to show

(
ϕE (ψ ◦ α)E

)
◦ Fµ−1E ◦ FEηS ◦ ηS =

(
ϕE (ψ ◦ α)E

)
◦ Fµ−1E ◦ ηSFE ◦ ηS

is in H(1S , FE) as ϕ and ψ range over generators of H(F, F ). Since H(1S , FE) is generated by 2-

morphisms of form ϕE ◦ ηS for ϕ ∈ H(F, F ), it suffices to show
(
ϕE (ψ ◦ α)E

)
◦ Fµ−1E ◦ ηSFE

32



has form ρE for ρ ∈ H(F, F ), and hence in turn it is enough to show
(
ϕ (ψ ◦ α)

)
◦ Fµ−1 ◦ ηSF is in

H(F, F ) when ϕ and ψ are in H(F, F ). First note any generator of form
(
ϕ 0

)
yields

(
ϕ 0

)
◦ Fµ−1 ◦ ηSF =

(
ϕ 0

)(1F 0

0 α

)
◦ Fµ−1 ◦ ηSF = qϕ.

So generators
(

1F 0
)

,
(
Fe 0

)
, and

(
α ◦ Fe′ 0

)
correspond to q1F , qFe, and q(α ◦ Fe′), all of

which are in H(F, F ).

For generators of form
(

0 ψ ◦ α
)

, note

(
0 ψ ◦ α

)
◦ Fµ−1 ◦ ηSF =

(
0 ψ

)
◦

(
1F 0

0 α

)
◦ Fµ−1 ◦ ηSF

=
(

0 ψ
)( q1F

(−1)ε(q1F + q(q − 1)α ◦ Fe′)

)

= (−1)εqψ + q(q − 1)ψ ◦ α ◦ Fe′

which is clearly in H(F, F ), by previous computations.

• If X = E or X = F , there are no generating 2-morphisms with source E or F , so there is nothing to

prove.

• If X = FE, then x = εS , and X ′ = 1S . The possibilities for Y are Y = 1S or Y = FE. If Y = 1S ,

then f ′ ∈ H(1S , 1S). By definition, H(FE, 1S) is generated by arrows of form εS ◦ ϕE, where ϕ is

a generating 2-morphism in H(F, F ). If ψ ∈ H(1S , 1S), then ψ ◦ εS = εS ◦ ψFE. Hence it suffices

to show that ψF is a linear combination of generating 2-morphisms in H(F, F ), with coefficients in

R. Any 2-morphism in H(1S , 1S) is a sum of 2-morphisms of the form ei2e
j
1e
k
0 , for i, j, k ∈ Z≥0. The

defining relations imply that Fe ◦ Fe = Fe, Fe ◦ α ◦ Fe′ = α ◦ Fe′ ◦ Fe = α ◦ Fe′, and

(α ◦ Fe′) ◦ (α ◦ Fe′) = (q−1Fe′′ + q−1(q − 1)Fe ◦ α)Fe′ = q−1Fe+ q−1(q − 1)α ◦ Fe′,

so that {1F , Fe, α ◦ Fe′} generates H(F, F ) as a module. Since e0F , e1F , and e2F are all linear

combinations of 1F , Fe, and α ◦ Fe′, with coefficients in R, it follows inductively that

ei2e
j
1e
k
0F = (e2F )i ◦ (e1F )j ◦ (e0F )k

is also a linear combination of {1F , Fe, α ◦ Fe′} with coefficients in R[q±1], as required.
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If Y = FE, then f ′ ∈ H(1S , FE). Since H(1S , FE) is generated by 2-morphisms of form ρE ◦ ηS , it

suffices to show that ρE◦ηS◦εS = ρE◦εSFE◦FEηS is in H(FE,FE) when ρ ∈ H(F, F ). Based on the

form of generators of H(FE,FE), it is sufficient to show ρE◦εSFE has form
(
ϕE (ψ ◦ α)E

)
◦Fµ−1E

for ϕ,ψ ∈ H(F, F ), and in turn it is enough to show ρ◦εSF has form
(
ϕ ψ ◦ α

)
◦Fµ−1, or equivalently,

ρ ◦ εSF ◦ Fµ =
(
ϕ ψ ◦ α

)
. But

ρ ◦ εSF ◦ Fµ = ρ ◦ εSF ◦
(
Fη∅ FEα ◦ Fη∅Φ

)
=
(
ρ ρ ◦ εSF ◦ FEα ◦ Fη∅Φ

)
=
(
ρ ρ ◦ α ◦ εSFΦ ◦ Fη∅Φ

)
=
(
ρ ρ ◦ α

)
,

so one can take ρ = ψ = ϕ.

• Suppose X = EF , so x = ε∅, and X ′ = 1∅. The possibilities for Y are Y = 1∅, Y = Φ, or Y = EF . If

Y = 1∅, then f ′ ∈ H(1∅, 1∅). There is a diagram

EF
ε∅ //

µ−1

��

1∅

=

��

f ′
// 1∅

=

��

1∅ ⊕ Φ (
q−1 0

) // 1∅
f ′

// 1∅

which clearly shows f = f ′ ◦ ε ∈ (EF, 1∅). The same argument shows that f = f ′ ◦ ε∅ ∈ H(EF, Y ) for

the other possibilities of Y as well.

Lemma 5.4. The composition map

H(Y,Z)×H(X,Y ) −→ HomC(X,Z) : (g, f) 7→ g ◦ f

takes values in H(X,Z) when X, Y , and Z are parallel indecomposable 1-morphisms in {1∅,Φ, 1S , E, F, FE}.

Proof. First, consider the parallel 1-morphisms 1∅ and Φ from ∅ to ∅. There are eight cases.

• Suppose (X,Y, Z) = (1∅, 1∅, 1∅). Since e2 = e, it is clear H(1∅, 1∅) is closed under composition.

• Suppose (X,Y, Z) = (1∅, 1∅,Φ). Since e′ ◦ e = e′ ◦ e′′ ◦ e′ = e′, the composition map takes values in

H(1∅,Φ).

• Suppose (X,Y, Z) = (1∅,Φ, 1∅). Since e′′ ◦ e′ = e, the composition map takes values in H(1∅, 1∅).
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• Suppose (X,Y, Z) = (Φ, 1∅, 1∅). Since e ◦ e′′ = e′′ ◦ e′ ◦ e′′ = e′′, the composition map takes values in

H(Φ, 1∅).

• Suppose (X,Y, Z) = (1∅,Φ,Φ). Since e′′′ ◦ e′ = e′ ◦ e′′ ◦ e′ = e′, the composition map takes values in

H(1∅,Φ).

• Suppose (X,Y, Z) = (Φ, 1∅,Φ). Since e′ ◦ e′′ = e′′′, the composition map takes values in H(Φ,Φ).

• Suppose (X,Y, Z) = (Φ,Φ, 1∅). Since e′′ ◦ e′′′ = e′′ ◦ e′ ◦ e′′ = e′′, the composition map takes values in

H(Φ, 1∅).

• Suppose (X,Y, Z) = (Φ,Φ,Φ). Since e′′′ ◦ e′′′ = e′ ◦ e′′ ◦ e′ ◦ e′′ = e′ ◦ e′′ = e′′′, the composition map

takes values in H(Φ,Φ).

Second, the only indecomposable 1-morphism ∅ −→ S is F . Consider the following pairwise compositions

of the nonidentity generators of H(F, F ):

• Fe ◦ Fe = Fe2 = Fe.

• Fe ◦ α ◦ Fe′ = α ◦ Fe′′′ ◦ Fe′ = α ◦ F (e′′′ ◦ e′) = α ◦ Fe′

• α ◦ Fe′ ◦ Fe = α ◦ F (e′ ◦ e) = α ◦ Fe′

•
α ◦ Fe′ ◦ α ◦ Fe′ = (q−1Fe′′ + q−1(q − 1)Fe ◦ α) ◦ Fe′

= q−1Fe′′ ◦ Fe′ + q−1(q − 1)Fe ◦ α ◦ Fe′

= q−1Fe+ q−1(q − 1)α ◦ Fe′

These give the following multiplication table on the nonidentity generators of H(F, F ), and from this it

◦ Fe α ◦ Fe′

Fe Fe α ◦ Fe′
α ◦ Fe′ α ◦ Fe′ q−1Fe+ q−1(q − 1)α ◦ Fe′

is clear that H(F, F ) is closed under composition.

Similarly, the only indecomposable 1-morphism S −→ ∅ is E. Again pairwise composition of nonidentity

generators of H(E,E) gives

• eE ◦ eE = e2E = eE

• eE ◦ α̃ ◦ e′E = α̃ ◦ eΦE ◦ e′E = α̃ ◦ e′′′E ◦ e′E = α̃ ◦ (e′′′ ◦ e′)E = α̃ ◦ e′E

• α̃ ◦ e′E ◦ eE = α̃ ◦ e′E
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•
α̃ ◦ e′E ◦ α̃ ◦ e′E = (q−1e′′E + q−1(q − 1)eE ◦ α̃) ◦ e′E

= q−1(e′′ ◦ e′)E + q−1(q − 1)eE ◦ α̃ ◦ e′E

= q−1eE + q−1(q − 1)α̃ ◦ e′E

yielding a multiplication table of nonidentity generators forH(E,E), and from this it follows thatH(E,E)

is closed under composition.

◦ eE α̃ ◦ e′E
eE eE α̃ ◦ e′E

α̃ ◦ e′E α̃ ◦ e′E q−1eE + q−1(q − 1)α̃ ◦ e′E

Fourth, the only indecomposable 1-morphisms S −→ S are 1S and FE.

• Suppose (X,Y, Z) = (1S , 1S , 1S). By definition, H(1S , 1S) is defined as theR-submodule of HomC(1S , 1S)

generated by {ei0, e
j
1, e

k
2 : i, j, k ≥ 0}. Since e0e1 = e1e0, e0e2 = e2e0, and e1e2 = e2e1, H(1S , 1S) may

also be described as the commutative R-subalgebra generated by {1S , e0, e1, e2}, and so H(1S , 1S) is

closed under composition.

• Suppose (X,Y, Z) = (1S , 1S , FE). An arbitrary composite has form ϕE ◦ ηS ◦ ei for i = 0, 1, 2, and

ϕ ∈ H(F, F ). In Lemma 5.3, arrows of this form are proven to be in H(1S , FE).

• Suppose (X,Y, Z) = (1S , FE, 1S). An arbitrary composite 1S −→ FE −→ 1S has form

εS ◦ ϕE ◦ ψE ◦ ηS = εS ◦ ρE ◦ ηS

for ρ = ϕ ◦ ψ ∈ H(F, F ). As ρ cycles over the three generators of H(F, F ), the above composite is e0,

e1, or e2, all of which are in H(1S , 1S). Hence composition on H(FE, 1S) ×H(1S , FE) takes values

in H(1S , 1S).

• Suppose (X,Y, Z) = (FE, 1S , 1S). An arbitrary composite FE −→ 1S −→ 1S has form ψ ◦ εS ◦ϕE for

ψ ∈ H(1S , 1S) and ϕ ∈ H(F, F ). Note

ψ ◦ εS ◦ ϕE = εS ◦ ψFE ◦ ϕE = εS ◦ (ψF ◦ ϕ)E

and hence will be in H(FE, 1S) is ψF ◦ ϕ ∈ H(F, F ). Since ϕ ∈ H(F, F ), it is enough to show

ψF ∈ H(F, F ) when ψ ∈ H(1S , 1S), and this was already shown in Lemma 5.3.
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• Suppose (X,Y, Z) = (FE,FE,FE). To show H(FE,FE) is closed under composition, first note the

defining relation (
1E 0

0 α̃

)
◦ µ−1E ◦ EηS =

(
q1E

(−1)ε(q1E + q(q − 1)α̃ ◦ e′E)

)

it follows that

Fµ−1E ◦ FEηS =

(
q1FE

(−1)ε(qF α̃−1 + q(q − 1)Fe′E)

)
.

Then the generators for H(FE,FE) have explicit form

qϕE + (−1)ε
(
qψE ◦ αE ◦ Fα̃−1 + q(q − 1)ψE ◦ (α ◦ Fe′)E

)
,

where ϕ,ψ ∈ H(F, F ). Fixing ϕ = 0 and letting ψ range over H(F, F ), and vice versa, gives generators

q1FE , qFeE, q(α ◦ Fe′)E, (−1)ε
(
qαE ◦ Fα̃−1 + q(q − 1)(α ◦ Fe′)E

)
,

(−1)ε
(
qFeE ◦ αE ◦ Fα̃−1 + q(q − 1)FeE ◦ (α ◦ Fe′)E

)
,

and

(−1)ε
(
q(α ◦ Fe′)E ◦ αE ◦ Fα̃−1 + q(q − 1)(α ◦ Fe′)E

)
.

Since q is invertible, these generators may be replaced with the R-module generating set

{1FE , F eE, (α ◦ Fe′)E,αE ◦ Fα̃−1, FeE ◦ αE ◦ Fα̃−1, (α ◦ Fe′)E ◦ αE ◦ Fα̃−1}.

We check that the composites αE ◦Fα̃−1 ◦FeE, αE ◦Fα̃−1 ◦ (α ◦Fe′)E, and αE ◦Fα̃−1 ◦αE ◦Fα̃−1

are again in H(FE,FE). The other possible pairwise composites are either clearly in H(FE,FE), or

a quick consequence of these three. For the first two, note

αE ◦ Fα̃−1 ◦ FeE = αE ◦ FΦeE ◦ Fα̃−1 = FeE ◦ αE ◦ Fα̃−1

and

αE ◦ Fα̃−1 ◦ αE ◦ Fe′E = αE ◦ αΦE ◦ FΦα̃−1 ◦ Fe′E

= αE ◦ αΦE ◦ Fe′ΦE ◦ Fα̃−1

= αE ◦ αΦE ◦ FΦe′E ◦ Fα̃−1

= (α ◦ Fe′)E ◦ αE ◦ Fα̃−1,
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both of which are in the generating set. Also,

αE ◦ Fα̃−1 ◦ αE ◦ Fα̃−1 = αE ◦ αΦE ◦ FΦα̃−1 ◦ Fα̃−1 = (α ◦ αΦ)E ◦ F (Φα̃−1 ◦ α̃−1)

=
(
q−1Fz + q−1(q − 1)α ◦ Fe′ ◦ Fz

)
E ◦ F

(
qz−1E + (1− q)Φα̃−1 ◦ e′E

)
= 1FE + q−1(1− q)FzE ◦ FΦα̃−1 ◦ e′E + (q − 1)(α ◦ Fe′)E − q−1(q − 1)2(α ◦ Fe′)E ◦ FzE ◦ FΦα̃−1 ◦ e′E

= 1FE + q−1(1− q)FzE ◦ FΦα̃−1 ◦ e′E + (q − 1)(α ◦ Fe′)E − q−1(q − 1)2FeE ◦ αE ◦ Fα̃−1.

The only term which is not immediately in H(FE,FE) is FzE ◦ FΦα̃−1 ◦ e′E. From the defining

relations, and some of their immediate consequences, this term can be rewritten as

FzE◦FΦα̃−1◦e′E = FzE◦Fe′ΦE◦Fα̃−1 = F (z◦e′Φ)E◦Fα̃−1 = Fe′′E◦Fα̃−1 = qF (α̃◦e′E)+(1−q)FeE.

Since FeE is a generator of H(FE,FE), it follows (αE ◦ Fα̃−1)2 ∈ H(FE,FE) if and only if

F (α̃ ◦ e′E) ∈ H(FE,FE). To see this,

(α ◦ Fe′)E ◦ αE ◦ Fα̃−1 + q−1(q − 1)FeE − q−1(q − 1)FeE ◦ αE ◦ Fα̃−1

=
(
q−1Fe′′E + q−1(q − 1)FeE ◦ αE

)
◦ Fα̃−1 + q−1(q − 1)FeE − q−1(q − 1)FeE ◦ αE ◦ Fα̃−1

= q−1Fe′′E ◦ Fα̃−1 + q−1(q − 1)FeE

=
(
q−1Fe′′E + q−1(q − 1)FeE ◦ Fα̃

)
◦ Fα̃−1

= (Fα̃ ◦ Fe′E ◦ Fα̃) ◦ Fα̃−1

= F (α̃ ◦ e′E)

so that F (α̃ ◦ e′E) ∈ H(FE,FE). This shows that αE ◦Fα̃−1 ◦αE ◦Fα̃−1 is an R-linear combination

of the module generators, so is in H(FE,FE), and hence H(FE,FE) is closed under composition.

• Suppose (X,Y, Z) = (1S , FE, FE). An arbitrary composite 1S −→ FE −→ FE has form

ψ ◦ ϕE ◦ ηS

where ϕ ∈ H(F, F ), and ψ ∈ H(FE,FE). From the explicit generators of H(FE,FE) in the previous

case, one has that if x is a generator of H(F, F ), then xE ∈ H(FE,FE). Since H(FE,FE) is closed

under composition, we have ψ ◦ ϕE ∈ H(FE,FE). By Lemma 5.3, it is further shown that whenever

f ∈ H(FE,FE), then f ◦ ηS ∈ H(1S , FE). Hence composition on H(FE,FE) × H(1S , FE) takes

values in H(1S , FE).
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• Suppose (X,Y, Z) = (FE, 1S , FE). An arbitrary composite FE −→ 1S −→ FE has form

ψE ◦ ηS ◦ εS ◦ ϕE

for ϕ,ψ ∈ H(F, F ). However, in Lemma 5.3, it is shown that ψE ◦ ηS ◦ εS ∈ H(FE,FE) whenever

ψ ∈ H(F, F ). As noted previously, ϕE ∈ H(FE,FE) when ϕ ∈ H(F, F ), so their composite is in

H(FE,FE) as H(FE,FE) is closed under composition.

• Suppose (X,Y, Z) = (FE,FE, 1S). A composite FE −→ FE −→ 1S has form εS ◦ ρE ◦ γ where

γ ∈ H(FE,FE). Assuming γ is a generator of H(FE,FE), this composite has form

εS ◦ ρE ◦
(
qϕE + (−1)ε

(
qψE ◦ αE ◦ Fα̃−1 + q(q − 1)ψE ◦ (α ◦ Fe′)E

))

for some ρ, ϕ, ψ ∈ H(F, F ). To be in H(FE, 1S), the above composite must be an R-linear combination

of terms of form εS ◦ σE for σ ∈ H(F, F ). Only the middle term εS ◦ ρE ◦ ψE ◦ αE ◦ Fα̃−1 is not

immediately of this form. From the relation Fα̃◦α−1E = αE◦Fα̃−1+(q−1)(α◦Fe′)E−(q−1)F (α̃◦e′E),

we have

εS ◦ ρE ◦ αE ◦ Fα̃−1 = εS ◦ ρE ◦
(
Fα̃ ◦ α−1E + (1− q)(α ◦ Fe′)E + (q − 1)F (α̃ ◦ e′E)

)
.

The middle term has the desired form, so we check the other two. For the first, note

εS ◦ ρE ◦ Fα̃ ◦ α−1E = εS ◦ ρE ◦ FEεS ◦ FEαE ◦ Fη∅ΦE ◦ α−1E

= εS ◦ εSFE ◦ FEαE ◦ Fη∅ΦE ◦ ρΦE ◦ α−1E

= εS ◦ (εSF ◦ FEα ◦ Fη∅Φ ◦ ρΦ ◦ α−1)E,

and furthermore,

εSF ◦ FEα ◦ Fη∅Φ ◦ ρΦ ◦ α−1 = α ◦ εSFΦ ◦ Fη∅Φ ◦ ρΦ ◦ α−1 = α ◦ ρΦ ◦ α−1.

Hence εS ◦ εSFE ◦ FEαE ◦ Fη∅ΦE ◦ ρΦE ◦ α−1E will be a sum of terms of form

εS ◦ σE if α ◦ ρΦ ◦ α−1 ∈ H(F, F ) for any ρ ∈ H(F, F ). Checking on generators, indeed

α ◦ FeΦ ◦ α−1 = α ◦ FΦe ◦ α−1 = Fe ◦ α ◦ α−1 = Fe ∈ H(F, F )
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and

α ◦ αΦ ◦ Fe′Φ ◦ α−1 = α ◦ αΦ ◦ FΦe′ ◦ α−1 = α ◦ αΦ ◦ α−1Φ ◦ Fe′ = α ◦ Fe′ ∈ H(F, F ).

For the other term,

εS ◦ ρE ◦ Fα̃ ◦ Fe′E = εS ◦ ρE ◦ FEεS ◦ FEαE ◦ Fη∅ΦE ◦ Fe′E

= εS ◦ εSFE ◦ FEαE ◦ Fη∅ΦE ◦ Fe′E ◦ ρE

= εS ◦ αE ◦ εSFΦE ◦ Fη∅ΦE ◦ Fe′E ◦ ρE

= εS ◦ (α ◦ Fe′)E ◦ ρE.

For ρ ∈ H(F, F ), εS ◦ (α ◦ Fe′)E ◦ ρE will be an R-linear combination of terms of form εS ◦ σE for

σ ∈ H(F, F ). Thus the composition map on H(FE, 1S)×H(FE,FE) takes values in H(FE, 1S).

Remark 5.5. Observe that the composition map H(X,Y ) × H(Y, Z) −→ HomC(X,Z) takes values in

H(X,Z). For given f ∈ H(X,Y ) and g ∈ H(Y, Z), the composite g ◦ f is given by pasting the diagrams

X
f

//

δX

��

Y
g

//

δY

��

Z

δZ

��⊕
iXi

(aji)
//
⊕

j Yj (bkj)
//
⊕

k Zk.

where
⊕

iXi is the canonical decomposition of X, etc. Writing A = (aji) and B = (bkj), then the bottom

row is given by the matrix C = BA, which has components crs =
∑
` br` ◦ a`s. Then crs ∈ H(Xs, Zr) as

br` ◦ a`s ∈ H(Xs, Zr) since the composite map H(Y`, Zr) × H(Xs, Y`) −→ H(Xs, Zr) is already known to

take values in H(Xs, Zr) when Xs, Y`, and Zr are indecomposable, by Lemma 5.4.
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5.4 Stability under Horizontal Composition

5.4.1 Right Horizontal Composition

Suppose f ∈ H(X,Y ), and X,Y : ∅ −→ ∅. The only indecomposable endomorphisms of ∅ are 1∅ and Φ.

Hence there is a diagram

X
f

//

δX

��

Y

δY

��

1⊕n1

∅ ⊕ Φ⊕n2

(aji)
// 1⊕m1

∅ ⊕ Φ⊕m2

for some n1, n2,m1,m2 ≥ 0, and (aji) is a matrix with components in H(1∅, 1∅), H(1∅,Φ), H(Φ, 1∅), or

H(Φ,Φ). This in turn gives another diagram

XΦ
fΦ

//

δXΦ

��

Y Φ

δY Φ

��

Φ⊕n1 ⊕ ΦΦ⊕n2
(ajiΦ)

// Φ⊕m1 ⊕ ΦΦ⊕m2 .

The bottom row of the above diagram does not consist of indecomposables. Extending the diagram using

the prescribed algorithm yields

XΦ
fΦ

//

δXΦ

��

Y Φ

δY Φ

��

Φ⊕n1 ⊕ ΦΦ⊕n2

diag(1
⊕n1
Φ ,z⊕n2 )

��

(ajiΦ)
// Φ⊕m1 ⊕ ΦΦ⊕m2

diag(1
⊕m1
Φ ,z⊕m2 )

��

Φ⊕n1 ⊕ 1⊕n2

∅
// Φ⊕m1 ⊕ 1⊕m2

∅ .

The left and right vertical composites in the above diagram are the prescribed decompositions for XΦ

and Y Φ into indecomposables. So for fΦ to be an arrow in H(XΦ, Y Φ), necessarily the bottom arrow must

have components in H(1∅, 1∅), H(1∅,Φ), H(Φ, 1∅), or H(Φ,Φ). This amounts to checking four cases.

If aji ∈ H(1∅, 1∅), consider

Φ
1 // Φ

ajiΦ
// Φ

1 // Φ.

Since 1Φ ∈ H(Φ,Φ) and eΦ = e′′′ ∈ H(Φ,Φ), the composite is in H(Φ,Φ).

If aji ∈ H(1∅,Φ), consider

Φ
1 // Φ

ajiΦ
// ΦΦ

z // 1∅.

Since z ◦ e′Φ = e′′ ∈ H(Φ, 1∅), the composite is in H(Φ, 1∅).
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If aji ∈ H(Φ, 1∅), consider

1∅
z−1
// ΦΦ

ajiΦ
// Φ

1 // Φ.

Since e′′Φ ◦ z−1 = e′ ∈ H(1∅,Φ), the composite is in H(1∅,Φ).

If aji ∈ H(Φ,Φ), consider

1∅
z−1
// ΦΦ

ajiΦ
// ΦΦ

z // 1∅.

Since 1∅ ∈ H(1∅, 1∅) and z ◦ e′′′Φ ◦ z−1 = z ◦ e′Φ ◦ e′′Φ ◦ z−1 = e′′ ◦ e′ = e ∈ H(1∅, 1∅), the composite is in

H(1∅, 1∅).

Proposition 5.6. Suppose X,Y : ∅ −→ ∅ are parallel 1-morphisms in C. Then the map

H(X,Y ) −→ HomC(XΦ, Y Φ) : f 7→ fΦ

takes values in H(XΦ, Y Φ).

In the same setting, appending E yields

XE

δXE

��

fE
// Y E

δY E

��

E⊕n1 ⊕ ΦE⊕n2

diag(1
⊕n1
E ,α̃⊕n2 )

��

(ajiE)
// E⊕m1 ⊕ ΦE⊕m2

diag(1
⊕m1
E ,α̃⊕m2 )

��

E⊕n1 ⊕ E⊕n2

A
// E⊕m1 ⊕ E⊕m2

The left and right vertical composites are the decomposition maps δXE and δY E , respectively, so if the

bottom arrow has components in H(E,E), it follows that fE ∈ H(XE, Y E).

If aji ∈ H(1∅, 1∅), the corresponding component in A is given by 1E ◦ ajiE ◦ 1E = ajiE. Since

1E ∈ H(E,E) and eE ∈ H(E,E), the corresponding component in A is in H(E,E).

If aji ∈ H(1∅,Φ), the corresponding component in A is given by α̃ ◦ ajiE ◦ 1E . Since α̃ ◦ e′E ∈ H(E,E),

the corresponding component in A is in H(E,E).

If aji ∈ H(Φ, 1∅), the corresponding component in A is given by 1E ◦ ajiE ◦ α̃−1. As consequences of the

defining relations, e′′E ◦ α̃−1 = qα̃e′E + (1 − q)eE ∈ H(E,E), so the corresponding component in A is in

H(E,E).

If aji ∈ H(Φ,Φ), the corresponding component in A is given by α̃ ◦ ajiE ◦ α̃−1. But

α̃ ◦ e′′′E ◦ α̃−1 = α̃ ◦ e′E ◦ e′′E ◦ α̃−1 ∈ H(E,E),
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since both α̃ ◦ e′E and e′′E ◦ α̃−1 are in H(E,E), which is closed under composition. So the corresponding

component in A is in H(E,E) as well.

Hence we have the following.

Proposition 5.7. Suppose X,Y : ∅ −→ ∅ are parallel 1-morphisms in C. Then the map

H(X,Y ) −→ HomC(XE, Y E) : f 7→ fE

takes values in H(XE, Y E).

Now suppose X,Y : ∅ −→ S, and f ∈ H(X,Y ). The only indecomposable 1-morphism from ∅ to S is F ,

hence there is a diagram

X
f

//

δX

��

Y

δY

��

F⊕n
(aji)

// F⊕m

for some n,m ≥ 0. Appending Φ on the right, and extending the diagram yields

XΦ
fΦ

//

δXΦ

��

Y Φ

δY Φ

��

FΦ⊕n

α⊕n

��

(ajiΦ)
// FΦ⊕m

α⊕m

��

F⊕n // F⊕m.

The vertical composites are the decomposition maps δXΦ and δY Φ, so it will follow that fΦ ∈ H(XΦ, Y Φ)

if α ◦ ajiΦ ◦ α−1 ∈ H(F, F ) for aji ∈ H(F, F ). Cycling over the generators of H(F, F ), note

α ◦ 1FΦ ◦ α−1 = 1F ∈ H(F, F ). Also, α ◦ FeΦ ◦ α−1 = α ◦ FΦe ◦ α−1 = Fe ∈ H(F, F ). Finally,

α ◦ (α ◦ Fe′)Φ ◦ α−1 = α ◦ αΦ ◦ Fe′Φ ◦ α−1

= [q−1Fz + q−1(q − 1)α ◦ Fe′ ◦ Fz] ◦ Fe′Φ ◦ α−1

= q−1Fe′′ ◦ α−1 + q−1(q − 1)α ◦ Fe′ ◦ Fe′′ ◦ α−1 ∈ H(F, F )

since Fe′′ ◦ α−1 = qα ◦ Fe′ + (1− q)Fe ∈ H(F, F ), and H(F, F ) is closed under composition.

Proposition 5.8. Suppose X,Y : ∅ −→ S are parallel 1-morphisms in C. Then the map

H(X,Y ) −→ HomC(XΦ, Y Φ) : f 7→ fΦ
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takes values in H(XΦ, Y Φ).

Similarly, one can append E on the right, yielding a diagram

XE
fE

//

δXE

��

Y E

δY E

��

FE⊕n
(ajiE)

// FE⊕m.

Now δXE = δXE , δY E = δY E , and FE remains indecomposable, so showing that fE ∈ H(XE, Y E)

reduces to showing that the map H(F, F ) −→ HomC′(FE,FE) given by f 7→ fE takes values in H(FE,FE).

Observe that under the definition of H(FE,FE), an element (ϕ, 0) ∈ H(F, F )⊕H(F, F ) maps to

(
ϕE 0

)
◦ Fµ−1E ◦ FEηS =

(
ϕE 0

)
◦

(
q1FE

(−1)ε(Fα̃−1 + q(q − 1)Fe′E)

)
= qϕE.

Since q is invertible, it follows that ϕE ∈ H(FE,FE) whenever ϕ ∈ H(F, F ).

Proposition 5.9. Suppose X,Y : ∅ −→ S are parallel 1-morphisms in C. Then the map

H(X,Y ) −→ HomC(XE, Y E) : f 7→ fE

takes values in H(XE, Y E).

Now suppose X,Y : S −→ ∅, and f ∈ H(X,Y ). The only indecomposable 1-morphism from S to ∅ is E,

hence there is a diagram

X
f

//

δX
��

Y

δY

��

E⊕n
(aji)

// E⊕m

for some m,n ≥ 1, and aji ∈ H(E,E). In turn,

XF
fF

//

δXF
��

Y F

δY F

��

EF⊕n

µ−1

��

(ajiF )
// EF⊕m

µ−1

��

(1∅ ⊕ Φ)⊕n // (1∅ ⊕ Φ)⊕m

Hence one needs to check that µ−1 ◦ ajiF ◦ µ ∈ H(1∅ ⊕ Φ, 1∅ ⊕ Φ) when aji ∈ H(E,E), in order for

44



fF ∈ H(XF, Y F ). Checking on generators of H(E,E), we have the following three diagrams

EF
1EF // EF

1∅ ⊕ Φ

µ

OO

1 0

0 1


// 1∅ ⊕ Φ

µ

OO EF
eEF // EF

1∅ ⊕ Φ

µ

OO

e 0

0 e′′′


// 1∅ ⊕ Φ

µ

OO EF
(α̃◦e′E)F

// EF

1∅ ⊕ Φ

µ

OO

0 q−1e′′

e′ q−1(q − 1)e′′′


// 1∅ ⊕ Φ.

µ

OO

This commutativity of the first diagram is clear. For the second, note

eEF ◦ µ =
(
eEF ◦ η∅ eEF ◦ Eα ◦ η∅Φ

)
=
(
η∅ ◦ e Eα ◦ η∅Φ ◦ e′′′

)
= µ ◦

(
e 0

0 e′′′

)

since eEF ◦ Eα ◦ η∅Φ = EFe ◦ Eα ◦ η∅Φ = Eα ◦ EFe′′′ ◦ η∅Φ. For the third, first note

µ ◦

(
0 q−1e′′

e′ q−1(q − 1)e′′′

)
=
(
Eα ◦ η∅Φ ◦ e′ q−1η∅ ◦ e′′ + q−1(q − 1)Eα ◦ η∅Φ ◦ e′′′

)

and

(α̃ ◦ e′E)F ◦ µ =
(
α̃F ◦ e′EF ◦ η∅ α̃F ◦ e′EF ◦ Eα ◦ η∅Φ

)
.

Comparing components, note

α̃F ◦ e′EF ◦ η∅ = α̃F ◦ Φη∅ ◦ e′ = Eα ◦ η∅Φ ◦ e′.

For the second component,

α̃F ◦ e′EF ◦ α̃F ◦ Φη∅ = [q−1e′′EF + q−1(q − 1)eEF ◦ α̃F ] ◦ Φη∅

= q−1η∅ ◦ e′′ + q−1(q − 1)EFe ◦ Eα ◦ η∅Φ

= q−1η∅ ◦ e′′ + q−1(q − 1)Eα ◦ EFe′′′ ◦ η∅Φ

= q−1η∅ ◦ e′′ + q−1(q − 1)Eα ◦ η∅Φ ◦ e′′′.

Together, these give the following.

Proposition 5.10. Suppose X,Y : S −→ ∅ are parallel 1-morphisms in C. Then the map

H(XF, Y F ) −→ HomC(XF, Y F ) : f 7→ fF

takes values in H(XF, Y F ).
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Now suppose X,Y : S −→ S are 1-morphisms in C, and f ∈ H(X,Y ). The only indecomposable 1-

morphisms on S are 1S and FE, hence there is a diagram

X
f

//

δX

��

Y

δY

��

1⊕n1

S ⊕ FE⊕n2

(aji)
// 1⊕m1

S ⊕ FE⊕m2

for some n1, n2,m1,m2 ≥ 0, and the aji are arrows in one of H(1S , 1S), H(1S , FE), H(FE, 1S), or

H(FE,FE). Appending F to the right, and applying the decomposition algorithm to the bottom row

yields

XF
fF

//

δXF

��

Y F

δY F

��

F⊕n1 ⊕ FEF⊕n2
(ajiF )

//

diag(1
⊕n1
F ,Fµ−1⊕n2 )

��

F⊕m1 ⊕ FEF⊕m2

diag(1
⊕m1
F ,Fµ−1⊕m2 )

��

F⊕n1 ⊕ (F ⊕ FΦ)⊕n2

diag(1
⊕n1
F ,1

⊕n2
F ,α⊕n2 )

��

F⊕m1 ⊕ (F ⊕ FΦ)⊕m2

diag(1
⊕m1
F ,1

⊕m2
F ,α⊕m2 )

��

F⊕n1 ⊕ F⊕n2 ⊕ F⊕n2

A
// F⊕m1 ⊕ F⊕m2 ⊕ F⊕m2 .

As before, the left and right vertical composites are the decompositions δXF and δY F . For each of the

four choices for aji, there are several subdiagrams which must be investigated.

If aji ∈ H(1S , 1S), the corresponding component in A is given simply given by ajiA. This amounts to

checking that ajiF ∈ H(F, F ) for aji ∈ H(1S , 1S), which is clear from the defining relations for e0F , e1F ,

and e2F .

If aji ∈ H(1S , FE), the corresponding component in A is given

(
1F 0

0 α

)
◦ Fµ−1 ◦ ajiF.

Recall that H(1S , FE) is generated by arrows of the form ϕE ◦ ηS for ϕ ∈ H(F, F ). If ϕ = 1F , defining

relations imply

(
1F 0

0 α

)
◦ Fµ−1 ◦ ηSF =

(
q1F

(−1)ε(q1F + q(q − 1)α ◦ Fe′

)
∈ H(F, F ⊕ F ).
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If ϕ = Fe,

(
1F 0

0 α

)
◦ Fµ−1 ◦ FeEF ◦ ηSF =

(
1F 0

0 α

)
◦ Fµ−1 ◦ FEFe ◦ ηSF

=

(
1F 0

0 α

)
◦ Fµ−1 ◦ ηSF ◦ Fe

=

(
qFe

(−1)ε(qFe+ q(q − 1)α ◦ Fe′ ◦ Fe)

)

=

(
qFe

(−1)ε(qFe+ q(q − 1)α ◦ Fe′)

)
∈ H(F, F ⊕ F ).

If ϕ = α ◦ Fe′,

(
1F 0

0 α

)
◦ Fµ−1 ◦ αEF ◦ Fe′EF ◦ ηSF =

(
1F 0

0 α

)(
α 0

0 αΦ

)(
Fe′ 0

0 Fe′Φ

)
◦ Fµ−1 ◦ ηSF

=

(
1F 0

0 α

)(
α 0

0 αΦ

)(
Fe′ 0

0 Fe′Φ

)(
q1F

(−1)ε(qα−1 + q(q − 1)Fe′)

)
.

Multiplying these out, the first component is qα ◦ Fe′ ∈ H(F, F ). The second is

(−1)ε(qα ◦ αΦ ◦ Fe′Φ ◦ α−1 + q(q − 1)α ◦ αΦ ◦ Fe′Φ ◦ Fe′)

= (−1)ε(α ◦ αΦ ◦ FΦe′ ◦ α−1 + q(q − 1)α ◦ αΦ ◦ FΦe′ ◦ Fe′)

= (−1)ε(α ◦ αΦ ◦ α−1Φ ◦ Fe′ + q(q − 1)α ◦ Fe′ ◦ α ◦ Fe′)

= (−1)ε(α ◦ Fe′ + q(q − 1)α ◦ Fe′ ◦ α ◦ Fe′) ∈ H(F, F ).

If aji ∈ H(FE, 1S), the corresponding component in A is

ajiF ◦ Fµ ◦

(
1F 0

0 α−1

)
.

Recall H(FE, 1S) is generated by arrows of form εS ◦ ϕE for ϕ a generator of H(F, F ). First, observe

that for ϕ ∈ H(F, F ), we have ϕΦ ◦ α−1 = α−1 ◦ ϕ. This is obvious if ϕ = 1F . If ϕ = Fe, then

FeΦ ◦ α−1 = FΦe ◦ α−1 = α−1 ◦ Fe. If ϕ = α ◦ Fe′,

(α ◦ Fe′)Φ ◦ α−1 = αΦ ◦ Fe′Φ ◦ α−1 = αΦ ◦ FΦe′ ◦ α−1 = αΦ ◦ α−1Φ ◦ Fe′ = α−1 ◦ α ◦ Fe′.
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Then

εSF ◦ ϕEF ◦ Fµ ◦

(
1F 0

0 α−1

)
= εSF ◦ Fµ ◦

(
ϕ 0

0 ϕΦ

)(
1F 0

0 α−1

)

= εSF ◦ Fµ ◦

(
1F 0

0 α−1

)(
ϕ 0

0 ϕ

)

=
(

1F 1F

)(ϕ 0

0 ϕ

)
=
(
ϕ ϕ

)
.

So the corresponding components in A are in H(F ⊕ F, F ).

Lastly, suppose aji ∈ H(FE,FE). The corresponding components of A are given by

F ⊕ F

1 0

0 α−1


// F ⊕ FΦ

Fµ
// FEF

ajiF
// FEF

Fµ−1

// F ⊕ FΦ

1 0

0 α


// F ⊕ F.

By the definition of H(FE,FE), the generators have form

(
ϕE (ψ ◦ α)E

)
◦ Fµ−1E ◦ FEηS =

(
ϕE (ψ ◦ α)E

)( q1FE

(−1)ε(qF α̃−1 + q(q − 1)Fe′E)

)

= qϕE + (−1)ε
(
q(ψ ◦ α)E ◦ Fα̃−1 + q(q − 1)ψE ◦ αE ◦ Fe′E

)

where ϕ and ψ are in H(F, F ). If ψ = 0, the generators have form qϕE. Then

(
1F 0

0 α

)
◦ Fµ−1 ◦ qϕEF ◦ Fµ ◦

(
1F 0

0 α−1

)
=

(
1F 0

0 α−1

)(
qϕ 0

0 qϕF

)(
1F 0

0 α−1

)

=

(
qϕ 0

0 qα ◦ ϕΦ ◦ α−1

)
=

(
qϕ 0

0 qϕ

)

which has components in H(F, F ). If ϕ = 0, the aji has form

(−1)ε
(
qψE ◦ αE ◦ Fα̃−1 + q(q − 1)ψE ◦ (α ◦ Fe′)E

)
.

From the previous computation, the component corresponding to the summand ψE ◦ (α ◦ Fe′)E is in

H(F, F ) since the summand has form gE for some g ∈ H(F, F ). Also, since the corresponding component

in A is given by conjugation by diag(1F , α) ◦ Fµ−1, it is sufficient that

(
1F 0

0 α

)
◦ Fµ−1 ◦ (αE ◦ Fα̃−1)F ◦ Fµ ◦

(
1F 0

0 α−1

)

has components inH(F, F ), as ψE already has the form considered previously. In fact, there is a commutative
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diagram

FEF

Fµ−1

��

Fα̃−1F // FΦEF
αEF // FEF

Fµ−1

��

F ⊕ FΦ

diag(1F ,α)

��

F ⊕ FΦ

diag(1F ,α)

��

F ⊕ F (1− q)α ◦ Fe′ 1F

1F + (q − 1)α ◦ F ′ 0


// F ⊕ F.

To see this, first observe that

Fµ ◦

(
1F 0

0 α−1

)
=
(
Fη∅ FEα ◦ Fη∅Φ ◦ α−1

)

the counterclockwise composite Fα̃F ◦ α−1EF ◦ Fµ ◦

(
1F 0

0 α−1

)(
(1− q)α ◦ Fe′

1F + (q − 1)α ◦ F ′

)
is given by (*)

(1−q)Fα̃F ◦Fe′EF ◦Fη∅+Fα̃F ◦α−1EF ◦Fα̃F ◦α−1EF ◦Fη∅+(q−1)Fα̃F ◦α−1EF ◦Fα̃F ◦Fe′EF ◦Fη∅.

We rewrite some of the composites following the factors Fη∅ using the defining relations. Note

Fα̃F ◦ α−1EF ◦ Fα̃F ◦ α−1EF = Fα̃F ◦ FΦα̃F ◦ α−1ΦEF ◦ α−1EF

= F (q−1zE + q−1(q − 1)α̃ ◦ e′E ◦ zE)F ◦ (qFz−1 + (1− q)α−1Φ ◦ Fe′)EF

= 1FEF + (q − 1)Fα̃F ◦ Fe′EF + q−1(1− q)FzEF ◦ α−1ΦEF ◦ Fe′EF + . . .

· · · − q−1(1− q)2Fα̃F ◦ Fe′EF ◦ FzEF ◦ α−1ΦEF ◦ Fe′EF

= 1FEF + (q − 1)Fα̃F ◦ Fe′EF + q−1(1− q)Fe′′EF ◦ Fα−1EF − q−1(1− q)2Fα̃F ◦ α−1EF ◦ FeEF

and

Fα̃F ◦ α−1EF ◦ Fα̃F ◦ Fe′EF = Fα̃F ◦ FΦα̃F ◦ α−1ΦEF ◦ Fe′EF

= F (q−1zE + q−1(q − 1)α̃ ◦ e′E ◦ zE)F ◦ α−1ΦEF ◦ Fe′EF

= q−1FzEF ◦ α−1ΦEF ◦ Fe′EF + q−1(q − 1)Fα̃F ◦ FΦe′′EF ◦ α−1ΦEF ◦ Fe′EF

= q−1FzEF ◦ FΦe′EF ◦ α−1EF + q−1(q − 1)Fα̃F ◦ α−1EF ◦ Fe′′EF ◦ Fe′EF

= q−1Fe′′EF ◦ α−1EF + q−1(q − 1)Fα̃F ◦ α−1EF ◦ FeEF.

Hence the equation (*) above is simply given by Fη∅, which is the first component of Fµ ◦

(
1F 0

0 α−1

)
.
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For the second component, Fα̃F ◦ α−1EF ◦ Fµ ◦

(
1F 0

0 α−1

)(
1F

0

)
is given by

Fα̃F ◦ α−1EF ◦ Fη∅ = Fα̃F ◦ FΦη∅ ◦ α−1 = FEα ◦ Fη∅Φ ◦ α−1.

So finally, we have the following.

Proposition 5.11. Suppose X,Y : S −→ S are parallel 1-morphisms in C. Then the map

H(X,Y ) −→ HomC(XF, Y F ) : f 7→ fF

takes values in H(XF, Y F ).

All the previous propositions can be collected more succinctly.

Proposition 5.12. If X and Y are parallel 1-morphisms in C, and Z is any appropriate 1-morphism, then

the map

H(X,Y ) −→ HomC(XZ, Y Z) : f 7→ fZ

takes values in H(XZ, Y Z).

5.4.2 Left Horizontal Composition

We can also compose generating 1-morphisms on the right without leaving the candidate spaces of form

H(X,Y ). Suppose X,Y : ∅ −→ ∅. The decomposition maps δX and δY only ever act on the two left-most

factors, and any 1-morphism on ∅ has one of the following forms: 1∅, Φ, ΦΦX ′, ΦEX ′, or EFX ′ for some

appropriate 1-morphism X ′. Then δX will be a product of matrices with components 11∅ , 1Φ, zX ′, α̃X ′, or

µ−1X ′. There is a commutative diagram

X
f

//

δX

��

Y

δY

��⊕
iXi

(aji)
//
⊕

j Yj

where Xi and Yj are indecomposable 1-morphisms on ∅.

Postcomposing X and Y with Φ still gives 1-morphisms on ∅, hence δΦX is still a matrix composite with
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the same components. There is an extended diagram

⊕
i ΦXi

(Φaji)
//
⊕

j ΦYj

Φδ−1
Y

��

ΦX

ΦδX

OO

Φf
// ΦY

δΦY

��⊕
r(ΦX)r

A
//

δ−1
ΦX

OO

⊕
s(ΦY )s.

As before, δ−1
ΦX is a matrix composite with components of form 11∅ , 1Φ, z−1X ′, µX ′, or α̃−1X ′, and

δΦY has components 11∅ , 1Φ, zY ′, µ−1Y ′, and α̃Y ′. Also, ΦδX has components of form ΦzX ′, Φµ−1X ′,

Φα̃, and Φδ−1
Y has components of form Φz−1Y ′, ΦµY ′, Φα̃−1Y ′. Lastly, the possibilities for Φaji are 1Φ,

1ΦΦ, Φe, Φe′, Φe′′ and Φe′′′. If each of these listed components is the appropriate space H(W,Z), then the

components of A will be in H(1∅, 1∅), H(1∅,Φ), H(Φ, 1∅), or H(Φ,Φ), so that Φf ∈ H(ΦX,ΦY ). As seen

previously, we can append any necessary X ′ or Y ′ on the right, so it is sufficient to show the following.

Lemma 5.13. There are the following memberships.

1. z−1 ∈ H(1∅,ΦΦ)

2. z ∈ H(ΦΦ, 1∅)

3. µ ∈ H(1∅ ⊕ Φ, EF )

4. µ−1 ∈ H(EF, 1∅ ⊕ Φ)

5. α̃ ∈ H(ΦE,E),

6. α̃−1 ∈ H(E,ΦE)

7. Φz ∈ H(ΦΦΦ,Φ)

8. Φz−1 ∈ H(Φ,ΦΦΦ)

9. Φµ ∈ H(Φ⊕ ΦΦ,ΦEF )

10. Φµ−1 ∈ H(ΦEF,Φ⊕ ΦΦ)

11. Φα̃ ∈ H(ΦΦE,ΦE)

12. Φα̃−1 ∈ H(ΦE,ΦΦE)

13. Φe ∈ H(Φ,Φ)
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14. Φe′ ∈ H(Φ,Φ)

15. Φe′′ ∈ H(ΦΦ,Φ)

16. Φe′′′ ∈ H(ΦΦ,ΦΦ)

Proof. The first six claims are immediate from the definitions. For the others, note that Φz ∈ H(ΦΦΦ,Φ)

since zΦ ∈ H(ΦΦΦ,Φ), and zΦ = Φz. The arguments applies to Φz−1 since Φz−1 = z−1Φ.

We have the following commutative diagram

Φ⊕ ΦΦ

1Φ 0

0 z


��

Φµ
// ΦEF

α̃F

��

EF

µ−1

��

Φ⊕ 1∅ 0 q−1

1 q−1(q − 1)e′


// 1∅ ⊕ Φ.

To see this, note

µ ◦

(
0 q−1

1 q−1(q − 1)e′

)(
1Φ 0

0 z

)
=
(
Eα ◦ η∅Φ q−1η∅ ◦ z + q−1(q − 1)Eα ◦ η∅Φ ◦ e′ ◦ z

)
.

On the other hand, α̃F ◦ Φµ =
(
Eα ◦ η∅Φ α̃F ◦ ΦEα ◦ Φη∅Φ

)
. However,

α̃F ◦ ΦEα ◦ Φη∅Φ = α̃F ◦ Φα̃F ◦ ΦΦη∅

= (q−1zEF + q−1(q − 1)α̃F ◦ e′EF ◦ zEF ) ◦ ΦΦη∅

= q−1η∅ ◦ z + q−1(q − 1)α̃F ◦ Φη∅ ◦ e′ ◦ z

= q−1η∅ ◦ z + q−1(q − 1)Eα ◦ η∅Φ ◦ e′ ◦ z.

Hence Φµ ∈ H(Φ⊕ ΦΦ,ΦEF ).
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Now Φµ−1 ∈ H(ΦEF,Φ⊕ ΦΦ) since the following diagram commutes:

ΦEF

α̃F

��

Φµ−1

// Φ⊕ ΦΦ

1 0

0 z


��

EF

µ−1

��

1∅ ⊕ Φ(1− q)e′ 1

q 0


// Φ⊕ 1∅.

This is equivalent to the commutativity of

ΦEF

α̃F

��

Φ⊕ ΦΦ
Φµ

oo

EF

1∅ ⊕ Φ

µ

OO

(1− q)e′ 1

q 0


// Φ⊕ 1∅.

1 0

0 z−1



OO

Calculating,

α̃F ◦ Φµ ◦

(
1 0

0 z−1

)
◦

(
(1− q)e′ 1

q 0

)
=
(

(1− q)α̃F ◦ Φη∅ ◦ e′ + qα̃F ◦ ΦEα ◦ Φη∅Φ ◦ z−1 α̃F ◦ Φη∅

)
.

The first component simplifies as

(1− q)α̃F ◦ Φη∅ ◦ e′ + qα̃F ◦ ΦEα ◦ Φη∅Φ ◦ z−1

= (1− q)α̃F ◦ Φη∅ ◦ e′ + q(α̃ ◦ Φα̃)F ◦ η∅ΦΦ ◦ z−1

= (1− q)α̃F ◦ Φη∅ ◦ e′ + q(q−1zEF + q−1(q − 1)α̃ ◦ e′EF ◦ zEF ) ◦ z−1EF ◦ η∅

= η∅.

The second component is simply α̃F ◦ Φη∅ = Eα ◦ η∅Φ, so the above matrix is that of µ. Hence

Φµ−1 ∈ H(ΦEF,Φ⊕ ΦΦ).
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For Φα̃ ∈ H(ΦΦE,ΦE), the following must be an arrow in H(E,E),

ΦΦE
Φα̃ // ΦE

α̃

��

E

z−1E

OO

E

which is the case since α̃ ◦ Φα̃ ◦ z−1E = q−11E + q−1(q − 1)α̃ ◦ e′E ∈ H(E,E).

Similarly, Φα̃−1 ∈ H(ΦE,ΦΦE) if the following composite is an arrow in H(E,E),

ΦE
Φα̃−1

// ΦΦE

zE

��

E

α̃−1

OO

E.

Indeed,

zE ◦ (Φα̃−1 ◦ α̃−1) = q−11E + (1− q)zE ◦ Φα̃−1 ◦ e′E

= q−11E + (1− q)zE ◦ e′ΦE ◦ α̃−1

= q−11E + (1− q)e′′E ◦ α̃−1

= q−11E + (1− q)(qα̃ ◦ e′E + (1− q)eE) ∈ H(E,E).

The last four relations are clear since we can rewrite the arrows as Φe = eΦ, Φe′ = e′Φ, Φe′′ = e′′Φ, and

Φe′′′ = ΦeΦ = eΦΦ.

Proposition 5.14. Suppose X,Y : ∅ −→ ∅ are parallel 1-morphisms in C. Then the map

H(X,Y ) −→ HomC(ΦX,ΦY ) : f 7→ Φf

takes values in H(ΦX,ΦY ).

In the same situation, we can postcompose with F to yield a commutative diagram

⊕
i FXi

(Faji)
//
⊕

j FYj

Fδ−1
Y

��

FX

FδX

OO

Ff
// FY

δFY

��

⊕r(FX)r

δ−1
FX

OO

A
//
⊕

s(FY )s.

Now FX and FY are 1-morphisms ∅ −→ S, and any such 1-morphism is of the form F , FΦX ′, or
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FEFX ′ for some X ′. It follows that the decomposition arrow δFY consists of matrices with components

1F , αX ′, or Fµ−1X ′, and δ−1
FX consists of matrices with the inverse components 1F , α−1X ′, and FµX ′.

Similarly to the previous case, FδY consists of matrices with components 1F , Fz−1X ′, Fα̃−1X ′, and FµX ′,

and Fδ−1
X consists of inverse components 1F , FzX ′, Fα̃X ′ and Fµ−1X ′. The components of the Faji are

1F , 1FΦ, Fe, Fe′, Fe′′, or Fe′′′. If each of these listed components is the appropriate space H(W,Z), then

the components of A will be in H(1∅, 1∅), H(1∅,Φ), H(Φ, 1∅), or H(Φ,Φ), so that Ff ∈ H(FX,FY ). As

before, it is sufficient to show the following.

Lemma 5.15. There are the following memberships.

1. Fz ∈ H(FΦΦ, F )

2. Fz−1 ∈ H(F, FΦΦ)

3. Fµ ∈ H(F ⊕ FΦ, FEF )

4. Fµ−1 ∈ H(FEF,F ⊕ FΦ)

5. Fα̃ ∈ H(FΦE,FE)

6. Fα̃−1 ∈ H(FΦE,FE)

7. Fe′ ∈ H(F, FΦ)

8. Fe′′ ∈ H(FΦ, F )

Proof. By definition, Fz ∈ H(FΦΦ, F ) if Fz ◦ α−1Φ ◦ α−1 ∈ H(F, F ). By the defining relations,

Fz ◦ α−1Φ ◦ α−1 = Fz(qFz−1 + (1− q)α−1Φ ◦ Fe′)

= q1F + (1− q)Fz ◦ FΦe′ ◦ α−1

= q1F + (1− q)Fe′′ ◦ α−1

= q1F + (1− q)(qα ◦ Fe′ + (1− q)Fe) ∈ H(F, F ).

Similarly, Fz−1 ∈ H(F, FΦΦ) if α ◦ αΦ ◦ Fz−1 ∈ H(F, F ). By the relations,

α ◦ αΦ ◦ Fz−1 = (q−1Fz + q−1(q − 1)α ◦ Fe′ ◦ Fz) ◦ Fz−1

= q−11F + q−1(q − 1)α ◦ Fe′ ∈ H(F, F ).

55



For Fµ, observe

F ⊕ FΦ

diag(1F ,α)

��

Fµ
// FEF

Fµ−1

��

F ⊕ FΦ

diag(1F ,α)

��

F ⊕ F
diag(1F ,1F )

// F ⊕ F

Since diag(1F , 1F ) ∈ H(F ⊕ F, F ⊕ F ), Fµ ∈ H(F ⊕ FΦ, FEF ).

Similarly, since the following diagram commutes,

FEF
Fµ−1

//

Fµ−1

��

F ⊕ FΦ

diag(1F ,α)

��

F ⊕ FΦ

diag(1F ,α)

��

F ⊕ F
diag(1F ,1F )

// F ⊕ F

indeed Fµ−1 ∈ H(FEF,F ⊕ FΦ).

One has Fα̃ ∈ H(FΦE,FE) if Fα̃ ◦ α−1E ∈ H(FE,FE). By the defining relations,

Fα̃ ◦ α−1E = αE ◦ Fα̃−1 + (q − 1)(α ◦ Fe′)E − (q − 1)F (α̃ ◦ e′E).

From the prior results, since α ◦ Fe′ ∈ H(F, F ), then (α ◦ Fe′)E ∈ H(FE,FE). By the definition of

H(FE,FE), the image of
(

0 1F

)
in H(FE,FE) is given by

(−1)ε(qαE ◦ Fα̃−1 + q(q − 1)(α ◦ Fe′)E)

so that αE ◦ Fα̃−1 ∈ H(FE,FE). Third, the image of
(

0 α ◦ Fe′
)

in H(FE,FE) can be computed as

(−1)ε(q(α ◦ Fe′)E ◦ αE ◦ Fα̃−1 + q(q − 1)(α ◦ Fe′)E ◦ αE ◦ Fe′E)

= (−1)
(
q(q−1e′′E + q−1(q − 1)FeE ◦ αE)Fα̃−1 + q(q − 1)(q−1Fe′′E + q−1(q − 1)FeE ◦ αE)Fe′E

)
= (−1)ε

(
qF (α̃ ◦ e′E) + (1− q)FeE + (q − 1)FeE ◦ αE ◦ Fα̃−1 + (q − 1)FeE + (q − 1)2(α ◦ Fe′)E

)
= (−1)ε

(
qF (α̃ ◦ e′E) + (q − 1)FeE ◦ αE ◦ Fα̃−1 + (q − 1)2(α ◦ Fe′)E

)
.

Since Fe ∈ H(F, F ), FeE ∈ H(FE,FE), and so FeE ◦ αE ◦ Fα̃−1 ∈ H(FE,FE). This implies

F (α̃ ◦ e′E) ∈ H(FE,FE), so that Fα̃ ◦ α−1E ∈ H(FE,FE), and thus Fα̃ ∈ H(FΦE,FE).
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Also, Fe′ ∈ H(F, FΦ) if α ◦ Fe′ ∈ H(F, F ), which is indeed the case by the definition of H(F, F ).

Lastly, Fe′′ ∈ H(FΦ, F ) if Fe′′ ◦ α−1 ∈ H(F, F ), and this is the case since

Fe′′ ◦ α−1 = q(α ◦ Fe′) + (1− q)Fe ∈ H(F, F ).

Proposition 5.16. Suppose X,Y : ∅ −→ ∅ are parallel 1-morphisms in C. Then the map

H(X,Y ) −→ HomC(FX,FY ) : f 7→ Ff

takes values in H(FX,FY ).

Now suppose that X,Y : ∅ −→ S are parallel arrows in C. Any such 1-morphisms must have form F ,

FΦX ′, or FEFX ′ for some appropriate 1-morphism X ′. There is a diagram

X

δX

��

f
// Y

δY

��⊕
iXi

(aji)
//
⊕

j Yj

where δX and δY consist of matrices with components of form 1F , αX ′ or Fµ−1X ′. The only inde-

composable arrow ∅ −→ S is F , so the components aji are in H(F, F ). There is a larger commutative

diagram ⊕
iEXi

(Eaji)
//
⊕

j EYj

Eδ−1
Y

��

EX

EδX

OO

Ef
// EY

δEY

��⊕
r(EX)r

δ−1
EX

OO

A
//
⊕

s(EY )s.

Now EX and EY are 1-morphisms on ∅, so as seen before, δEY is a product of matrices with components

of form 11∅ , 1Φ, zX ′, α̃X ′, or µ−1X ′, and δ−1
EX will have inverse components. Also, EδX is a product of

matrices with components of form 1E , EαX ′, and EFµ−1X ′, and Eδ−1
Y will have inverse components. As

before, the components of A will be in the appropriate candidate spaces if the following memberships hold.

Lemma 5.17. There are the following memberships.

1. Eα ∈ H(EFΦ, EF )
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2. Eα−1 ∈ H(EF,EFΦ)

3. EFµ ∈ H(EF ⊕ EFΦ, EFEF )

4. EFµ−1 ∈ H(EFEF,EF ⊕ EFΦ)

5. EFe ∈ H(EF,EF )

6. E(α ◦ Fe′) ∈ H(EF,EF ).

Proof.

1. The following diagram commutes

EFΦ
Eα // EF

Φ⊕ ΦΦ

µΦ

OO

diag(1,z)

��

Φ⊕ 1∅ 0 q−1

1 q−1(q − 1)e′


// 1∅ ⊕ Φ.

µ

OO

To see this, note

Eα ◦ µΦ =
(
Eα ◦ η∅Φ Eα ◦ EαΦ ◦ η∅ΦΦ

)
.

In the other direction,

µ ◦

(
0 q−1

1 q−1(q − 1)e′

)(
1 0

0 z

)
=
(
η∅ Eα ◦ η∅Φ

)(0 q−1z

1 q−1(q − 1)e′ ◦ z

)

=
(
Eα ◦ η∅Φ q−1η∅ ◦ z + q−1(q − 1)Eα ◦ η∅Φ ◦ e′ ◦ z

)
.

The first entries of these matrices are equal, so it remains to check the second entry. By the generating

relations, note

E(α ◦ αΦ) ◦ η∅ΦΦ = E(q−1Fz + q−1(q − 1) ◦ α ◦ Fe′ ◦ Fz) ◦ η∅ΦΦ

= q−1EFz ◦ η∅ΦΦ + q−1(q − 1)Eα ◦ EFe′ ◦ EFz ◦ η∅ΦΦ

= q−1η∅ ◦ z + q−1(q − 1)Eα ◦ η∅Φ ◦ e′ ◦ z
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so that the second entries are equal. Hence

EFΦ

µ−1Φ

��

Eα // EF

µ−1

��

Φ⊕ ΦΦ

diag(1,z)

��

Φ⊕ 1∅ 0 q−1

1 q−1(q − 1)e′


// 1∅ ⊕ Φ

commutes, so by definition, Eα ∈ H(EFΦ, EF ).

2. Note Eα−1 ∈ H(EF,EFΦ) if the following diagram commutes:

EF

µ−1

��

Eα−1
// EFΦ

µ−1Φ

��

Φ⊕ ΦΦ

diag(1,z)

��

1∅ ⊕ Φ (1− q)e′ 1

q 0


// Φ⊕ 1∅

Equivalently, one must show that

EF EFΦ
Eαoo

Φ⊕ ΦΦ

µΦ

OO

1∅ ⊕ Φ

µ

OO

(1− q)e′ 1

q 0


// Φ⊕ 1∅

diag(1,z−1)

OO

commutes. Computing the counter-clockwise composite yields

Eα◦µΦ◦

(
1 0

0 z−1

)(
(1− q)e′ 1

q 0

)
=
(

(1− q)Eα ◦ η∅Φ ◦ e′ + qEα ◦ EαΦ ◦ η∅ΦΦ ◦ z−1 Eα ◦ η∅Φ
)
.
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Using the previous computation, the first entry of this matrix simplifies as

(1− q)Eα ◦ η∅Φ ◦ e′ + [(q − 1)Eα ◦ η∅Φ ◦ e′ + η∅] ◦ z ◦ z−1 = η∅

and hence the entire composite is equal to
(
η∅ Eα ◦ η∅Φ

)
= µ.

3. Showing EFµ ∈ H(EF ⊕ EFΦ, EFEF ) is equivalent to showing that EFη∅ ∈ H(EF,EFEF ) and

EFEα ◦ EFη∅Φ ∈ H(EFΦ, EFEF ). However, if EFη∅ ∈ H(EF,EFEF ), then

EFη∅Φ ∈ H(EFΦ, EFEFΦ), so it is sufficient to show EFEα ∈ H(EFEFΦ, EFEF ) to conclude

that EFEα ◦ EFη∅Φ ∈ H(EFΦ, EFEF ).

First, EFη∅ ∈ H(EF,EFEF ) if there is a matrix M with components in H(1∅, 1∅), H(1∅,Φ), H(Φ, 1∅),

or H(Φ,Φ) such that the following diagram commutes

EF

µ−1

��

EFη∅ // EFEF

µ−1EF

��

EF ⊕ ΦEF

diag(µ−1,α̃F )

��

(1∅ ⊕ Φ)⊕ EF

diag(1,µ−1)

��

(1∅ ⊕ Φ)
M
// (1∅ ⊕ Φ)⊕ (1∅ ⊕ Φ).

This diagram may be simplified to

(1∅ ⊕ Φ)

M

''

η∅ 0

0 Φη∅


// EF ⊕ ΦEF

diag(µ−1,α̃F )

��

(1∅ ⊕ Φ)⊕ EF

diag(1,µ−1)

��

(1∅ ⊕ Φ)⊕ (1∅ ⊕ Φ).

However, the components of the rightmost matrices are already in their respective candidate morphism

spaces, so it is enough to show η∅ ∈ H(1∅, EF ), and Φη∅ ∈ H(Φ,ΦEF ). First, η∅ ∈ H(1∅, EF ) since
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the following clearly commutes

1∅

11∅

��

η∅ // EF

µ−1

��

1∅ 1

0


// 1∅ ⊕ Φ.

Secondly, the following commutes

Φ

1Φ

��

Φη∅ // ΦEF

α̃Φ

��

EF

µ−1

��

Φ 0

1


// 1∅ ⊕ Φ

since

µ ◦

(
0

1

)
= Eα ◦ η∅Φ = α̃F ◦ Φη∅.

Furthermore, EFEα ∈ H(EFEFΦ, EFEF ) if there is a matrix M with components in H(1∅, 1∅),

H(1∅,Φ), H(Φ, 1∅), or H(Φ,Φ) such that the following diagram commutes

EFEFΦ

µ−1

��

EFEα // EFEF

µ−1

��

EFΦ⊕ ΦEFΦ

diag(µ−1Φ,α̃FΦ)

��

EF ⊕ ΦEF

diag(µ−1,α̃F

��

(Φ⊕ ΦΦ)⊕ EFΦ

diag(1Φ,z,µ
−1Φ)

��

(1∅ ⊕ Φ)⊕ EF

diag(1,µ−1)

��

Φ⊕ 1∅ ⊕ Φ⊕ ΦΦ

diag(1,1,1,z)

��

Φ⊕ 1∅ ⊕ Φ⊕ 1∅ M
// 1∅ ⊕ Φ⊕ 1∅ ⊕ Φ.
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This diagram can be extended and rewritten as

EFEFΦ

µ−1

��

EFEα // EFEF

µ−1

��

EFΦ⊕ ΦEFΦ

diag(1,α̃FΦ)

��

Eα 0

0 ΦEα


// EF ⊕ ΦEF

diag(1,α̃F

��

EFΦ⊕ EFΦ

diag(µ−1Φ,µ−1Φ)

��

Eα 0

0 Eα


// EF ⊕ EF

diag(µ−1,µ−1)

��

Φ⊕ ΦΦ⊕ Φ⊕ ΦΦ

diag(1,z,1,z)

��

Φ⊕ 1∅ ⊕ Φ⊕ 1∅ M
// 1∅ ⊕ Φ⊕ 1∅ ⊕ Φ.

So M is a product of diagonal matrices, and the nonzero blocks are given by

µ−1 ◦ Eα ◦ µΦ ◦

(
1 0

0 z−1

)
=

(
0 q−1

1 q−1(q − 1)e′

)

as seen in the proof that Eα ∈ H(EFΦ, EF ). Altogether, this shows EFµ ∈ H(EF ⊕EFΦ, EFEF ).

4. It is the case that EFµ−1 ∈ H(EFEF,EF ⊕ EFΦ) if there is a matrix M with components in

H(1∅, 1∅), H(1∅,Φ), H(Φ, 1∅), or H(Φ,Φ) such that the following diagram commutes

EFEF

µ−1

��

EFµ−1

// EF ⊕ EFΦ

diag(µ−1,µ−1Φ)

��

EF ⊕ ΦEF

diag(µ−1,α̃F )

��

µ−1 0

0 Φµ−1


// (1∅ ⊕ Φ)⊕ (Φ⊕ ΦΦ)

diag(1,1,1,z)

��

(1∅ ⊕ Φ)⊕ EF

diag(1,1,µ−1)

��

(1∅ ⊕ Φ)⊕ (1∅ ⊕ Φ)
M

// (1∅ ⊕ Φ)⊕ (Φ⊕ 1∅).

The upper square clearly commutes, and solving for M , if it exists, the only components which are not

obviously in H(1∅, 1∅), H(1∅,Φ), H(Φ, 1∅), or H(Φ,Φ) are given by the composite morphism

(
1Φ 0

0 z

)
◦ Φµ−1 ◦ α̃−1F ◦ µ : 1∅ ⊕ Φ −→ Φ⊕ 1∅.
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The following also commutes

ΦEF
Φµ−1

// Φ⊕ ΦΦ

1Φ 0

0 z


��

EF

α̃−1F

OO

1∅ ⊕ Φ

µ

OO

(1− q)e′ 1

q 0


// Φ⊕ 1∅.

To see this, note the left vertical composite α̃−1F ◦ µ is given by

(
α̃−1F ◦ η∅ α̃−1F ◦ Eα ◦ η∅Φ

)
=
(
α̃−1F ◦ η∅ α̃−1F ◦ α̃F ◦ Φη∅

)
=
(
α̃−1F ◦ η∅ Φη∅

)

whereas

Φµ ◦

(
1 0

0 z−1

)(
(1− q)e′ 1

q 0

)
=
(

(1− q)Φη∅ ◦ e′ + qΦEα ◦ Φη∅Φ ◦ z−1 Φη∅

)
.

However, note

(1− q)α̃F ◦ Φη∅ ◦ e′ + qα̃F ◦ ΦEα ◦ Φη∅Φ ◦ z−1

= (1− q)α̃F ◦ Φη∅ ◦ e′ + qα̃F ◦ Φα̃F ◦ Φα̃F ◦ ΦΦη∅ ◦ z−1

= (1− q)α̃F ◦ Φη∅ ◦ e′ + q(q−1zEF + q−1(q − 1)(α̃ ◦ e′E)F ◦ zEF ) ◦ z−1EF ◦ η∅

= (1− q)α̃F ◦ e′EF ◦ η∅ + η∅ + (q − 1)α̃F ◦ e′EF ◦ η∅

= η∅

so that α̃−1F ◦ η∅ = (1− q)Φη∅ ◦ e′ + qΦEα ◦ Φη∅Φ ◦ z−1.

5. Since the diagram

EF

µ−1

��

EFe // EF

µ−1

��

1∅ ⊕ Φ e 0

0 e′′′


// 1∅ ⊕ Φ

commutes, EFe ∈ H(EF,EF ).

6. Since it has already been shown that Eα ∈ H(EFΦ, EF ), it is enough to show EFe′ ∈ H(EF,EFΦ)
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to conclude E(α ◦ Fe′) = Eα ◦ EFe′ ∈ H(EF,EF ). Since the following diagram commutes,

EF

µ

��

EFe′ // EFΦ

µΦ

��

1∅ ⊕ Φ

=

��

e′ 0

0 Φe′


// Φ⊕ ΦΦ

diag(1,z)

��

1∅ ⊕ Φ e′ 0

0 e′′


// Φ⊕ 1∅

indeed EFe′ ∈ H(EF,EFΦ).

Proposition 5.18. Suppose X,Y : ∅ −→ S are parallel 1-morphisms in C. Then the map

H(X,Y ) −→ HomC(EX,EY ) : f 7→ Ef

takes values in H(EX,EY ).

Suppose X,Y : S −→ ∅ are parallel 1-morphisms in C. Any such 1-morphism must have form E, ΦEX ′,

EFX ′, or ΦΦX ′ for some appropriate X ′. Let f ∈ H(X,Y ), so there is a diagram

X

δX

��

f
// Y

δY

��⊕
iXi

(aji)
//
⊕

j Yj

where Xi and Yj are indecomposable 1-morphisms S −→ ∅. The only such arrow is E, so for each component

we have aji ∈ H(E,E). Postcomposing with Φ yields a commutative diagram

⊕
i ΦXi

(Φaji)
//
⊕

j ΦYj

Φδ−1
Y

��

ΦX

ΦδX

OO

Φf
// ΦY

δΦY

��⊕
r(ΦX)r

δ−1
ΦX

OO

A
//
⊕

s(ΦY )s
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for some matrix A. Based on the form of 1-morphisms S −→ ∅, ΦδX is a product of matrices with

components of form 1ΦE , Φα̃X ′, ΦzX ′, and Φµ−1X ′, and Φδ−1
Y is a product of matrices with components

the inverses of those arrows. Likewise, since ΦX and ΦY are still 1-morphisms S −→ ∅, δΦY is a product

of matrices with components 1E , α̃X ′, zX ′, or µ−1X ′, and δ−1
ΦX is a product of matrices with inverse

components. If each of these components is in the appropriate candidate space, and each Φaji ∈ H(E,E)

for aji ∈ H(E,E), it follows that each component of A will be in H(E,E), so that Φf ∈ H(ΦX,ΦY ).

Lemma 5.19. There are the following memberships.

1. Φz ∈ H(ΦΦΦ,Φ)

2. Φz−1 ∈ H(Φ,ΦΦΦ)

3. Φα̃ ∈ H(ΦΦE,ΦE)

4. Φα̃−1 ∈ H(ΦE,ΦΦE

5. Φµ ∈ H(Φ⊕ ΦΦ,ΦEF )

6. Φµ−1 ∈ H(ΦEF,Φ⊕ ΦΦ)

7. ΦeE ∈ H(ΦE,ΦE)

8. Φ(α̃ ◦ e′E) ∈ H(ΦE,ΦE)

Proof.

1. By the relations, Φz = zΦ, so Φz = zΦ ∈ H(ΦΦΦ,Φ).

2. That Φz−1 ∈ H(Φ,ΦΦΦ) as the above.

3. One has Φα̃ ∈ H(ΦΦE,ΦE) if there exists M ∈ H(E,E) such that the following diagram commutes

ΦΦE

zE

��

Φα̃ // ΦE

α̃

��

E
M

// E.

Solving for M yields

α̃ ◦ Φα̃ ◦ z−1E = (q−1zE + q−1(q − 1)α̃ ◦ e′E ◦ zE) ◦ z−1E = q−11E + q−1(q − 1)α̃ ◦ e′E ∈ H(E,E).
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4. One has Φα̃−1 ∈ H(ΦE,ΦΦE) if there exists M ∈ H(E,E) such that the following diagram commutes

ΦE

α̃

��

Φα̃−1
// ΦΦE

zE

��

E
M

// E.

From the defining relation for Φα̃ ◦ α̃, one can conclude Φα̃−1 ◦ α̃−1 = q−1z−1E + (1− q)Φα̃−1 ◦ e′E.

Then note

zE ◦ (Φα̃−1 ◦ α̃−1) = q−11E + (1− q)zE ◦ Φα̃−1 ◦ e′E

= q−11E + (1− q)zE ◦ e′ΦE ◦ α̃−1

= q−11E + (1− q)e′′E ◦ α̃−1

= q−11E + (1− q)(qα̃ ◦ e′E + (1− q)eE) ∈ H(E,E).

5. Note Φµ ∈ H(Φ⊕ ΦΦ,ΦEF ) since the following commutes

Φ⊕ ΦΦ
Φµ

//

diag(1,z)

��

ΦEF

α̃F

��

EF

µ−1

��

Φ⊕ 1∅ 0 q−1

1 q−1(q − 1)e′


// 1∅ ⊕ Φ.

To see this, note

µ ◦

(
0 q−1

1 q−1(q − 1)e′

)(
1 0

0 z

)
=
(
Eα ◦ η∅Φ q−1η∅ ◦ z + q−1(q − 1)Eα ◦ η∅Φ ◦ e′ ◦ z

)

whereas

α̃F ◦ Φµ =
(
α̃F ◦ Φη∅ α̃F ◦ ΦEα ◦ Φη∅Φ

)
=
(
Eα ◦ η∅Φ α̃F ◦ Φα̃F ◦ ΦΦη∅

)
.
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Comparing the second entry of these matrices, note

(α̃ ◦ Φα̃)F ◦ ΦΦη∅ = (q−1zEF + q−1(q − 1)α̃F ◦ e′EF ◦ zEF ) ◦ ΦΦη∅

= q−1η∅ ◦ z + q−1(q − 1)α̃F ◦ Φη∅ ◦ e′ ◦ z

= q−1η∅ ◦ z + q−1(q − 1)EαΦη∅Φ ◦ e′ ◦ z.

6. Note Φµ−1 ∈ H(ΦEF,Φ⊕ ΦΦ) since the following commutes

ΦEF
Φµ−1

//

α̃F

��

Φ⊕ ΦΦ

1 0

0 z


��

EF

µ−1

��

1∅ ⊕ Φ (1− q)e′ 1

q 0


// Φ⊕ 1∅ ⊕ Φ.

To see this, note

α̃F ◦ Φµ ◦

(
1 0

0 z

)(
(1− q)e′ 1

q 0

)
=
(

(1− q)α̃F ◦ Φη∅ ◦ e′ + qα̃F ◦ ΦEα ◦ Φη∅Φ ◦ z−1 Eα ◦ η∅Φ
)
.

The first component simplifies as

(1− q)α̃F ◦ Φη∅ ◦ e′ + q(α̃ ◦ Φα̃)F ◦ η∅ΦΦ ◦ z−1

= (1− q)α̃F ◦ Φη∅ ◦ e′ + q(q−1zEF + q−1(q − 1)α̃F ◦ e′EF ◦ zEF ) ◦ z−1EF ◦ η∅ = η∅

and hence the above matrix is
(
η∅ Eα ◦ η∅Φ

)
= µ.

7. Since eΦ = Φe, ΦeE ∈ H(ΦE,ΦE) since

α̃ ◦ ΦeE ◦ α̃−1 = α̃ ◦ eΦE ◦ α̃−1 = α̃ ◦ α̃−1 ◦ eE = eE ∈ H(E,E).

8. It is sufficient to show Φe′E ∈ H(ΦE,ΦΦE) to conclude Φ(α̃ ◦ e′E) ∈ H(ΦE,ΦE) since it has already

been shown Φα̃ ∈ H(ΦΦE,ΦE). First, zE ◦Φe′E ◦ α̃−1 = (z ◦Φe′)E ◦ α̃−1 = e′′E ◦ α̃−1E. Rearranging

the relation α̃ ◦ e′E ◦ α̃ = q−1e′′E + q−1(q − 1)eE ◦ α̃ shows e′′E ◦ α̃−1 = qα̃ ◦ e′E + (1− q)eE, which

is in H(E,E). Hence Φe′E ∈ H(ΦE,ΦΦE).
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Proposition 5.20. Suppose X,Y : S −→ ∅ are parallel 1-morphisms in C. Then the map

H(X,Y ) −→ HomC(ΦX,ΦY ) : f 7→ Φf

takes values in H(ΦX,ΦY ).

We can also compose with F , yielding a commutative diagram for some matrix A

⊕
i FXi

(Faji)
//
⊕

j FYj

Fδ−1
Y

��

FX

FδX

OO

Ff
// FY

δFY

��⊕
r(FX)r

δ−1
FX

OO

A
//
⊕

s(FY )s.

Similarly to before, FδX is a product of matrices with components of form 1FE , Fα̃, FzX ′, or Fµ−1X ′,

and Fδ−1
Y is a product of matrices with components with the inverse components. Now, FX and FY are

1-morphisms S −→ S, and any such 1-morphism must have form 1S , FE, FEFX ′, or FΦX ′ for some

X ′. It follows that δFY is a product of matrices with components 11S , 1FE , Fµ−1X ′, or αX ′, for some

appropriate X ′, and δ−1
FX is a product of matrices with components with the inverse components. Lastly,

for A to have components in the appropriate candidate spaces, on also requires FeE ∈ H(FE,FE), and

F (α̃ ◦ e′E) ∈ H(FE,FE). All these components are in their corresponding candidate spaces by the proof

of the case for FX and FY , when X,Y : ∅ −→ ∅.

Proposition 5.21. Suppose X,Y : S −→ ∅ are parallel 1-morphisms in C. Then the map

H(X,Y ) −→ HomC(FX,FY ) : f 7→ Ff

takes values in H(FX,FY ).

Suppose X,Y : S −→ S are parallel 1-morphisms in C′. Let f ∈ H(X,Y ), so there is a diagram

X

δX

��

f
// Y

δY

��⊕
iXi

(aji)
//
⊕

j Yj .

The Xi and Yj are indecomposable 1-morphisms S −→ S, the only such of which are 1S and FE, so each

component aji is either in H(1S , 1S) or H(FE,FE). Postcomposing with E yields a commutative diagram
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for some matrix A ⊕
iEXi

(Eaji)
//
⊕

j EYj

Eδ−1
Y

��

EX

EδX

OO

Ef
// EY

δEY

��⊕
r(EX)r

δ−1
EX

OO

A
//
⊕

s(EY )s.

Now EX,EY : S −→ ∅, and as seen before, any such 1-morphism has form E, ΦEX ′, EFX ′, or ΦΦX ′

for some appropriate X ′. All the components in the matrices comprising δEX−1 and δEY are in their

corresponding candidate space by previous cases.

On the other hand, the components of matrices comprising δX and δY are either 11S , 1FE , Fµ−1X ′, or

αX ′ for some appropriate X ′. Hence EδX is a product of matrices whose components consist of 1E , 1EFE ,

EFµ−1X ′, or EαX ′, and Eδ−1
Y is a product of matrices with inverse components. By previous cases, all

these components are in their corresponding candidate spaces. Furthermore, for A to have components in the

appropriate candidate spaces, necessarily Eaji ∈ H(E,E) for aji ∈ H(1S , 1S), and Eaji ∈ H(EFE,EFE)

for aji ∈ H(FE,FE). To this end, there is the following lemma.

Lemma 5.22.

1. If aji ∈ H(1S , 1S), then Eaji ∈ H(E,E).

2. If aji ∈ H(FE,FE), then Eaji ∈ H(EFE,EFE).

Proof. Recall that H(1S , 1S) is generated by 11S , e0 = εS ◦ηS , e1 = εS ◦Fe◦ηS , and e2 = εS ◦(α◦Fe′)E ◦ηS .

Clearly E11S = 1E ∈ H(E,E). For Ee0 = EεS ◦ EηS , note that commutativity of

E

 q1E

(−1)ε(q1E + q(q − 1)α̃ ◦ e′E)


��

EηS // EFE

µ−1E

��

E ⊕ ΦE

diag(1,α̃)

��

E ⊕ E
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is one of the defining relations, hence EηS ∈ H(E,EFE). Furthermore, the following commutes

EFE
EεS //

µ−1E

��

E

E ⊕ ΦE

diag(1,α̃)

��

E ⊕ E

(
1E 1E

)
DD

since

EεS ◦ µ−1E ◦

(
1 0

0 α̃−1

)
=
(
EεS ◦ η∅E EεS ◦ EαE ◦ η∅ΦE ◦ α̃−1

)
=
(

1E α̃ ◦ α̃−1
)

=
(

1E 1E

)
.

Thus EεS ∈ H(EFE,E), and so Ee0 ∈ H(E,E). Since EFe ∈ H(EF,EF ), it follows Ee1 ∈ H(E,E).

Also, it has previously been shown that E(α ◦ Fe′) ∈ H(EF,EF ), so Ee2 ∈ H(E,E) as well. This proves

the first claim.

For the second, recall that H(FE,FE) is generated by morphisms with form(
ϕE (ψ ◦ α)E

)
◦ Fµ−1E ◦ FEηS for ϕ,ψ ∈ H(F, F ). By the defining relations, one has

Fµ−1E◦FEηS =

(
1FE 0

0 Fα̃−1

)(
q1FE

(−1)ε(q1FE + q(q − 1)F (α̃ ◦ e′E))

)
=

(
q1FE

(−1)ε(qF α̃−1 + q(q − 1)Fe′E).

)

So we can assume any morphism Eaji for aji ∈ H(FE,FE) has form

(
EϕE E(ψ ◦ α)E

)( q1EFE

(−1)ε(qEFα̃−1 + q(q − 1)EFe′E)

)
.

However, from previous cases, it is immediate that EϕE ∈ H(EFE,EFE) when ϕ ∈ H(F, F ),

EαE ∈ H(EFΦE,EFE), and EFe′E ∈ H(EFE,EFΦE). It remains to check that

EFα̃−1 ∈ H(EFE,EFΦE) in order to conclude Eaji ∈ H(EFE,EFE). Indeed, the following diagram

commutes

EFE
EFα̃−1

//

µ−1E

��

EFΦE

µ−1ΦE

��

E ⊕ ΦE

diag(1,α̃)

��

α̃−1 0

0 Φα̃−1


// ΦE ⊕ ΦΦE

diag(α̃,zE)

��

E ⊕ E1E 0

0 zE ◦ Φα̃−1 ◦ α̃−1


// E ⊕ E.
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Previous computations have shown that

zE ◦ (Φα̃−1 ◦ α̃−1) = q1E + (1− q)(qα̃ ◦ e′E ◦ (1− q)E ∈ H(E,E)

so that EFα̃−1 ∈ H(EFE,EFΦE).

Proposition 5.23. Suppose X,Y : S −→ S are parallel 1-morphisms in C. Then the map

H(X,Y ) −→ HomC(EX,EY ) : f 7→ Ef

takes values in H(EX,EY ).

As before, these propositions can be collected more succinctly.

Proposition 5.24. If X and Y are parallel 1-morphisms in C, and Z is any appropriate 1-morphism, then

the map

H(X,Y ) −→ HomC(ZX,ZY ) : f 7→ Zf

takes values in H(ZX,ZY ).

5.5 Closure

Corollary 5.25. Suppose f : X −→ Y is either a generating 2-morphism in C, or one of α−1, α̃−1, µ−1, or

z−1. Then for any 1-morphisms A and B such that AXB and AY B are defined, the 2-morphism AfB is

an element of H(AXB,AY B).

Proof. If f is any of the aforementioned 2-morphisms, then in all cases f ∈ H(X,Y ). Then AfB is the

image of the composite

H(X,Y ) −→ H(XB,Y B) −→ H(AXB,AY B) : f 7→ fB 7→ AfB.

Theorem 5.26. For any parallel 1-morphisms X and Y in C, H(X,Y ) = HomC(X,Y ).

Proof. Pick f ∈ HomC(X,Y ). Observe that f is a composite of 2-morphisms of form AxB, where x is a

generating 2-morphism, or one of α−1, α̃−1, µ−1, or z−1. Induct on the number of such factors. If f = AxB,

the previous corollary shows f = AxB ∈ H(X,Y ). If f is a composite of more than 1 such factor, write
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f = f ′ ◦ AxB, for a nontrivial 2-morphism x : C −→ C ′. By the corollary, AxB ∈ H(X,AC ′B), and since

f ′ is a composite of fewer factors, the induction hypothesis implies f ′ ∈ H(AC ′B, Y ). Since the candidate

spaces are closed under composition, f ∈ H(X,Y ).

5.6 A Functor into the 2-Category of Bimodules

Let Bimod denote the usual 2-category of bimodules, with 0-morphisms rings, 1-morphisms bimodules, and

2-morphisms bimodule homomorphisms. Let G = SL2(q) and let k be a field of appropriate characteristic

such that q and q−1 are invertible in k. Let B denote the standard Borel subgroup of G, and write B = UT

be the Levi decomposition, for T a maximal torus and U the unipotent radical. Let eU and eT denote the

idempotents in kG corresponding to U and T , respectively. Let (W,Π) be the corresponding Weyl group of

rank 1, with simple reflection s. Let π : N −→ W be the canonical projection onto W , and let nw denote a

preimage in N of w ∈W .

Definition 5.27. Define a 2-functor F : C′ −→ Bimod as follows. On 0-morphisms, put F (∅) = kT , and

F (S) = kG. On generating 1-morphisms, put with the obvious bimodule structures,

• F (1∅) = kT

• F (1S) = kG

• F (F ) = kGeU

• F (E) = eUkG

• F (Φ) = skT . As a kT -bimodule, the left action · on skT is given by t′ · t = (
ṡ
t′)t = ṡt′ṡ−1t. The right

kT -action is the usual multiplication.

On generating 2-morphisms, set

• F (e′) : kT −→ skT : 1 7→ eT

• F (e′′) : skT −→ kT : 1 7→ eT

• F (α) = kGeU ⊗kT skT −→ kGeU : eU ⊗ 1 7→ eU ṡeU

• F (z) = skT ⊗kT skT −→ kT : a⊗ b 7→ (ṡa)b

• F (η∅) : kT −→ eUkG⊗kG kGeU : 1 7→ q−1(eU ⊗ eU )

• F (ηS) : kG → kGeU ⊗kT eUkG : 1 7→
∑
g∈G/B geU ⊗ eUg−1, where g ranges over a complete set of

coset representatives in G/B.
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• F (εS) : kGeU ⊗kT eUkG −→ kT : eU ⊗ eU 7→ qeU

• F (ε∅) : eUkG⊗kG kGeU −→ kT : eUnẇeU 7→


nw if π(nw) = 1,

0 otherwise.

.

For the last definition of F (ε∅), we have identified eUkG⊗kGkGeU ' eUkGeU , and as a kT -bimodule map,

F (ε∅) is completely determined by its images on elements of form eUnweU , by the Bruhat decomposition.

Note also that the definition of F on the adjunctions (εS , η∅) : F a E and (ε∅, ηS) : E a F follows from the

standard adjunctions on self-dual pairs of exact bimodules, as found on p. 158 in [5], and hence still satisfy

the triangle relations in Bimod.

To reduce notation, if M is an (A,B)-bimodule, no distinction will be made between A ⊗A M and M ,

or M ⊗B B and M .

Theorem 5.28. The 2-functor F : C′ −→ Bimod induces a 2-functor C −→ Bimod, also denoted by F .

Three main properties need to be verified. First, that the morphisms F (µ), F (α), α̃, and µ are invertible

in Bimod, second, that F preserves the defining relations of C, and third, that the standard maps induced

by the adjunctions on HomBimod(F (F ),F (F )) −→ HomBimod(F (E),F (E)), etc., coincide.

Proposition 5.29. The morphisms F (µ), F (α), F (α̃), and F (z) are invertible in Bimod, with the fol-

lowing inverses. One has

• F (µ)−1 : eUkGeU −→ kT ⊕ skT : eU teU 7→ (qt, 0), eU ṡteU 7→ (0, qt)

• F (α)−1 : kGeU −→ kGeU ⊗kT skT : geU 7→ geUξ0 ⊗ 1

• F (α̃)−1 : eUkG −→ skT ⊗kT eUkG : eUg 7→ 1⊗ ξ0eUg

• F (z)−1 : kT −→ skT ⊗kT skT : t 7→ 1⊗ t.

Proof. First observe that F (µ), F (α), F (α̃) and F (z) are invertible in Bimod. Beginning with F (µ), let

kT have ordered basis (t1, . . . , tq−1) and skT have ordered basis (t′1, . . . , t
′
q−1). By the definition of µ, for

ti ∈ kT ,

F (µ)(ti) = F (η∅)(ti) = q−1eU tieU ,

and for t′i ∈ skT ,

F (µ)(t′i) = F (Eα ◦ η∅Φ)(t′i) = F (Eα)(q−1eU ⊗ eU ⊗ t′i)

= q−1eU ⊗F (α)(eU ⊗ 1)t′i = q−1eU ⊗ eU ṡeU t′i = q−1eU ṡt
′
ieU .
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Since G = B t UṡB, eUkGeU has a k-basis {eU tieU , eU ṡtieU}q−1
i=1 , and an explicit inverse

eUkGeU → kT ⊕ skT for F (µ) is defined on this basis as

eU tieU 7→ (qti, 0), eU ṡtieU 7→ (0, qti).

By Theorem 2.3 of [10], recall that if (W,Π) is a Coxeter system for a group G with BN -pair with

parabolic subgroup P = UL, then the following holds.

Theorem 5.30. Let J ⊆ Π and w ∈W be such that K = wJ ⊆ Π. Then there is a linear isomorphism

φ : RGeUK −→ RGeUJ : ξ 7→ ξeUKweUJ

satisfying φ(geUK t) = gφ(eUK )tw for all g ∈ RG and t ∈ RL. The inverse is given by right multiplication by

suitable ξ0 ∈ eUJRGeUK , as there exists such ξ0 satisfying ξ0eUKweUJ = eUJ and eUKweUJ ξ0 = eUK .

In our case, with K = J = ∅, UJ = UK = U , and w = ṡ, so that ξ0eU ṡeU = eU = eU ṡeUξ0. Additionally,

φ−1 : kGeU → kGeU : ξ 7→ ξξ0 is a (kG, kT )-bimodule map, and for t ∈ T ,

tξ0 = teUξ0 = eU tξ0 = φ−1(eU t) = φ−1(eU )tṡ
−1

= eUξ0t
ṡ−1

= ξ0t
ṡ−1

.

So define

β : kGeU −→ kGeU ⊗kT skT : geU 7→ geUξ0 ⊗ 1.

Then β is clearly a left kG-module map, and is also a right kT -module map as from the above commutativity

relation,

β(eU t) = β(teU ) = teUξ0 ⊗ 1 = eU tξ0 ⊗ 1 = eUξ0
ṡt⊗ 1 = eUξ0 ⊗ ṡt · 1 = eUξ0 ⊗

ṡ−1
ṡt

= eUξ0 ⊗ t = (eUξ0 ⊗ 1) · t = β(eU )t.

Also,

β ◦F (α)(eU ⊗ 1) = β(eU ṡeU ) = eU ṡeUξ0 ⊗ 1 = eU ⊗ 1

and

F (α)β(eU ) = F (α)(eUξ0 ⊗ 1) = ξ0eU ṡeU = eU ,
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so that β is the inverse of F (α). Similarly,

F (α̃) : skT ⊗kT eUkG −→ eUkG : 1⊗ eU 7→ eU ṡeU

has inverse given by

β̃ : eUkG −→ skT ⊗kT eUkG : eUg 7→ 1⊗ ξ0eUg.

Lastly, define

ζ : kT −→ skT ⊗kT skT : t 7→ 1⊗ t.

This is easily checked to be a kT -bimodule map, and the inverse to F (z).

Proposition 5.31. The defining relations of the category C are preserved by F .

Proof.

1. For the first relation, consider F (ε∅) ◦F (η∅) : kT −→ kT . One a generator 1 ∈ kT ,

F (ε∅) ◦F (η∅)(1) = F (ε∅)(q
−1eU ⊗ eU ) = q−1

and

F (ε∅) ◦F (Eα) ◦F (η∅Φ)(1) = F (ε∅) ◦F (Eα)(q−1eU ⊗ eU ⊗ 1) = F (ε∅)(q
−1eU ⊗ eU ṡeU ) = 0.

2. For the second relation, first note that since G = B t UṡB, one has G/B = {B, uṡB}u∈U . Then the

relative Casimir element in kGeU ⊗kT eUkG is

∑
g∈G/B

geU ⊗ eUg−1 = (eU ⊗ eU ) +
∑
u∈U

uṡeU ⊗ eU ṡ−1u−1.

The composite

E
F(EηS)

// EFE
F(µ−1E)

// E ⊕ ΦE
diag(F(1E),F(α̃))

// E ⊕ E

is given by

(
qF (1E)

(−1)ε(qF (1E) + q(q − 1)F (α̃ ◦ e′E))

)
where ε is determined by ṡ2 = (−1)ε. Explicitly,
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first observe

F (µ−1E) ◦F (EηS)(eU ) = F (µ−1E)

eU ⊗ ∑
g∈G/B

geU ⊗ eUg−1


= F (µ−1E)

(
eU ⊗ eU ⊗ eU +

∑
u∈U

eU ⊗ uṡeU ⊗ eU ṡ−1u−1

)

= F (µ−1E

(
eU ⊗ eU +

∑
u∈U

eU ṡeU ⊗ eU ṡ−1u−1

)

=

(
q

0

)
⊗ eU +

(
0

q

)
⊗ qeU ṡ−1eU

=

(
qeU

q2eU ṡ
−1eU

)
.

Applying diag(F (1E),F (α̃)) yields

(
qeU

q2eU ṡeU ṡ
−1eU

)
. The first component is thus given by qF (1E).

For the second component, note

q2eU ṡeU ṡ
−1eU = q2(−1)ε(eU ṡeU )2 = (−1)ε(qeU + q(q − 1)eU ṡeT eU )

and the arrow

eUkG
F(e′E)

//
skT ⊗kT eUkG

F(α̃)
// eUkG

corresponds to eU 7→ eT ⊗ eU 7→ eT eU ṡeU = eU ṡeT eU . Hence the second component is given by

(−1)ε(qF (1E) + q(q − 1)F (α̃ ◦ e′E)).

3. For the third relation,

F
F(ηSF )

// FEF
F(Fµ−1)

// F ⊕ FΦ
diag(F(1F ),F(α))

// F ⊕ F
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is given by

(
qF (1F )

(−1)ε(qF (1F ) + q(q − 1)F (α ◦ Fe′))

)
. Note

F (Fµ−1) ◦F (ηSF )(eU ) = Fµ−1

 ∑
g∈G/B

geU ⊗ eUg−1 ⊗ eU


= F (Fµ−1)

(∑
u∈U

uṡeU ⊗ eU ṡ−1u−1 ⊗ eU + eU ⊗ eU ⊗ eU

)

= F (Fµ−1) ((−1)εqeU ṡeU ⊗ eU ṡeU + eU ⊗ eU )

= (−1)εqeU ṡeU ⊗

(
0

q

)
+ eU ⊗

(
q

0

)

=

(
qeU

(−1)εq2eU ṡeU

)
.

Applying diag(F (1F ),F (α)) yields

(
qeU

(−1)εq2eU ṡeU ṡeU

)
. The first component is then given by

qF (1F ). For the second, as computed before, (−1)εq2(eU ṡeU )2 = (−1)ε(qeU + q(q − 1)eU ṡeT eU ),

viewed as elements of kGeU , instead of eUkG. The arrow

kGeU
F(Fe′)

// kGeU ⊗kT skT
F(α)

// kGeU

is the map eU 7→ eUeT eU 7→ eU ṡeT eU , thus verifying the second component.

4. For the fourth relation, explicit computation shows that ξ0 = qeU ṡeU − (q − 1)eUeT eU . Then

kT
F(η∅)

// eUkGeU
F(α̃−1F )

//
skT ⊗kT eUkGeU

F(Φε∅)
//
skT

is given by q−1(1− q)F (e′), since

F (Φε∅) ◦F (α̃−1F ) ◦F (η∅)(1) = F (Φε∅) ◦F (α̃−1F )(q−1eU ⊗ eU )

= F (Φε∅)(q
−1 ⊗ ξ0 ⊗ eU )

= F (Φε∅)(q
−1 ⊗ (qeU ṡeU − (q − 1)eUeT eU ))

= q−1(1− q)eT

and 1 7→ eT corresponds to F (e′) : kT −→ skT .
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5. Note

F (ε∅Φ) ◦F (Eα−1) ◦F (η∅)(1) = F (ε∅Φ) ◦F (Eα−1)(q−1eU ⊗ eU )

= F (ε∅Φ)(q−1eU ⊗ ξ0 ⊗ 1)

= q−1(1− q)eT ⊗ 1 = q−1(1− q)eT .

Similarly to the above, this morphism is given by q−1(1− q)F (e′).

6. Note

F (α̃) ◦F (e′E) ◦F (α̃)(1⊗ eU ) = F (α̃) ◦F (e′E)(eU ṡeU )

= F (α̃)(eT ⊗ eU ṡeU )

= eT (eU ṡeU )2 = eT (q−1eU + q−1(q − 1)eU ṡeT eU )

= q−1eUeT eU + q−1(q − 1)eU ṡeT eU .

Since F (e′′E) is given by 1 ⊗ eU 7→ eUeT eU and F (eE) ◦ F (α̃) is given by 1 ⊗ eU 7→ eU ṡeT eU as

morphisms skT ⊗kT eUkG −→ eUkG, and so

F (α̃ ◦ e′E ◦ α̃) = q−1F (e′′E) + q−1(q − 1)F (eE ◦ α̃).

7. Similarly,

α ◦F (Fe′) ◦F (α)(eU ⊗ 1) = F (α) ◦F (Fe′)(eU ṡeU )

= F (α)(eU ṡeU ⊗ eT )

= (eU ṡeU )2eT

= q−1eUeT eU + q−1(q − 1)eU ṡeT eU .

Since F (Fe′′) is given as eU⊗1 7→ eUeT eU and F (Fe◦α) is given by eU⊗1 7→ eU ṡeT eU as morphisms

kGeU ⊗kT skT −→ kGeU , one has

F (α ◦ Fe′ ◦ α) = q−1F (Fe′′) + q−1(q − 1)F (Fe ◦ α).

8. Observe

F (α) ◦F (αΦ)(eU ⊗ 1⊗ 1) = F (α)(eU ṡeU ⊗ 1)

= (eU ṡeU )2 = q−1eU + q−1(q − 1)eU ṡeT eU .

But as morphisms kGeU ⊗kT skT ⊗kT skT −→ kGeU , F (Fz) is given by eU ⊗ 1⊗ 1 7→ eU , and

F (α) ◦F (Fe′) ◦F (Fz)(eU ⊗ 1⊗ 1) = F (α) ◦F (Fe′)(eU ⊗ 1) = F (α)(eU ⊗ eT ) = eU ṡeT eU .
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Hence

F (α ◦ αΦ) = q−1F (Fz) + q−1(q − 1)F (α ◦ Fe′ ◦ Fz).

9. Observe

F (α̃) ◦F (Φα̃)(1⊗ 1⊗ eU ) = F (α̃)(1⊗ eU ṡeU )

= (eU ṡeU )2 = q−1eU + q−1(q − 1)eU ṡeT eU .

But as morphisms skT ⊗kT skT ⊗kT eUkG −→ eUkG, F (zE) is given by 1⊗ 1⊗ eU 7→ eU , and

F (α̃) ◦F (e′E) ◦F (zE)(1⊗ 1⊗ eU ) = F (α̃) ◦F (e′E)(1⊗ eU ) = F (α̃)(eT ⊗ eU ) = eU ṡeT eU .

Hence

F (α̃ ◦ Φα̃) = q−1F (zE) + q−1(q − 1)F (α̃ ◦ e′E ◦ zE).

10. First note that as an endomorphism of kGeU ⊗kT eUkG, we have

F (Fα̃) ◦F (α−1E)(eU ⊗ eU ) = F (Fα̃)(ξ0 ⊗ 1⊗ eU )

= ξ0 ⊗ eU ṡeU

= qeU ṡeU ⊗ eU ṡeU − (q − 1)eUeT eU ⊗ eU ṡeU

On the other hand,

F (αE) ◦F (Fα̃−1)(eU ⊗ eU ) = F (αE)(eU ⊗ 1⊗ ξ0)

= F (α)(eU ⊗ 1)⊗ ξ0

= eU ṡeU ⊗ ξ0

= qeU ṡeU ⊗ eU ṡeU − (q − 1)eU ṡeU ⊗ eUeT eU

and

F (αE) ◦F (Fe′E)(eU ⊗ eU ) = F (αE)(eU ⊗ eT ⊗ eU ) = eU ṡeT eU ⊗ eU .

Together, these imply

F (Fα̃ ◦ α−1E) = F (αE ◦ Fα̃−1 + (q − 1)(α ◦ Fe′)E − (q − 1)F (α̃ ◦ e′E)).

11. The morphism F (e′′′) = F (e′′) ◦F (e′) on skT is given by 1 7→ eT . Since F (eΦ)(1) = eT ⊗ 1 and
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eT ⊗ 1 = eT under the identification kT ⊗kT skT ' skT , it follows that F (e′′′) = F (eΦ).

12. As morphisms on eUkGeU , F (eEF )(eUgeU ) = eT ⊗eUgeU and F (EFe)(eUgeU ) = eUgeU⊗eT for any

g ∈ G. But eT ⊗ eUgeU = eUeT geU = eUgeU ⊗ eT . To see this, for any group G with split BN -pair,

by the Bruhat decomposition

G =
⊔
w∈W

BẇB =
⊔
w∈W

UTẇU.

Writing g = utẇu′ for some w, then

eT eUgeU = eT eUutẇu
′eU = eT eU tẇeU = eU tẇeUeT = eUgeUeT

since eT commutes with eU , t and ẇ. Thus F (eEF ) = F (EFe).

13. Note

F (Fe) ◦F (α)(eU ⊗ 1) = F (Fe)(eU ṡeU )

= eU ṡeU ⊗ eT

= F (α)(eU ⊗ eT )

= F (α) ◦F (Fe′′′)(eU ⊗ 1)

so that F (Fe) ◦F (α) = F (α) ◦F (Fe′′′).

14. It is clear that F (e′′ ◦ e′ ◦ e′′) = F (e′′) since eT is an idempotent.

15. Same as above.

16. Note

F (z) ◦F (e′Φ)(1) = F (z)(eT ⊗ 1) = ṡeT ṡ
−1 = eṡT ṡ−1 = eT .

Hence F (z ◦ e′Φ) = F (e′′). The same relation holds with e′Φ replaced with Φe′.

17. Note

F (e′′Φ) ◦F (z−1)(1) = F (e′′Φ)(1⊗ 1) = eT ⊗ 1 = eT

and hence F (e′′Φ ◦ z−1) = F (e′). Again, the same relation holds with e′′Φ replaced with Φe′′.

18. That F (Φz) = F (zΦ) follows quickly from

F (Φz)(1⊗ 1⊗ 1) = 1⊗ 1 = F (zΦ)(1⊗ 1⊗ 1).
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19. First note that

F (e0)(1) = F (εS) ◦F (ηS)(1) = F (εS)

 ∑
g∈G/B

geU ⊗ eUg−1

 = q
∑

g∈G/B

geUg
−1.

Since
∑
g∈G/B geUg

−1 is a central element in kG, F (e0) acts a multiplication by a central element,

and hence F (e0) ◦F (e1) = F (e1) ◦F (e0).

20. By the same reasoning above, F (e0) ◦F (e2) = F (e2) ◦F (e0).

21. Observe that

F (e1) = F (εS) ◦F (FeE) ◦F (ηS)(1)

= F (εS) ◦F (FeE)

 ∑
g∈G/B

geU ⊗ eUg−1


= F (εS)

 ∑
g∈G/B

geU ⊗ eT ⊗ eUg−1


= q

 ∑
g∈G/B

geT eUg
−1

 = q

 ∑
g∈G/B

geBg
−1

 .

Hence F (e1) is given by multiplication by a central element in kG, hence

F (e1) ◦F (e2) = F (e2) ◦F (e1).

22. Note

F (e0F )(eU ) = q
∑

g∈G/B

geUg
−1 ⊗ eU

= qeU

 ∑
g∈G/B

geUg
−1

 eU ⊗ eU

= q(eU + (−1)εqeU ṡeU ṡeU )⊗ eU

= (qeU + (−1)εq2(eU ṡeU )2)⊗ eU

= qeU ⊗ eU + [(−1)εqeU + (−1)εq(q − 1)eB ṡeB ]⊗ eU

= [q + (−1)εq]eU + [(−1)εq(q − 1)]eB ṡeB

As endomorphisms of kGeU , F (1F ) is the identity, and F (α ◦ Fe′) is defined by

eU 7→ eU ṡeT eU = eB ṡeB , and hence

F (e0F ) =
(
q + (−1)εq

)
F (1F ) + (−1)εq(q − 1)F (α ◦ Fe′).
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23. Note

F (eU ) = q

 ∑
g∈G/B

geBg
−1

⊗ eU
= qeU

 ∑
g∈G/B

geBg
−1

 eU ⊗ eU

= q(eB + (−1)εqeB ṡeB ṡeB)⊗ eU

= qeB + q2(−1)ε(q−1(q − 1)eB ṡeB + q−1eB)⊗ eU

= [q + (−1)εq]eB + (−1)εq(q − 1)eB ṡeB

and since as an endormorphism of kGeU , F (Fe) is given by eU 7→ eUeT eU = eB , it follows that

F (e1F ) =
(
q + (−1)εq

)
F (Fe) + (−1)εq(q − 1)F (α ◦ Fe′).

24. Finally, note

eU 7→ q

 ∑
g∈G/B

geB ṡeBg
−1

⊗ eU
= q(eB ṡeB + q(−1)εeB ṡeB ṡeB ṡeB)⊗ eU

= qeB ṡeB + (−1)εq[(q−2(q − 1)2 + q−1)eB ṡeB + q−2(q − 1)eB ]⊗ eU

= [(−1)εq−1(q − 1)]eB + [(−1)ε + q + (−1)εq−1(q − 1)2]eB ṡeB

so that

F (e2F ) = (−1)εq−1(q − 1)F (Fe) +
(
(−1)ε + q + (−1)εq−1(q − 1)2

)
F (α ◦ Fe′).

Third, before proving the equality of the two usual maps EndBimod(F (F )) −→ EndBimod(F (E)) induced

by the adjunctions, first recall that if M is an exact (A,B)-bimodule, the functor M ⊗B − is both left and

right adjoint to M∗ ⊗A − (c.f. Proposition 2.4 of [13]).

Proposition 5.32. Suppose A and B are symmetric K-algebras, for K a field, and M is an exact (A,B)-

bimodule, so that the functor M ⊗B − is left and right adjoint to M∗ ⊗A −, say with fixed adjunctions

(ε, η) : M⊗B− aM∗⊗A− and (ε′, η′) : M∗⊗A− aM⊗B−. Then, writing M⊗B− = Φ and M∗⊗A− = Ψ,
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the induced maps End(Φ) −→ End(Ψ) given by

ϕ 7→ Ψε ◦ΨϕΨ ◦ η′Ψ and ϕ 7→ ε′Ψ ◦ΨϕΨ ◦Ψη

coincide. Analogously, the induced maps End(Ψ) −→ End(Φ) coincide.

Proof. Since A and B are symmetric algebras over field K, fix symmetrizing forms tA and tB , respectively.

Let {ai} and {a′i} be dual bases for A with respect to tA, i.e., tA(aia
′
j) = δij , and likewise define {bi} and

{b′i}. There is an isomorphism of right A-modules

HomA(M,A)→M∗ : f 7→ tA ◦ f

with inverse sending u ∈ M∗ to x 7→
∑
i a
′
iu(aix). Note this gives u =

∑
i tA(a′iu(ai−)) (c.f. Proposition

2.10 of [5]). There is a similar isomorphism HomB(M,B) → M∗. On bimodules, the adjunctions are given

as

• εA : M ⊗B M∗ −→ A : m⊗ ξ 7→
∑
i a
′
iξ(aim)

• ηB : B −→M∗ ⊗AM : 1 7→
∑
k(tA ◦ αk)⊗mk

• ε′B : M∗ ⊗AM −→ B : ξ ⊗m 7→
∑
j b
′
jξ(mbj)

• η′A : A −→M ⊗B M∗ : 1 7→
∑
`m` ⊗ (tB ◦ β`)

On bimodules, the triangle equation εAM ◦MηB = 1M translates to

m 7→ m⊗
∑
k

(tA ◦ αk)⊗mk 7→
∑
i,k

a′itAαk(aim)mk =
∑
k

αk(m)mk = m

and Mε′B ◦ η′AM = 1M translates to

m 7→
∑
`

m` ⊗ (tB ◦ β`)⊗m 7→
∑
`,j

m`b
′
jtB(β`(mbj)) =

∑
`

m`β`(m) = m.

Observe also that since αk(mbj) ∈ A, we can write αk(mbj) =
∑
i ciai for some ci ∈ k. Hence

tA(a′rαk(mbj)) =
∑
i

citA(a′rai) = cr.

Thus αk(mbj) =
∑
i tA(a′iαk(mbj))ai. Applying tB(β`(− · ψ(mk))), for ψ an (A,B)-endomorphism of M ,
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yields ∑
i

tA(a′iαk(mbj))tB(β`(aiψ(mk))) = tB(β`(αk(mbj)ψ(mk))).

Suppressing the tensor product notation, observe that the following diagram commutes,

MM∗M
MηBM

∗M
// MM∗MM∗M

MM∗ψM∗M
// MM∗MM∗M

MM∗εAM // MM∗M

Mε′B
��

M

η′AM

OO

ψ
// M

Indeed, following the five maps up and around the top of the diagram, one has

m 7→
∑
`

m` ⊗ (tB ◦ β`)⊗m

7→
∑
`,k

m` ⊗ (tA ◦ αk)⊗mk ⊗ (tB ◦ β`)⊗m

7→
∑
k,`

m` ⊗ (tA ◦ αk)⊗ ψ(mk)⊗ (tB ◦ β`)⊗m

7→
∑
i,k,`

m` ⊗ (tA ◦ αk)⊗ a′i(tB ◦ β`)(aiψ(mk))m

7→
∑
i,j,k,`

m`b
′
j(tA ◦ αk)(a′i(tB ◦ β`)(aiψ(mk))mbj)

Using the equation derived prior to the diagram, this last quantity can be simplified as

∑
i,j,k,`

m`b
′
j(tA ◦ αk)(a′i(tB ◦ β`)(aiψ(mk))mbj) =

∑
i,j,k,`

m`b
′
j(tA(αk(a′imbj)))tB(β`(aiψ(mk)))

=
∑
i,j,k,`

m`b
′
j(tA(a′iαk(mbj)))tB(β`(aiψ(mk)))

=
∑
j,k,`

m`b
′
jtB(β`(αk(mbj)ψ(mk))).

Focusing on the sum only over the index k,

∑
k

αk(mbj)ψ(mk) = ψ

(∑
k

αk(mbj)mk

)
= ψ(mbj) = ψ(m)bj

so this, in conjunction with the triangle equations on bimodules, shows that the above simplifies to

∑
j,`

m`b
′
jtB(β`(ψ(m)bj)) =

∑
`

m`β`(ψ(m)) = ψ(m).
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Hence the map

Hom(M,M) −→ Hom(M∗,M∗) : ψ 7→ M∗
ηBM

∗
// M∗MM∗

M∗ψM∗
// M∗MM∗

M∗εA // M∗

is inverse to

Hom(M∗,M∗) −→ Hom(M,M) : ψ 7→ M
η′AM // MM∗M

MψM
// MM∗M

M∗ε′B // M.

However, it is standard that

Hom(M,M) −→ Hom(M∗,M∗) : ψ 7→ M∗
M∗η′A // M∗MM∗

M∗ψM∗
// M∗MM∗

ε′BM
∗
// M∗

is also an inverse, hence they are the same map. By symmetry, we also find that for any ψ : M →M ,

M
η′AM // MM∗M

MψM
// MM∗M

M∗ε′B // M = M
MηB // MM∗M

MψM
// MM∗M

εAM // M.

Remark 5.33. With A and B symmetric K-algebras as above, suppose that (M,N) is a selfdual pair of

exact bimodules. The duality gives an isomorphism N 'M∗ of (B,A)-bimodules, so Proposition 5.32 holds

when M∗ is replaced with any (B,A)-bimodule N such that (M,N) is a selfdual exact pair.

Example 5.34. Let G be any finite group, U a subgroup of G, and T a subgroup contained in the normalizer

NG(U) of U . Then the pair of bimodules (kGeU , eUkG) is selfdual.

Proof. Let A = kG and B = kT . These are both symmetric algebras with the canonical symmetrizer∑
g∈G cgg 7→ c1 sending an element of the respective group ring to the coefficient of the identity element.

Then kG is a natural (A,B)-bimodule under left and right translation, and is clearly finitely generated and

projective either as a left A-module or right B-module.

Define a k-linear pairing by

〈geU , eUg′〉 =


1 if eUg

′ = eUg
−1,

0 otherwise.

The induced map kGeU −→ (eUkG)∗ : m 7→ 〈m,−〉 has inverse given as follows. Fix a complete set

{g0 = 1, g1, . . . , gn} of right coset representatives of U inG, so that {g−1
0 , g−1

1 , . . . , g−1
n } is a complete set of left

coset representatives. A functional ϕ ∈ (eUkG)∗ then corresponds to the element
∑
i ϕ(eUgi)g

−1
i eU ∈ kGeU ,

giving the inverse (eUkG)∗ −→ kGeU .
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It follows now that maps End(kG,kT )(kGeU ) −→ End(kG,kT )(kGeU ) induced from either pair of adjunc-

tions coincide, and likewise for End(kT,kG)(eUkG) −→ End(kT,kG)(eUkG), and Theorem 5.28 is proven. In

particular, this shows that the category C is not trivial.
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6 Relation to Marin’s Algebra

In [12], for a given Coxeter system (W,S), Marin constructs an algebra CW defined in terms of generators

and relations extending the usual Iwahori-Hecke algebra. As noted below, if W is the Weyl group of a

Chevalley group G, the Yokonuma-Hecke algebra associated to the unipotent radical of G has generators

indexed by S, and others by the elements of a maximal torus. In [11], Juyumaya and Kannan introduce

some new generators {gs}s∈S for the Yokonuma-Hecke algebra, such that the quadratic relation involves

an idempotent sum es of elements of the torus. These generators {gs, es}s∈S generate a subalgebra of the

Yokonuma-Hecke algebra, of which CW is a presentation. When W is finite, CW has finite rank dependent on

the number of reflection subgroups of W , but independent of the characteristic of the ground field. Following

Marin quite closely, we construct an similar algebra which contains generators which track sign changes when

representatives of S may square to −1 in G, e.g., when G = SL2(q).

6.1 Constructing a Representation

Let k = Fq, and let G a simple, simply connected Chevalley group over k. Let T denote a maximally split

torus of G, B a Borel subgroup containing T , and U the unipotent radical of B.

Let Φ denote the set of roots with respect to T , and let ∆ = {α1, . . . , αl} be the set of simple roots. Put

N = NG(T ), so that W = N/T is the Weyl group of G with S = {sα : α ∈ ∆} the set of simple reflections.

Then (W,S) is a Coxeter system, and let mij denote the order of sαisαj in W .

Let π : N →W denote the canonical projection. The Weyl group W acts on T via w(t) = w · t = ẇtẇ−1,

where ẇ ∈ N is an element such that π(ẇ) = w. Recall also that for any α ∈ Φ, there exists ṡα ∈ N such

that π(ṡα) = sα, and a homomorphism ϕα : SL2(k)→ G such that

ṡα = ϕα

(
0 1

−1 0

)
, α∨(r) = ϕα

(
r 0

0 r−1

)

for r ∈ k×.

The Yokonuma-Hecke algebra Yn(q) is the endomorphism algebra

Yn(q) = EndCG(IndGU (1U )).

We can identify Yn(q) = eUCGeU , where eU = 1
|U |
∑
u∈U u. From the Bruhat decomposition

G =
⊔
n∈N

UnU
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there is the standard basis {Rn : n ∈ N}, where Rn = eUneU . If n = ṡα, write Rα := Rṡα , and if n = α∨(r),

denote Rn by Hα(r), and define Eα as

Eα :=
∑
r∈k×

Hα(r)

for α ∈ Φ. Then the Eα pairwise commute, and E2
α = (q− 1)Eα. Recall the following theorem of Yokonuma

[14].

Theorem 6.1. The Yokonuma-Hecke algebra Yn(q) is generated as an algebra by (Rα)α∈Φ and (Rt)t∈T .

The following relations among the generators give a presentation for Yn(q).

1. R2
α = qHα(−1) +RαEα

2. RαRβRα · · ·︸ ︷︷ ︸
mαβ

= RβRαRβ · · ·︸ ︷︷ ︸
mαβ

3. RtRα = RαRṡα(t) for t ∈ T

4. RuRv = Ruv for u, v ∈ T .

Following Juyumaya and Kannan [11], notice that W induces an action on {Eα}α∈Φ by defining

Ewα =
∑
r∈k×

Hγ(r)

where γ = w(α). From Yokonuma’s theorem, it follows that if s = sα, then EβRα = RαE
s
β . It follows that

R2
α commutes with all Eβ . Observe

EβR
2
α = qEβHα(−1) + EβRαEα = R2

αEβ = qHα(−1)Eβ +RαEαEβ .

Hence

Hα(−1)Eβ = EβHα(−1) + q−1(EβEαRα − EsβEαRα)

= EβHα(−1) + q−1(Eβ − Esβ)EαRα.

This gives the relation

Hα(−1)Eβ = EβHα(−1) + q−1(Eβ − Esβ)EαRα.

Note for α ∈ Φ, Eα = E−α. We have E−α =
∑
t∈K× k(−α)∨(t) =

∑
t∈K× k(sα(α))∨(t). But

{sα(α)∨(t) : t ∈ K×} = {ωαα∨(t)ω−1
α : t ∈ K×}.
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Computing,

ωαα
∨(t)ω−1

α = ϕα

((
0 1

−1 0

)(
t 0

0 t−1

)(
0 −1

1 0

))
= ϕα

(
t−1 0

0 t

)
= α∨(t−1).

Since t 7→ t−1 is a bijection on K×, we get E−α = Eα.

It follows that EαEβ = EαEsα(β) for any α, β ∈ Φ. If β ∈ {±α}, this follows by the above. Otherwise,

sα(β)∨ = β∨ +mα∨ for some m. Then

α∨(t)(sαβ)∨(u) = α∨(t)(β∨ +mα∨)(u)

= α∨(t)β∨(u)α∨(u)m = α∨(tum)β∨(u).

So

EαEsαβ =
∑

t,u∈K×
kα∨(t)k(sαβ)∨(u) =

∑
t,u∈K×

kα∨(tum)kβ∨(u) = EαEβ

since (t, u)↔ (tum, u) is a bijection on (K×)2.

Since the Eα commute amongst themselves, this implies if s = sα is the reflection corresponding to α,

then

(Eβ − Esβ)Eα = EβEα − Esα(β)Eα = 0.

Then the above relation simplifies to Hα(−1)Eβ = EβHα(−1).

Also, if q − 1 is invertible, then setting eα = 1
q−1Eα yields

e2
α =

1

(q − 1)2
E2
α =

(q − 1)

(q − 1)2
Eα = eα.

By the above, eαeβ = eαesα(β). Then if J ⊆ Pf (R), and eJ =
∏
t∈R et, then it makes sense to define

eJ = eW0
, where W0 = 〈J〉, under the identification eα = esα . With this scaled generator, the quadratic

relation R2
α = qHα(−1) +RαEα can be rewritten as

R2
α = qHα(−1) + (q − 1)Rαeα.

Drawing from the computations above, define the following algebra.

Definition 6.2. Let G be a simple, simply connected Chevalley group defined over the field k = Fq. Fix

a maximally split torus T , Borel subgroup B. Let Φ denote the corresponding set of roots, and ∆ =

{α1, . . . , αn} the set of simple roots, and let R denote the set of reflections. If β ∈ Φ+, let wβ denote the

corresponding reflection in R. If β ∈ ∆, the corresponding reflection will also be denoted sβ .
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Define a k-algebra A with generators {τs}s∈S , {ια}α∈∆, and {ew}w∈R subject to the following relations.

• τ2
sα = qια + (q − 1)τsαesα for all α ∈ ∆

• e2
t = et for all t ∈ R

• et1et2 = et2et1 for all t1, t2 ∈ R

• etet1 = etett1t−1 for all t, t1 ∈ R

• ι2α = 1 for all α ∈ ∆

• τsαi τsαj τsαi · · ·︸ ︷︷ ︸
mij

= τsαj τsαi τsαj · · ·︸ ︷︷ ︸
mij

for all αi, αj ∈ ∆

• τsαi ewβ = esαiwβs
−1
αi
τsαi

• ιαiιαj = ιαj ιαi for all αi, αj ∈ ∆,

• τsαιβ = ιsα(β)τsα

• ιαew = ewια

• ιαewα = ewα

By Matsumoto’s Theorem, if w ∈W has a reduced expression w = s1 · · · sr, define τw = τs1 · · · τsr . Also

if β =
∑
i ciαsi is an expression of a root β in terms of simple roots, then put ιβ =

∏
ιciαsi

. Also, for finite

J ⊆ R, set eJ =
∏
t∈J et. For s, t ∈ J , eset = esetet = esestset, so it follows that eJ = e〈J〉, where 〈J〉 is the

generated subgroup in W .

Note that any product of generators in A can be written in form eJ

(∏l
i=1 ι

εi
αi

)
τw, for J ⊆ R, εi ∈ {0, 1},

and w ∈W .

First, fix a simple root αi ∈ ∆, and define integers nk by the equations sαi(αk) = αk + nkαi for

k = 1, . . . , l. Observe the effect of left multiplication by ταi on a product of form eJ

(∏l
i=1 ι

εi
αi

)
τw.

Suppose `(sαiw) = `(w) + 1. Then

ταieJ ·
l∏

k=1

ιεkαk · τw = esαiJsαi ·
l∏

k=1

ιεksαi (αk) · τsαi τw

= esαiJsαi ·
l∏

k=1

ιεkαk+nkαi
· τsαiw

= esαiJsαi ·
l∏

k=1

ιεkk ι
nkεk
αi · τsαiw

= esαiJsαi · ι
εi+
∑
k 6=i εknk

αi ·
∏
k 6=i

ιεkαk · τsαiw.
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Suppose now `(sαiw) = `(w)− 1. Write w = sαiw
′ where `(w′) = `(w)− 1. Then

τsαi · eJ ·
l∏

k=1

ιεkαk · τw = esαiJsαi ι
εi+
∑
k 6=i εknk

αi

∏
k 6=i

ιεkαk · τ
2
sαi
τw′

= esαiJsαi ι
εi+
∑
k 6=i εknk

αi

∏
k 6=i

ιεkαk(qιαi + (q − 1)τsαi esαi )τw′

= qesαiJsαi ι
εi+
∑
k 6=i εknk

αi

∏
k 6=i

ιεkαk · τw′ + (q − 1)esαiJsαi∪{sαi}ι
εi+
∑
k 6=i εknk

αi

∏
k 6=i

ιεkαk · τw.

For right multiplication, observe that if `(wsαi) = `(w) + 1, then

eJ ·
l∏

k=1

ιεiαi · τwτsαi = eJ ·
l∏

k=1

ιεiαi · τwsαi .

If `(wsαi) = `(w)− 1, write w = w′sαi with `(w′) = `(w)− 1, and assume w(αi) =
∑
k ckαk. Then

eJ

l∏
k=1

ιεkαk · τwτsαi = eJ

l∏
k=1

ιεkαk · τw′τ
2
sαi

= eJ

l∏
k=1

ιεjαjτw′(qιαi + (q − 1)τsαi esαi )

= qeJ

l∏
k=1

ιεkαk · ιw′(αi)τw′ + (q − 1)eJ

l∏
k=1

ιεkαkτw′τsαi esαi

= qeJ

l∏
k=1

ιεkαk · ιw(−αi)τwsαi + (q − 1)eJ

l∏
k=1

ιεkαkewsαiw−1τw

= qeJ

l∏
k=1

ιεkαk ·
l∏

k=1

ι−ckαk
τwsαi + (q − 1)eJ∪{wsαiw−1}

l∏
k=1

ιεkαkτw

= qeJ

l∏
k=1

ιεk+ck
αk

· τwsαi + (q − 1)eJ∪{wsαiw−1}

l∏
k=1

ιεkαk · τw.

Now let V be a free k-module with basis

(
vJ,(εk),w : J ⊆ R, (εk) ∈ Fl2, w ∈W

)
where we declare vJ,(εk),w = vK,(ε′k),w′ if w = w′, 〈J〉 = 〈K〉, and if εk 6= ε′k, then sαi ∈ 〈J〉 = 〈K〉.

With the same Coxeter system (W,S) as before, define the following k-linear operators on V .

Definition 6.3. Fix αi ∈ ∆, and let integers nk be determined by the equations sαi(αk) = αk + nkαi.
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Define Tαi := Tsαi ∈ Endk(V ) by



vsαiJsαi , (ε1, . . . , εi +
∑
k 6=i εknk, . . . , εl), sαiw

if `(sαiw) = `(w) + 1,

qvsαiJsαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiw

+ (q − 1)vsαiJsαi∪{sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),w

if `(sαiw) = `(w)− 1.

Similarly define T ′αi := T ′sαi
∈ Endk(V ) by

T ′αi(vJ,(εk),w) =


vJ,(εk),wsαi

if `(wsαi) = `(w) + 1),

qvJ,(εk+ck),wsαi
+ (q − 1)veJ∪{wsαiw−1},(εk),w if `(wsαi) = `(w)− 1.

where the integers ck are determined by the equation w(αi) =
∑
k ckαk.

Lemma 6.4. For any αi, αj ∈ ∆, TαiT
′
αj = T ′αjTαi .

Proof.

1. First suppose `(sαiw) = `(wsαi) = `(w) + 1.

• Suppose also that `(sαiwsαj ) = `(wsαj ) + 1 = `(sαiw) + 1. Then

TαiT
′
αj (vJ,(εk),w) = Tαi(vJ,(εk),wsαj

) = vsαiJsαi ,(ε1,...,εi+
∑
k 6=i εknk,...,εn),sαiwsαj

and

T ′αjTαi(vJ,(εk),w) = T ′αj (vsαiJsαi ,(ε1,...,εi+
∑
k 6=i εknk,...,εn),sαiw

)

= vsαiJsαi ,(ε1,...,εi+
∑
k 6=i εknk,...,εn),sαiwsαj

which are both equal.

• Suppose instead `(sαiwsαj ) = `(sαiw)− 1 = `(wsαj )− 1. Then

TαiT
′
αj (vJ,(εk),w) = Tαi(vJ,(εk),wsαj

)

= qvsαiJsαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiwsαj

+ (q − 1)vsαiJsαi∪{sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),wsαj

.
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Let the integers ck be determined by the equation (sαiw)(αj) =
∑
k ckαk. Then

T ′αjTαi(vJ,(εk),w) = T ′αj (vsαiJsαi ,(ε1,...,εi+
∑
k 6=i εknk,...,εn),sαiw

)

= qvsαiJsαi ,(ε1+c1,...,εi+ci+
∑
k 6=i εknk,...,εn+cn),sαiwsαj

+

(q − 1)vsαi ,Jsαi∪{sαiwsαjw−1sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),sαiw

.

To see that the first terms in each computation are equal, we have to consider the discrepancy of

εi+ 1 +
∑
k 6=i εknk and εi+ ci+

∑
k 6=i εknk. Since `(wsαj ) = `(w) + 1, it follows that w(αj) ∈ Φ+,

but `(sαiwsαj ) = `(wsαj ) − 1, so that (sαiw)(αj) ∈ Φ−. Thus w(αj) is a positive root made

negative by sαi , and so w(αj) = αi. Thus

∑
k

ckαk = (sαiw)(αj) = sαi(αi) = −αi

so that ci = −1, and ck = 0 for k 6= i. Hence the first terms are equal since

εi + 1 +
∑
k 6=i

εknk = εi − 1 +
∑
k 6=i

εknk

in F2.

To see that the second terms are equal, `(sαiwsαj = `(w) and `(sαiw) = `(wsαj ) together

imply sαiw = wsαj . This in turn implies sαiwsαjw
−1sαi = wsαjsαjw

−1sαi = sαi , so that

sαiJsαi ∪ {sαi} and sαiJsαi ∪ {sαiwsαjw−1sαi} clearly generate the same subgroup.

2. Suppose `(sαiw) = `(w) + 1 and `(wsαj ) = `(w)− 1. It follows that necessarily `(sαiwsαj ) = `(w), for

otherwise `(sαiwsαj ) = `(w)−2, implying `(sαiw) ≤ `(w)−1, a contradiction. Write w(αj) =
∑
k ckαk

for some ck ∈ Z. Then

TαiT
′
αj (vJ,(εk),w) = Tαi(qvJ,(εk+ck),wsαj

+ (q − 1)vJ∪{wsαjw−1},(εk),w)

= qvsαiJsαi ,(ε1+c1,...,εi+ci+
∑
k 6=i(εk+ck)nk,...,εn+cn),sαiwsαj

+

(q − 1)vsαiJsαi∪{sαiwsαjw−1sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),sαiw

.

Write sαiw(αj) =
∑
k dkαk. Then

T ′αjTαi(vJ,(εk),w) = T ′αj (vsαiJsαi ,(ε1,...,εi+
∑
k 6=i εknk,...,εn),sαiw

)

= qvsαiJsαi ,(ε1+d1,...,εi+di+
∑
k 6=i εknk,...,εn+dn),sαiwsαj

+

(q − 1)vsαiJsαi∪{sαiwsαjw−1sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),sαiw

.
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The final second term of each computation is identical. To check equality of the first term, note

∑
k

dkαk = sαiw(αj) = sαi

(∑
k

ckαk

)
= sαi(ciαi) +

∑
k 6=i

cksαi(αk)

= −ciαi +
∑
k 6=i

ck(αk + nkαi) =

−ci +
∑
k 6=i

cknk

αi +
∑
k 6=i

ckαk.

Hence di = −ci +
∑
k 6=i cknk and dk = ck for k 6= i. This shows εk + ck = εk +dk for k 6= i. Comparing

the ith entry as elements of F2,

εi + ci +
∑
k 6=i

(εk + ck)nk = εi − ci +
∑
k 6=i

(εk + ck)nk

= εi − ci +
∑
k 6=i

εknk +
∑
k 6=i

cknk

= εi + di +
∑
k 6=i

εknk.

3. Suppose `(sαiw) = `(w)− 1 and `(wsαj ) = `(w) + 1. Necessarily `(sαiwsαj ) = `(w). Then

TαiT
′
αj (vJ,(εk),w) = Tαi(vJ,(εk),wsαj

)

= qvsαiJsαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiwsαj

+

(q − 1)vsαiJsαi∪{sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),wsαj

and

T ′αjTαi(vJ,(εk),w) = T ′αj (qvsαiJsαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiw

+

(q − 1)vsαiJsαi∪{sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),w)

= qvsαiJsαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiwsαj

+

(q − 1)vsαiJsαi∪{sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),wsαj

)

which are identical.

4. Suppose `(sαiw) = `(w)− 1 = `(wsαj ).

• Suppose `(sαiwsαj ) = `(wsαj )− 1 = `(sαiw)− 1. Write w(αj) =
∑
k ckαk and
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sαiw(αj) =
∑
k dkαk. Then

TαiT
′
αj (vJ,(εk),w) = Tαi(qvJ,(εk+ck),wsαj

+ (q − 1)vJ∪{wsαjw−1},(εk),w)

= q[qvsαiJsαi ,(ε1+c1,...,εi+ci+1+
∑
k 6=i(εk+ck)nk,...,εn+cn),sαiwsαj

+ (q − 1)vsαiJsαi∪{sαi},(ε1+c1,...,εi+ci+
∑
k 6=i(εk+ck)nk,...,εn+cn),wsαj

]

+ (q − 1)[qvsαiJsαi∪{sαiwsαjw−1sαi},(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiw

+ (q − 1)vsαiJsαi∪{sαiwsαjw−1sαi ,sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),w].

Now write sαiw(αj) =
∑
k dkαk for some dk ∈ Z. Then

T ′αjTαi(vJ,(εk),w) = T ′αj (qvsαiJsαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiw

+ (q − 1)vsαiJsαi∪{salphai},(ε1,...,εi+
∑
k 6=i εknk,...,εn),w)

= q[qvsαiJsαi ,(ε1+d1,...,εi+di+1+
∑
k 6=i εknk,...,εn+dn),sαiwsαj

+

+ (q − 1)vsαiJsαi∪{sαiwsαjw−1sαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiw

]

+ (q − 1)[qvsαiJsαi∪{sαi},(ε1+c1,...,εi+ci+
∑
k 6=i εknk,...,εn+cn),wsαj

+ (q − 1)vsαiJsαi∪{sαiwsαjw−1},(ε1,...,εi+
∑
k 6=i εknk,...,εn),w].

The first terms of each final computation are equal. As before, di = −ci+
∑
k 6=i cknk and dk = ck

for k 6= i. Thus εk + dk = εk + ck for k 6= i, and in F2 the ith entries are equal since

εi + di + 1 +
∑
k 6=i

εknk = εi − ci +
∑
k 6=i

nkck +
∑
k 6=i

εknk

= εi − ci + 1 +
∑
k 6=i

(εk + ck)nk

= εi + ci + 1 +
∑
k 6=i

(εk + ck)nk.

The second term of the first computation is equal to the third term of the second computation,

although the ith coordinates differ, as this coordinate corresponds to the reflection sαi , which is

in the subgroup generated by sαiJsαi ∪ {sαi}, so these basis vectors are equal, regardless.

The third term of the first computation is identical to the second term of the second expression.

Lastly, the fourth terms of both computations are equal since

〈sαiJsαi , sαi , sαiwsαjw−1sαi〉 = 〈sαiJsαi , sαi , wsαjw−1〉.
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• Suppose `(sαiwsαj ) = `(w) = `(sαiw) + 1 = `(wsαj ) + 1. Since `(sαiw) = `(wsαj ), necessarily

sαiw = wsαj . Write w(αj) =
∑
k ckαk. Then

TαiT
′
αj (vJ,(εk),w) = Tαi(qvJ,(εk+ck),wsαj

+ (q − 1)vJ∪{wsαjw−1},(εk),w)

= qvsαiJsαi ,(ε1+c1,...,εi+ci+
∑
k 6=i(εk+ck)nk,...,εn+cn),sαiwsαj

+ (q − 1)qvsαiJsαi∪{sαiwsαjw−1sαi},(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiw

+ (q − 1)2vsαiJsαi∪{sαiwsαjw−1sαi ,sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),w

and

T ′αjTαi(vJ,(εk),w) = T ′αj (qvsαiJsαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiw

+ (q − 1)vsαiJsαi∪{sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),w)

= qvsαiJsαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiwsαj

+ (q − 1)qvsαiJsαi∪{sαi},(ε1+c1,...,εi+ci+
∑
k 6=i εknk,...,εn+cn),wsαj

+ (q − 1)2vsαiJsαi∪{wsαjw−1,sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),w.

Since `(wsαj ) = `(w)−1, w(αj) ∈ Φ−, and since `(sαiwsαj ) = `(sαiw)+1, sαiw(αj) ∈ Φ+. Thus

w(αj) is a negative root made positive by sαi , so w(αj) = −αi. Hence ci = −1 and ck = 0 for

k 6= i. Hence as elements of F2,

εi + ci +
∑
k 6=i

(εk + ck)nk = εi − 1 +
∑
k 6=i

εknk = εi + 1 +
∑
k 6=i

εknk

which gives equality of the first terms.

Comparing the second terms of each computation, it was noted before that sαiw = wsαj . It

remains to check 〈sαiJsαi , sαiwsαjw−1sαi , sαi〉 = 〈sαiJsαi , sαi〉, but this is clear since as before,

sαiw = wsαj implies sαiwsαjw
−1sαi = sαi .

Finally, the third terms are equal since 〈sαiJsαi , sαiwsαjw−1sαi , sαi〉 = 〈sαiJsαi , sαi , wsαjw−1〉.

So TαiT
′
αj = T ′αjTαi .

Definition 6.5. For K ⊆ R, define an operator EK ∈ Endk(V ) by

EK(vJ,(εk),w) = vJ∪K,(εk),w.

If K = {w} is a singleton, write EK = Es.
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Definition 6.6. For αi ∈ ∆, define Iαi ∈ Endk(V ) by

Iαi(vJ,(εk),w) = vJ,(ε1,...,εi+1,...,εn),w.

Then clearly for αi, αj ∈ ∆, IαiIαj = IαjIαi , so if β =
∑
k ckαk, write Iβ =

∏
k I

ck
αk

.

We check that these operations satisfy the relations T 2
αi = qIαi + (q− 1)TαiEsαi , TαiEK = EsαiKsαiTαi ,

TαiIαj = Isαi (αj)Tαi , and TαiTαjTαi · · ·︸ ︷︷ ︸
mij

= TαjTαiTαj · · ·︸ ︷︷ ︸
mij

. That the EK , Ts, and Iα satisfy the other relations

analogous to those satisfied by the et, τs, ια in A is clear.

Lemma 6.7. For αi ∈ ∆ and sαi ∈ S, the relation

T 2
αi = qIαi + (q − 1)TαiEsαi

holds in Endk(V ).

Proof. Suppose `(sαiw) = `(w) + 1. Then

T 2
αi(vJ,(εk),w) = Tαi(vsαiJsαi ,(ε1,...,εi+

∑
k 6=i εknk,...,εn),sαiw

)

= qvJ,(ε1,...,εi+1+2
∑
k 6=i εknk,...,εn),w + (q − 1)vJ∪{sαi},(ε1,...,εi+2

∑
k 6=i εknk,...,εn),sαiw

= qvJ,(ε1,...,εi+1,...,εn),w + (q − 1)vJ∪{sαi},(εk),sαiw
.

Observe

Iαi(vJ,(εk),w) = vJ,(ε1,...,εi+1,...,εn),w.

Also,

TαiEsαi (vJ,(εk),w) = Tαi(vJ∪{sαi},(εk),w)

= vsαiJsαi∪{sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),sαiw

= vJ∪{sαi},(εk),sαiw

where the last equality follows since 〈sαiJsαi , sαi〉 = 〈J ∪ {sαi}〉, and the discrepancy that possibly

εi 6= εi +
∑
k 6=i εknk is irrelevant since sαi ∈ 〈J ∪ {sαi}〉.
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Suppose instead `(sαiw) = `(w)− 1. Then

T 2
αi(vJ,(εk),w) = Tαi(qvsαiJsαi ,(ε1,...,εi+1+

∑
k 6=i εknk,...,εn),sαiw

+ (q − 1)vsαiJsαi∪{sαi},(ε1,...,εi
∑
k 6=i εknk,...,εn)w)

= qvJ,(ε1,...,εi+1+2
∑
k 6=i εknk,...,εn),w

+ (q − 1)qvJ∪{sαi},(ε1,...,εi+1+2
∑
k 6=i εknk,...,εn),sαiw

+ (q − 1)2vsαiJsαi∪{sαi},(ε1,...,εi+2
∑
k 6=i εknk,...,εn),w

= qvJ,(ε1,...,εi+1,...,εn),w + (q − 1)qvJ∪{sαi},(ε1,...,εi+1,...,εn),sαiw

+ (q − 1)2vsαiJsαi∪{sαi},(ε1,...,εi,...,εn),w.

However,

TαiEsαi (vJ,(εk),w) = Tαi(vJ∪{sαi},(εk),w)

= qvsαiJsαi∪{sαi},(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiw

+ (q − 1)vsαiJsαi∪{sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),w.

The discrepancy at the ith coordinate is irrelevant since 〈sαiJsαi , sαi〉 = 〈J, sαi〉. The claim now follows.

Lemma 6.8. For any K ⊆ R and any αi ∈ ∆, the relations TαiEK = EsαiKsαiTαi and T ′αiEKT
′
αi hold in

Endk(V ).

Proof. Suppose `(sαiw) = `(w) + 1. Then

TαiEK(vJ,(εk),w) = Tαi(vJ∪K,(εk)w)

= vsαi (J∪K)sαi ,(ε1,...,εi+
∑
k 6=i εknk,...,εn),sαiw

= EsαiKsαi (vsαiJsαi ,(ε1,...,εi+
∑
k 6=i εknk,...,εn),sαiw

)

= EsαiKsαiTαi(vJ,(εk),w).

If `(sαiw) = `(w)− 1, then

TαiEK(vJ,(εk),w) = Tαi(vJ∪K,(εk),w)

= qvsαi (J∪K)sαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiw

+ (q − 1)vsαi (J∪K)sαi∪{sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),w

= EsαiLsαi (qvsαiJsαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εn),sαiw

)

+ EsαiKsαi ((q − 1)vsαiJsαi∪{sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εn),w)

= EsαiKsαiTαi(vJ,(εk),w).
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That EK commutes with T ′αi is immediate.

Lemma 6.9. For αi, αj ∈ ∆, the relation TαiIαj = Isαi (αj)Tαi holds in Endk(V ).

Proof. Suppose `(sαiw) = `(w) + 1. Then

TαiIαj (vJ,(εk),w) = Tαi(vJ,(ε1,...,εj+1,...,εn),w)

= vsαiJsαi ,(ε1,...,εi+nj+
∑
k 6=i εn),...,εj+1,...,εn),sαiw

.

On the other hand, recall sαi(αj) = αj + njαi. Then

Isαi (αj)Tαi(vJ,(εk),w) = Iαi+nkαj (vsαiJsαi ,(ε1,...,εi+
∑
k 6=i εknk,...,εn,sαiw

)

= vsαiJsαi ,(ε1,...,εi+nj+
∑
k 6=i εknk,...,εj+1,...,εn),sαiw

and the claim follows. If `(sαiw) = `(w)− 1, then

TαiIαj (vJ,(εk),w) = Tαi(vJ,(ε1,...,εj+1,...,εn)w)

= qvsαiJsαi ,(ε1,...,εi+
∑
k 6=i εknk,...,εj+1,...,εn),sαiw

+ (q − 1)vsαiJsαi∪{sαi},(ε1,...,εi+nj+
∑
k 6=i εknk,...,εj+1,...,εn),w

= Iαj+njαi(qvsαiJsαi ,(ε1,...,εi+1+
∑
k 6=i εknk,...,εj ,...,εn),sαiw

+ (q − 1)vsαiJsαi∪{sαi},(ε1,...,εi+
∑
k 6=i εknk,...,εj ,...,εn),w)

= Isαi (αj)Tαi(vJ,(εk),w).

Hence TαiIαj = Isαi (αj)Tαi , and it follows that TβIγ = Iwβ(γ)Tβ for any roots β, γ ∈ Φ.

Lastly, we check the braid relation.

Lemma 6.10. For α, β ∈ ∆, the relation

TαTβTα · · ·︸ ︷︷ ︸
mαβ

= TβTαTβ · · ·︸ ︷︷ ︸
mαβ

holds in Endk(V ).

Proof. Put u = sαsβsα · · ·︸ ︷︷ ︸
mαβ

= sβsαsβ · · ·︸ ︷︷ ︸
mαβ

∈W . Observe

TαTβTα · · ·︸ ︷︷ ︸
mαβ

(v∅,~0,1) = v∅,~0,sαsβsα · · ·︸ ︷︷ ︸
mαβ

= v∅,~0,βαβ · · ·︸ ︷︷ ︸
mαβ

= TβTαTβ · · ·︸ ︷︷ ︸
mαβ

(v∅,~0,1).
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Let w ∈ W have reduced expression t1 · · · tr. Using the prior relations and that fact that the operators

T and T ′ commute, (and suppressing the mαβ underbrace notation below where it is clear), observe

TαTβTα · · ·︸ ︷︷ ︸
mαβ

(vJ,(εk),w) = TαTβTα · · ·T ′tr · · ·T
′
t1(vJ,(εk),1)

= T ′tr · · ·T
′
t1TαTβTα · · ·EJ

(
n∏
k=1

Iεkαk

)
(v∅,~0,1)

= EuJu−1

(
n∏
k=1

Iεku(αk)

)
T ′tr · · ·T

′
t1TαTβTα · · · (v∅,~0,1)

= EuJu−1

(
n∏
k=1

Iεku(αk)

)
T ′tr · · ·T

′
t1TβTαTβ · · · (v∅,~0,1)

= EuJu−1

(
n∏
k=1

Iεku(αk)

)
TβTαTβ · · ·T ′tr · · ·T

′
t1(v∅,~0,1)

= EuJu−1

(
n∏
k=1

Iεku(αk)

)
TβTαTβ · · · (v∅,~0,w)

= TβTαTβ · · ·EJ

(
n∏
k=1

Iεkαk

)
(v∅,~0,w)

= TβTαTβ · · ·︸ ︷︷ ︸
mαβ

(vJ,(εk),w).

So TαTβTα · · ·︸ ︷︷ ︸
mαβ

= TβTαTβ · · ·︸ ︷︷ ︸
mαβ

.

Proposition 6.11. The algebra A is a free k-module with basis

B = {eJ

(
n∏
i=1

ιεiαi

)
τw : J ⊆ R finite, εi ∈ {0, 1} and εi = 0 if sαi ∈ 〈J〉, w ∈W}.

Proof. From the preceding lemmas, it follows that there is a k-algebra map

ϕ : A→ End(V ) : τs 7→ Ts, ια 7→ Iα, ew 7→ Ew.

Observe that

ϕ

(
eJ

(
n∏
k=1

ιεkαk

)
τw

)
(v∅,~0,1) = EJ

(
n∏
k=1

Iεkαk

)
Tw(v∅,~0,1) = vJ,(εk),w,

so that ϕ is surjective onto V . Moreover, suppose
∑(

cJ,(εk),weJ
(∏n

k=1 ι
εk
αk

)
τw
)
∈ kerϕ is a k-linear combi-

nation of elements of B, for some scalars cJ,(εk),w. Then applying ϕ

∑
cJ,(εk),w · EJ

(
n∏
k=1

Iεkαk

)
Tw ≡ 0
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and evaluation at v∅,~0,1 yields ∑
cJ,(εk),w · vJ,(εk),w = 0

so that each coefficient cJ,(εk),w = 0, and so ϕ is injective.

The above proposition shows that A has dimension dependent on the cardinality of W and the structure

of its reflection subgroups, not on the characteristic of the field of definition of the original Chevalley group.

As in the rank 1 case, this algebra should fit into a diagram of form

A

��

// End(HS(q̃),H∅(q̃))(HS(q̃))

��

End(kG,kT )(kG/U) // End(HS(q),H∅(q))(HS(q)).

This algebra A then serves as a conjectural definition of the 2-endomorphism algebra of FS∅ in the context

of a W -categorification. As in Section 5.2, the counit-unit adjunctions induce corresponding conjectural

definitions for the k-vector spaces of 2-homomorphisms between parallel morphisms involving FS∅ , ES∅ , 1∅,

and 1S . However, further investigation is required to determine a conjectural definition of the endomorphism

algebra of F JI when ∅ ( I ( J ⊆ S.
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61-92.

[2] Cabanes, M. and Rickard, J., Alvis-Curtis duality as an equivalence of derived categories. Modular

representation theory of finite groups (Charlottesville, VA, 1998), de Gruyter, Berlin, (2001), 157-174.

[3] Linckelmann, M. and Schroll, S. On the Coxeter complex and Alvis-Curtis duality for principal l-blocks

of GLn(q). J. Algebra Appl. 4, 3, (2005), 225-229.

[4] Chuang, J. and Rouquier, R., Derived equivalences for symmetric groups and sl2-categorification. Ann.

of Math. (2), 167, (2008), no. 1, 245-298.
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