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ABSTRACT OF THE DISSERTATION

Temporal organization in vocal communication: sequential structure, perceptual integration, and
neural foundations

by

Tim Sainburg

Doctor of Philosophy in Experimental Psychology with a Specialization in Anthropogeny

University of California San Diego, 2021

Professor Timothy Q. Gentner, Chair

Our interactions with the world unfold over time. Whether it’s speaking, where one word

follows the next, or walking, where each step follows another, the organization of our behaviors in

time tends to follow a predictable pattern. Those patterns are dictated by a multitude of underlying

factors, influenced both by endogenous physiological factors like the rhythmic nature of our gait

as well as by exogenous factors, like the social dynamics underlying turn-taking while speaking.

Despite decades of research studying the temporal organization of behavior, dating back to the

work of influential biologists like Tinbergen, Lashley, and Dawkins, little is known about the

physiological substrates that underlie either the production of the sequential organization of most

xix



aspects of behavior. Despite widespread acknowledgment that physiological motor programs and

many non-linguistic behaviors are hierarchical, for example, few physiological investigations

into the dynamics of behavior extend beyond low-order (Markovian) transition statistics.

In this thesis, I build onto the emerging field of computational neuroethology to further

our understanding of what structure underlies the sequential organization of behavior, what phys-

iological mechanisms might be involved in producing, perceiving, and representing sequential

behavioral organization, and how sequential behavioral organization might have emerged devel-

opmentally and evolutionarily. Throughout the thesis, I draw primarily upon birdsong and human

speech, developing methods to analyze the acoustic and temporal structure in vocal signals and

then behaviorally and physiologically probing the underpinnings of sequential organization in

the songbird. This work advances the field of computational neuroethology in several ways. I

uncover novel acoustic structure in vocal signals separating avian and mammalian vocalizations

along a spectrum of vocal stereotypy. I observe that both human speech and birdsong are charac-

terized by a combination of long and short-range temporal patterning. I find that the long-range

temporal patterning characterizing human speech, believed to be underlied by hierarchical lin-

guistic organization, is present at the earliest developmental stages of human speech, well before

complex syntax is produced. I find that the perceptual integration of birdsong syllable sequences

can be well explained by Bayesian models of probabilistic perceptual decision-making. Finally,

I find that sensory neural representations of syllable sequences are modulated by sequential

context and that this modulation reflects the animals underlying perceptual behavior. In the

following paragraphs, I give a brief overview of the methods and major results of the chapters

comprising this thesis.

In Chapter 1 I give an introduction to the emerging field of vocal computational neu-

roethology. This introduction contextualizes the following chapters in a review of current work.

I emphasize current tools, challenges, and future directions in vocal neuroethology. I start with

a discussion of low-level bioacoustics challenges and build up to a discussion of behavioral

organization and physiology. I first discuss challenges in signal processing such as dealing
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with noise and signals and representing vocal signals as time-frequency representations. I then

discuss machine learning approaches used to identify, segment, and label vocalizations. Next, I

discuss how to extract relational structure between vocalizations, and cluster latent projections of

vocalizations. I then give an overview of methods for capturing temporal relationships in vocal

sequences, outlining traditional Markovian descriptions of vocal structure, and new tools for

capturing long-range structure, enabled by large datasets. I then move on to machine learning

tools that can be used to systematically control and synthesize vocal signals from learned vocal

spaces. Finally, I discuss how these techniques are being utilized in several active areas of

neuroethology research.

In Chapter 2 I develop a set of methods to visualize and quantify relational structure in

vocalizations, which enable the analyses and experiments performed in the following chapters. I

use graph-based dimensionality reduction to uncover local structure in vocal communication

signals and apply that technique to 19 datasets consisting of vocalizations from 29 species,

including songbirds, primates, cetaceans, rodents, and bats. I observe that these methods uncover

novel structure in animal vocal signals, including vocal dialects, acoustic units, behaviorally

relevant signal information, and sub-syllabic structure.

In Chapter 3, I extend the methods from Chapter 2 by introducing Parametric UMAP,

a graph-based dimensionality reduction algorithm that parametrically learns the relationship

between data (here vocal signals) and latent embeddings. Parametric UMAP enables the methods

from Chapter 2 to be applied in real-time closed-looped settings over larger datasets due to the

learned parametric embeddings. I show that this algorithm has applications in semi-supervised

settings, and provides additional control over the trade-off between capturing global and local

structure in embeddings.

In Chapter 4 I explore the long and short-range temporal patterning of vocal sequences

in birdsong and human speech. I use an information-theoretic framework to analyze statistical

dependencies as a function of the distance between elements in vocal sequences. I find that both

birdsong and human speech exhibit two forms of structure: short-range relationships captured by
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Markovian dynamics over short-timescales, and long-range relationships that follow a power-law

occurring over longer timescales. In language, the observed short-range organization conforms

to phonological processes, which are well-described by finite-state dynamics, while long-range

organization suggests more complex dynamics such as underlying hierarchical organization.

Previous analyses of birdsong have only identified short-range Markovian dynamics, making our

observation of long-range dynamics in birdsong novel.

In Chapter 5 I extend our experiment from chapter 4 over human speech to language

acquisition. By analyzing corpora of speech throughout language development, we can observe

the time course of the emergence of long and short-range relationships over development.

Surprisingly, I find that long-range statistical dependencies are present in children’s speech as

early as 6-12 months, well before complex syntactic structure is present. I discuss these results

alongside emerging evidence from computational ethology that long-range relationships are also

common to non-linguistic behavioral signals from animals as diverse as zebrafish, drosophila, and

whales. Although previous analyses of long-range relationships have suggested that long-range

relationships are the product of hierarchical linguistic structure such as syntax and discourse

structure, our observations in developmental speech and non-linguistic behaviors suggest that

other mechanisms may also be at play.

Finally, in Chapter 6 I probe how sequential dependencies in vocal sequences are in-

tegrated behaviorally and physiologically. I developed a behavioral task in which European

starlings are trained to classify morphs of syllables of starling song synthesized from an interpo-

lation between two points in the latent space of a neural network (a Variational Autoencoder).

These morph syllables are preceded with a separate syllable (a cue syllable), which holds

predictive information about the category of the following morph syllable. I find that classi-

fication of the morph syllable is contextually modulated by the predictive probability of the

cue syllable, which can be well explained by a model of Bayesian integration. With the same

behavioral paradigm, I then record chronic electrophysiology data from auditory nuclei while

birds performed this context-dependent categorical perceptual decision-making task. I find that
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neural activity patterns reflect several aspects of our model of perceptual behavior, including the

uncertainty in decision making, and prediction-related perceptual modulation.
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Chapter 1

Towards a computational neuroethology of
vocal communication

Abstract

Recently developed methods in computational neuroethology have enabled increasingly

detailed and comprehensive quantification of animal movements and behavioral kinematics.

Vocal communication behavior is well poised for application of similar large-scale quantification

methods in the service of physiological and ethological studies. This review describes emerging

techniques that can be applied to acoustic and vocal communication signals with the goal of

enabling study beyond a small number of model species. We review a range of modern computa-

tional methods for bioacoustics, signal processing, brain-behavior mapping, and physiological

data analysis. Along with a discussion of recent advances and techniques, we include challenges

and broader goals in establishing a framework for the computational neuroethology of vocal

communication.

1.1 Introduction

Over the past several years emerging methods have enabled biologists to capture and

quantify ethological data in ways that yield new insights into the structure and organization of

behavior. These methods capitalize on two advances: the ability to record and annotate very-large
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behavioral datasets, and the use of new computational tools to reveal structure within and between

these datasets. The ethological and neuro-ethological study of animal communication has a long

history, and its future stands to benefit greatly from these new methods. Here, we discuss this

emerging set of tools available to the animal communication researcher. We contextualize these

computational methods within the emerging field of computational ethology more broadly and

discuss how these tools can be applied in behavior and neurophysiology.

Many of the challenges that exist in the computational neuroethology of vocal behavior

are neither new nor unique and parallel those in other areas of human and animal behavior.

For example, the algorithmic discovery of vocal units and sequential organization in animal

communication parallels the zero-speech challenge in language acquisition: given limited sensory

information, can we build a system that discovers subwords, words, and sequential and syntactic

organization present in speech [446]. In animal communication the challenge is similar: can we

infer vocal segment boundaries, categories, and temporal organization from the physical and

temporal characteristics of the signal. The computational neuroethology of vocal communication

also parallels the emerging field of motion sequencing and the mapping behavioral kinematics,

where new technologies allowing researchers to map postures and behavioral kinematics have

facilitated new understandings of behavioral dynamics across scales [28, 81, 46, 69, 9, 342].

It is the goal of computational neuroethology to not only develop an understanding of the

organization of behaviors, but also the neural and cognitive mechanisms that facilitate behavior.

This review synthesizes work from several fields including bioacoustics, systems neuroscience,

and computational neuroethology to discuss emerging methodologies and frameworks which

span these fields and are available to vocal communication researchers.

The review begins with considerations in bioacoustics and signal processing and then

shifts to a consideration of acoustic structure, sequential organization, and eventually to mapping

the acoustic and sequential structure of vocal communication to neurophysiology correlates

of behavior and perception. Throughout our review of current approaches, we relay ongoing

challenges, discuss future directions, and attempt to give practical advice on vocal analyses.
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1.2 Signal processing and denoising

Compute Statistics

Reduce noise

Compute Statistics Reduce noise

sliding window

Sample noise Signal Signal

Stationary noise reduction Non-stationary noise reductionA

B

Figure 1.1. Stationary and non-stationary spectral gating noise reduction. (A) An overview of
each algorithm. Stationary noise reduction typically takes in an explicit noise signal to calculate
statistics and performs noise reduction over the entire signal uniformly. Non-stationary noise
reduction dynamically estimates and reduces noise concurrently. Stationary and non-stationary
spectral gating noise reduction using the noisereduce Python package [378] applied to a Common
chiffchaff (Phylloscopus collybita) song [415] with an airplane noise in the background. The
bottom frame depicts the difference between the two algorithms.

Recorded sounds typically contain a mixture of both relevant and irrelevant components.
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Computational ethology often relies on modeling structure in data without making assumptions

about the relevant features. Thus it is often important to remove irrelevant features (i.e. back-

ground noise) prior to analysis. Ones operationalization of noise can vary based upon the end

goal of the analysis. A simple example is band-pass filtering: because vocalizations typically

occur in a confined frequency range, it is reasonable to consider signal outside of that range noise

and filter it away. When a recording contains vocalizations from two animals, a songbird with

song in a high-frequency range, and heterospecific calls in a low-frequency range, if the subject

of interest is the songbird, a simple high-pass filter can be applied to attenuate the non-target

calls. When frequency ranges overlap between signal and noise, however, the problem of noise

reduction becomes more difficult.

Noise reduction

Determining what constitutes noise in recordings is non-trivial and impacts what type

of noise reduction algorithm can and should be used. In a systematic review of noise reduction

methods in bio-acoustics, Xie et al., ([466]) outline six classes of noise reduction algorithms used

for bio-acoustics: (1) Optimal FIR filter (e.g. [204]), (2) spectral subtraction (e.g. [37, 202, 384]),

(3) minimum-mean square error short-time spectral amplitude estimator (MMSE-STSA; e.g.

[114, 45, 5]) (4) wavelet based denoising (e.g. [362, 353]) (5) image processing based noise

reduction, and (6) deep learning based noised reduction. These noise reduction algorithms can

be broadly divided into two categories: stationary and non-stationary noise reduction (Fig 1.1A).

Stationary noise reduction acts on noise that is stationary in intensity and spectral shape over

time, such as the constant hum of electronics. Non-stationary noise reduction targets background

noise that is nonstationary and can fluctuate in time, like the on-and-off presence of a plane flying

overhead (Fig 1.1B). Stationary noise reduction algorithms operationalize noise as stationary

signals, for example, the constant hum from a nearby electronic device in a laboratory setting, or

insect noise in a field setting.

One approach to stationary noise reduction is spectral gating, a spectral-subtraction
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algorithm (e.g. [384, 202]). The general notion is that for each frequency component of the

signal, any time-frequency component below a threshold is discarded as noise. Spectral gating

computes the mean and standard deviation of each frequency channel of a Short-Time Fourier

Transform (STFT) of a signal (e.g. a spectrogram) and optionally a noise clip. A threshold, or

gate, for each frequency component is then set at some level above the mean (e.g. three standard

deviations). This threshold determines whether a time-frequency component in the spectrogram

is considered signal or noise. The spectrogram is then masked based upon this threshold and

inverted (with an inverse STFT) back into the time domain.

Non-stationary noise reduction

While stationary noise reduction algorithms can operationalize noise as any stationary

acoustic signal, non-stationary algorithms vary in how they determine what is signal and what

is noise. Non-stationary noise can be more challenging to remove because it can be difficult to

algorithmically define the difference between signal and noise. Because the hum of a computer

in the background of a lab-recording is stationary, it can be defined as noise and can be readily

removed. A bird hopping around its cage can produce time-varying sounds in the same frequency

range as song, making it especially pernicious.

One approach for determining the boundary between signal and non-stationary noise is

to determine the timescale on which the signal acts and treat anything outside of that timescale as

noise. For example, zebra finch motifs are generally between 0.5-1.5 seconds long repeated one

to four times [51]. Any acoustic event that is outside of that time range could be considered noise.

Spectral gating can be extended to non-stationary noise reduction by computing a variable gate

based upon the current estimate of background noise. In the Python package noisereduce [378],

this background estimate is computed using a time-smoothed spectrogram (using a forward and

backward IIR filter) on a timescale parameterized by the expected signal length, an approach

motivated by the Per-Channel Energy Normalization algorithm (outlined in Section 1.3). An

example of this is given in Figure 1.1, where stationary and non-stationary spectral gating noise
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reduction is applied to birdsong with an airplane noise occurring in the background of the middle

of the recording. Because the airplane noise is non-stationary, The stationary approach fails in

two ways relative to the non-stationary approach: the airplane noise is not fully successfully

gated at its peak in the middle of the recording (shown as red in the bottom panel) and weaker

syllables of song are treated as noise and reduced in the beginning and end of the clip (shown

in blue in the bottom panel). Advantages of non-stationary noise reduction are not unique to

acoustic noise: when we know the timescale of a signal we can use the same non-stationary

principles to remove noise occurring at different timescales. For example in the continuous

recording of neural data, action potentials occur within the range of one millisecond. Events

occurring over tens or hundreds of milliseconds can therefore be treated as noise.

Reducing noise with deep learning

A promising future avenue for noise reduction is in explicitly training machine learning

algorithms to mask or remove noise, as is done in speech enhancement and segregation [452].

At present, however, deep learning based noise reduction has not been utilized directly in bio-

acoustics [466]. Xie et al ., ([466]) attribute this to a lack of utility when using denoising in

some applications of deep learning-based bio-acoustics detection [217]. The utility of noise

reduction exists beyond classification tasks, however. For example, computing spectral features

and acoustic similarity between vocalizations can be susceptible to background noise. Recent

work by Stowell et al., ([415]) shows that manipulating datasets by superimposing background

environment noise on vocal datasets can reduce confounds and improve identification across

recording conditions. Similar approaches could be used to remove noise. For example, spectral

gating could be extended with neural networks by training a neural network to learn a mask

to gate away background noise and recover the lower-noise spectrogram, as has been done in

speech enhancement applications [452, 240].

It is also important to consider what information is being removed by pre-processing tech-

niques such as denoising. Pre-processing methods throw away potentially valuable information
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that will influence downstream analyses. De-noising vocal data without careful consideration can

remove lower amplitude syllables of birdsong or infrequent vocalizations outside of the expected

frequency range.

1.3 Signal representation

An important consideration in any analysis pipeline is how to represent the data that goes

in. Animal vocalizations are typically recorded using one or more microphones at a sampling

rate that can capture the full spectral range of the vocalization. Performing analyses directly

upon recorded waveforms is not always optimal for capturing informative structure in vocal

data, however. Waveforms are high-dimensional representations of audio that can make it

difficult for learning algorithms to capture time-frequency structure in vocalizations. Spectro-

temporal representations can be both lower-dimensional, and more explicitly capture complex

time-frequency relationships in vocalizations.

Spectrograms are, at present, the most common form of vocalization representation, both

for visualization and as input to learning algorithms, both in bio-acoustics and speech. When

representing vocal data with a spectrogram, the parameters used to compute the spectrogram

can have an important influence on the performance of the algorithm [208, 109]. The most

important parameterization of spectrograms is the trade-off between temporal and frequency

resolution when computing a spectrogram, a result of the Heisenburg Uncertainty Principle

[139, 293]. For example, three spectrograms are shown in Figure 1.2A-C with different windows

used to compute the Short-Time Fourier Transform. The first has an intermediate-sized window

with intermediate time and frequency resolution (Figure 1.2A), the second uses a short window

with high time-resolution and low frequency-resolution (Figure 1.2B), and the third uses a long

window with high frequency-resolution but low time-resolution (Figure 1.2C).

A number of approaches exist to improve time and frequency resolution. Time-frequency

reassigned spectrograms attempt to improve time-frequency resolution using additional informa-
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Figure 1.2. Examples of several different spectral representations of a five-second red deer
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Transform using the Morlet (i.e. Gabor) wavelet.
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tion from the phase spectrum (Figure 1.2D) [139, 465, 133]. Wavelet transforms (Figure 1.2E)

have more recently been used in representing animal vocalizations [353, 178, 354, 265], and

allows multi-scaled emphasis on time versus frequency, for example emphasizing frequency

resolution at lower frequencies and time-resolution at higher frequencies, intuitively because an

uncertainty of 50Hz is more relevant at 500Hz than at 5000Hz. Most recently, the superlet (Figure

1.2F) enables time-frequency super-resolution by geometrically combining sets of wavelets with

increasing constrained bandwidths [293].

There are also several variants of spectrograms and time-frequency representations that

differentially emphasize time-frequency information. For example, log-scaling spectrograms

in frequency emphasizes lower frequency ranges over higher frequency ranges, which parallels

both the cochlea and perception [108]. Mel-scaling (Figure 1.2G), is a form of log-scaling fit

to fit human perception [414], though the specific scaling range relative to human perception

are imperfect [157]. Mel-Frequency Cepstral Coefficients (MFCCs; Figure 1.2H) additionally

compute the Discrete Cosine Transform on the Mel-spectrogram, and were, until recently, com-

monly used for speech recognition because they are generally robust to noise and emphasize the

frequency range of speech (Figure 1.2H) [309]. Another model, directly relevant to physiology,

is the Cochleagram [47, 116, 359]. Cochleagrams mimic the cochlea by using a filter bank

associated with points on the basilar membrane to mimic an impulse response 1.2I).

A new approach that has shown much promise in bio-acoustics is Per-Channel Energy

Normalization (PCEN; Figure 1.2J; [453, 257]). Lostanen et al., ([257]) identify three advantages

of PCEN: (1) temporal integration, (2) adaptive gain control, and (3) dynamic gain compression.

Temporal integration estimates the background noise at each frequency band. Adaptive gain

control then adapts the gain of the spectral representation. Finally, dynamic range compression

adaptively shifts the range of quiet and loud components of the signal. Adaptive gain control

is ubiquitous to mammalian auditory processing and is also often used in cochleagrams [359].

PCEN has been shown to aid in enhancing animal vocalizations relative to background noise

across distances from the microphone [256] and reduce biases in bio-acoustics background
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settings such as dawn versus dusk [258].

Descriptive basis-features features can also be used to represent vocalizations for down-

stream analyses. One challenge with using basis-features for vocal analysis is in determining

what basis-features are relevant [424, 109]. Very few species have been rigorously examined

to determine what acoustic features distinguish vocal units [109, 200]. Swamp sparrow notes,

for example, are relatively simple vocalizations and can be well-described using just the length

of the note, the peak frequency at the start of the note, and the peak frequency at the end of the

note [70]. One approach to determining what features are relevant in a vocal signal is to train

classifiers to predict behaviorally-relevant information, such as individual identity, age, or the

activity the animal is engaged on a full set to basis features, and retain those features which are

highly informative [109, 110].

1.4 Identifying, segmenting, and labeling vocalizations

Vocalization data can be recorded in a number of different settings, ranging from single

individuals in well-controlled and acoustically isolated lab settings to multi-individual and

multi-species recordings taken next to a busy highway. When vocalizations are produced by

isolated, single individuals, segmenting out vocalizations can often be performed simply by

thresholding the vocal envelope and assuming any detected noise events that match the statistics

of the vocalizing animal (e.g. frequency and length of vocalization) are vocalizations [424]. More

complex environments and species with more complex vocal structure require more complex

solutions [352].

Experimental paradigms in neuroethology differ from bio-acoustics in that environmental

sounds can usually be controlled, but are still faced with the challenge of often being made in

colony settings with multiple vocalizing individuals or individuals who make non-vocal sounds

such as interaction with a living space. Regardless of context, recent advances in machine

learning algorithms for passive monitoring of acoustic environments allow for real-time labeling
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of species and individuals in noisy environments.

Automatic vocalization annotation can be broken down into three related tasks: iden-

tification, segmentation, labeling. Identifying refers to what animal is vocalizing and at what

times and frequency channels. Segmentation refers to the segmentation of vocalizations into

their constituent units, labeling then refers to grouping units into discrete element categories. A

spectrogram outlining all three tasks is given in Figure 1.3A. Two individuals in the target species,

Australian pied butcherbird Cracticus nigrogularis are vocalizing over top of background noise

from another, unidentified, species of songbird, as well as an unidentified species of insect. Each

bird’s song can be divided into segmental units (notes) which can be further categorized into

discrete element categories (’A’, ’B’, ’C’, ...). In such a dataset, labeling challenges occur over

multiple levels: identifying the species, identifying the individual, segmenting vocal units, and

labeling vocal units into discrete categories. Some algorithms perform only one of these steps at

a time, while others perform all three.

Detecting species and individuals

To detect species in continuous bio-acoustic data, several open-source tools and datasets

have recently been made available for passive acoustic monitoring. A summary of many of these

software and their features are given in Priyadarshani et al., ([352] Table 4). Over the past few

years machine learning competitions challenging researchers to produce species recognition

algorithms have motivated an increasing number of open-source approaches to bioacoustic

sound recognition (e.g. [238, 312, 148, 415]). The same tools can be applied to differentiating

between individuals in the same recording environment (e.g. [2, 286]). Most recent approaches

rely on deep neural networks to detect vocalizations in noisy environments (e.g. [74, 415]).

Current neural networks generally rely on some combination of convolutional filters in the

temporal-frequency space of spectrograms (Convolutional Neural Networks or CNNs, Fig 1.3B)

and temporal-recurrence (Recurrent Neural Networks, or RNNs, Figure 1.3C). Convolutional

filters in the time-frequency space of spectrograms allow neural networks to learn complex
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spectro-temporal features used to classify sounds (Figure 1.3B). Temporal recurrence allows

neural networks to learn sequential and temporal relationships that unfold over long time delays

(Figure 1.3C). In combination, recurrent and convolutional architectures allow complex, non-

linear spectrotemporal features that occur over arbitrary timescales to be captured by neural

network architectures.

Segmenting and labeling vocal units

Beyond identifying individuals and species, many analyses of vocal communication rely

on the temporal segmentation and categorization of vocalizations into discrete units. Unlike

identifying species or individuals, where an objective measure exists of what animal produced a

vocalization, the segmental units that comprise animal vocalizations are less well-defined. In

comparison to human language, where linguistic units are determined based on their functional

role, substantially less is known about the function each vocal unit plays in most species’

communication, or even what should define the beginning and ending of a vocal unit [200, 292].

Analyses of most animals, therefore, rely on easily discernible physical features of vocalizations.

For example in songbirds, songs are typically segmented at different hierarchical levels, though no

strict definition of these levels of organization are agreed upon by all researchers. Common units

of birdsong are notes, corresponding to abrupt changes in frequency, syllables, defined by periods

of silence surrounding continuous vocalizations, motifs, stereotyped repetitive combinations of

acoustic elements, and phrases, series of stereotyped or commonly associated syllables. Despite

the ubiquity with which these terms are used, most vocal units have not been validated in terms

of the species’ own perceptual system, and those that do, like the Bengalese finch ’syllable’

[292] call into question the commonly assumed role they play in communication. It is therefore

ideal, but not always feasible, to validate decisions about vocal units based upon perceptual,

physiological, or functional roles those vocal units play in the animal’s communication [419, 200].

Still, most analyses of animal communications rely on human perceptual decisions at some level,

whether it is to label discrete classes of birdsong phrases, or determine the representational space
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upon which an ’unsupervised’ learning algorithm will discretize units (discussed in Section 1.5).

When vocal units are defined and vocal classes are chosen, machine learning algorithms

can be used to systematize and vastly speed up the classification and segmentation of vocal units.

Most commonly, supervised recognition algorithms are used, where the algorithm explicitly

learns to algorithmically map acoustic data to the researcher’s labeling scheme. Over the past

decades, vocalization labeling algorithms have paralleled those used in other acoustic domains,

such as speech and music recognition. At present, tools rely on deep neural networks. The

field of deep learning has changed rapidly over the past decade, with different architectures

of neural networks quickly outperforming the previous architectures [314]. Prior to deep

learning, automated birdsong element recognition relied on algorithms such as Hidden Markov

Models [212], support vector machines [421], template matching [10], or k-Nearest-Neighbors

labeling [321], following alongside contemporary speech recognition algorithms. Like sound

event detection, current approaches tend to rely on recurrent and convolutional neural network

architectures. TweetyNet [74], for example, uses a recurrent and convolutional architecture

to capture complex spectro-temporal patterns over long timescales. Future advances in neural

network architectures will likely continue to follow those in speech recognition, for example,

using transformer architectures [193] as well as semi-supervised and unsupervised pre-training

methods such as wav2vec [393]. One important divergence between speech recognition and

animal vocalization classification is the reliance upon data availability, however. An ideal

animal vocalization classifier works well on very small amounts of labeled data, requiring less

experimenter time, whereas speech recognition systems tend to have an abundance of data

available (though speech recognition for low-resource languages may be an area to watch).

A second approach to labeling vocalizations is to actively involve the experimenter in

the algorithm via human-in-the-loop labeling (e.g. [464, 203]). Human-in-the-loop algorithms

rely on a combination of supervised and unsupervised learning. Supervised learning comprises

learning algorithms that are trained with labeled data, such as classification tasks. Unsupervised

learning refers to algorithms that do not require supervised labels, such as dimensionality reduc-
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tion. Human-in-the-loop algorithms leverage both, by proposing an initial coarse segmentation

and/or labeling of the dataset through unsupervised learning, which the human then partially

revises (e.g. merging or splitting putative classes of vocalizations) via a graphical user interface

(GUI). The revised data is then re-processed by the algorithm and sent back to the user to revise,

until the experimenter is content with the resulting labeled dataset. Using a combination of

human expertise and machine processing enables quicker labeling of large bio-acoustics data

with minimal human effort. A further discussion of unsupervised algorithms is discussed below

in Section 1.5.

1.5 Extracting relational structure and clustering

Classifying vocal elements into discrete categories (e.g. ’A’, ’B’, ’C’, ...) is for many

analyses a necessary abstraction that enables the analysis of recurring events. At the same time,

this symbolic abstraction ignores acoustic relationships both within discrete element categories

and between them. For example, in Figure 1.3, are the syllables of birdsong labeled ’A’ more

similar to the syllables labelled ’B’ or the syllables labeled ’C’? Determining the relatedness (or

distance) between vocalizations can enable the quantification of how vocalizations change over

time [285, 216], how vocal repertoires differ across individuals and species [384, 289], and map

and visualize broad structure present in vocal repertoires [384, 149].

Operationalizing relatedness

Given a dataset of vocalizations segmented into discrete units, relatedness is a measure

quantifying the similarity of vocalizations relative to one another. The basis for operationalizing

relatedness can utilize physical properties of signals, perceptual judgments, or behavioral and

physiological responses to the signal. Most commonly, the relationships between vocal elements

are computed on either spectrotemporal representations or on the basis of descriptive features of

the vocalization, such as frequency modulation, pitch, and vocal envelope, or [384, 149, 289].

How different aspects of the vocalization should weigh into a measure of similarity
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is non-trivial. No metric for similarity is objectively correct, even when metrics are derived

purely from objective physical features. For example, what is the relative importance of a

vocalization’s duration versus pitch in determining similarity? One ground truth metric for

an algorithms judgement of similarity is its relationship with human’s perceptual judgment

of similarity [424], though there is no guarantee that these measures reflect the animal’s own

perception and physiology [99]. An ideal measure of similarity could be derived through careful

experimentation gleaning the animal’s own judgment of similarity [200], but in most cases, this

task would be unfeasible and time-consuming. Even when performed carefully, perception varies

from animal to animal, based upon experience [231].

In addition, when vocal features are continuous, accounting for differences in duration

and temporal alignment requires consideration. Approaches vary from averaging over time [109],

pooling using attention mechanisms [302], using dynamic time warping [212], and zero-padding

[384]. Similarly, at least some animals rely on spectral shape rather than absolute pitch when

recognizing acoustic objects [44]. A recent approach accounting for variability in frequency

is dynamic frequency warping [410]. Striking a balance between spectrotemporal tolerance

and absolutely discounting spectrotemporal alignment can have substantial impact on the final

measure of similarity.

Learning a similarity space

Once a metric for similarity is determined, that distance can be used to infer a structured

representation of the relationships in a repertoire as a whole, providing a new representational

space with which to quantify vocalizations.

Perhaps the most intuitive and pervading example of a learned embedding space for

vocal similarity is multi-dimensional scaling (MDS, e.g. [289, 98, 302]. Multi-dimensional

scaling takes a graph of pairwise similarity measures between each vocalization in the dataset

and attempts to find an embedding that best preserves the similarity structure of that graph.

As the number of vocal elements in a dataset gets larger, however, the number of pairwise
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distances between vocal elements increases exponentially. This is computationally an issue

because computing 10000 pairwise distances between 100 elements is computationally feasible,

but 10,000,000,000 pairwise distances between 100,000 elements is not.

Trying to preserve the pairwise relationships between every element in a dataset can also

over-emphasize irrelevant relationships in vocal data. For example, if a bird’s vocal repertoire

comprises 10 motifs classes all produced with the same frequency, the vast majority of pairwise

distance relationships computed (90%) will be between class, while only 10% of pairwise

relationships computed will be within class. In many cases, both in animal communication and

in dimensionality reduction more broadly, there is utility in weighing relationships between

similar vocal elements more highly than relationships between less similar vocalizations. This

contrast is defined in the dimensionality reduction literature as the emphasis of local versus global

structure [87]. Algorithms that attempt to preserve every pairwise relationship are called global

dimensionality reduction algorithms, while algorithms that emphasize capturing relationships

only to nearby points in dataspace (more similar vocalizations) are called local dimensionality

reduction algorithms. In many vocalization datasets, emphasizing local over global structure

better preserves categorical structure such as individual and call identity [385, 302, 149]. A

visual demonstration contrasting local and global structure preservation is given in Figure 1.4A.

While global embedding algorithms like MDS attempt to preserve every pair-wise relationship,

local algorithms preserve only local (e.g. nearest-neighbor) relationships, capturing more within-

cluster structure. In Figure 1.4B-G an example is given with macaque coo calls, in which a

local structure-preserving algorithm (UMAP, described below) more clearly pulls apart clusters

corresponding to individual identity than MDS.

At present, the two dominant local dimensionality reduction algorithms are UMAP and

t-SNE. UMAP and t-SNE differ in several important ways beyond the scope of this paper, but

their key intuition and the steps underlying the algorithms remain similar: first, compute a

(nearest-neighbors) graph of pairwise relationships between nearest neighbors in the original

dataset (e.g. using Euclidean distance or an arbitrary similarity metric) then, embed that graph
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into an embedding space via gradient descent [380]. UMAP, in particular, has been shown

to capture complex structure in vocal repertoires such as differences in vocal dialect, vocal

stereotypy, vocal element categories, inter-species similarity, and individual identity, in contrast

to classic methods like MDS and PCA [380, 302, 149].

One challenge with graph-based dimensionality reduction algorithms like MDS, UMAP

and t-SNE is that they are non-parametric dimensionality reduction algorithms, meaning they do

not learn the relationship between input data (e.g. a spectrogram of the vocalization) and their

embeddings. Learning a parametric relationship between vocalizations and their embeddings

allows a fast mapping between data and embedding, i.e. for applications that necessitate real-time

feedback such as brain-machine interfacing.

The most common parametric dimensionality reduction algorithm is PCA, where a linear

transform is learned between data and an embedding space. Similarly, neural networks such as

autoencoders can be used to learn a set of basis features which can be complex and non-linear

[149, 404, 385, 213]. For example, an autoencoder trained on images of faces can learn to

linearize the presence of glasses or a beard [380, 386, 358]. Autoencoders trained on animal

vocalization data can similarly learn complex non-linear relationships in vocal data. In Section

1.7 we discuss how these complex learned features could be utilized in animal vocalizations

to learn acoustic features such animal age, sex, and attractiveness, which can, in principle, be

utilized for playback experiments.

A recent extension to UMAP, Parametric UMAP weds the advantages of UMAP with

the parametric embedding of neural networks [380]. Parametric UMAP acts by optimizing the

UMAP loss function over arbitrary neural networks (e.g. convolutional recurrent networks were

used with Cassin’s vireo song in [380]) which can be balanced with additional losses such as

MDS and autoencoding, to preserve additional global structure in UMAP projections. Parametric

neural network-based approaches such as Parametric UMAP can also embed data on a similar

timescale as PCA, enabling real-time applications, as opposed to non-parametric methods such

as UMAP, t-SNE, and MDS.
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Another class of neural network based dimensionality reduction algorithms rely on

triplet-loss-based similarity preservation. Triplet-based embeddings have been used for birdsong

for classification and embedding [363, 302]. Triplet networks learn an embedding space by

sampling three types of vocal units: an anchor, a positive sample that is perceptually similar

to the anchor point, and a negative sample that is perceptually distant from a vocal unit. The

loss then encourages the positive sample to be pulled to the anchor, and the negative sample to

be pushed further away. For example, Morfi et al., [302] describe a triplet-loss-based network

trained to produce vocal embeddings based upon a metric of perceptual distances. Like graph-

based dimensionality reduction algorithms, triplet-loss-based embeddings rely on a pre-defined

experimenter-determined notion of distance. Morfi et al. suggest a forthcoming animal-defined

metric but in-lieu use a descriptive feature-based metric in the software Luscinia [230] which is

correlated with human perceptual judgments of zebra finch song [175].

Finding latent units through clustering

Learned embedding spaces enable the inference of broad structure acoustic structure

from the statistics of vocalizations, enabling further downstream discovery of vocal units based

upon distributional properties in embedding spaces [384, 199, 200]. Unsupervised clustering

of vocal elements lies in contrast with supervised learning, where class labels are determined

by experimenters, as in Section 1.4. Sainburg et al., [384] observe that labels obtained by

clustering UMAP embeddings of Cassin’s vireo and Bengalese finch syllables are more similar

to experimenter labels than clustering PCA projections or spectrograms. Further, these latent

projections capture additional acoustic and syntactic structure than the ground truth experimenter

labels. In addition to acoustic structure, vocal elements can be clustered on the basis of syntactic

organization. For example, incorporating transition information through Partially observable

Markov Models (POMMs; [187]) and Hidden Markov Models (HMMs; [384, 195]) into a

labeling scheme for birdsong better explains sequential structure than hand-labels or clustering

without reference to temporal sequencing. An alternative approach is to perform clustering prior
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to embedding, directly upon the inferred relational graph [127].

One challenge in unsupervised vocal unit discovery through methods such as UMAP

embeddings is their reliance upon pre-defined vocal unit temporal boundaries. Although cluster-

ing on latent projections enables an unsupervised extraction of vocal categories from segmental

units, latent projections rely on a pre-defined temporal segmentation of acoustic units from the

vocal stream. In some species, atomic vocal units can be determined by clearly defined physical

features of the signal, like long pauses between syllables, however, even in the case of clearly

defined physical features, those units are not necessarily the base units of perception [292]. An

open issue in vocal analysis is the unsupervised temporal segmentation of vocalizations into

elements when clear physical boundaries are not available. This problem parallels both unsu-

pervised speech discovery (i.e. ZeroSpeech), and the challenge of discovering behavior units in

other areas of computational neuroethology (e.g. Motion Sequencing). In speech, phonemes are

not clearly defined by physical characteristics, thus approaches for segmentation rely upon a com-

bination of temporal and distributional information alongside imposed priors. Ongoing efforts

in unsupervised speech segmentation, syllabic unit discovery, and word discovery can motivate

parallel approaches in animal communication. In addition, physiological and kinematic measures

such as articulation and breathing rate can aid in determining vocal boundaries. In computational

neuroethology, new methods in tracking behavioral kinematics provide similar continuous be-

havioral datasets to those discussed in this paper (e.g. [463, 462, 29, 343, 273, 269, 103]). For

example, MoSeq [463, 462] discovers animal behavioral states using depth camera recordings

of animals by fitting the behavioral data to an Autoregressive Hiden Markov Model. They

find stereotyped sub-second mouse behavioral states, dubbed syllables, that underlie a syntax

of behavior, much like birdsong. Communicative behavior is also not produced solely in the

auditory domain. Improving methods for uncovering structure in animal behavior more broadly

will facilitate research on the interaction between multi-sensory and multi-modal vocal behavior,

like the dances that accompany many bird songs [459].

21



Data augmentation

Another approach that is largely underutilized in bio-acoustic vocal recognition algo-

rithms is data augmentation, an approach that is currently used in most state-of-the-art machine

perception applications. In automatic speech recognition, for example, several current state-

of-the-art approaches (e.g. [20, 159]) use SpecAugment [334] in which the classifier learns

a policy of various augmentations such as warping and masking frequency channels in time.

Lostanlen et al., [258] demonstrate the utility of augmenting bio-acoustics datasets with diverse

background acoustics to facilitate better generalization across environments and conditions.

Augmentation in settings where little labeled data are available has also proven successful on

several semi-supervised learning benchmarks (e.g. [31]). One difficulty with performing data

augmentation with bio-acoustics data, however, is the extent to which slight manipulations can

affect the perceptual class that vocalizations fall into [302].

1.6 Inferring temporal and sequential structure

Identifying sequential organization typically relies upon the abstraction of vocalizations

into discrete sequences of elements, effectively treating vocal data as corpora from which to

perform symbolic analyses. Kershenbaum et al., [200] identify six classes of models and analyses

for analyzing temporal sequences: Markov chains, Hidden Markov Models, Network-based

analyses, Formal grammars analyses, and temporal models. Analyses of temporal organization

in animal communication has traditionally been largely influenced by Chomsky’s hierarchy of

formal grammars, with a focus on trying to understand what class of the Chomsky hierarchy

animal’s behaviors belong within [303, 369, 186, 162]. For example, Markov models, Hidden

Markov Models, and Network models are all finite-state models in the Chomsky hierarchy.

Short-timescale organization and graphical analysis

Broadly, analyses over vocal organization can be broken down into two classes: analyses

over short- and long-distance (i.e short- and long-timescale) sequential organization. Short-
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Figure 1.5. Capturing long and short-range sequential organization with different models.(A) An
example of a 2-state Markov model, capturing 22 = 4 transitional probabilities between states.
(B) An example second-order Markov model, capturing 23 = 8 transition probabilities between
states. (C) A visualization of the general principle that as sequential distances increase, the
relatedness between elements (measured through mutual information or correlation functions)
decays toward chance. (D) Sequences generated by Markov models decay exponentially toward
chance. (E) Context-free grammars produce sequences that decay following a power law. (F)
Certain neural network models such as LSTM RNNs and Transformer models produce sequences
that also decay following a power law.
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timescale analyses are concerned with relationships between adjacent, or near adjacent elements

in a sequence. Markov models, for example, capture short-timescale dynamics of vocal com-

munication. A typical Markov model of birdsong is simply a transition matrix representing the

probability of transitions from each element to each other elements (e.g. P(B|A) Fig 1.5A). As

Markov models increase in order, they become increasingly capable of capturing long-distance

relationships, though high-order Markov models are rarely used in practice because of the

number of parameters and amount of data needed to compute them (Fig 1.5B). Approaches such

as Hidden Markov Models [195] and Probabilistic Suffix Trees [266, 75] can compute more

succinct high-order Markov relationships, though the amount of data needed to capture these

deeply contextualized relationships (e.g. P(F |A,B,C,D)) is still a limiting factor in capturing

long-range organization with Markov models. Short-range relationships are also often captured

graphically, treating any transition probability above zero as an edge in the graph. Graphical

representations and metrics for vocal sequencing can explain general sequencing characteristics

of vocalizations such as network motifs, communities, and clusters [200, 390, 455, 336, 166].

Mutual information and long-timescale organization

Relationships that extend beyond adjacencies and over longer timescales are called long-

range orlong-timescale relationships. For example, how related are two notes within a phrase,

two phrases within a bout of song, or two bouts of song sung within a day?

Broadly, elements that are further displaced in a vocalization from one another tend to

be less related. When two elements in a sequence are further apart, the relatedness between

those two elements tends to be lower. For example, in birdsong, notes within a phrase are more

likely to be related than notes separated by multiple phrases. The same is true of most sequential

and temporal data: we can better predict what a stock price will look like tomorrow, than in ten

years. As we look further and further out into a sequence, the relatedness between elements will

decrease alongside our ability to predict the future, until the relatedness approaches chance (Fig

1.5C). We can capture this relatedness over symbolic sequences using information theory. For
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example, given a sequence of discrete elements a → b → c → d → e → f , we can estimate the

mutual information between pairs of elements at e.g. a distance of 2 elements (a−c, b−d, c−e,

and d − f ) or 3 elements (a−d, b− e, and c− f ). As the distance increases between pairs of

elements, we expect the relatedness (mutual information) to decay toward chance as a function

of sequential distance.

We can estimate the extent to which a signal exhibits long-range relationships by com-

puting how long the mutual information between pairs of elements remains above chance. Such

approaches have been used variously across animal vocalization datasets in birds and whales

[419, 381]. Similar approaches have also been used to observe long-range structure in animal

motion ethology data, such as the long-range structure in Drosophila [29] motility.

Inferring structure from sequential relationships

The shape of the decay in relatedness as a function of sequential distance can not only

tell us about the timescales that vocal sequences are operating over but can also give indications

about the structure underlying sequential organization. For example, sequences generated by

Markov processes, such as finite-state grammars decay exponentially [249, 246] (Figure 1.5D).

Intuitively, Markov models are memoryless; each state is dictated only by the set of transition

probabilities associated with the previous state. As a result, the relatedness between states decays

very quickly. When there are deep latent relationships present in the structure underlying the

sequence, relatedness between sequentially disparate elements decays more slowly. For example,

Probabilistic Context-Free Grammars can produce power-law relationships in mutual information

as a function of sequential distance [249] (Fig 1.5E).

Characterizations of statistical relationships over abstracted discrete units enables com-

parative analyses across species because these measures make no assumptions about units or

temporal organization underlying the signal. Characterizing correlations and information decay

has an especially rich history in uncovering long-range structure dating back to Claude Shan-

non’s original work [399, 246, 249]. Language corpora such as speech and written text decay in
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information following the combination of a power-law over longer distances, and exponential

decay over shorter distances, attributed to the finite-state processes underlying phonological

organization [381] and the hierarchical organization underlying language at higher levels of

organization such as syntax and discourse [381, 249, 6, 7]. At the same time, however, young

children’s speech contains the same long-range information context before complex syntax

is present in speech, indicating possible extra-linguistic mechanisms at play dictating these

long-range statistical relationships [379]. Long-range mutual information decay and correlations

have also been demonstrated that in animals such as songbirds [381] and humpback whales

[419], extending over minute- and hour-long timescales. In particular, birdsong exhibits similar

exponential short-range and power-law long-range mutual information decay to human speech,

indicating potential parallels in the mechanisms governing how patterns of vocalizations are

temporally sequenced. Similar observations in non-vocal behavioral sequences [29, 379] also

exhibit these long-range sequential organizations, suggesting similarities in latent dynamics that

facilitate long-range statistical relationships.

It is tempting to suggest that these parallels suggest shared underlying structure generating

mechanisms, such as universals in the hierarchical organization of behavior (e.g. [84, 237],

though we should be wary of making any extended inferences based upon the observation of

long-range information decay. For example, we can infer that power-law sequential relationships

are produced by non-Markovian mechanisms because the decay is not exponential. However,

the set of generative mechanisms that can produce power-law relationships in signals is not

understood well enough to attribute the origins of these relationships to, for example, any specific

class of formal grammar. Power-law mutual information decay in signals can also be drawn

simply from coupling vocal or behavioral 1/f noise found in exogenous environmental signals.

While it is well-acknowledged that many animal vocalizations are organized hierar-

chically [369, 84], the implications of that hierarchy in terms of underlying cognitive and

physiological mechanisms are not well understood. For example, on very short timescales,

birdsong motor sequencing is dictated by a hierarchical cascade of motor programs running
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originating in the premotor region HVC eventually ending in motor output [100]. Recent phys-

iological evidence shows that these high-level nuclei also contain information about future

states displaced from current vocalizations as well [75], though the mechanisms by which those

relationships are learned, maintained, and ultimately dictate behavior are not yet clear.

Although we do not have access to the mechanisms underlying the observed long-distance

relationships in vocal and non-vocal behavioral sequences, we do know that many vocal and

behavioral sequences cannot be well-captured by Markovian models, thus alternative methods

for modeling, characterizing, and forming hypotheses about the long-range organization in

behavioral sequences are crucial to furthering our understanding of long-range structure in

behavioral sequences. One promising approach is the use of deep neural network models such

as RNNs and transformer networks [436, 304]. Unlike Markov models, recent neural network

models like RNNs and transformer models do capture power-law relationships in sequential

data (Fig 1.5E) [400, 249]. In language, transformer networks, in particular, have changed the

landscape of natural language processing by capturing deeply contextual and complex implicit

relationships in linguistic sequences. In birdsong, the same approaches show promise [304]. For

example, Morita et al., [304] train a transformer network on Bengalese finch song and find that it

captures long-range dependencies extending well beyond that of a Markov model. Like modeling

language sequences, however, neural-network-based approaches suffer from the same issues

of being black box and providing little explanatory power over the sequential structure they

learn. In addition, the amount of data required to train a model to capture complex sequential

dependencies is vast. Although the number of parameters does not increase exponentially with

the amount of context the model captures (as in Markov models) state-of-the-art transformer

models have billions of parameters requiring training data comprised of billions to trillions of

characters [49]. In language, the dataset size needed to train transformer models scales with

the number of parameters in the model to prevent overfitting [191]. When dataset sizes are

smaller, LSTM RNNs perform better than more state-of-the-art Transformer language models

[115], though transformers allow you to explicitly specify the length of temporal context allowed
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in the model, making them an attractive model for controlling context when generating vocal

sequences [304]. Although non-human animal vocalization repertoires are smaller and syntactic

organization is less complex than language, birdsong analyses relying on language models will

need to address the same challenges.

Neural network-based models also provide the ability to capture temporal dependencies

that mutual information and correlation functions do not. Mutual-information-function-based

and correlation-based analyses compute relationships between vocal elements as a function

of sequential distance, ignoring any temporal relationships between disparate elements. This

is both a benefit and a shortcoming of correlation methods. Ignoring intermediary temporal

relationships enables the characterization of structure at temporal distances without having to

additionally model higher-order combinatorial relationships (e.g. P(F |A)) vs P(F |A,B,C,D)).

For the same reason, mutual-information-function-based and correlation-based analyses are

coarse descriptions of temporal structure and miss the full temporal dynamics of the signal that

neural-network-based models can capture [304].

1.7 Synthesizing vocalizations

Sample vocalizations Train network Sample latent space Reconstruct spectrograms Reconstruct waveform

Figure 1.6. Steps involved in synthesizing vocalization from a Variational Autoencoder (VAE)
trained on spectrograms.

Although the methods discussed in Section 1.5 allow us to learn representational spaces

of animal vocalizations, providing new ways to infer structure in vocal repertoires, analyses

on vocal signals alone lack grounding in animal behavior, perception, and physiology. In this

section, we give an overview of methods for synthesizing animal vocalizations as a means to
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systematically control vocalization stimuli and relate vocal representations to physiology and

behavior.

An ideal model for vocal synthesis exhibits several features: (1) it can model the entire

vocal repertoire of a species or multiple species, (2) the parameters of the model can be related

to physiological properties of the vocalizing species, and (3) the parameters of the model can be

explained in terms of understandable features (i.e. it is not a black box algorithm). Throughout

this section, we find that current synthesis algorithms have tradeoffs in how they balance aspects

of these ideals.

One reason to systematically synthesize animal vocalizations is to probe their percep-

tual and physiological representations of vocal space, for example, determining how animals

categorically perceive the difference between two categories of vocal units [315]. Tradition-

ally, categorical perception in animals has been studied on the basis of human speech sound

stimuli [405, 227, 226]. Even with speech, however, the features that can be manipulated are

limited. Recently methods in machine learning have furthered our ability to manipulate complex

non-linear speech features substantially. These same approaches can often be applied to animal

communication [11, 385].

Source-filter models

Source-filter models have their origins in vocoding speech [101], but have been used

in numerous animal vocalization synthesis paradigms [92, 63, 134, 14]. Source-filter mod-

els decompose vocalizations into the source of the voice and filters [196]. For example, the

STRAIGHT algorithm [196, 197] has been used to morph between macaque monkey vocaliza-

tions for investigations of monkey and human perception and physiology related to categorization

[63, 134]. STRAIGHT breaks down the macaque vocalization into the fundamental frequency

(the source) and its harmonics from higher-resonant or formant frequencies (the filter) [63]. It

then uses landmarks based upon these estimated parameters from the two sounds being morphed

and interpolates between them to generate the morph stimuli. Takafumi et al., [134], for example,
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used this method to parametrically vary generated morphs based on source and filter properties

to determine the features macaques use to distinguish between conspecifics. Soundgen [11]

is a recent open-source GUI-based web app for R that is designed to synthesize nonverbal

vocalizations using a source-filter model, including animal vocal signals such as birdsong and

primate vocalizations. Related source-filter models have been developed to synthesize birdsong

based upon underlying physiological mechanisms [14, 118, 406, 407, 15]. Recently, Arneodo et

al., [13] demonstrated that synthetic source-filter models can be coupled with neural recordings

accurately reconstruct vocalizations from neural data alone. One drawback of source-filter

models is the difficulty with which they can be fitted to the diversity of non-human vocalizations

that exist. For example, the source-filter models of birdsong described above can well describe

the dynamics of zebra finch song, but not the dual-syringeal dynamics of European starling song.

Without reference to explicit hypotheses about underlying production mechanism, HMM based

source-filter approaches provide one potential solution to this problem birdsong [38].

Neural network models

An alternative approach to synthesizing animal vocalizations is the use of neural-network-

based synthesis algorithms. These neural-network-based algorithms can be used to sample

directly from the learned representational spaces described in Section 1.3. A simple example is

autoencoder-based synthesis [472, 382]. Autoencoders can be trained on spectral representations

of vocal data, and systematically sampled in the learned latent space to produce new vocalizations.

Insofar as the neural network or latent projection can learn to represent the entire vocal repertoire,

the entire vocal repertoire can be sampled from. In addition to sampling vocalizations from a

latent distribution, vocal features can be manipulated in latent space. Well-defined latent spaces

and higher-dimensional latent projections can learn to linearize complex non-linear reltionships

in data. For example, in pictures of faces, the presence of a glasses, hair color, and the shape of

a person’s face can all be manipulated as linear features [380, 386, 358]. With more complex

features, such as the attractiveness of a call or the age of the vocalizer, a promising avenue for
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future research would be to synthesize vocalizations, varying these complex non-linear features

for playback studies.

Like most areas of deep learning, substantial progress has been made on the task of audio

synthesis in the past few years. Basic methods comprise autoencoders [213, 112, 385], Generative

Adversarial Networks (GANd) [385, 431, 330, 96, 111] and autoregressive approaches [281,

327, 351, 189]. One advantage of GAN-based models is that their loss is not defined directly

by reconstruction loss, resulting in higher-fidelity syntheses [236]. Typically, approaches for

synthesizing vocalizations based on neural networks rely on treating magnitude spectrogram like

an image, training a neural network architecture in the same manner as one would an image, and

finally inverting the sampled spectrogram into a waveform [384, 472, 330]. When synthesizing

vocalizations from neural networks trained on the magnitude spectrogram, the estimation of

phase is necessary to invert the spectrogram into a waveform signal for playback. The de-facto

algorithm for spectral inversion has been Griffin and Lim [158], though several recent approaches

have been shown to improve over the Griffen-Lim algorithm recently [272, 356]. An alternative

to Griffen-Lim inversion is to train neural networks to invert spectrograms either directly in the

neural network architecture [228], or perform inversion in a second network [272]. Spectrogram-

based audio synthesis can also be sidestepped entirely, training the network directly on waveform

[327, 281, 112].

Sound texture synthesis

Another approach to sound synthesis is the synthesis of sound texture [275, 387]. For

example, McDermott et al., [275] propose an approach that relies on computing a set of statistics

over stationary elements of sounds, and synthesizing new sounds based upon the computed

statistics. By manipulating or interpolating between sound statistics, they synthesize new sound

textures. One application, for example, is to manipulate components of sound textures for

stimulus playback to determine what sound texture statistics listeners rely upon for recognition

[276].
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Generating sequences

A parallel approach to synthesizing vocalizations is to generate vocal sequences from

symbolically labeled vocal elements. Synthetic song sequences can be used to understand

how animals process and represent temporal and sequential organization. For example, can

a songbird differentiate between sounds generated using different underlying models of song

syntax? Traditional approaches to song sequence generation rely upon the explicit, hand-crafted,

generation of artificial grammars for playback studies. By crafting artificial grammars that

differ in underlying structure, such as belonging to different classes of the Chomsky hierarchy

[201, 123, 140], playback studies can be used to determine whether animals can learn these

grammars. A number of challenges exist with artificial grammar learning studies, however. One

such challenge is the difficulty in crafting sequences that can exclusively be learned by inferring

the structure that generated them, for example, making it impossible for the animal to learn by

brute-force memorizing every sequence [123]. When using artificial grammars, computational

and modeling considerations aid in forming hypotheses about how generated grammars can be

used. In the context of the neuroethology of vocal communication, these cognitive models can be

related to physiological measures [472]. An additional challenge with artificial grammar learning

is constructing sequences that are structured in a similar way to natural and behaviorally relevant

signals to the animal. For example, artificial grammar studies usually rely on short sequences

modeled after human language syntax, rather than the animal’s own communication systems.

Because the task of generating vocal sequences is performed over symbolic representations of

syllables, generating vocal sequences can be performed using the same methods as in text or

musical note generation. These approaches can range from generating sequences using Markov

models of various orders, to explicitly modeling hierarchical organization in the signal generation

algorithm [366].
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1.8 Mapping vocal communication to perception, behavior,
and physiology
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Figure 1.7. An outline of mappings between perceptual, acoustic, and physiological signals. One
focus in sensory and motor neuroscience is to learn the relationships between signals, perception,
and physiology.

The methods discussed here provide a framework to develop a set of constrained spaces

from which to understand and model vocal behavior in relation to perception, production, and

physiology. Perceptual or relational vocal spaces, such as UMAP projections of spectrograms,

provide a low-dimensional space that can be used to infer structure in vocal repertoires. Likewise,

symbolic abstractions of vocal behavior to large corpora provides a categorical representation

in which vocal behavior is seen as sequential actions on those category sets. In both cases, the

methods provide a constrained behavioral representation for physiological analyses.

Brain-computer interfacing

One of the primary challenges facing the field of brain-computer interfacing is scaling up

from simple behavioral spaces like moving a cursor on a screen to complex behaviors [137]. A

clear advantage to the approaches discussed in Section 1.5 is that we can learn to bring complex

vocal behavioral spaces into a compressive low-dimensional behavior spaces, even without a
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prior model of the structure in that space. For example, Arneodo et al., [13] find that directly

predicting the acoustic structure of zebra finch song from neural data does not perform as well

as predicting the parameters of a low-dimensional biophysical model of song production. In

the many species in which we do not have access to a biophysical model of vocal production,

learned acoustic spaces may be a viable alternative. In contrast, the current state-of-the-art vocal

prostheses for speech bypass biophysical models, directly predicting sentences (i.e. symbolic

sequences) with the aid of language models (i.e. a sequence model) [306]. Such methods do not

capture important extra-linguistic information such as emotional tone and stress. In future work,

a clear pathway forward is to develop BCI models that can both capture symbolic organization

aided by sequential models, as well as within-symbol variability in the acoustic signal.

Vocal production

Songbirds as a model for systems neuroscience are perhaps best known for the role they

play in our understanding of vocal learning [100]. In addition to songbirds, rodent and non-

human primate vocal behavior are becoming increasingly prominant models in the neuroscience

of vocal production. In non-human primates, recent evidence has suggested some degree of

constrained vocal learning in some species [122]. In rodents, recent focus has been placed upon

variability and structure mouse in ultrasonic vocalizations (USVs) [345, 18, 176], singing mice

have emerged as a physiological model of turn-taking [325], and the cultural transmission of

vocal dialect has been observed in the naked mole rat [22]. In each of these cases, quantification

of how vocalizations vary as well as relationships between vocalizations (either within individual,

between conspecifics, or from tutor to pupil) is integral to understanding how we learn to

navigate vocal space. For example, Kollmorgen et al., [216] use nearest-neighbor graphs and

t-SNE projections to quantify and visualize the developmental trajectory of zebra finch song

during vocal learning. For each syllable, they compute a nearest-neighbors graph based metric

termed the ”neighborhood production time”, which quantifies the developmental time point

at which similar (neighboring) syllables were sung. For example, a syllable song on day 45
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might have 10 neighbors, sung on days between day 40 and 50, comprising its neighborhood

production times. Syllable renditions that are neighbors with predominantly future syllables

are deemed anticipations, while syllable repetitions that are neighbors with predominantly past

syllables are deemed regressions. They observe that day-by-day, zebra finch songs gradually

moves along a constant vocal learning trajectory, but anticipations and regressions differ in how

they are consolidated overnight.

The number of neurons we can simultaneously record from physiologically has increased

the dimensionality of neural datasets substantially over the past decade, making methods for

dimensionality reduction on neural signals such as spike trains increasingly necessary for

neural data analysis and opening the door to computational methods that directly link the latent

representations of behavioral and neural datasets. Population modeling approaches such as

LFADS (Latent Factor Analysis via Dynamical Systems; [333]) reduce large population spiking

datasets into low-dimensional trajectories, similar to the approaches discussed here with vocal

signals. In the case of LFADS, these embeddings are performed over single trials using a

recurrent autoencoder. One promising direction for computational neuroethology is learning the

relationship between latent behavioral states and latent physiological states. By developing tools

that allow us to learn the relationship between physiological and behavioral representations, we

hope to untangle how, for example, movements in behavioral space reflect changes in physiology,

and vice-versa. Singh Alvarado et al., [404] developed a joint encoding model in which they

used variational autoencoders to learn a joint latent representation of spectrograms of zebra finch

song, and corresponding ensemble neural activity of spiny neurons in songbird basal ganglia

(average calcium fluorescence of around 60 ROIs, or putative neurons, per bird). In a series of

experiments leading up to this joint mapping, Singh Alvarado et al. demonstrated that Area X

spiny neurons are involved in the regulation of vocal variability; exhibiting suppressed activity

during female-directed song and enhanced activity during practice. Using the joint vocal-neural

latent mapping, they were able to uncover the mapping between specific features of song and

variants present in neural ensemble activity. In Figure 1.7 we outline several similar maps
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between behavior, perception, and neural dynamics. Singh Alvarado et al.’s work exhibit that

one such latent map, a vocal-motor mapping between motor physiology and vocal behavior,

can uncover complex and detailed relationships that traditional methodology cannot. Similar

mappings between the physiology, perception, and behavior of sender-receiver dynamics (e.g.

Fig 1.7) are also well poised to benefit from emerging latent approaches.

The physiology of vocal syntax is another area poised to benefit from computational

ethology. One example is the role of the songbird premotor nucleus, HVC, in encoding song

syntax. Birdsong has a long history of being described sequentially in terms of low-order

Markovian transitions between song elements. HVC’s role in song syntax, until recently has

been described exclusively in terms of these low-order transition statistics [129]. In a recent

example, however, Cohen et al., [75] made use of an automated birdsong labeling paradigm and

high-order sequence model to observe ’hidden neural states’ encoding sequentially displaced

(i.e. high-order) transitions in the premotor nucleus HVC of canaries. To identify non-adjacent

dependencies in the song, they used a Prediction Suffix Tree [266], which can capture high-order

Markovian relationships in the song syntax. Prediction Suffix Trees have previously been used to

observe long-range dependencies up to the 7th order in canaries [266]. While birds were singing,

Cohen et al., used a miniature microscope to image neurons from HVC, a region involved in

the songbird vocal motor circuit. They observed that HVC ROIs were locked to individual

song-phrases and transitions, and that this phrase locking is modified by non-adjacent context,

displaced by several phrases and seconds. As more recent approaches give access to larger

datasets enabling the identification of longer-range dependencies in birdsong, it is currently not

clear whether we have yet found an upper bound on the sequential displacement of long-range

representations of vocal syntax in physiology.

Vocal perception

Similar to vocal production, latent and sequential models are promising avenues for better

understanding cognitive and physiological underpinnings of vocal perception. In songbirds,
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primates, and rodents, many foundational studies of auditory categorical perception, perceptual

decision making, and their underlying physiology rely upon either relatively simple stimuli such

as tones or complex stimuli like human speech [467, 374, 226, 227, 426]. Categorization in these

stimulus spaces are attractive because they are well-characterized and understood. Across species,

however, neural responses are often tied to complex and more behaviorally-relevant acoustic

phenomena such as recognizing and discriminating between conspecific vocalizations [254, 21].

When the acoustic features underlying vocal repertoires are simple and known, categorical

stimuli can be selected directly based upon those features. For example, Lachlan et al., [233]

manipulate a single dimension, the duration of swamp sparrow notes, to determine how notes are

categorically perceived in different sequential contexts. In speech, voice onset time (VOT) is a

similar single-dimension commonly used for categorical perception paradigms [248]. However,

it is rarely the case that categorical perception is driven by a single dimension. Thus building

stimuli in more complex feature spaces will be necessary to untangle the relationship between

vocal features, perception, and physiology. When biophysical models of vocal structure exist,

species relevant stimuli can be generated using biophysical parameters [14]. When the underlying

acoustical structure of a vocal repertoire is more complex and biophysical models of vocalizations

have not been defined, neural-network synthesized vocalizations are an attractive alternative. For

example, as discussed above, birdsong can be synthesized with neural networks for physiological

and perceptual playback studies to determine perceptual similarity between syllables or learn

categorical boundaries between song-morphs [472, 382, 430]. By systematically controlling the

signal space of a vocal repertoire, we can systematically explore how changes in that space relate

to changes in physiology.

Algorithmic approaches are similarly well poised to aid in our understanding of how

vocal sequences are maintained and represented. Sequence learning research in human and

non-human primates is largely dominated by artificial grammar learning (AGL) research, an

umbrella category that comprises several different forms of sequence learning ranging from

hierarchically nested tree structures to transitional probabilities [89]. Artificial grammar learning
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studies aim to determine what structures animals (and humans) are capable of learning, what

cognitive mechanisms underlie grammar induction, and what physiological systems underlie

those cognitive mechanisms. In the domain of primate sequence learning, neural pathways are

generally conserved between humans and non-human primates and involve the ventral regions

of cortex [461]. Determining an appropriate stimuli set is requisite for developing an AGL

paradigm. Latent representations of vocalizations can aid in choosing stimuli from a well-defined

stimulus space. For example, when choosing a stimulus set for an AnBn grammar, it is desirable

depending on the goal of the task to ensure that the constituent vocalizations comprising A and B

belong to equidistant or separate clusters in acoustic or perceptual spaces [472].

While artificial grammar learning has also played a prominent role in birdsong sequence

learning [427], the structure underlying an animal’s own vocal syntax provides an opportunity to

study the neural and cognitive underpinnings of a more ethologically-relevant complex sequential

structure. Despite the important role vocal syntax production has played in establishing birdsong

as a model in systems neuroscience, a surprising gap exists in our knowledge of the physiological

circuits underlying how syntactic information is recognized and sequentially integrated when

listening to song. Songbird vocal communication contains often very complex syntax that can

be structured over long timescales comprising often tens to hundreds of unique, stereotyped

vocal units [71]. Conspecifics pay attention to the structure of that song. Abe and Wantanabe [1]

developed a habituation/dishabituation paradigm with Bengalese finches alongside immediate

early gene (IEG) expression and lesioning experiments to explore the role of song nuclei on the

recognition of grammatical sequences. They found that IEG expression increased when presented

with non-conforming/nonpredictive strings in the nuclei LMAN, a basal ganglia output nuclei

characterized by recurrent loops that is also involved in vocal learning [39]. Abe and Wantenable

then lesioned LMAN and measured song discrimination with their habituation paradigm. They

found that discrimination was disturbed in birds where LMAN was lesioned, implicating LMAN

in the ability to discriminate syntactic song. How syntactic information is learned, integrated, and

maintained in LMAN and associated striatal regions of songbird brain are still open questions.
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In contrast to the auditory domain where little is known about syntactic integration, a

neural correlate for complex and abstract information integration, NCL, has been well established

and characterized in songbird vision with pigeons and corvids [160, 223]. Strong parallels exist

between NCL and the primate prefrontal cortex, which is involved in sequence learning. NCL

has variously been associated with rule learning [444], numerosity [451, 95], directed forgetting

[370, 290, 169], choice behavior [190], working memory [91, 364], sequence learning [170],

and reward learning. Anatomically and neurochemically NCL also exhibits strong parallels

to the primate prefrontal cortex. NCL is characterized by similar circuitry from auditory and

dopaminergic afferents, as well as multi-sensory projections [223, 450]. Surprisingly, however,

an auditory equivalent to the visual working-memory region in NCL has not been found, though

they have been observed in the multi-sensory audio-visual integration and association [296, 295].

Birdsong is well poised as a signal to be a model of vocal syntax perception, To establish this

model, however, it will be imperative to uncover the systems in songbird brain related to working

memory and temporal context integration in song. NCL appears to be a likely candidate for

processing syntactic vocal signals, though, as yet, this has not been found to be the case.

Although mouse USVs do not appear to contain temporal structure to the same extent as

songbirds, mouse USVs are temporally organized [62] and female mice also show preference for

more complex syllables and sequences [176], making mouse USVs another potential target for

the study of syntactic and sequential integration in vocal perception.

1.9 Discussion

This review covers emerging approaches in the computational neuroethology of vocal

communication enabling researchers to engage with large and diverse datasets of vocal signals

and to represent them in computationally tractable frameworks.

We started by discussing techniques to process and represent acoustic signals. We then

discussed how to parse complex vocal datasets into species, individuals, and discrete vocal
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elements. Next, we discussed how relational structure can be extracted from vocal signals, how

these signals can be clustered in learned latent spaces, and how these latent spaces capture

different aspects of the information contained within the underlying signals. We then discussed

how temporal structure can be inferred from vocal units, including emerging work on the

non-Markovian dynamics underlying vocal behavior. In the next section, we discussed how

vocalizations can be synthesized for use in playback experiments that allow an unprecedented

degree of control over non-linear and complex vocal feature spaces. Finally, we discussed how

these approaches are being applied to the field of neuroethology and emerging frameworks for

understanding vocal signals and their underlying physiology.

The methods discussed here provide a promising avenue for a broader, more diverse,

and larger-scale neuroethology of vocal communication, than the research practices that have

dominated the past several decades, and hold the promise of expanding both the breadth and

depth of our understanding. Instead of focusing on a small number of model species, new

computational techniques provide a framework for studying vocal behavior across a wide range

of animals.For example, research on vocal learning in songbirds has ignored the majority of

species, female birdsong, and most call types [255]. Likewise, because these new computational

methodologies can often deal with unstructured data, they enable us to expand beyond simplified,

isolated behaviors in controlled environments to more natural or naturalistic behavioral contexts

where dynamics involving multi-modal integration and multi-animal social interactions arise.

As we capture increasing levels of detail in behavior, our understanding of its sophistication

naturally follows. Already, these new computational framework have revealed deep structure

in the sequential organization of communication, where large-scale datasets of both symbolic

sequences, and latent projections that capture rendition-to-rendition variability, have enabled

quantitative analyses of rare (but perhaps meaningful) events, such as long-range syntactic

organization. Together, all of these approaches point toward a new framework, in which complex

and non-linear behavioral and physiological signals can be represented in compressive and

tractable spaces that can capture the complex dynamics and relationships in the increasingly rich
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datasets available to researchers.

As with any powerful tool, these techniques require careful consideration when put

into practice. Broadly, automation and machine learning in data analysis can be fraught with

unexpected complications and confounds that may be hard to spot. For example, automating the

labeling of large datasets of birdsong syllables can speed up the task of labeling by days, weeks,

or months, but can also leave the experimenter with less intuitive knowledge of the animal’s

vocal repertoire, resulting in a loss of domain knowledge. As we have noted elsewhere [384],

when domain knowledge is available it should be integrated with one computational approach.

Another potential pitfall (and a source of much needed research effort) is in understanding the

structure of the latent manifolds that are yielded in many of the described methods. In particular,

non-linear latent modeling techniques like UMAP or neural networks can capture complex

relationships in vocal data, but interpreting these projections requires an understanding of how

data are represented within the geometry of the latent space. For example, UMAP captures

primarily local structure in datasets that are present in nearest neighbor graphs, meaning that the

relative distances of vocal elements have no explicit relation to the data, as is the case in PCA for

example.

Attending to the cautions of computational abstraction, the approaches discussed in

this manuscript provide a framework from which to quantify vocal signals that promises to

yield important new insights into vocal behavior and neurobiology. These approaches enable

neuroethologists to project vocalizations onto low dimensional latent manifolds, visualize and

quantify the transitional structure and information decay of vocal syntax, and map vocal and

neural repertoires into shared neural spaces for functional representation and action. As the

richness of datasets grow to capture more of the complexities of behavior and physiology,

methods and frameworks for modeling and inferring structure in ethological data are increasingly

necessary for hypothesis formulation and testing. The methods and frameworks discussed in this

review parallel and supplement those in the broader field of computational neuroethology.
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Chapter 2

Finding, visualizing, and quantifying la-
tent structure across diverse animal vocal
repertoires

Abstract

Animals produce vocalizations that range in complexity from a single repeated call to

hundreds of unique vocal elements patterned in sequences unfolding over hours. Characterizing

complex vocalizations can require considerable effort and a deep intuition about each species’

vocal behavior. Even with a great deal of experience, human characterizations of animal

communication can be affected by human perceptual biases. We present a set of computational

methods for projecting animal vocalizations into low dimensional latent representational spaces

that are directly learned from the spectrograms of vocal signals. We apply these methods to

diverse datasets from over 20 species, including humans, bats, songbirds, mice, cetaceans, and

nonhuman primates. Latent projections uncover complex features of data in visually intuitive

and quantifiable ways, enabling high-powered comparative analyses of vocal acoustics. We

introduce methods for analyzing vocalizations as both discrete sequences and as continuous

latent variables. Each method can be used to disentangle complex spectro-temporal structure and

observe long-timescale organization in communication.
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2.1 Introduction

Vocal communication is a common social behavior among many species, in which

acoustic signals are transmitted from sender to receiver to convey information such as identity,

individual fitness, or the presence of danger. Across diverse fields, a set of shared research

questions seeks to uncover the structure and mechanism of vocal communication: What in-

formation is carried within signals? How are signals produced and perceived? How does the

communicative transmission of information affect fitness and reproductive success? Many

methods are available to address these questions quantitatively, most of which are founded on

underlying principles of abstraction and characterization of ’units’ in the vocal time series [200].

For example, segmentation of birdsong into temporally discrete elements followed by clustering

into discrete categories has played a crucial role in understanding syntactic structure in birdsong

[200, 32, 381, 194, 266, 71, 165, 220, 141].

The characterization and abstraction of vocal communication signals remains both an

art and a science. In a recent survey, Kershenbaum et. al. [200] outline four common steps

used in many analyses to abstract and describe vocal sequences: (1) the collection of data, (2)

segmentation of vocalizations into units, (3) characterization of sequences, and (4) identification

of meaning. A number of heuristics guide these steps, but it is largely up to the experimenter to

determine which heuristics to apply and how. This application typically requires expert-level

knowledge, which in turn can be difficult and time-consuming to acquire, and often unique to the

structure of each species’ vocal repertoire. For instance, what constitutes a ’unit’ of humpback

whale song? Do these units generalize to other species? Should they? When such intuitions

are available they should be considered, of course, but they are generally rare in comparison

to the wide range of communication signals observed naturally. As a result, communication

remains understudied in most of the thousands of vocally communicating species. Even in well-

documented model species, characterizations of vocalizations are often influenced by human

perceptual and cognitive biases [419, 437, 182, 200]. We explore a class of unsupervised,
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computational, machine learning techniques that avoid many of the foregoing limitations, and

provide an alternative method to characterize vocal communication signals. Machine learning

methods are designed to capture statistical patterns in complex datasets and have flourished

in many domains [239, 27, 27, 358, 24, 46, 24]. These techniques are therefore well suited to

quantitatively investigate complex statistical structure in vocal repertoires that otherwise rely

upon expert intuitions. In this paper, we demonstrate the utility of unsupervised latent models,

statistical models that learn latent (compressed) representations of complex data, in describing

animal communication.

2.1.1 Latent models of acoustic communication

Dimensionality reduction refers to the compression of high-dimensional data into a

smaller number of dimensions, while retaining the structure and variance present in the original

high-dimensional data. Each point in the high-dimensional input space can be projected into the

lower-dimensional ‘latent’ feature space, and dimensions of the latent space can be thought of

as features of the dataset. Animal vocalizations are good targets for dimensionality reduction.

They appear naturally as sound pressure waveforms with rich, multi-dimensional temporal and

spectral variations, but can generally be explained by lower-dimensional dynamics [344, 138, 15].

Dimensionality reduction, therefore, offers a way to infer a smaller set of latent dimensions (or

features) that can explain much of the variance in high-dimensional vocalizations.

The common practice of developing a set of basis-features on which vocalizations can

be quantitatively compared (also called Predefined Acoustic Features, or PAFs) is a form of

dimensionality reduction and comes standard in most animal vocalization analysis software

(e.g. Luscinia [234], Sound Analysis Pro [423, 424], BioSound [110], Avisoft [411], and Raven

[64]). Birdsong, for example, is often analyzed on the basis of features such as amplitude

envelope, Weiner entropy, spectral continuity, pitch, duration, and frequency modulation [423,

200]. Grouping elements of animal vocalizations (e.g. syllables of birdsong, mouse ultrasonic

vocalizations) into abstracted discrete categories is also a form of dimensionality reduction,
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where each category is a single orthogonal dimension. In machine learning parlance, the

process of determining the relevant features, or dimensions, of a particular dataset, is called

feature engineering. Engineered features are ideal for many analyses because they are human-

interpretable in models that describe the relative contribution of those features as explanatory

variables, for example explaining the contribution of the fundamental frequency of a coo call in

predicting caller identity in macaques [130]. As with other human-centric heuristics, however,

feature engineering has two caveats. First, the features selected by humans can be biased

by human perceptual systems, which are not necessarily ”tuned” for analyzing non-human

communication signals [419, 109]. Second, feature engineering typically requires significant

domain knowledge, which is time-consuming to acquire and difficult to generalize across species,

impairing cross-species comparisons.

An attractive alternative to feature engineering is to project animal vocalizations into

low-dimensional feature spaces that are determined directly from the structure of the data. Many

methods for data-driven dimensionality reduction are available. PCA, for example, projects data

onto a lower-dimensional surface that maximizes the variance of the projected data [102, 200],

while multidimensional scaling (MDS) projects data onto a lower-dimensional surface that

maximally preserves the pairwise distances between data points. Both PCA and MDS are

capable of learning manifolds that are linear or near-linear transformations of the original

high-dimensional data space [428].

More recently developed graph-based methods extend dimensionality reduction to infer

latent manifolds as non-linear transformations of the original high-dimensional space using ideas

from topology [428, 280, 260]. Like their linear predecessors, these non-linear dimensionality

reduction algorithms also try to find a low-dimensional manifold that captures variation in the

higher-dimensional input data, but the graph-based methods allow the manifold to be continuously

deformed, by for example stretching, twisting, and/or shrinking, in high dimensional space.

These algorithms work by building a topological representation of the data and then learning a

low-dimensional embedding that preserves the structure of the topological representation (Fig
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2.1). For example, while MDS learns a low-dimensional embedding that preserves the pairwise

distance between points in Euclidean space, ISOMAP [428], one of the original topological non-

linear dimensionality reduction algorithms, infers a graphical representation of the data and then

performs MDS on the pairwise distances between points within the graph (geodesics) rather than

in Euclidean space. These graph-based methods are often preferable to linear methods because

they capture more of the local structure of the data, but these benefits do have a cost. Whereas the

latent dimensions of PCA, for example, have a ready interpretation in terms of the variance in the

data, the ISOMAP dimensions have no specific meaning beyond separability [280]. In addition,

in practice, high-level (global) structure in the dataset, like the distances between clusters in

low-dimensional embeddings, can be less meaningful in graph-based dimensionality reduction

than in PCA or MDS, because current graph-based methods tend to local-notions of distance like

nearest neighbors to construct a graphical representation [454].

Treat data as points in a
high-dimensional space

Build a graph of the
relationships between points

Embed the points in a
low-dimensional space

Find an embedding that
preserves the structure of the graph

Figure 2.1. Graph-based dimensionality reduction. Current non-linear dimensionality reduction
algorithms like TSNE, UMAP, and ISOMAP work by building a graph representing the relation-
ships between high-dimensional data points, projecting those data points into a low-dimensional
space, and then finds and embedding that retains the structure of the graph. This figure is for
visualization, the spectrograms do not actually correspond to the points in the 3D space.

The utility of non-linear dimensionality reduction techniques are just now coming to

fruition in the study of animal communication, for example using t-distributed stochastic neigh-

borhood embedding (t-SNE; [260]) to describe the development of zebra finch song [215], using

Uniform Manifold Approximation and Projection (UMAP; [280]) to describe and infer categories

in birdsong [150, 381], or using deep neural networks to synthesize naturalistic acoustic stimuli

[382, 430]. Developments in non-linear representation learning have helped fuel the most recent
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advancements in machine learning, untangling statistical relationships in ways that provide

more explanatory power over data than traditional linear techniques [27, 239]. These advances

have proven important for understanding data in diverse fields including the life sciences (e.g.

[381, 29, 76, 215, 150, 24]), in part due to their utility in rapidly extracting complex features

from increasingly large and high-dimensional datasets.

In this paper, we describe a class of nonlinear latent models that learn complex feature-

spaces of vocalizations, requiring few a priori assumptions about the features that best describe a

species’ vocalizations. We show that these methods reveal informative, low-dimensional, feature-

spaces that enable the formulation and testing of hypotheses about animal communication. We

apply our method to diverse datasets consisting of over 20 species (Supporting information),

including humans, bats, songbirds, mice, cetaceans, and nonhuman primates. We introduce

methods for treating vocalizations both as sequences of temporally discrete elements such

as syllables, as is traditional in studying animal communication [200], as well as temporally

continuous trajectories, as is becoming increasingly common in representing neural sequences

[79]. Using both methods, we show that latent projections produce visually-intuitive and

quantifiable representations that capture complex acoustic features. We show comparatively

that the spectrotemporal characteristics of vocal units vary from species to species in how

distributionally discrete they are and discuss the relative utility of different ways to represent

different communicative signals.

2.2 Results

2.2.1 Dimensionality reduction

The current state-of-the-art graph-based manifold learning algorithms are t-SNE [260]

and UMAP [280]. Like ISOMAP, t-SNE and UMAP first build a topological (graphical)

representation of the data, and then project that graph into a lower-dimensional embedding,

preserving as much of the topological structure of the graph as possible. Both embedding
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methods are unsupervised, meaning they do not require labeled data. To visually compare the

graph-based dimensionality reduction algorithms UMAP and t-SNE to the more classical linear

methods PCA and MDS, we projected spectrograms of a dataset of Egyptian fruit bat infant

isolation calls from 12 individuals into 2-dimensional PCA, MDS, t-SNE, and UMAP (Fig 2.2).

Broadly, we can see that PCA and MDS projections are more diffuse (Fig 2.2A,B), while t-SNE

and UMAP capture much more of the local similarity structure across the dataset, tightly packing

together calls from the same individuals (Fig 2.2C,D).

Throughout this manuscript, we chose to use UMAP over t-SNE because UMAP has been

shown to preserve more global structure, decrease computation time, and effectively produce

more meaningful data representations across a number of datasets within the natural sciences

(e.g. [24, 381, 150, 280]).

Both t-SNE and UMAP are underlied by functionally similar steps: (1) construct a

probabilistically weighted graph and (2) embed the graph in a low-dimensional embedding space

(see Fig 2.1). To build a probabilistically weighted graph, UMAP and t-SNE first build a nearest-

neighbor graph of the high-dimensional data using some distance metric (e.g. the Euclidean

distance between spectrograms). They then compute a probability distribution over the edges

of that graph (pairs of nearest neighbors), assigning higher weights to closer pairs, and lower

weights to more distant pairs. Embedding that graph in lower-dimensional space is then simply a

graph-layout problem. An embedding is first initialized (e.g. using PCA or a spectral embedding

of the graph). UMAP and t-SNE then compute the probabilities over the relationships between

projections in the embedding space, again where closer pairs of elements are assigned a higher

probability and more distant pairs are assigned a lower probability. Using gradient-descent, the

embeddings are then optimized to minimize the difference between the probability distribution

computed from the nearest-neighbor graph and the probability distribution in the embedding

space.

UMAP and t-SNE differ in how these graphs are constructed and how embeddings are

optimized. UMAP, in particular, assumes that the high-dimensional space in which the data
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MDS

Figure 2.2. Comparison between dimensionality reduction and manifold learning algorithms.
Isolation calls from 12 juvenile Egyptian fruit bats, where spectrograms of vocalizations are
projected into two dimensions in (A) PCA, (B) MDS, (C) t-SNE, and (D) UMAP. In each panel,
each point in the scatterplot corresponds to a single isolation call. The color of each point
corresponds to the ID of the caller. The frame of each panel is a spectrogram of an example
syllable, pointing to where that syllable lies in the projection.

lives is warped, such that data are uniformly distributed on a non-linear manifold in the original

dataspace. UMAP’s construction of the graphical representation of the data uses concepts from

topology, so that the edges of the graph (the connections between data points) are probabilistically

weighted by distance on the uniform manifold. The embeddings are then found by minimizing

the cross-entropy between the graph and a probability distribution defined over the relationships
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between embeddings. In other words, an embedding is learned that tries to preserve as much of

the topological structure of the original graph as possible.

UMAP has several parameters for constructing its graph and embedding it in a low-

dimensional space. The four primary UMAP parameters are n neighbors which determines

how many neighbors (nearby data points) are used in constructing the nearest-neighbor graph,

min dist which determines how spread apart connected embedding are allowed to be, n -

components which is the dimensionality of the embedding space, and metric which defines

the distance metric (e.g. Euclidean, cosine) that is used to define distances between points in

the high-dimensional dataspace. We use the default parameters for each, except when otherwise

noted.

2.2.2 Choosing features to represent vocalizations

Choosing the best features to represent vocal data is difficult without significant do-

main knowledge. In some species, the features underlying behaviorally-relevant variability in

vocalizations are well documented and understood. When such information about a species’

vocal repertoire is known, those features can and should be used to make comparisons between

vocalizations within species. When analyzing vocalizations across species or within species

whose vocal repertoires are less well understood, choosing features to represent vocalizations is

more difficult: features that capture only a subset of the true behaviorally relevant variance can

bias downstream analyses in unforeseen ways.

Two methods for choosing feature-sets are commonly used by experimenters when

the features underlying vocal data are unknown: (1) extract common descriptive statistics of

vocalizations, sometimes called Predefined Acoustical Features (PAFs; e.g. mean fundamental

frequency, syllable length, spectral entropy) and make comparisons on the basis of PAFs, or (2)

make comparisons based upon time-frequency representations of the data (i.e. spectrograms)

where the magnitude of each time-frequency component in the spectrogram is treated as an

independent feature (or dimension) of the vocalization.
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Figure 2.3. Comparison between dimensionality reduction on spectrograms versus computed
features of syllables. Each plot shows 20 syllables of Cassin’s vireo song. (A) UMAP projections
of 18 features (see Supporting information) of syllables generated using BioSound. (B) UMAP
applied to spectrograms of syllables. (E) UMAP of spectrograms where color is the syllable’s
average fundamental frequency (F) The same as (E) where pitch saliency of each syllable, which
corresponds to the relative size of the first auto-correlation peak represents color.
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To compare and visualize the structure captured by both PAF and spectrogram repre-

sentations of vocalizations, we used a subset of the 20 most frequent syllable-types from a

dataset of Cassin’s vireo song recorded in the Sierra Nevada Mountains [165, 19]. We computed

both spectrographic representations of syllables as well as a set of 18 temporal, spectral, and

fundamental characteristics (Supporting information) over each syllable using the BioSound

python package [110]. We then projected both the spectral representation as well as the PAFs into

2D UMAP feature spaces (Fig Comparison between dimensionality reduction on spectrograms

versus computed features of syllables A,B). To quantify the difference in how well clustered

the different data representations are, we compare the silhouette score (Eq. 2.4; [373]) of each

representation. The silhouette score is a measure of how well a dataset is clustered relative to a

set of known category labels (e.g. syllable label, species identity). The silhouette score is the

mean silhouette coefficient across all of the samples in a dataset, where the silhouette coefficient

measures how distant each point is to points in its own category, relative to its distance from

the nearest point in another category. It is therefore taken as a measure of how well clustered

together elements are that belong to the same category. Silhouette scores range from -1 to 1, with

1 being more clustered.

Overall, the UMAP projections significantly increase the clusterability of syllables in the

Cassin’s vireo dataset. The UMAP representations of both the PAF and the spectrogram data

(Fig 2.3A,B) are more clustered than either PAFs or spectrograms alone. The silhouette score of

PAFs (0.054) is significantly lower than that for the UMAP projections of PAFs (0.092; H(2) =

632; p ¡ 10-10; Fig 2.3A), and the silhouette score of spectrograms (0.252) is significantly lower

than that of the UMAP projections of spectrograms (0.772; H(2) = 37868; p ¡ 10-10; Fig 2.3B). In

addition, comparing between features, the UMAP projections of spectrograms yields more clearly

discriminable clusters than UMAP projections of the PAFs (H(2) = 37868; p ¡ 10-10). All the

silhouette scores are significantly better than chance (for each, H(2) ¿ 500; p ¡ 10-10; see methods).

Thus, for this dataset, UMAP projections yield highly clusterable representations of the data

points, and UMAP projections of spectrograms are more clustered than UMAP projections of
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PAFs. One should not infer from this, however, that spectrographic representations necessarily

capture more structure than PAFs in all cases. For zebra finch vocalizations, PAFs provide more

information about vocalization types than spectrograms [109], and in other datasets, smaller basis

sets of acoustic features can account for nearly all the dynamics of a vocal element (e.g. [70]).

Even when spectrographic representations are more clearly clusterable than PAFs, knowing how

explicit features of data (e.g. fundamental frequency) are related to variability can be more useful

than being able to capture variability in the feature space without an intuitive understanding of

what those features represent. These different representations may capture different components

of the signals. To highlight this, we show how two PAFs (Mean Fundamental Frequency and

Pitch Saliency) vary within spectrographic UMAP clusters (Fig 2.3C,D), by overlaying the

color-coded PAFs onto the UMAP projections of the spectrographic representations from Fig

2.3B). The relationships between PAFs and UMAP spectrogram projections exemplifies the

variability of different PAFs within clusters, as well as the non-linear relationships learned by

UMAP projections. Additional PAFs overlaid on UMAP projections are shown in Supporting

information.

2.2.3 Discrete latent projections of animal vocalizations

To explore the broad utility of latent models in capturing features of vocal repertoires, we

analyzed nineteen datasets consisting of 400 hours of vocalizations and over 3,000,000 discrete

vocal units from 29 unique species (Supporting information). Each vocalization dataset was

temporally segmented into discrete units (e.g. syllables, notes), either based upon segmentation

boundaries provided by the dataset (where available), or using a novel dynamic-thresholding

segmentation algorithm that segments syllables of vocalizations between detected pauses in the

vocal stream (See Segmentation). Each dataset was chosen because it contains large repertoires

of vocalizations from relatively acoustically isolated individuals that can be cleanly separated

into temporally-discrete vocal units. With each temporally discrete vocal unit we computed

a spectrographic representation (Supporting information; See Spectrogramming). We then
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projected the spectrograms into latent feature spaces using UMAP (Figs 2.4, 2.5, 2.7, 2.8).

From these latent feature spaces, we analyzed datasets for classic vocal features of animal

communication signals, speech features, stereotypy/clusterability, and sequential organization.

Vocal features

Latent non-linear projections often untangle complex features of data in human inter-

pretable ways. For example, the latent spaces of some neural networks linearize the presence

of a beard in an image of a face without being trained on beards in any explicit way [386, 358].

Complex features of vocalizations are similarly captured in intuitive ways in latent projections

[381, 150, 382, 430]. Depending on the organization of the dataset projected into a latent space,

these features can extend over biologically or psychologically relevant scales. Accordingly,

we used our latent models to look at spectro-temporal structure within the vocal repertoires of

individual’s, and across individuals, populations, and phylogeny. These latent projections capture

a range of complex features, including individual identity (Fig 2.4), species identity (Fig 2.5A,B),

linguistic features (Fig 2.7, Supporting information), syllabic categories (Figs 2.12, 2.10, 2.8,

2.13), and geographical variability (Fig 2.5C). We discuss each of these complex features in

more detail below.

Individual identity

Many species produce caller-specific vocalizations that facilitate the identification of

individuals when other sensory cues, such as sight, are not available. The features of vocalizations

facilitating individual identification vary between species. We projected identity call datasets

(i.e., sets of calls thought to carry individual identity information) from four different species into

UMAP latent spaces (one per species) to observe whether individual identity falls out naturally

within the latent space.

We looked at four datasets where both caller and call-type are available. Caller identity

is evident in latent projections of all four datasets (Fig 2.4). The first dataset is comprised

of macaque coo calls, where identity information is thought to be distributed across multiple
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Figure 2.4. Individual identity is captured in projections for some datasets. Each plot shows
vocal elements discretized, spectrogrammed, and then embedded into a 2D UMAP space, where
each point in the scatterplot represents a single element (e.g. syllable of birdsong). Scatterplots
are colored by individual identity. The borders around each plot are example spectrograms
pointing toward different regions of the scatterplot. (A) Rhesus macaque coo calls. (B) Zebra
finch distance calls. (C) Fruit bat infant isolation calls. (D) Marmoset phee calls.
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features including fundamental frequency, duration, and Weiner entropy [130]. Indeed, the

latent projection of coo calls clustered tightly by individual identity (silhouette score = 0.378;

Fig 2.4A). The same is true for zebra finch distance calls [109] (silhouette score = 0.615; Fig

2.4B). Egyptian fruit bat pup isolation calls, which in other bat species are discriminable by

adult females [36, 113, 36] clearly show regions of UMAP space densely occupied by single

individual’s vocalizations, but no clear clusters (silhouette score = -0.078; Fig 2.4C). In the

marmoset phee call dataset [288] it is perhaps interesting that given the range of potential features

thought to carry individual identity [130], phee calls appear to lie along a single continuum

where each individual’s calls occupy overlapping regions of the continuum (silhouette score =

-0.062; Fig 2.4D). The silhouette score for each species was well above chance (H(2) ¿ 20, p ¡

10-5). These patterns predict that some calls, such as macaque coo calls, would be more easily

discriminable by conspecifics than other calls, such as marmoset phee calls.

The latent projections of these datasets demonstrate that individual identity can be

obtained from all these vocalizations. Importantly, this information is available without a

priori knowledge of specific spectro-temporal features, which is likely also the case for the

animals attempting to use it. Because no caller identity information is used in learning the

latent projections, the emergence of this information indicates that the similarity of within-caller

vocalizations contains enough statistical power to overcome variability between callers. This

within-caller structure likely facilitates conspecific learning of individual identity without a

priori expectations for the distribution of relevant features [26], in the same way that developing

sensory systems adapt to natural environmental statistics [33].

Cross species comparisons

Classical comparative studies of vocalizations across species rely on experience with

multiple species’ vocal repertoires. This constrains comparisons to those species whose vocaliza-

tions are understood in similar feature spaces, or forces the choice of common feature spaces

that may obscure relevant variation differently in different species. Because latent models learn
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arbitrary complex features of datasets, they can yield less biased comparisons between vocal

repertoires where the relevant axes are unknown, and where the surface structures are either very

different, for example canary and starling song, or very similar, like the echolocation clicks of

two closely related beaked whales.

Figure 2.5. Comparing species with latent projections. (A) Calls from eleven species of North
American birds are projected into the same UMAP latent space. (B) Cuvier’s and Gervais’s
beaked whale echolocation clicks are projected into UMAP latent space and fall into two discrete
clusters.

To explore how well latent projections capture vocal repertoire variation across species,

we projected a dataset containing monosyllabic vocalizations [470] from eleven different species

of North American birds into UMAP latent space (silhouette score = 0.377), well above chance

(H(2) = 1396, p ¡ 10-10). Similar ”calls”, like those from the American crow caw and great blue

heron roh are closer together in latent space, while more distinct vocalizations, like chipping

sparrow notes, are further apart (Fig 2.5A). Latent projections like this have the potential power to

enable comparisons across broad phylogenies without requiring decisions about which acoustic

features to compare.

At the other extreme is the common challenge in bioacoustics research to differentiate

between species with very similar vocal repertoires. For example, Cuvier’s and Gervais’ beaked

58



whales, two sympatric species recorded in the Gulf of Mexico, have echolocation clicks with

highly overlapping power spectra that are generally differentiated using supervised learning

approaches (c.f. [172, 127]). We projected a dataset containing Cuvier’s and Gervais’ beaked

whale echolocation clicks into UMAP latent space. Species-identity again falls out nicely, with

clicks assorting into distinct clusters that correspond to species (Fig 2.5B). The silhouette score

of UMAP on the spectrogram (shown in Fig 2.5B) was 0.401, higher than the silhouette score

of UMAP on the power spectra (0.171; H(2) = 2411; p ¡ 10-10) which is in turn higher than

the silhouette score of the power spectra alone (0.066; H(2) = 769; p ¡ 10-10). Each silhouette

score is also well above chance (H(2) ¿ 500; p ¡ 10-10). The utility of an approach such as

UMAP to clustering echolocation clicks is perhaps unsurprising; recent work [127] has shown

that graph-based methods are successful for representing and clustering echolocation clicks of a

larger dataset of cetacean echolocation clicks.

Population geography

Some vocal learning species produce different vocal repertoires (regiolects) across popu-

lations occupying different geographic regions. Differences in regiolects between populations

are borne out in the categorical perception of notes [233, 315, 350], much the same as cross-

linguistic differences in the categorical perception of phonemes in human speech [181]. To

compare vocalizations across geographical populations in the swamp sparrow, which produces

regionally distinct trill-like songs [234], we projected individual notes into a UMAP latent space.

Although the macro-structure of clusters suggest common note-types across multiple populations,

most of the larger clusters show multiple clear sub-regions that are tied to vocal differences

between geographical populations (Fig 2.6). We further explore how these projections of notes

relate to vocal clusters in traditional feature spaces later in the manuscript.

Phonological features

The sound segments that make up spoken human language can be described by distinctive

phonological features that are grouped according to articulation place and manner, glottal state,
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Figure 2.6. Comparing notes of swamp sparrow song across different geographic populations.
(A) Notes of swamp sparrow song from six different geographical populations projected into
a 2D UMAP feature space. (B) The same dataset from (A) projected into a 2D UMAP feature
space where the parameter min dist is set at 0.25 to visualize more spread in the projections.

and vowel space. A natural way to look more closely at variation in phoneme production is

to look at variation between phonemes that comprise the same phonological features. As an

example, we projected sets of consonants that shared individual phonological features into

UMAP latent space (Figs 2.7, Supporting information). In most cases, individual phonemes

tended to project to distinct regions of latent space based upon phonetic category, and consistent

with their perceptual categorization. At the same time, we note that latent projections vary

smoothly from one category to the next, rather than falling into discrete clusters. This provides

a framework that could be used in future work to characterize the distributional properties of

speech sounds in an unbiased manner. Likewise, it would be interesting to contrast projections

of phonemes from multiple languages, in a similar manner as the swamp sparrow (Fig 2.6), to

visualize and characterize variation in phonetic categories across languages [181].

Variation in discrete distributions and stereotypy

In species as phylogenetically diverse as songbirds and rock hyraxes, analyzing the

sequential organization of communication relies upon similar methods of segmentation and
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Figure 2.7. Latent projections of consonants. Each plot shows a different set of consonants
grouped by phonetic features. The average spectrogram for each consonant is shown to the right
of each plot.
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Figure 2.8. UMAP projections of vocal repertoires across diverse species.
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categorization of discrete vocal elements [200]. In species such as the Bengalese finch, where

syllables are highly stereotyped, clustering syllables into discrete categories is a natural way

to abstract song. The utility of clustering song elements in other species, however, is more

contentious because discrete category boundaries are not as easily discerned [437, 419, 150, 171].

To compare broad structural characteristics across a wide sampling of species, we

projected vocalizations from 14 datasets of different species vocalizations, ranging across

songbirds, cetaceans, primates, and rodents into UMAP space (Fig 2.8). To do so, we sampled

from a diverse range of datasets, each of which was recorded from a different species in a

different setting (Supporting information). Some datasets were recorded from single isolated

individuals in a sound isolated chamber in a laboratory setting, while others were recorded from

large numbers of freely behaving individuals in the wild. In addition, the units of vocalization

from each dataset are variable. We used the smallest units of each vocalization that could be

easily segmented, for example, syllables, notes, and phonemes. Thus, this comparison across

species is not well-controlled. Still, such a dataset enabling a broad comparison in a well-

controlled manner does not exist. Latent projections of such diverse recordings, while limited

in a number of ways, have the potential to provide a glimpse into broad structure into vocal

repertoires, yielding novel insights into broad trends in animal communication. For each dataset,

we computed spectrograms of isolated elements, and projected those spectrograms into UMAP

space (Fig 2.8). Where putative element labels are available, we plot them in color over each

dataset.

Visually inspecting the latent projections of vocalizations reveals appreciable variability

in how the repertoires of different species cluster in latent space. For example, mouse USVs

appear as a single cluster (Fig 2.8I), while zebra finch syllables appear as multiple discrete

clusters (Fig 2.8M,F), and gibbon song sits somewhere in between (Fig 2.8L). This suggests that

the spectro-temporal acoustic diversity of vocal repertoires fall along a continuum ranging from

unclustered and uni-modal to highly clustered.

We quantified this effect using a linear mixed-effects model comparing the Hopkin’s
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statistic across UMAP projections of vocalizations from single individuals (n = 289), controlling

for the number of vocalizations produced by each individual as well as random variability in

clusterability at the level of species. We included each of the species in Fig 2.8 except giant otter

and gibbon vocalizations, as individual identity was not available for those datasets. We find that

songbird vocalizations are significantly more clustered than mammalian vocalizations (χ2(1) =

20, p ¡ 10-5; See Methods).

The stereotypy of songbird (and other avian) vocal elements is well documented [460,

408] and at least in zebra finches is related to the high temporal precision in the singing-

related neural activity of vocal-motor brain regions [161, 117, 65]. The observed differences

in stereotypy between songbirds and mammals should be interpreted with consideration of the

broad variability underlying the datasets, however.

Clustering vocal element categories

UMAP projections of birdsongs largely fall more neatly into discriminable clusters (Fig

2.8). If clusters in latent space are highly similar to experimenter-labeled element categories,

unsupervised latent clustering could provide an automated and less time-intensive alternative

to hand-labeling elements of vocalizations. To examine this, we compared how well clusters

in latent space correspond to experimenter-labeled categories in three human-labeled datasets:

two separate Bengalese finch datasets [322, 219], and one Cassin’s vireo dataset [165]. We

compared four different labeling techniques: a hierarchical density-based clustering algorithm

(HDBSCAN; [58, 278]) applied to UMAP projections of spectrograms, HDBSCAN applied to

PCA projections of spectrograms1, k-means [338] clustering applied over UMAP, and k-means

clustering applied over spectrograms (Fig 2.10; Table 2.1).

Like the contrast between MDS and UMAP, the k-means clustering algorithm works

directly on the Euclidean distances between data points, whereas HDBSCAN operates on a

graph-based transform of the input data (Fig 2.9). Briefly, HDBSCAN first defines a ’mutual
1HDBSCAN is applied to 100-dimensional PCA projections rather than spectrograms directly because HDB-

SCAN does not perform well in high-dimensional spaces [278].
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Figure 2.9. HDBSCAN density-based clustering. Clusters are found by generating a graphical
representation of data, and then clustering on the graph. The data shown in this figure are from
the latent projections from Fig 2.1. Notably, the three clusters in Fig 1. are clustered into only
two clusters using HDBSCAN, exhibiting a potential shortcoming of the HDBSCAN algorithm.
The grey colormap in the condensed trees represent the number of points in the branch of the
tree. Λ is a value used to compute the persistence of clusters in the condensed trees.

reachability’ distance between elements, a measure of the distance between points in the dataset

weighted by the local sparsity/density of each point (measured as the distance to a kth nearest

neighbor). HDBSCAN then builds a graph, where each edge between vertices (points in the

dataset) is the mutual reachability between those points, and then prunes the edges to construct

a minimum spanning tree (a graph containing the minimum set of edges needed to connect all

of the vertices). The minimum spanning tree is converted into a hierarchy of clusters of points

sorted by mutual reachability distance, and then condensed iteratively into a smaller hierarchy of

putative clusters. Finally, clusters are chosen as those that persist and are stable over the greatest

range in the hierarchy.

To make the k-means algorithm more competitive with HDBSCAN, we set the number

of clusters in k-means equal to the number of clusters in the hand-clustered dataset, while

HDBSCAN was not parameterized at all. We computed the similarity between hand and

algorithmically labeled datasets using three related metrics, homogeneity, completeness, and

V-measure ([372]; see Methods section). Homogeneity measures the extent to which algorithmic

clusters fall into the same hand-labeled syllable category while completeness measures the

extent to which hand-labeled categories belong to the same algorithmic cluster. V-measure is

the harmonic mean between the homogeneity and completeness, which is equal to the mutual

information between the algorithmic clusters and the hand-labels, normalized by the mean of
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their marginal entropy [372].

Table 2.1. Cluster similarity to hand labels for two Bengalese finch and one Cassin’s vireo
dataset. Four clustering methods were used: (1) KMeans on spectrograms (2) KMeans on UMAP
projections (3) HDBSCAN on first 100 principal components of spectrograms (4) HDBSCAN
clustering of UMAP projections. With KMeans ’K’ was set to the correct number of clusters
to make it more competitive with HDBSCAN clustering. Standard deviation across individual
birds is shown for the finch datasets. Best performing method for each metric is bolded.

Homogeneity Completeness V-measure
B. Finch (Koumura)
KMeans 0.911±0.044 0.85±0.064 0.879±0.051
KMeans/UMAP 0.842±0.116 0.796±0.145 0.817±0.132
HDBSCAN/PCA 0.968±0.036 0.86±0.14 0.902±0.086
HDBSCAN/UMAP 0.99±0.006 0.74±0.122 0.841±0.088
B. Finch (Nicholson)
KMeans 0.954±0.024 0.707±0.101 0.809±0.074
KMeans/UMAP 0.967±0.018 0.688±0.098 0.801±0.072
HDBSCAN/PCA 0.901±0.067 0.837±0.027 0.866±0.034
HDBSCAN/UMAP 0.963±0.022 0.855±0.076 0.903±0.042
Cassin’s vireo
KMeans 0.894 0.808 0.849
KMeans/UMAP 0.928 0.829 0.875
HDBSCAN/PCA 0.849 0.906 0.877
HDBSCAN/UMAP 0.936 0.94 0.938

For all three datasets, the HDBSCAN clusters most closely match those of humans

as is indicated by the V-measure (Table 2.1). In both the Nicholson [322] Bengalese finch

dataset and the Cassin’s vireo dataset, the closest match to human clustering is achieved by

HDBSCAN on the UMAP projections. In the Koumura dataset [219], HDBSCAN on the PCA

projections gives the closest match to human clustering, where homogeneity is higher with

HDBSCAN/UMAP and completeness is higher with HDBSCAN/PCA. A high homogeneity and

low completeness score indicates that algorithmic clusters tend to fall into the same hand-labeled

category, but multiple sub-clusters are found within each hand labeled category. As we show

in Abstracting and visualizing sequential organization, this difference between algorithmically

found labels often reflects real structure in the dataset that human labeling ignores. More broadly,

our clustering results show that latent projections facilitate unsupervised clustering of vocal
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Figure 2.10. Clustered UMAP projections of Cassin’s vireo syllable spectrograms. Panels
(A-D) show the same scatterplot, where each point corresponds to a single syllable spectrogram
projected into two UMAP dimensions. Points are colored by their hand-labeled categories (A),
which generally fall into discrete clusters in UMAP space. Remaining panels show the same
data colored according to cluster labels produced by (B) HDBSCAN over PCA projections
(100 dimensions), (C) HDBSCAN on UMAP projections, and (D) k-means directly on syllable
spectrograms.
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elements into human-like syllable categories better than spectrographic representations alone. At

the same time, unsupervised latent clustering is not strictly equivalent to hand labeling, and the

two methods may yield different results.

Comparing latent features and clusters to known feature spaces

When the features underlying behaviorally relevant vocal variability in a species are

known a priori, latent feature spaces learned directly from the data may be unnecessary to infer

the underlying structure of a vocal repertoire. Although sets of behaviorally relevant features

are not known for most species, Swamp sparrows are an exception, as their vocalizations have a

relatively long history of careful characterization [267, 233]. Swamp sparrows produce songs

that are hierarchically organized into syllables made up of shorter notes, which in turn can be

well-described by only a few simple features. This set of known a priori features provides a

useful comparison for the latent features learned by UMAP.

We compared the features learned by UMAP with the known feature-space of swamp

sparrow notes using a dataset of songs recorded in the wild. In Fig 2.11 we show UMAP and

known-feature spaces for notes from a population of swamp sparrows recorded in Conneaut

Marsh, Pennsylvania. We compare the spectrogram of each note projected into UMAP space to

the same note projected onto three features known to describe much of the behaviorally relevant

variance in swamp sparrow song [233, 267]: peak frequency at the beginning and ending of the

note (Fig 2.11A), note length (Fig 2.11B), and the overall change in peak frequency (Fig 2.11B).

We then clustered the UMAP projections (Fig 2.11C) using HDBSCAN and the known feature

space using a Gaussian Mixture Model (GMM; see Clustering vocalizations). For comparison,

we also visualize the known features projected into UMAP (Fig 2.11D).

HDBSCAN found 12 unique clusters, as opposed to the normal 6-10 note categories

typically used to define swamp sparrow song [233]. The GMM was set to find 10 clusters, as

was used in the same dataset in prior work [233]. Between the GMM and HDBSCAN clustering,

we find a degree of overlap well above chance (homogeneity = 0.633; completeness = 0.715,
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Figure 2.11. Comparing latent and known features in swamp sparrow song. (A) A scatterplot
of the start and end peak frequencies of the notes produced by birds recorded in Conneaut
Marsh, PA. The left panel shows notes colored by the position of each note in the syllable (red =
first, blue = second, green = third). The center panel shows the sample scatterplot colored by a
Gaussian Mixture Model labels (fit to the start and end peak frequencies and the note duration).
The right panel shows the scatterplot colored by HDBSCAN labels over a UMAP projection
of the spectrograms of notes. (B) The same notes, plotting the change in peak frequency over
the note against the note’s duration. (C) The same notes plotted as a UMAP projection over
note-spectrograms. (D) The features from (A) and (B) projected together into a 2D UMAP space.
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V-measure = 0.672; chance V-measure = 0.001; bootstrapped p ¡ 10-4; Fig 2.11A,B). Using the

position of the note within each syllable as a common reference (most syllables were comprised

of 3 or fewer notes), we compared the overlap between the two clustering methods. Both labeling

schemes were similarly related to the position of notes within a syllable (e.g. first, second, third;

v-measure GMM = 0.162; V-measure HDBSCAN = 0.144), and both were well above chance

(bootstrapped p ¡ 10-4). We repeated the same analysis on a second population of swamp sparrow

recorded in Hudson Valley, NY (Supporting information), and found a similar overlap between

the two clustering schemes (homogeneity = 0.643; completeness = 0.815, V-measure = 0.719;

chance V-measure = 0.002; bootstrapped p ¡ 10-4) and a similar level of overlap with the position

of notes (V-measure GMM = 0.133; V-measure HDBSCAN = 0.144).

Given this pattern of results, it is unlikely that one would want to substitute the unsu-

pervised latent features for the known features when trying to describe swamp sparrow song

in the most efficient low-dimensional space. Still, both feature sets yield surprisingly similar

compressed representations. Thus, in the absence of known features, the unsupervised methods

can provide either (1) a useful starting point for more refined analyses to discover ”known” fea-

tures, or (2) a functional analysis space that likely captures much (but not all) of the behaviorally

relevant signal variation.

Abstracting and visualizing sequential organization

As acoustic signals, animal vocalizations have an inherent temporal structure that can

extend across time scales from short easily discretized elements such as notes, to longer duration

syllables, phrases, songs, bouts, etc. The latent projection methods described above can be

used to abstract corpora of song elements well-suited to temporal pattern analyses [381], and to

make more direct measures of continuous vocalization time series. Moreover, their automaticity

enables the high throughput necessary to satisfy intensive data requirements for most quantitative

sequence models.
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Figure 2.12. Latent visualizations of Bengalese finch song sequences. (A) Syllables of Bengalese
finch songs from one individual are projected into 2D UMAP latent space and clustered using
HDBSCAN. (B) Transitions between elements of song are visualized as line segments, where
the color of the line segment represents its position within a bout. (C) The syllable categories and
transitions in (A) and (B) can be abstracted to transition probabilities between syllable categories,
as in a Markov model. (D) An example vocalization from the same individual, with syllable
clusters from (A) shown above each syllable. (E) A series of song bouts. Each row is one bout,
showing overlapping structure in syllable sequences. Bouts are sorted by similarity to help show
structure in song.

In practice, modeling sequential organization can be applied to any discrete dataset

of vocal elements, whether labeled by hand or algorithmically. Latent projections of vocal

elements have the added benefit of allowing visualization of the sequential organization that can

be compared to abstracted models. As an example of this, we derived a corpus of symbolically

segmented vocalizations from a dataset of Bengalese finch song using latent projections and
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clustering (Fig 2.12). Bengalese finch song bouts comprise a small number (˜5-15) of highly

stereotyped syllables produced in well-defined temporal sequences a few dozen syllables long

[194]. We first projected syllables from a single Bengalese finch into UMAP latent space, then

visualized transitions between vocal elements in latent space as line segments between points

(Fig 2.12B), revealing highly regular patterns. To abstract this organization to a grammatical

model, we clustered latent projections into discrete categories using HDBSCAN. Each bout is

then treated as a sequence of symbolically labeled syllables (e.g. B → B →C → A; Fig 2.12D)

and the entire dataset rendered as a corpus of transcribed song (Fig 2.12E). Using the transcribed

corpus, one can abstract statistical and grammatical models of song, such as the Markov model

shown in Fig 2.12C or the information-theoretic analysis in Sainburg et al., [381].

Sequential organization is tied to labeling method

As noted previously, hand labels and latent cluster labels of birdsong syllables generally

overlap (e.g. Fig 2.10), but may disagree for a sizable minority of syllables (Table 2.1). Similarly,

in mice, different algorithmic methods for abstracting and transcribing mouse vocal units (USVs)

can result in substantial differences between syntactic descriptions of sequential organization

[171]. We were interested in the differences between the abstracted sequential organization

of birdsong when syllables were labeled by hand versus clustered in latent space. Because

we have Bengalese finch datasets that are hand transcribed from two different research groups

[322, 220], these datasets are ideal for comparing the sequential structure of algorithmic versus

hand-transcribed song.

To contrast the two labeling methods, we first took the two Bengalese finch song datasets,

projected syllables into UMAP latent space, and visualized them using the hand transcriptions

provided by the datasets (Fig 2.13A,H). We then took the syllable projections and clustered them

using HDBSCAN. In both datasets, we find that many individual hand-transcribed syllable cate-

gories are comprised of multiple HDBSCAN-labelled clusters in latent space (Fig 2.13A,B,H,I).

To compare the different sequential abstractions of the algorithmically transcribed labels and
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Figure 2.13. Latent comparisons of hand- and algorithmically-clustered Bengalese finch song.
A-G are from a dataset produced by Nicholson et al., [9] and H-N are from a dataset produced by
Koumura et al., [10] (A,H) UMAP projections of syllables of Bengalese finch song, colored by
hand labels. (B,I) Algorithmic labels (UMAP/HDBSCAN). (C, J) Transitions between syllables,
where color represents time within a bout of song. (D,K) Comparing the transitions between
elements from a single hand-labeled category that comprises multiple algorithmically labeled
clusters. Each algorithmically labeled cluster and the corresponding incoming and outgoing
transitions are colored. Transitions to different regions of the UMAP projections demonstrate that
the algorithmic clustering method finds clusters with different syntactic roles within hand-labeled
categories. (E,L) Markov model from hand labels colored the same as in (A,H) (F,M) Markov
model from clustered labels, colored the same as in (B,I). (G,H) Examples of syllables from
multiple algorithmic clusters falling under a single hand-labeled cluster. Colored bounding boxes
around each syllable denotes the color category from (D,K).

the hand transcribed labels, we visualized the transitions between syllables in latent space (Fig

2.13C,J). These visualizations reveal that different algorithmically-transcribed clusters belonging

to the same hand-transcribed label often transition to and from separate clusters in latent space.

That is, the sub-category acoustics of the elements predict and are predicted by specific transitions.

We visualize this effect more explicitly in Fig 2.13D and K, showing the first-order (incoming

and outgoing) transitions between one hand-labeled syllable category (from Fig 2.13A and H),

colored by the multiple HDBSCAN clusters that it comprises (from Fig 2.13B and I). Thus,

different HDBSCAN labels that belong to the same hand-labeled category can play a different

role in song-syntax, having different incoming and outgoing transitions. In Fig 2.13E,F,L,M,

this complexity plays out in an abstracted Markov model, where the HDBSCAN-derived model

reflects the latent transitions observed in Fig 2.13C,J more explicitly than the model abstracted
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from hand-labeled syllables. To further understand why these clusters are labeled as the same

category by hand but different categories using HDBSCAN clustering, we show example syl-

lables from each cluster Fig 2.13G,N. Although syllables from different HDBSCAN clusters

look very similar, they are differentiated by subtle yet systematic variation. Conversely, different

subsets of the same experimenter-labeled category can play different syntactic roles in song

sequences. The syntactic organization in Bengalese finch song is often described using Partially

Observable Markov Models (POMMs) or Hidden Markov Models (HMMs), where the same

syllable category plays different syntactic roles dependent on its current position in song syntax

[194]. In so far as the sequential organization abstracted from hand labels obscures some of

the sequential structure captured by algorithmic transcriptions, our results suggest that these

different syntactic roles may be explained by the presence of different syllable categories.

To compare the difference in sequential organization captured by hand labels versus

HDBSCAN labels quantitatively, we treated both HDBSCAN and hand labels as hidden states in

separate HMMs and compared their ability to accurately model song sequences. An HMM is a

finite-state model for a sequence of visible states (e.g song syllables), that is assumed to emerge

from set of unobserved (’hidden’) states, inferred algorithmically. To make our HMMs directly

comparable, we use the hand labels as visible states, and infer hidden states from either the hand

labels (e.g. Fig 2.14A) or the HDBSCAN labels (e.g. Fig 2.14B). By design, the hidden states of

these two HMMs are explicitly constrained to either the hand or HDBSCAN labels, and thus

ignore higher-order transitions that might carry useful sequence information. For comparison,

we also trained an HMM where hidden states were inferred using the Baum-Welch algorithm

and allowed to incorporate higher-order syllable sequences (e.g. Fig 2.14C; see Methods). For

example, in the sequence of visible states a → b → c → d → e, there might be a hidden state

representing d|a,b,c. HMMs allowing high-order latent representations have been used to model

sequential organization in birdsong [195] and have a long history of modeling human speech.

We compared each model on its ability to predict the sequence of hand labels using

the Akaike Information Criterion (AIC), which normalizes model likelihood by the number
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of parameters in the model [147]. Because models are compared on their ability to predict

hand-labeled sequences, our comparison is biased toward sequential models based upon the

hand-labels. Nonetheless, in 13 of 15 birds, the HDBSCAN clustered latent states better captured

sequential dynamics (∆AIC ¿ 2.0; Fig 2.14D). As expected, the Baum-Welch trained HMM

is better able to explain the sequential organization in Bengalese finch song than either HMM

constrained to use the hand or HDBSCAN labels in each bird (∆AIC ¿ 2.0; Fig 2.14D). This

indicates that second-order (or higher) transitions also contribute to the sequential structure of

song in Bengalese finches. In Fig 2.14C, we overlay the hidden states learned by the complete

HMM on the UMAP syllable projections of a single Bengalese finch from the Koumura dataset

(an example bird from the Nicholson dataset is shown in Supporting information). This reveals

several clusters with clear, uniformly colored subregions, indicating HMM hidden states that are

not captured by the hand labels or HDBSCAN but still reflect non-random acoustic differences

(Fig 2.14A,B).

2.2.4 Temporally continuous latent trajectories

Not all vocal repertoires are made up of elements that fall into highly discrete clusters in

latent space (Fig 2.8). For several of the datasets we analysed, categorically discrete elements

are not readily apparent, making analyses such as the cluster-based analyses performed in Figure

2.12 more difficult. In addition, many vocalizations are difficult to segment temporally, and

determining what features to use for segmentation requires careful consideration [200]. In many

bird songs, for example, clear pauses exist between song elements that enable one to distinguish

syllables. In other vocalizations, however, experimenters must rely on less well-defined physical

features for segmentation [182, 200], which may in turn invoke a range of biases and unwarranted

assumptions. At the same time, much of the research on animal vocal production, perception,

and sequential organization relies on identifying ”units” of a vocal repertoire [200]. To better

understand the effects of temporal discretization and categorical segmentation in our analyses,

we considered vocalizations as continuous trajectories in latent space and compared the resulting
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Figure 2.14. Comparison of Hidden Markov Model performance using different hidden states.
Projections are shown for a single example bird from the Koumura dataset [219]. UMAP
projections are labeled by three labeling schemes: (A) Hand labels (B) HDBSCAN labels on
UMAP, and (C) Trained Hidden Markov Model (HMM) labels. (D) Models are compared across
individual birds (points) on the basis of AIC. Each line depicts the relative (centered at zero)
AIC scores for each bird for each model. Lower relative AIC equates to better model fit.

representations to those that treat vocal segments as single points (as in the previous Bengalese

finch example in Fig 2.12). We explored four datasets, ranging from highly discrete clusters of

vocal elements (Bengalese finch, Fig 2.15), to relatively discrete clustering (European starlings,

Fig 2.16) to low clusterability (Mouse USV, Fig 2.17; Human speech, Fig 2.18). In each dataset,

we find that continuous latent trajectories capture short and long timescale structure in vocal

sequences without requiring vocal elements to be segmented or labeled.
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Comparing discrete and continuous representations of song in the Bengalese finch

(N) a subset of the bout shown in (M). In G-L, unlabeled points (points that are in between
syllables) are not shown for visual clarity.

Figure 2.15. Continuous UMAP projections of Bengalese finch song from a single bout produced
by one individual. (A-C) Bengalese finch song is segmented into either 1ms (A), 20ms (B), or
100ms (C) rolling windows of song, which are projected into UMAP. Color represents time
within the bout of song 2(red marks the beginning and ending of the bout, corresponding to
silence). (D-F) The same plots as in (A-C), projected into PCA instead of UMAP. (G-I) The
same plots as (A-C) colored by hand-labeled element categories (unlabelled points are not
shown). (J-L) The same plots as (D-F) colored by hand-labeled syllable categories. (M) UMAP
projections represented in colorspace over a bout spectrogram. The top three rows are the UMAP
projections from (A-C) projected into RGB colorspace to show the position within UMAP space
over time as over the underlying spectrogram data. The fourth row are the hand labels. The final
row is a bout spectrogram.

Bengalese finch song provides a relatively easy visual comparison between the discrete

and continuous treatments of song, because it consists of a small number of unique highly

stereotyped syllables (Fig 2.15). With a single bout of Bengalese finch song, which contains
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several dozen syllables, we generated a latent trajectory of song as UMAP projections of

temporally-rolling windows of the bout spectrogram (See Projections section). To explore this

latent space, we varied the window length between 1 and 100ms (Fig 2.15A-L). At each window

size, we compared UMAP projections (Fig 2.15A-C) to PCA projections (Fig 2.15D-F). In

both PCA and UMAP, trajectories are more clearly visible as window size increases across

the range tested, and overall the UMAP trajectories show more well-defined structure than the

PCA trajectories. To compare continuous projections to discrete syllables, we re-colored the

continuous trajectories by the discrete syllable labels obtained from the dataset. Again, as the

window size increases, each syllable converges to a more distinct trajectory in UMAP space

(Fig 2.15G-I). To visualize the discrete syllable labels and the continuous latent projections in

relation to song, we converted the 2D projections into colorspace and show them as a continuous

trajectory alongside the song spectrograms and discrete labels in Fig 2.15M,N. Colorspace

representations of the 2D projections consist of treating the two UMAP dimensions as either

a red, green, or blue channel in RGB (3D) colorspace, and holding the third channel constant.

This creates a colormap projection of the two UMAP dimensions.

Latent trajectories of European starling song

European starling song provides an interesting case study for exploring the sequential or-

ganization of song using continuous latent projections because starling song is more sequentially

complex than Bengalese finch song, but is still highly stereotyped and has well-characterized

temporal structure. European starling song is comprised of a large number of individual song

elements, usually transcribed as ’motifs’, that are produced within a bout of singing. Song

bouts last several tens of seconds and contain many unique motifs grouped into three broad

classes: introductory whistles, variable motifs, and high-frequency terminal motifs [107]. Motifs

are variable within classes, and variability is affected by the presence of potential mates and

seasonality [365, 3]. Although sequentially ordered motifs are usually segmentable by gaps of

silence occurring when starlings are taking breaths, segmenting motifs using silence alone can be
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Figure 2.16. Starling bouts projected into continuous UMAP space. (A) The top left panel is
each of 56 bouts of starling song projected into UMAP with a rolling window length of 200ms,
color represents time within the bout. Each of the other 8 panels is a single bout, demonstrating
the high similarity across bouts. (B) Latent UMAP projections of the 56 bouts of song projected
into colorspace in the same manner as Fig 2.15M. Although the exact structure of a bout of
song is variable from rendition to rendition, similar elements tend to occur at similar regions of
song and the overall structure is preserved. (C) The eight example bouts from (A) with UMAP
colorspace projections above. The white box at the end of each plot corresponds to one second.
(D) A zoomed-in section of the first spectrogram in C.

difficult because pauses are often short and bleed into surrounding syllables [438]. When sylla-

bles are temporally discretized, they are relatively clusterable (Fig 2.8), however syllables tend to
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vary somewhat continuously (Fig 2.16D). To analyze starling song independent of assumptions

about segment (motif) boundaries and element categories, we projected bouts of song from a

single male European starling into UMAP trajectories using the same methods as with Bengalese

finch song in Fig 2.15. We used a 200ms time window for these projections, around the order of

a shorter syllable of starling song and longer than the pause in between syllables, resulting our

projections capturing information about transitions between syllables. Time windows of different

lengths reveal structure at different timescales, for example windows shorter than the length of a

pause between syllables will return to the region of latent space corresponding to silence (e.g.

2.15A,B) and capture within syllable structure but not the transitions between syllables.

We find that the broad structure of song bouts are highly repetitive across renditions, but

contain elements within each bout that are variable across bout renditions. For example, in Fig

2.16A, the top left plot is an overlay showing the trajectories of 56 bouts performed by a single

bird, with color representing time within each bout. The eight plots surrounding it are single bout

renditions. Different song elements are well time-locked as indicated by a similar hue present

in the same regions of each plot. Additionally, most parts of the song occur in each rendition.

However, certain song elements are produced or repeated in some renditions but not others. To

illustrate this better, in Fig 2.16B, we show the same 56 bouts projected into colorspace in the

same manner as Fig 2.15M,N, where each row is one bout rendition. We observe that, while each

rendition contains most of the same patterns at relatively similar times, some patterns occur more

variably. In Fig 2.16C and D we show example spectrograms corresponding to latent projections

in Fig 2.16A, showing how the latent projections map onto spectrograms.

Quantifying and visualizing the sequential structure of song using continuous trajectories

rather than discrete element labels is robust to errors and biases in segmenting and categorizing

syllables of song. Our results show the potential utility of continuous latent trajectories as a

viable alternative to discrete methods for analyzing song structure even with highly complex,

many-element, song.
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Latent trajectories and clusterability of mouse USVs

House mice produce ultrasonic vocalizations (USVs) comprising temporally discrete

syllable-like elements that are hierarchically organized and produced over long timescales, gener-

ally lasting seconds to minutes [62]. When analyzed for temporal structure, mouse vocalizations

are typically segmented into temporally-discrete USVs and then categorized into discrete clusters

[171, 62, 443, 73, 200] in a manner similar to syllables of birdsong. As was observed on the

basis of the Hopkin’s statistic (Fig 2.8), however, USVs do not cluster into discrete distributions

in the same manner as birdsong. Choosing different arbitrary clustering heuristics will therefore

have profound impacts on downstream analyses of sequential organization [171].

We sought to better understand the continuous variation present in mouse USVs, and

explore the sequential organization of mouse vocalizations without having to categorize USVs.

To do this, we represented mouse USVs as continuous trajectories (Fig 2.17E) in UMAP latent

space using similar methods as with starlings (Fig 2.16) and finches (Fig 2.15). In Fig 2.17, we

use a single recording of one individual producing 1,590 (Fig 2.17G) USVs over 205 seconds

as a case study to examine the categorical and sequential organization of USVs. We projected

every USV produced in that sequence as a trajectory in UMAP latent space (Fig 2.17A,C,D).

Similar to our observations in Fig 2.8I using discrete segments, we do not observe clear element

categories within continuous trajectories, as observed for Bengalese finch song (e.g. Fig 2.15I).

To explore the categorical structure of USVs further, we reordered all of the USVs in

Fig 2.17G by the similarity of their latent trajectories (measured by the Euclidean distance

between latent projection vectors; Fig 2.17F) and plotted them side-by-side (Fig 2.17H). Both the

similarity matrix of the latent trajectories (Fig 2.17F) and the similarity-reordered spectrograms

(Fig 2.17H) show that while some USVs are similar to their neighbors, no highly stereotyped

USV categories are observable.

Although USVs do not aggregate into clearly discernible, discrete clusters, the temporal

organization of USVs within the vocal sequence is not random. Some latent trajectories are more
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Figure 2.17. USV patterns revealed through latent projections of a single mouse vocal sequence.
(A) Each USV is plotted as a line and colored by its position within the sequence. Projections are
sampled from a 5ms rolling window. (B) Projections from a different recording from a second
individual using the same method as in (A). (C) The same plot as in A, where color represents
time within a USV. (D) The same plot as in (A) but with a 20ms rolling window. (E) An example
section of the USVs from (A), where the bar on the top of the plot shows the UMAP projections
in colorspace (the first and second UMAP dimensions are plotted as color dimensions). 2The
white scale bar corresponds to 250ms. (F) A distance matrix between each of 1,590 USVs
produced in the sequence visualized in (A), reordered so that similar USVs are closer to one
another. (G) Each of the 1,590 USVs produced in the sequence from (A), in order (left to right,
top to bottom). (H) The same USVs as in (G), reordered based upon the distance matrix in (F).
(I) The entire sequence from (A) where USVs are color-coded based upon their position in the
distance matrix in (F).
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frequent at different parts of the vocalization. In Fig 2.17A, we color-coded USV trajectories

according to each USV’s position within the sequence. The local similarities in coloring (e.g.,

the purple and green hues) indicate that specific USV trajectories tend to occur in distinct parts

of the sequence. Arranging all of the USVs in order (Fig 2.17G) makes this organization more

evident, where one can see that shorter and lower amplitude USVs tend to occur more frequently

at the end of the sequence. To visualize the vocalizations as a sequence of discrete elements,

we plotted the entire sequence of USVs (Fig 2.17I), with colored labels representing the USV’s

position in the reordered similarity matrix (in a similar manner as the discrete category labels in

Fig 2.15E). In this visualization, one can see that different colors dominate different parts of the

sequence, again reflecting that shorter and quieter USVs tend to occur at the end of the sequence.

Latent trajectories of human speech

Discrete elements of human speech (i.e. phonemes) are not spoken in isolation and their

acoustics are influenced by neighboring sounds, a process termed co-articulation. For example,

when producing the words ’day’, ’say’, or ’way’, the position of the tongue, lips, and teeth differ

dramatically at the beginning of the phoneme ’ey’ due to the preceding ’d’, ’s’, or ’w’ phonemes,

respectively. This results in differences in the pronunciation of ’ey’ across words (Fig 2.18F).

Co-articulation explains much of the acoustic variation observed within phonetic categories.

Abstracting to phonetic categories therefore discounts much of this context-dependent acoustic

variance.

We explored co-articulation in speech, by projecting sets of words differing by a single

phoneme (i.e. minimal pairs) into continuous latent spaces, then extracted trajectories of words

and phonemes that capture sub-phonetic context-dependency (Fig 2.18). We obtained the words

from the same Buckeye corpus of conversational English used in Figs 2.8, 2.7, and Supporting

information. We computed spectrograms over all examples of each target word, then projected

sliding 4-ms windows from each spectrogram into UMAP latent space to yield a continuous

vocal trajectory over each word (Fig 2.18). We visualized trajectories by their corresponding
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Figure 2.18. Speech trajectories showing coarticulation in minimal pairs. (A) Utterances of
the words ’day’, ’say’, and ’way’ are projected into a continuous UMAP latent space with a
window size of 4ms. Color represents time, where darker is earlier in the word. (B) The same
projections as in (A) but color-coded by the corresponding word. (C) The same projections are
colored by the corresponding phonemes. (D) The average latent trajectory for each word. (E) The
average trajectory for each phoneme. (F) Example spectrograms of words, with latent trajectories
above spectrograms and phoneme labels below spectrograms. (G) Average trajectories and
corresponding spectrograms for the words ’take’ and ’talk’ showing the different trajectories
for ’t’ in each word. (H) Average trajectories and the corresponding spectrograms for the words
’then’ and ’them’ showing the different trajectories for ’eh’ in each word.

word and phoneme labels (Fig 2.18B,C) and computed the average latent trajectory for each

word and phoneme (Fig 2.18D,E). The average trajectories reveal context-dependent variation

84



within phonemes caused by coarticulation. For example, the words ’way’, ’day’, and ’say’

each end in the same phoneme (’ey’; Fig 2.18A-F), which appears as an overlapping region

in the latent space (the red region in Fig 2.18C). The endings of each average word trajectory

vary, however, indicating that the production of ’ey’ differs based on its specific context (Fig

2.18D). The difference between the production of ’ey’ can be observed in the average latent

trajectory over each word, where the trajectories for ’day’ and ’say’ end in a sharp transition,

while the trajectory for ’way’ is smoother (Fig 2.18D). These differences are apparent in Fig

2.18F which shows examples of each word’s spectrogram accompanied by its corresponding

phoneme labels and color-coded latent trajectory. In the production of ’say’ and ’day’ a more

abrupt transition occurs in latent space between ’s’/’d’ and ’ey’, as indicated by the yellow to

blue-green transitions above spectrograms in ’say’ and the pink to blue-green transition above

’day’. For ’way’, in contrast, a smoother transition occurs from the purple region of latent space

corresponding to ’w’ to the blue-green region of latent space corresponding to ’ey’.

Latent space trajectories can reveal other co-articulations as well. In Fig 2.18G, we show

the different trajectories characterizing the phoneme ’t’ in the context of the word ’take’ versus

’talk’. In this case, the ’t’ phoneme follows a similar trajectory for both words until it nears

the next phoneme (’ey’ vs. ’ao’), at which point the production of ’t’ diverges for the different

words. A similar example can be seen for co-articulation of the phoneme ’eh’ in the words ’them’

versus ’then’ (Fig 2.18H). These examples show the utility of latent trajectories in describing

sub-phonemic variation in speech signals in a continuous manner rather than as discrete units.

2.3 Discussion

We have presented a set of computational methods for projecting vocal communication

signals into low-dimensional latent representational spaces, learned directly from the spectro-

grams of the signals. We demonstrate the flexibility and power of these methods by applying

them to a wide sample of animal vocal communication signals, including songbirds, primates,
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rodents, bats, and cetaceans (Fig 2.8). Deployed over short timescales of a few hundred millisec-

onds, our methods capture significant behaviorally-relevant structure in the spectro-temporal

acoustics of these diverse species’ vocalizations. We find that complex attributes of vocal sig-

nals, such as individual identity (Fig 2.4), species identity (Fig 2.5A,B), geographic population

variability (Fig 2.5C), phonetics (Fig 2.7, Supporting information), and similarity-based clusters

(Fig 2.10) can all be captured by the unsupervised latent space representations we present. We

also show that songbirds tend to produce signals that cluster discretely in latent space, whereas

mammalian vocalizations are more uniformly distributed, an observation that deserves much

closer investigation in more species. Applied to longer timescales, spanning seconds or minutes,

the same methods allowed us to visualize sequential organization and test models of vocal

sequencing (Fig 2.12). We demonstrated that in some cases latent approaches confer advantages

over hand labeling or supervised learning (Fig 2.13, 2.14). Finally, we visualized vocalizations as

continuous trajectories in latent space (Figs 2.15, 2.16, 2.17, 2.18), providing a powerful method

for studying sequential organization without discretization [200].

Latent models have shown increasing utility in the biological sciences over the past several

years. As machine learning algorithms improve, so will their utility in characterizing the complex

patterns present in biological systems like animal communication. In neuroscience, latent

models already play an important role in characterizing complex neural population dynamics

[79]. Similarly, latent models are playing an increasingly important role in computational

ethology [46], where characterizations of animal movements and behaviors have uncovered

complex sequential organization [268, 29, 462]. In animal communication, pattern recognition

using various machine learning techniques has been used to characterize vocalizations and label

auditory objects [381, 76, 73, 443, 150, 215, 171]. Our work furthers this emerging research area

by demonstrating the utility of unsupervised latent models for both systematically visualizing

and abstracting structure from animal vocalizations across a wide range of species.
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Latent and known features

Our methods show that a priori feature-based compression is not a prerequisite to

progress in understanding behaviorally relevant acoustic diversity. The methods we describe

are not meant, however, as a wholesale replacement of more traditional analyses based on

compression of vocal signals into known behaviorally-relevant feature spaces. In most cases,

these known feature spaces are the result of careful exploration, experimentation, and testing,

and therefore encapsulate an invaluable pool of knowledge. When available, this knowledge

should be used. Our methods are most useful when this knowledge is either unavailable, or

may not hold for all of the species one wishes to investigate. For comparison across species,

they provide a common space that is unbiased by the features of any one species (Fig 2.5), and

within species they can reveal behaviorally relevant structure (Figs 2.4, 2.6, 2.7). In the cases

where we compared latent features to the representations of signals based on known features

(Figs 2.3, 2.11), it is clear that the known features captured aspects of the signals that the latent

representations missed. At the same time, however, the latent representations capture much

of the same variance, albeit without reference to intuitive features. Thus, when possible the

distributional properties of signals revealed by our unsupervised methods can (and should be)

linked to specific physical features of the signals.

In light of the observation that latent features can provide a close approximation to feature-

based representations, it is interesting to ask why UMAP works as well as it does in the myriad

ways we have shown. Like other compression algorithms, UMAP relies on statistical regularities

in the input data to find the low dimensional manifold that best captures a combination of global

and local structure. Thus, the co-variance between behaviorally relevant features and those

revealed in UMAP indicates that behaviorally relevant dimensions of signals contain reliable

acoustic variance. In other words, the statistical structure of the signals reflect their function.

While these may not be the dimensions of maximal variance over the whole signal set (which is

why PCA can miss them), the local variance is reliable enough to be captured by UMAP. While

it may be less surprising to note that animal communication relies upon reliable signal variance
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to convey information, it is noteworthy that our signal analysis methods have advanced to the

point where we can directly measure that variance without prior knowledge.

Discrete and continuous representations of vocalizations

Studies of animal communication classically rely on segmenting vocalizations into dis-

crete temporal units. In many species, this temporal segmentation is a natural step in representing

and analyzing vocal data. In birdsong, for example, temporally distinct syllables are often well

defined by clear pauses between highly stereotyped syllable categories (Fig 2.8O). We showed

that the syllables labeled through unsupervised clustering account for sequential organization

in Bengalese finch song better than experimenter-defined hand labels, even when hand-labels

are treated as ground-truth (Fig 2.14D). Using an HMM that was free to define states based

on higher-order sequential dynamics revealed even finer sub-classes of elements with reliable

acoustic structure (Fig 2.14D). Thus, one strategy to improve syllable labeling algorithms going

forward is to include models for the sequential dynamics of vocalizations (e.g [235]). Such

models should take into account recent findings that Markovian assumptions do not fully account

for the long-range dynamics in all bird songs [381] or other signals with long-range organiza-

tion such as human speech [249]. Lastly, neither density-based clustering, hand clustering, nor

sequence-based clustering, model the animal’s categorical perception directly. Therefore, making

perceptual inferences based upon these labels is limited without behavioral or physiological

investigations with the animal.

Another strategy for studying vocal sequences is to avoid the problem of segmenta-

tion/discretization altogether. Indeed, in many non-avian species, vocal elements are either not

clearly stereotyped or temporally distinct (Fig 2.8), and methods for segmentation can vary based

upon changes in a range of acoustic properties, similar sounds, or higher-order organization [200].

These constraints force experimenters to make decisions that can affect downstream analyses

[150, 171]. We projected continuous latent representations of vocalizations ranging from the

highly stereotyped song of Bengalese finches, to highly variable mouse USVs, and found that
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continuous latent projections effectively described useful aspects of spectro-temporal structure

and sequential organization (Figs 2.15, 2.16, and 2.17). Continuous latent variable projections

of human speech capture sub-phoneme temporal dynamics that correspond to co-articulation

(Fig 2.18). Collectively, our results show that continuous latent representations of vocalizations

provide an alternative to discrete segment-based representations while remaining agnostic to

segment boundaries, and without the need to segment vocalizations into discrete elements or

symbolic categories. Of course, where elements can be clustered into clear and discrete element

categories, it may be valuable to do so. The link from temporally continuous vocalization to

symbolically discrete sequences will be an important target for future investigations.

2.3.1 Limitations

Throughout this manuscript, we have discussed and applied a set of tools for analyzing

vocal communication signals. Although we have spent much of the manuscript focusing on the

utility of these tools, there are limits to their application. Here, we discuss a few of the drawbacks

and challenges.

Unsupervised learning with noisy vocal signals

Supervised learning algorithms are trained explicitly to learn what features of a dataset

are relevant to mapping input data to a set of labels. For example, a neural network trained to

classify birdsong syllables based upon hand labels is a supervised algorithm. Such algorithms

learn what parts of the data are relevant to this mapping (signal), and what parts of data should be

ignored (noise). Conversely, unsupervised learning algorithms model structure in data without

external reference to what is signal and what is noise. The datasets we used ranged from relatively

noisy signals recorded in the wild, to recordings in a laboratory setting from a single individual

in a sound-isolated chamber. Algorithms like PCA or UMAP can ignore some level of noise in

data. In PCA, for example, when signal explains more variance in the data than noise, the first

few principal components will capture primarily signal. Similarly, UMAP embeddings rely on
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the construction of a nearest neighbor graph. So long as noise does not substantially influence

the construction of this graph, some degree of noise can be ignored. Still, high background

noise in recordings can impact the quality of latent projections. Thus, signal-aware methods

for reducing noise before projecting the data would be ideal. In the methods, we discuss one

method we used to decrease background time-domain noise in some of the noisier signals using a

technique called ”spectral gating”. Considerations of how to reduce the noise in data are crucial

to modeling structure in animal communication signals, especially using unsupervised learning

algorithms.

Unsupervised learning with small vocalization datasets

Contemporary machine learning algorithms often rely on very large datasets. To learn

the structure of a complex vocal communicative repertoire, having more coverage over the

vocal repertoire is better; it would be difficult to find clusters of vocalizations when only a

few exemplars are available for each vocalization. In contrast, when features of a dataset are

already known, less data is needed to make a comparison. For example, it might take a machine

learning algorithm many exemplars to untangle data in such a way that important features like

fundamental frequency are learned. As such, when datasets are small, methods like UMAP are

less useful in modeling data, and carefully selecting features is generally a more appropriate

method for making comparisons.

Representing data and distance across vocalizations

Graph-based models like UMAP find structure in data by building graphical represen-

tations of datasets and then embedding those graphs into low-dimensional spaces. Building a

graphical representation of a dataset is predicated on determining a notion of distance between

points. Deciding how to measure the distance between two elements of animal communication re-

quires careful thought. Throughout this manuscript, we computed spectrograms of vocalizations,

and computed distance as the Euclidean distance between those spectrograms. This measure of

distance, while easy to compute, is one of many ways to measure the distance between points.
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The use of both PAFs and spectrograms should be considered carefully when making

comparisons in vocal datasets. Descriptive statistics can be overly reductive and may not

capture all of the relevant characteristics of the signal, while spectrogram representations can be

overcomplete, and require further dimensionality reduction to reveal relevant features in statistical

analyses [307, 109, 132]. Treating time-frequency bins of spectrograms as independent features

inaccurately reflects the perceptual space of animals, who are sensitive to relative relationships

between time varying components and spectral shape (e.g., [44]) less than absolute power at

specific at a specific time or frequency. For example, the spectrograms of two identically shaped

vocalizations shifted in frequency by a quarter octave may appear completely uncorrelated

when each time-frequency coefficient is treated as an independent dimension. Yet, those same

vocalizations might be treated as effectively the same by a receiver. Topological methods such as

UMAP or t-SNE partially resolve this issue, because their graph-based representations rely on

the relationships between neighboring data points as inputs. As a result, vocalizations that are

distant in Euclidean space (i.e. whose spectrograms are uncorrelated) can be close in latent space.

Even when using spectrograms, determining the parameters of the spectrogram is an important

consideration, and can impact the result of downstream machine learning tasks for bioacoustics

[207, 109].

Constructing a graph in UMAP relies on computing the distances between some rep-

resentation of the data (here, vocalizations). Representing vocal elements as spectrograms or

PAFs, and constructing a graph on the basis of the Euclidean distance between those features

are two ways of constructing that graph. In principle, any distance metric could be used in

place of Euclidean distance to build the graph in UMAP. For example, the distance between

two spectrograms can be computed using Dynamic Time Warping (DTW) [212, 80], Dynamic

Frequency Warping (DFW) [410], or peaks in cross-correlations [198] to add invariance to shifts

in time and frequency between vocal elements2. Determining what notion of distance is most

2In the code [377], we show an example of how DTW can be used as the distance metric in UMAP instead of
Euclidean distance.
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reasonable to compare two vocalizations requires consideration. When acoustic features are

known to capture the structure of an animal’s communication, either by careful study or explicitly

probing an animal’s perceptual representations of their vocal repertoire, the distance can be

computed on the basis of those acoustic features. Here, we use Euclidean distance between

spectrograms to build UMAP graphs, which we find is effective to capture structure in many

vocal signals.

Parameterization and understanding structure in latent projections

It has been well documented that the structure found using graph-based dimensionality

reduction algorithms like t-SNE and UMAP can be heavily biased by the parameterization used

in the algorithm [454, 72]. Generally, the default parameters used in UMAP are good starting

points. In this manuscript, we used the default parameters in all of our projections, except where

otherwise noted. Still, exploring the persistence of structure across parameterizations is an

important consideration when making inferences based upon structure in latent space.

2.3.2 Future work

Synthesizing animal vocalization signals

The present work discusses latent models from the angle of dimensionality reduction,

learning a low dimensional descriptive representation of the structure of the signal. Here, we

left a second important aspect of latent models unexplored: generativity. One aspect of machine

learning that is largely under-utilized in animal communication research, and psychophysics

more generally, is using generative latent models that jointly model the probability in data space

and latent space, to generate vocalizations directly from samples in latent space. Generative

techniques enable the synthesis of complex, high-dimensional data such as animal communication

signals by sampling from low-dimensional latent spaces. Preliminary work has already been

done in this area, for example, generating syllables of birdsong as stimuli for psychophysical and

neurophysiological probes [430, 382] using deep neural networks. HMMs have also been used

to synthesize vocalizations [38]. With the recent advancements in machine learning, especially
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in areas such as generative modeling and text-to-speech, the synthesis of high-fidelity animal

vocal signals is likely to become an important avenue for studying the full spectrum of vocal

communication in more biologically realistic ways.

Local and global structure

The methods we present in this paper center around the graph-based dimensionality

reduction algorithm UMAP. Graph-based dimensionality reduction algorithms like t-SNE and

UMAP favor the preservation of local structure of global structure, as opposed to PCA and

MDS, which favor the preservation of global structure. Capturing local structure means mapping

nearby points in data-space to nearby points in the low-dimensional embedding space, while

capturing global structure means preserving relationships at all scales; both local and more

distant [402]. UMAP and t-SNE capture much more local structure than PCA, but less global

structure. However, UMAP is an improvement over t-SNE in that it captures more global

structure [280]. The current deficit in capturing global structure with graph-based dimensionality

reduction algorithms is not necessarily a fundamental issue, however. Future advancements in

non-linear graph-based dimensionality reduction algorithms will likely better capturing global

structure. Capturing the density of distributions (like clusters of birdsong elements) is also

likely an important feature of dimensionality reduction algorithms. At present, neither UMAP

nor t-SNE embeddings are designed to capture local density (the distances between points)

in data space (they are explicitly designed not to). Recent improvements on this front [313],

for example, might aid in finding structural differences between directed birdsong which is

more highly stereotyped and undirected birdsong, which is more exploratory. Advances in

non-linear graph-based dimensionality reduction algorithms are likely to have important impacts

on quantifying latent structure in vocal data.

Further directions

The work presented here is a first step in exploring the potential power of latent modeling

in animal communication. We touch only briefly on a number of questions that we find interesting
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and think important within the field of animal communication. Other researchers may certainly

want to target other questions, and we hope that some of these techniques (and the provided code)

may be adapted in that service. Our analyses were taken from a diverse range of animals, sampled

in diverse conditions both in the wild and in the laboratory, and are thus not well controlled

for variability between species. Certainly, as bioacoustic data becomes more open and readily

available, testing large, cross-species, hypotheses will become more plausible. We introduced

several areas in which latent models can act as a powerful tool to visually and quantitatively

explore complex variation in vocal data. These methods are not restricted to bioacoustic data,

however. We hope that the work presented here will encourage a larger incorporation of latent

and unsupervised modeling as a means to represent, understand, and experiment with animal

communication signals in general. At present, our work exhibits the utility of latent modeling

on a small sampling of the many directions that can be taken in the characterization of animal

communication.
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2.4 Methods

2.4.1 Datasets

The Buckeye [346] dataset of conversational English was used for human speech. The

swamp sparrow dataset is from [234] and was acquired from [232]. The California thrasher

dataset is from [71] and was acquired from BirdDB [19]. The Cassin’s vireo dataset is from

[165] and was also acquired from BirdDB. The giant otter dataset was acquired from [310]. The

canary song dataset is from [266] and was acquired via personal correspondence. Two zebra

finch datasets were used. The first is a dataset comprised of a large number of motifs produced by

several individuals from [337]. The second is a smaller library of vocalizations with more diverse

vocalization types and a greater number of individuals than the motif dataset. It correspond to

data from [109] and [110] and was acquired via personal correspondence. The white-rumped

munia dataset is from [194]. The humpback whale dataset was acquired from Mobysound [283].

The house mice USV dataset was acquired from [62]. An additional higher SNR dataset of

mouse USVs was sent from the same group via personal correspondence. The European starling

dataset is from [381] and was acquired from [16]. The gibbon song is from [303]. The marmoset

dataset was received via personal correspondence and was recorded similarly to [288]. The

fruit bat data is from [348] and was acquired from [349]. The macaque data is from [130] and

was acquired from [131]. The beaked whale dataset is from [172] and was acquired from [128].

The North American birds dataset is from [471] and was acquired from [470]. We used two

Bengalese finch datasets. The first is from [220] and was acquired from [219]. The second is

from [322].

2.4.2 Reducing noise in audio

One issue with automated analyses over animal communication is the requirement for

signals to have relatively low background noise in their recordings. In part, background noise

reduction can be performed algorithmically. At the same time, noisier data requires a greater
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degree of human intervention to tell the algorithm what to consider signal, and what to consider

noise. While some of the datasets used in our analyses were recorded in sound-isolated chambers

in a laboratory, others were recorded in nature. The datasets we ultimately used for this paper

were either relatively low noise or had some hand-annotations that were necessary to determine

where syllables started and ended. For example, many of the datasets had hand segmented vocal

element boundaries that were used instead of algorithmic segmentation. We show a comparison

of the silhouette score of the Cassin’s dataset used in Fig 2.2 for different signal-to-noise ratios

(SNR) in Supporting information.

To reduce the background noise in acoustic signals, we wrote a spectral gating noise

reduction algorithm [375]. The algorithm is inspired by the noise reduction algorithm used in

the Audacity(R) sound editing software [425].

Given a waveform of audio with both signal and background noise (Sn), and a sample

audio clip from the same or a similar waveform with only background noise (N). An outline of

the algorithm is as follows:

1. Compute the short-time Fourier transform over N (specn).

2. Compute the mean and standard deviation of specn for each frequency component over

time.

3. Compute the short-time Fourier transform over Sn (specs).

4. For each frequency component, compute a threshold noise level based upon the mean and

standard deviation of specn

5. Generate a mask over specs based upon the power of specs and the thresholds determined

from (specn)

6. Smooth the mask over frequency and time.

7. Apply the mask to specs to remove noise.
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8. Compute the inverse short-time Fourier transform over specs to generate a denoised

time-domain signal.

We made a Python package of this algorithm called noisereduce available on GitHub

[375]. In addition to the spectral gating noise reduction algorithm, segmentation was performed

by a dynamic thresholding algorithm, which is described in the Segmentation section. We also

show the fidelity of UMAP projections over different levels of noise in Supporting information,

where we observe that UMAP is robust to relatively high noise in comparison to spectrograms.

2.4.3 Segmentation

Figure 2.19. Segmentation algorithm (A) The dynamic threshold segmentation algorithm. The
algorithm dynamically defines a noise threshold based upon the expected amount of silence in a
clip of vocal behavior. Syllables are then returned as continuous vocal behavior separated by
noise. (B) The segmentation method from (A) applied to canary syllables. (C) The segmentation
method from (A) applied to mouse USVs.

Many datasets were made available with vocalizations already segmented either manually

or algorithmically into units. When datasets were pre-segmented, we used the segment boundaries

defined by the dataset authors. For all other datasets, we used a segmentation algorithm we call

dynamic threshold segmentation (Fig 2.19A). The goal of the algorithm is to segment vocalization
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waveforms into discrete elements (e.g. syllables) that are defined as regions of continuous

vocalization surrounded by silent pauses. Because vocal data often sits atop background noise,

the definition for silence versus vocal behavior was set as some threshold in the vocal envelope of

the waveform. The purpose of the dynamic thresholding algorithm is to set that noise threshold

dynamically based upon assumptions about the underlying signal, such as the expected length

of a syllable or a period of silence. The algorithm first generates a spectrogram, thresholding

power in the spectrogram below a set level to zero. It then generates a vocal envelope from the

power of the spectrogram, which is the maximum power over the frequency components times

the square root of the average power over the frequency components for each time bin over the

spectrogram:

µS(t) =
1
n ∑

f
S(t, f ) (2.1)

E(t) =
√

µS(t)max
f

S(t, f ) (2.2)

Where E is the envelope, S is the spectrogram, t is the time bin in the spectrogram, f is

the frequency bin in the spectrogram, and n is the total number of frequency bins.

The lengths of each continuous period of putative silence and vocal behavior are then

computed. If lengths of vocalizations and silences meet a set of thresholds (e.g. minimum length

of silence and maximum length of continuous vocalization) the algorithm completes and returns

the spectrogram and segment boundaries. If the expected thresholds are not met, the algorithm

repeats, either until the waveform is determined to have too low of a signal to noise ratio and

discarded, or until the conditions are met and the segment boundaries are returned. The output

of the algorithm, color coded by segment boundaries, are shown for a sample of canary song in

Fig 2.19B and a sample of mouse USVs in Fig 2.19C. The code for this algorithm is available on

Github [376].
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2.4.4 Spectrogramming

Spectrograms are created by taking the absolute value of the one-sided short-time Fourier

transformation of the Butterworth band-pass filtered waveform. Power is log-scaled and thresh-

olded using the dynamic thresholding method described in the Segmentation section. Frequency

ranges and scales are based upon the frequency ranges occupied by each dataset and species.

Frequency is logarithmically scaled over a frequency range using a Mel filterbank (a filterbank

logarithmically scaled to match human frequency perception). Mel frequency scaling was used

as it has previously proven useful in extracting features of animal vocalizations [416], although

in some cases linear frequency scaling can perform better in bioacoustics [207]. All of the

spectrograms we computed had a total of 32 frequency bins, scaled across frequency ranges

relevant to vocalizations in the species. None of these parameters were rigorously compared

across each of the datasets, although we would recommend such comparisons in more detailed

analyses. Each of the transformations done to data (e.g. downsampling, Mel scaling) reduce the

dimensionality and impose a priori assumptions on the data. Performing analyses on a complete

or invertible representation of the sound pressure waveform would make fewer assumptions

[109], but is more computationally costly.

To create a syllable spectrogram dataset (e.g. for projecting into Fig 2.8), syllables are

segmented from the vocalization spectrogram. To pad each syllable spectrogram to the same

time length size, syllable spectrograms are log-rescaled in time (i.e. resampled in time relative

to the log-duration of the syllable) then zero-padded to the length of the longest log-rescaled

syllable.

2.4.5 Projections

Latent projections are either performed over discrete units (e.g. syllables) or as trajec-

tories over continuously varying sequences. For discrete units, syllables are segmented from

spectrograms of entire vocalizations, rescaled, and zero-padded to a uniform size (usually 32
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frequency and 32 time components). These syllables are then projected into UMAP, where each

time-frequency bin is treated as an independent dimension.

Trajectories in latent space are projected from rolling windows taken over a spectrogram

of the entire vocal sequence (e.g. a bout of birdsong; Fig 2.20). The rolling window is a set

length in milliseconds (e.g. 5ms) and each window is treated as a single point to be projected

into latent space. The window then rolls one frame (in the spectrogram) at a time across the

entire spectrogram, such that the number of samples in a bout trajectory is equal to the number

of time-frames in the spectrogram. These time bins are then projected into UMAP latent space.

Figure 2.20. Continuous projections from vocalizations. (A) A spectrogram of each vocalization
is computed. (B) Rolling windows are taken from each spectrogram at a set window length
(here 5ms), and a step size of one time-frame of the short-time Fourier transform (STFT). (C)
Windows are projected into latent space (e.g. UMAP or PCA).
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2.4.6 Clusterability

Hopkin’s statistic

We used the Hopkin’s statistic [177] as a measure of the clusterability of datasets in

UMAP space. In our case, the Hopkin’s statistic was preferable over other metrics for determining

clusterability, such as the Silhouette score [373] because the Hopkin’s statistic does not require

labeled datasets or make any assumptions about what cluster a data point should belong to. The

Hopkin’s statistic is part of at least one birdsong analysis toolkit [232].

The Hopkin’s statistic compares the distance between nearest neighbors in a dataset (e.g.

syllables projected into UMAP), to the distance between points from a randomly sampled dataset

and their nearest neighbors. The statistic computes clusterability based upon the assumption

that if the real dataset is more clustered than the randomly sampled dataset, points will be closer

together than in the randomly sampled dataset. The Hopkin’s statistic is computed over a set X

of n data points (e.g. latent projections of syllables of birdsong), where the set X is compared

with a baseline set Y of m data points sampled from either a uniform or normal distribution. We

chose to sample Y from a uniform distribution over the convex subspace of X . The Hopkin’s

metric is then computed as:

Hopkin’s statistic =
∑

m
i=1 wd

i

∑
m
i=1 ud

i +∑
m
i=1 wd

i
(2.3)

Where ui is the distance of yi ∈ Y from its nearest neighbor in X and wi is the distance

of xi ∈ X from its nearest neighbor in X . Thus if the real dataset is more clustered than the

sampled dataset, the Hopkin’s statistic will approach 0, and if the dataset is less clustered than

the randomly sampled dataset, the Hopkin’s statistic will sit near 0.5. Note that the Hopkin’s

statistic is also commonly computed with ∑
m
i=1 ud

i in the numerator rather than ∑
m
i=1 wd

i , where

Hopkin’s statistics closer to 1 would be higher clusterability, and closer to 0.5 would be closer to

chance. We chose the former method because the range of Hopkin’s statistics across datasets

were more easily visible when log transformed.
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To compare the clusterability across songbirds and mammals, we used a likelihood ratio

test between linear mixed-effects models predicting the Hopkin’s statistic for each individual.

Each model controlled for the number of vocalizations produced by individuals, and random

variation in clusterability at the species level. In addition, we included only individuals that

had recordings consisting of at least 200 vocalizations. The likelihood ratio test was performed

between a model with, and without including class (i.e. songbird versus mammal) as a category.

Silhouette score

As opposed to the Hopkin’s statistic, which measures the general clusterability of a

projection without regard to cluster labels, the silhouette score measures the clusterability of

datasets when cluster labels are known or have already been inferred [373]. In other words, the

Hopkin’s statistic measures how clusterable a projection is, and the silhouette score measures

how well fit a clustering is to a projection.

The silhouette score, S is computed as the mean of the silhouette coefficients for each

data point. For each data point (i), the silhouette coefficient si is the mean distance between the

data point and all other data points in the same cluster (ai), minus the distance to that points

nearest neighbor belonging to a different cluster (bi), divided by the maximum of ai and bi,

which can be written as:

si =


1−ai/bi, if ai < bi

0, if ai = bi

bi/ai −1, if ai > bi

(2.4)

S =
1
n

n

∑
i=1

si (2.5)

This value is therefore bounded between 1, when the average distance to other points

within-cluster (ai) is very large relative to the distance to the points nearest neighbor (bi), and -1

when the average distance to points within-cluster (ai) is very small relative to the distance to
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the nearest neighbor (bi). Silhouette scores were compared across projections using a Kruskal-

Wallis H-test over silhouette coefficients. Silhouette scores were compared to chance using a

Kruskal-Wallis H-test over silhouette coefficients versus silhouette coefficients where labels are

randomly permuted.

2.4.7 Clustering vocalizations

HDBSCAN

HDBSCAN clustering was performed on PCA and UMAP projections of Cassin’s vireo

syllables and Bengalese finch syllables (Table 2.1), as well as UMAP projections of swamp

sparrow syllables (Fig 2.11). Each clustering used the default parameterization of UMAP and

HDBSCAN, setting the minimum cluster size at 1% of the number of syllables/notes in the

dataset.

K-means

We used k-means as a comparison to hierarchical density-based labeling when clustering

Bengalese finch and Cassin’s vireo syllables (Table 2.1). K-means clustering partitions a set

of data points into k-clusters by tiling data space with a set of cluster centroids, and clustering

each data point with the nearest centroid. We set the number of clusters (k) to the ground truth

number of clusters in each dataset, to make clustering more competitive with HDBSCAN. We

used the k-means implementation in Scikit-learn [338] to fit the models.

Gaussian Mixture model

We clustered the known feature space of swamp sparrow song using a Gaussian Mixture

Model (GMM). GMMs assume that data are generated from a mixture of finite Gaussian

distributions. Our GMM fit the parameters of the distribution to the data using expectation-

maximization. In both the Conneaut Marsh, PA and Hudson Valley, NY swamp sparrow datasets,

we set the number of distributions to be equal to the numbers used in the same populations of

swamp sparrows in [233]. As opposed to [233], we clustered only on the duration of the notes,
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and the start and end peak frequencies of the notes, without the mean peak frequency or vibrato

amplitude. Still, these clusterings were similar to the clusterings presented in [233]. A direct

comparison between our clustering using GMM and the clustering in [233] can be made by

comparing Fig 2.11 and Supporting information with Lachlan and Nowicki [233] Fig S2A,B.

We used the GMM implementation in Scikit-learn [338] to fit the models.

2.4.8 Comparing algorithmic and hand-transcriptions

Several different metrics can be used to measure the overlap between two separate

labeling schemes. We used three metrics that capture different aspects of similarity to compare

hand labeling to algorithmic clustering methods ([338, 372]; Table 2.1). Homogeneity measures

whether all clusters fall into the same hand-labeled class in the labeled dataset.

homogeneity(clusters, classes) = 1− H(classes|clusters)
H(classes)

(2.6)

Where H(classes|clusters) is the conditional entropy of the ground truth classes given the cluster

labels, and H(classes is the entropy of the classes.

Completeness measures the extent to which members belonging to the same hand-labeled

class fall into the same cluster:

completeness(clusters, classes) = 1− H(clusters|classes)
H(clusters)

(2.7)

V-measure is the harmonic mean between homogeneity and completeness.

V-Measure = 2∗ homogeneity · completeness
homogeneity+ completeness

(2.8)

V-measure is also equivalent to the normalized mutual information between distributions

[338]. In the swamp sparrow datasets, we compared the probability of overlap in clustering of

labels (e.g. HDBSCAN and GMM) to chance by comparing V-measure of the true overlap to the
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bootstrapped V-measure permuting the clusterings (10,000 times).

2.4.9 Hidden Markov Models (HMMs)

We used HMMs as a basis for comparing hand labels versus UMAP/HDBSCAN cluster-

ing in representing sequential organization in Bengalese finch song. Specifically, we treated hand

labels as ground truth ”visible” states in a discrete emission HMM, and generated several HMMs

with different hidden states: hand labels, HDBSCAN labels, and hidden states learned using the

Baum-Welch algorithm. HMMs were generated using the Python package Pomegranate [395].

Each model was compared on the basis of the log-likelihood of the data given the model. This

log-likelihood score is treated as equal to the likelihood of the model given the data, and is also

used as the basis computing AIC [147].

2.4.10 Data Availability

All of the vocalization datasets used in this study were acquired from external sources,

most of them hosted publicly online (See Supporting information). The data needed to reproduce

our results can be found on Zenodo (10.5281/zenodo.3775893).

2.4.11 Code Availability

The python code written specifically for this paper is available at Github.com/timsainb/

AVGN paper. A cleaner and more maintained code base is additionally available at Github.com/

timsainb/AVGN.

2.4.12 Ethics statement

Procedures and methods comply with all relevant ethical regulations for animal testing

and research and were carried out in accordance with the guidelines of the Institutional Animal

Care and Use Committee at the University of California, San Diego (S05383).
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2.5 Supporting information

Table 2.2. Overview of the species and datasets used in this paper.

Species # Indv. # Elements Median len. (s) Total length (s) # Rec. References
American crow Unk. syllables: 252 syllables: 0.37 100.5 252 [471, 470]
Bengalese finch 4 syllables: 215480 syllables: 0.065 40205.6 2663 [322]
Bengalese finch 11 notes: 214915 notes: 0.089 35365.9 2964 [220, 219]
Blue jay Unk. syllables: 250 syllables: 0.47 141.2 250 [471, 470]
California thrasher 18 syllables: 15328 syllables: 0.146 19958.9 92 [71, 19]

Canary 5
phrases: 22167

syllables: 497338
phrases: 1.319
syllables: 0.04 36986.9 2320 [266]

Cassin’s vireo 48 syllables: 67316 syllables: 0.332 434782.4 422 [165, 19]
Cedar waxwind Unk. syllables: 245 syllables: 0.425 116.0 245 [471, 470]
Chipping sparrow Unk. syllables: 252 syllables: 0.09 24.9 252 [471, 470]
Common marmoset 33 calls: 14289 calls: 1.084 76400.7 768 [288]
Common yellowthroat Unk. syllables: 255 syllables: 0.1 35.4 255 [471, 470]
Cuvier’s beajed whale Unk. clicks: 2237 clicks: 0.001 2.3 2237 [172, 128]
Egyptian fruit bat 83 syllables: 423043 syllables: 0.042 166676.8 83823 [348, 349]
European starling 7 syllables: 164230 syllables: 0.577 194529.9 3805 [16]
Gervais’s beaked whale Unk. clicks: 1936 clicks: 0.001 2.0 1936 [172, 128]
Giant otter Unk. syllables: 452 syllables: 0.68 390.4 452 [310]
Gibbon Unk. syllables: 10333 syllables: 2.96 230400.0 128 [303]
Great blue heron Unk. syllables: 246 syllables: 0.138 44.1 246 [471, 470]
House finch Unk. syllables: 248 syllables: 0.093 25.9 248 [471, 470]

Human (English) 40
words: 283721
phones: 837896

words: 0.205
phones: 0.069 135708.4 254 [346]

Humpback whale Unk. syllables: 2006 syllables: 1.65 6730.8 13 [283]
Indigo bunting Unk. syllables: 251 syllables: 0.135 36.0 251 [471, 470]
Macaque 8 coos: 7284 coos: 0.324 2550.9 7284 [130, 131]
Marsh wren Unk. syllables: 248 syllables: 0.09 23.8 248 [471, 470]
Mouse 4 syllables: 34124 syllables: 0.018 25277.0 133 [62]
Song sparrow Unk. syllables: 258 syllables: 0.105 32.8 258 [471, 470]
Swamp sparrow 616 elements: 97513 elements: 0.021 4571.1 1867 [234, 232]
White-rumped munia 44 syllables: 109851 syllables: 0.05 17118.5 169 [194]
Yellow warbler Unk. syllables: 246 syllables: 0.078 21.4 246 [471, 470]

Zebra finch 6
motifs: 18028

syllables: 65892
motifs: 0.443

syllables: 0.105 8799.9 18028 [337]

Zebra finch 46 elements: 3347 elements: 0.153 1365.0 3347 [109, 110]
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Figure 2.21. UMAP projections Cassin’s vireo syllables with syllable features overlaid generated
from the BioSound [110] python package. (A) More information regarding each feature can be
found in Supporting information and Elie et al. [109, 110].
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American crow American yellow warbler Bengalese finch Blue jay California thrasher

Canary Cassin's vireo Cedar waxwing Chipping sparrow Common marmoset

Common yellowthroat Cuvier's beaked whale Egyptian fruit bat European starling Gervais's beaked whale

Giant otter Gibbon Great blue heron House finch Human (English)

Humpback whale Indigo bunting Macaque Marsh wren Mouse

Song sparrow Swamp sparrow White-rumped munia Zebra finch

Figure 2.22. Example vocal elements from each of the species used in this paper.
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Figure 2.23. Latent projections of vowels. Each plot shows a different set of vowels grouped by
phonetic features. The average spectrogram for each vowel is shown to the right of each plot.
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Figure 2.24. Comparing latent and known features in swamp sparrow song. (A) A scatterplot of
the start and end peak frequencies of the notes produced by birds recorded in Hudson Valley, NY.
The left panel shows notes colored by the position of each note in the syllable (red = first, blue
= second, green = third). The center panel shows the sample scatterplot colored by a Gaussian
Mixture Model labels (fit to the start and end peak frequencies and the note duration). The
right panel shows the scatterplot colored by HDBSCAN labels over a UMAP projection of
the spectrograms of notes. (B) The same notes, plotting the change in peak frequency over
the note against the note’s duration. (C) The same notes plotted as a UMAP projection over
note-spectrograms. (D) The features from (A) and (B) projected together into a 2D UMAP space.
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Figure 2.25. Comparison of Hidden Markov Model performance using different latent states.
Projections are shown for a single example bird from the Nicholson dataset [322]. UMAP
projections are labeled by three labeling schemes: (A) Hand labels, (B) HDBSCAN labels on
UMAP, and (C) Trained Hidden Markov Model (HMM) labels.
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Figure 2.26. Silhouette score of UMAP projections with different levels background noise added
to spectrogram. White noise is added to the spectrogram to modulate signal to noise ratio (SNR).
The different projections (2-dimensional PCA, 50-dimensional PCA, 2-dimensional UMAP) and
the spectrogram are compared on the basis of silhouette score for the labels of each Cassin’s
vireo syllable. The left panel shows the silhouette score, and the right panel shows the silhouette
score scaled between 0 and 1 to more easily compare change as a function of SNR.
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Table 2.3. BioSound features used in feature statistics analysis.

For more information see Elie et al. [109, 110].
variable name feature feature type
fund Mean F0 (Hz) f0 features
cvfund Coeff. var. F0 (0-1) f0 features
maxfund Min. F0 (Hz) f0 features
minfund Max. F0 (Hz) f0 features
sal Pitch saliency f0 features
meanS Spectral mean (Hz) spectral features
stdS Spectral std. (Hz) spectral features
skewS Spectral skewness spectral features
kurtS Spectral Kurtosis spectral features
entS Spectral entropy (0-1) spectral features
q1 Spectral Q1 (Hz) spectral features
q2 Spectral Q2 (Hz) spectral features
q3 Spectral Q3 (Hz) spectral features
meanT Mean time (ms) temporal features
stdT Time Std. (ms) temporal features
skewT Time Skewness temporal features
kurtT Time Kurtosis temporal features
entT Time entropy (0-1) temporal features
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Chapter 3

Parametric UMAP

Abstract

UMAP is a non-parametric graph-based dimensionality reduction algorithm using applied

Riemannian geometry and algebraic topology to find low-dimensional embeddings of structured

data. The UMAP algorithm consists of two steps: (1) Compute a graphical representation of

a dataset (fuzzy simplicial complex), and (2) Through stochastic gradient descent, optimize

a low-dimensional embedding of the graph. Here, we extend the second step of UMAP to a

parametric optimization over neural network weights, learning a parametric relationship between

data and embedding. We first demonstrate that Parametric UMAP performs comparably to its

non-parametric counterpart while conferring the benefit of a learned parametric mapping (e.g.

fast online embeddings for new data). We then explore UMAP as a regularization, constraining

the latent distribution of autoencoders, parametrically varying global structure preservation, and

improving classifier accuracy for semi-supervised learning by capturing structure in unlabeled

data.

3.1 Introduction

Current non-linear dimensionality reduction algorithms can be divided broadly into

non-parametric algorithms which rely on the efficient computation of probabilistic relationships

from neighborhood graphs to extract structure in large datasets (e.g. UMAP [280], t-SNE
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[442], LargeVis [422]), and parametric algorithms, which, driven by advances in deep-learning,

optimize an objective function related to capturing structure in a dataset over neural network

weights (e.g. [173, 93, 94, 420, 205]).

In recent years, a number of parametric dimensionality reduction algorithms have been

developed to wed these two classes of methods, learning a structured graphical representation of

the data and using a deep neural network to capture that structure (discussed in 3.3). In particular,

over the past decade, several variants of the t-SNE algorithm have proposed parameterized forms

of t-SNE [440, 145, 53, 144]. Parametric t-SNE [440] for example, trains a deep neural network

to minimize loss over a t-SNE graph. However, the t-SNE loss function itself is not well-suited

to neural network training paradigms. In particular, t-SNE’s optimization requires normalization

over the entire dataset at each step of optimization, making batch-based optimization and online

learning of large datasets difficult. In contrast, UMAP is optimized using negative sampling

[287, 422] to sparsely sample edges during optimization, making it, in principle, more well-

suited to batch-wise training as is common deep learning applications. Our proposed method,

Parametric UMAP, brings the non-parametric graph-based dimensionality reduction algorithm

UMAP into an emerging class of parametric topologically-inspired embedding algorithms.

In the following section, we broadly outline the algorithm underlying UMAP to explain

why our proposed algorithm, Parametric UMAP, is particularly well suited to deep learning

applications. We contextualize our discussion of UMAP in t-SNE, to outline the advantages

that UMAP confers over t-SNE in the domain of parametric neural-network-based embedding.

We then perform experiments comparing our algorithm, Parametric UMAP, to parametric and

non-parametric algorithms. Finally, we show a novel extension of Parametric UMAP to semi-

supervised learning.
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Figure 3.1. Overview of UMAP (A → B) and Parametric UMAP (A → C).

3.2 Parametric and non-parametric UMAP

UMAP and t-SNE have the same goal: Given a D-dimensional data set X ∈ RD, produce

a d dimensional embedding Z ∈ Rd such that points that are close together in X (e.g. xi and x j)

are also close together in Z (zi and z j).

Both algorithms are comprised of the same two broad steps: first construct a graph of local

relationships between datasets (Figure 3.1A), then optimize an embedding in low dimensional

space which preserves the structure of the graph (Figure 3.1B). The parametric approach replaces

the second step of this process with an optimization of the parameters of a deep neural network

over batches (Figure 3.1C). To understand how Parametric UMAP is optimized, it is necessary

to understand these steps.

3.2.1 Graph Construction

Computing probabilities in X

The first step in both UMAP and t-SNE is to compute a distribution of probabilities P

between pairs of points in X based upon the distances between points in data space. Probabilities

are initially computed as local, one-directional, probabilities between a point and its neighbors

in data-space, then symmetrized to yield a final probability representing the relationship between

pairs of points.

In t-SNE, these probabilities are treated as conditional probabilities of neighborhood
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(pt-SNE
i| j ) computed using a Gaussian distribution centered at xi.

pt-SNE
j|i =

exp
(
−d(xi,x j)/2σ2

i
)

∑k ̸=i exp
(
−d(xi,xk)/2σ2

i
) (3.1)

Where d(xi,x j) represents the distance between xi an x j (e.g. Euclidean distance) and σi

is the standard deviation for the Gaussian distribution, set based upon the a perplexity parameter

such that one standard deviation of the Gaussian kernel fits a a set number of nearest-neighbors

in X .

In UMAP, local, one-directional, probabilities (PUMAP
i| j ) are computed between a point and

its neighbors to determine the probability with which an edge (or simplex) exists, based upon an

assumption that data is uniformly distributed across a manifold in a warped dataspace. Under

this assumption, a local notion of distance is set by the distance to the kth nearest neighbor and

the local probability is scaled by that local notion of distance.

pUMAP
j|i = exp(−(d(xi,x j)−ρi)/σi) (3.2)

Where ρi is a local connectivity parameter set to the distance from xi to its nearest

neighbor, and σi is a local connectivity parameter set to match the local distance around xi upon

its k nearest neighbors (where k is a hyperparameter).

After computing the one-directional edge probabilities for each datapoint, UMAP com-

putes a global probability as the probability of either of the two local, one-directional, probabili-

ties occurring:

pUMAP
i j =

(
p j|i + pi| j

)
− p j|i pi| j (3.3)

In contrast, t-SNE symmetrizes the conditional probabilities as

pt-SNE
i j =

p j|i + pi| j
2N

(3.4)
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3.2.2 Graph Embedding

After constructing a distribution of probabilistically weighted edges between points in

X , UMAP and t-SNE initialize an embedding in Z corresponding to each data point, where a

probability distribution (Q) is computed between points as was done with the distribution (P)

in the input space. The objective of UMAP and t-SNE is then to optimize that embedding to

minimize the difference between P and Q.

Computing probabilities in Z

In embedding space, the pairwise probabilities are computed directly without first com-

puting local, one-directional probabilities.

In the t-SNE embedding space, the pairwise probability between two points qt-SNE
i| j is

computed in a similar manner to pt-SNE
i| j , but where the Gaussian distribution is replaced with the

fatter-tailed Student’s t-distribution (with one degree of freedom), which is used to overcome

the ’crowding problem’ [442] in translating volume differences in high-dimensional spaces to

low-dimensional spaces:

qt-SNE
i j =

(
1+

∥∥zi − z j
∥∥2
)−1

∑k ̸=l

(
1+∥zk − zl∥2

)−1 (3.5)

UMAP’s computation of the pairwise probability qUMAP
i j between points in the embedding

space Z uses a different family of functions:

qUMAP
i j =

(
1+a ∥zi − z j||2b

)−1
(3.6)

Where a and b are hyperparameters set based upon a desired minimum distance between

points in embedding space. Notably, the UMAP probability distribution in embedding space

is not normalized, while the t-SNE distribution is normalized across the entire distribution of

probabilities, meaning that the entire distribution of probabilities needs to be calculated before
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each optimization step of t-SNE.

Cost function

Finally, the distribution of embeddings in Z is optimized to minimize the difference

between Q and P.

In t-SNE, a Kullback-Leibler divergence between the two probability distributions is

used, and gradient descent in t-SNE is computed over the embeddings:

Ct-SNE = ∑
i ̸= j

pi j log
pi j

qi j
(3.7)

In UMAP, the cost function is cross-entropy, also optimized using gradient descent:

CUMAP = ∑
i̸= j

pi j log
(

pi j

qi j

)
+
(
1− pi j

)
log

(
1− pi j

1−qi j

)
(3.8)

3.2.3 Attraction and repulsion

Minimizing the cost function over every possible pair of points in the dataset would

be computationally expensive. UMAP and more recent variants of t-SNE both use shortcuts

to bypass much of that computation. In UMAP, those shortcuts are directly advantageous to

batch-wise training in a neural network.

The primary intuition behind these shortcuts is that the cost function of both t-SNE and

UMAP can both be broken out into a mixture of attractive forces between locally connected

embeddings and repulsive forces between non-locally connected embeddings.

Attractive forces

Both UMAP and t-SNE utilize a similar strategy in minimizing the computational cost

over attractive forces: they rely on an approximate nearest neighbors graph1. The intuition

1UMAP requires substantially fewer nearest neighbors than t-SNE, which generally requires 3 times the
perplexity hyperparameter (defaulted at 30 here), whereas UMAP computes only 15 neighbors by default, which is
computationally less costly.
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for this approach is that elements that are further apart in data space have very small edge

probabilities, which can be treated as effectively zero. Thus, edge probabilities and attractive

forces only need to be computed over the nearest neighbors, non-nearest neighbors can be

treated as having an edge probability of zero. Because nearest-neighbor graphs are themselves

computationally expensive, approximate nearest neighbors (e.g. [97]) produce effectively similar

results.

Repulsive forces

Because most datapoints are not locally connected, we do not need to waste computation

on most pairs of embeddings.

UMAP takes a shortcut motivated by the language model word2vec [287] and performs

negative sampling over embeddings. Each training step iterates over positive, locally connected,

edges and randomly samples edges from the remainder of the dataset treating their edge prob-

abilities as zero to compute cross-entropy. Because most datapoints are not locally connected

and have a very low edge probability, these negative samples are, on average, correct, allowing

UMAP to sample only sparsely over edges in the dataset.

In t-SNE, repulsion is derived from the normalization of Q. A few methods for mini-

mizing the amount of computation needed for repulsion have been developed. The first is the

Barnes-Hut tree algorithm [441], which bins the embedding space into cells and where repulsive

forces can be computed over cells rather than individual datapoints within those cells. Similarly,

the more recent interpolation-based t-SNE (FIt-SNE; [251, 252]) divides the embedding space

up into a grid and computes repulsive forces over the grid, rather than the full set of embeddings.

3.2.4 Parametric UMAP

To summarize, both t-SNE and UMAP rely on the construction of a graph, and a

subsequent embedding that preserves the structure of that graph (Fig. 3.1). UMAP learns an

embedding by minimizing cross-entropy sampled over positively weighted edges (attraction)
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and using negative sampling randomly over the dataset (repulsion), allowing minimization to

occur over sampled batches of the dataset. t-SNE, meanwhile, minimizes a KL divergence loss

function normalized over the entire set of embeddings in the dataset using different approximation

techniques to compute attractive and repulsive forces.

Because t-SNE optimization requires normalization over the distribution of embedding

in projection space, gradient descent can only be performed after computing edge probabilities

over the entire dataset. Projecting an entire dataset into a neural network between each gradient

descent step would be too computationally expensive to optimize, however. The trick that

Parametric t-SNE proposes for this problem is to split the dataset up into large batches (e.g. 5000

data points in the original paper) that are used to compute separate graphs that are independently

normalized over and used constantly throughout training, meaning that relationships between

elements in different batches are not explicitly preserved. Conversely, a parametric form of

UMAP, by using negative sampling, can in principle be trained on batch sizes as small as a single

edge, making it suitable for minibatch training needed for memory-expensive neural networks

trained on the full graph over large datasets as well as online learning.

Given these design features, UMAP loss can be applied as a regularization in typical

stochastic gradient descent deep learning paradigms, without requiring the batching trick that

Parametric T-SNE relies upon. Despite this, a parametric extension to the UMAP learning

algorithm has not yet been explored. Here, we explore the performance of a parametric extension

to UMAP relative to current embedding algorithms and perform several experiments further

extending Parametric UMAP to novel applications 2.

3.3 Related Work

Beyond Parametric t-SNE and Parametric UMAP, a number of recent parametric di-

mensionality reduction algorithms utilizing structure-preserving constraints exist which were

2See code implementations: Experiments https://github.com/timsainb/ParametricUMAP paper Python package
https://github.com/lmcinnes/umap
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not compared here. This work is relevant to ours and is mentioned here to provide clarity on

the current state of parametric topologically motivated and structure-preserving dimensionality

reduction algorithms.

Moor et al., (topological autoencoders; [301]) and Hoffer et al. (Connectivity-Optimized

Representation Learning; [174]) apply an additional topological structure-preserving loss using

persistent homology over mini-batches to the latent space of an autoencoder. Jia et al., (Lapla-

cian Autoencoders; [185]) similarly defines an autoencoder with a local structure preserving

regularization. Mishne et al., (Diffusion Nets; [291]) define an autoencoder extension based

upon diffusion maps that constrains the latent space of the autoencoder. Ding et al., (scvis; [93])

and Graving and Couzin (VAE-SNE; [154]) describe VAE-derived dimensionality reduction

algorithms based upon the ELBO objective. Duque et al (geometry-regularized autoencoders;

[104]) regularize an autoencoder with the PHATE (Potential of Heat-diffusion for Affinity-based

Trajectory Embedding) embedding algorithm [300]. Szubert et al (ivis; [420]) and Robinson

(Differential Embedding Networks; [367]) make use of Siamese neural network architectures

with structure-preserving loss functions to learn embeddings. Pai et al., (DIMAL; [331]) sim-

ilarly uses Siamese networks constrained to preserve geodesic distances for dimensionality

reduction. Several of these parametric approaches indirectly condition neural networks (e.g.

autoencoders) on non-parametric embeddings rather than directly upon the loss of the algo-

rithm, which can be applied to arbitrary embedding algorithms. We contrast indirect and direct

parametric embeddings in 3.5.6.

3.4 UMAP as a regularization

In machine learning, regularization refers to the modification of a learning algorithm

to improve generalization to new data. Here, we consider both regularizing neural networks

with UMAP loss, as well as using additional loss functions to regularize the embedding that

UMAP learns. While non-parametric UMAP optimizes UMAP loss directly over embeddings
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(Figure 3.2A), our proposed algorithm, Parametric UMAP, applies the same cost function over an

encoder network (Figure 2B). By applying additional losses, we can use both regularize UMAP

with, as well as use UMAP to, regularize additional training objectives, which we outline below.
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Figure 3.2. Varients of UMAP used in this paper. Solid lines represent neural networks. Dashed
lines represent error gradients.

3.4.1 Autoencoding with UMAP

AEs are by themselves a powerful dimensionality reduction algorithm [173]. Thus,

combining them with UMAP may yield additional benefits in capturing latent structure. We used

an autoencoder as an additional regularization to Parametric UMAP (Figure 3.2C). A UMAP/AE

hybrid is simply the combination of the UMAP loss and a reconstruction loss, both applied over

the network. VAEs have similarly been used in conjunction with Parametric t-SNE for capturing

structure in animal behavioral data [154] and combining t-SNE, which similarly emphasizes

local structure, with AEs aids in capturing more global structure over the dataset [442, 154].

3.4.2 Semi-supervised learning

Parametric UMAP can be used to regularize supervised classifier networks, training the

network on a combination of labeled data with the classifier loss and unlabeled data with UMAP

loss (Figure 3.2D). Semi-supervised learning refers to the use of unlabeled data to jointly learn

the structure of a dataset while labeled data is used to optimize the supervised objective function,

such as classifying images. Here, we explore how UMAP can be jointly trained as an objective

function in a deep neural network alongside a classifier.

In the example in Figure 3.3, we show an intuitive example of semi-supervised learning

using UMAP over the Moons dataset [339]. By training a Y-shaped network (Figure 3.2D) both
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A B EmbeddingDecision Contour

Figure 3.3. An example of semi-supervised learning with UMAP on the moons dataset.

on the classifier loss over labeled datapoints (Figure 3.3A, red and blue) and the UMAP loss over

unlabeled datapoints (Figure 3.3A, grey) jointly, the shared latent space between the UMAP and

classifier network pulls apart the two moons (Figure 3.3B), resulting in a decision boundary that

divides cleanly between the two distributions in dataspace.

3.4.3 Preserving global structure

An open issue in dimensionality reduction is how to balance local and global structure

preservation [88, 24, 209]. Algorithms that rely on sparse nearest neighbor graphs, like UMAP,

focus on capturing the local structure present between points and their nearest neighbors, while

global algorithms, like Multi-Dimensional Scaling (MDS), attempt to preserve all relationships

during embedding. Local algorithms are both computationally more efficient and capture

structure that is lost in global algorithms (e.g. the clusters corresponding to numbers found when

projecting MNIST into UMAP). While local structure preservation captures more application-

relevant structure in many datasets, however, the ability to additionally capture global structure

is still often desirable. The approach used by non-parametric t-SNE and UMAP is to initialize

embeddings with global structure-preserving embeddings such as PCA or Laplacian eigenmaps

embeddings. In Parametric UMAP, we explore a different tactic, imposing global structure by

jointly training on a global structure preservation loss directly.
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3.5 Experiments

Rods
Bipolar cells
Amacrine cells
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Figure 3.4. Comparison of projections from multiple datasets using UMAP, UMAP in Tensor-
flow, Parametric UMAP, Parametric UMAP with an Autoencoder loss, Parametric t-SNE, t-SNE,
SCVIS, IVIS, PHATE, a VAE, an AE, and PCA. (a) Moons. (B) 3D buffalo. (c) MNIST (d)
Cassin’s vireo song segments (e) Mouse retina single-cell transcriptomes. (f) Fashion MNIST (g)
CIFAR10. The Cassin’s vireo dataset uses a dynamic time warping loss and an LSTM network
for the encoder and decoder for the neural networks. The image datasets use a convnet for the
encoder and decoder for the neural networks. The bison examples use a t-SNE perplexity of 500
and 150 nearest neighbors in UMAP to capture more global structure.

Experiments were performed comparing Parametric UMAP and a UMAP/AE hybrid, to

several baselines: nonparametric UMAP, nonparametric t-SNE (FIt-SNE) [252, 347], Parametric

t-SNE, an AE, a VAE, and PCA projections. As additional baselines, we compared PHATE

(non-parametric), SCVIS (parametric), and IVIS (parametric) which are described in the related

works section (3.3). We also compare a second non-parametric UMAP implementation that

has the same underlying code as Parametric UMAP, but where optimization is performed over

embeddings directly, rather than neural network weights. This comparison is made to provide
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a bridge between the UMAP-learn implementation and parametric UMAP, to control for any

potential implementation differences. Parametric t-SNE, Parametric UMAP, the AE, VAE, and

the UMAP/AE hybrid use the same neural network architectures and optimizers within each

dataset (described in Supplemental Materials).

We used the common machine learning benchmark datasets MNIST, FMNIST, and

CIFAR10 alongside two real-world datasets in areas where UMAP has proven a useful tool for

dimensionality reduction: a single-cell retinal transcriptome dataset [262], and a bioacoustic

dataset of Cassin’s vireo song, recorded in the Sierra Nevada mountains [165, 166].

3.5.1 Embeddings

We first confirm that Parametric UMAP produces embeddings that are of a similar quality

to non-parametric UMAP. To quantitatively measure the quality of embeddings we compared

embedding algorithms on several metrics across datasets. We compared each method/dataset

on 2D and 64D projections3. Each metric is explained in detail in the Supplemental Materials.

The 2D projection of each dataset/method is shown in Figure 3.4. The results are given in

Supplementary Figures 1-6 and Supplementary Tables 2-7, and summarized below.

Trustworthiness

Trustworthiness (Supplementary Equation 1, [445]) is a measure of how much of the

local structure of a dataset is preserved in a set of embeddings. In 2D, we observe each of

the UMAP algorithms performs similarly in Trustworthiness, with t-SNE being slightly more

trustworthy in each dataset (Figure 3.5, Supplementary Figure 1; Supplementary Table 2. At

64D, PCA, AE, VAE, and Parametric t-SNE are most trustworthy in comparison to each UMAP

implementation, possibly reflecting the more approximate repulsion (negative sampling) used by

UMAP.
3Where possible. In contrast with UMAP, Parametric UMAP, and Parametric t-SNE, Barnes Huts t-SNE can

only embed in two or three dimensions [441] and while FIt-SNE can in principle scale to higher dimensions [252],
embedding in more than 2 dimensions is unsupported in both the official implementation [206] and openTSNE
[347]
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Figure 3.5. Embedding metrics for 2D projections. Full results are given in the Appendix.
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Area Under the Curve (AUC) of RNX

To compare embeddings across scales (both local and global neighborhoods), we com-

puted the AUC of RNX for each embedding [241], which captures the agreement across K-ary

neighborhoods, weighting nearest-neighbors as more important than further neighbors. In 2D we

find that Parametric and non-parametric UMAP perform similarly while t-SNE has the highest

AUC. At 64D, Parametric and non-parametric UMAP again perform similarly, with PCA having

the highest AUC.

KNN-Classifier

A KNN-classifier is used as a baseline to measure supervised classification accuracy

based upon local relationships in embeddings. We find KNN-classifier performance largely

reflects Trustworthiness (Figure 3.5, Supplementary Figures 3,4; Supplementary Tables 4,5).

In 2D, we observe a broadly similar performance between UMAP and t-SNE variants, each of

which is substantially better than the PCA, AE, or VAE projections. At 64 dimensions UMAP

projections are similar but in some datasets (FMNIST, CIFAR10) slightly under-performs PCA,

AE, VAE, and Parametric t-SNE.

Silhouette score

Silhouette score measures how clustered a set of embeddings are given ground truth

labels. In 2D, across datasets, we tend to see a better silhouette score for UMAP and Parametric

UMAP projections than t-SNE and Parametric t-SNE, which are in turn more clustered than PCA

in all cases but CIFAR10, which shows little difference from PCA (Figure 3.5, Supplementary

Figure 5; Supplementary Table 5). The clustering of each dataset can also be observed in Figure

3.4, where t-SNE and Parametric t-SNE are more spread out within-cluster than UMAP. In

64D projections, we find the silhouette score of Parametric t-SNE is near or below that of PCA,

which is lower than UMAP-based methods. We note, however, that the poor performance of

Parametric t-SNE may reflect setting the degrees-of-freedom (α) at d −1 which is only one of

three parameterization schemes that [440] suggests. A learned degrees-of-freedom parameter
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might improve performance for parametric t-SNE at higher dimensions.

Clustering

To compare clustering directly across embeddings, we performed k-Means clustering over

each latent projection and compared each embedding’s clustering on the basis of the normalized

mutual information (NMI) between clustering schemes (Figure 3.5, Supplemental Figure 6;

Supplementary Table 6. In both the 2D and 64D projections, we find that NMI corresponds

closely to the silhouette score. UMAP and t-SNE show comparable clustering in 2D, both well

above PCA in most datasets. At 64D, each UMAP approach shows superior performance over

t-SNE.

3.5.2 Training and embedding speed

Figure 3.6. Training times comparison between UMAP and Parametric UMAP. All results
were obtained with up to 32 threads on a machine with 2 AMD EPYC Rome 7252 8-Core CPU
running at 3.1 GHz and a Quadro RTX 6000.

Training speed

Optimization in non-parametric UMAP is not influenced by the dimensionality of the

original dataset; the dimensionality of the dataset only comes into play in computing the nearest-

neighbors graph. In contrast, training speeds for Parametric UMAP are variable based upon the

dimensionality of data and the architecture of the neural network used. The dimensionality of the

embedding does not have a substantial effect on speed. In Figure 3.6, we show the cross-entropy

loss over time for Parametric and non-parametric UMAP, for the MNIST, Fashion MNIST, and

Retina datasets. Across each dataset, we find that non-parametric UMAP reaches a lower loss
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more quickly than Parametric UMAP, but that Parametric UMAP reaches a similar cross-entropy

within an order of magnitude of time. Thus, Parametric UMAP can train more slowly than

non-parametric UMAP, but training times remain within a similar range making Parametric

UMAP a reasonable alternative to non-parametric UMAP in terms of training time.

Figure 3.7. Comparison of embedding speeds using parametric UMAP and other embedding
algorithms on a held-out testing dataset. Embeddings were performed on the same machine as
Figure 3.6. Values shown are the median times over 10 runs.

Embedding and reconstruction speed

A parametric mapping allows embeddings to be inferred directly from data, resulting

in a quicker embedding than non-parametric methods. The speed of embedding is especially

important in signal processing paradigms where near-real-time embedding speeds are necessary.

For example in brain-machine interfacing, bioacoustics, and computational ethology, fast em-

bedding methods like PCA or deep neural networks are necessary for real-time analyses and

manipulations, thus deep neural networks are increasingly being used (e.g. [333, 46, 383]). Here,

we compare the embedding speed of a held-out test sample for each dataset, as well as the speed

of reconstruction of the same held-out test samples.
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Broadly, we observe similar embedding times for the non-parametric t-SNE and UMAP

methods, which are several orders of magnitude slower than the parametric methods, where

embeddings are direct projections into the learned networks (Figure 3.7). Because the same

neural networks are used across the different parametric UMAP and t-SNE methods, we show

only Parametric UMAP in Figure 3.7, which is only slightly slower than PCA, making it a viable

candidate for fast embedding where PCA is currently used. Similarly, we compared parametric

and non-parametric UMAP reconstruction speeds (Supplemental Figure 7). With the network

architectures we used, reconstructions of Parametric UMAP are orders of magnitude faster than

non-parametric UMAP, and slightly slower, but within the same order of magnitude, as PCA.

3.5.3 Capturing additional global structure in data

To capture additional global structure we added a naı̈ve global structure preservation

loss to Parametric UMAP, maximizing the Pearson correlation within batches between pairwise

distances in embedding and data spaces:

CPearson =−cov(dX ,dZ)

σdX σdZ

(3.9)

Where cov(X ,Y ) is the covariance of data and embeddings, and σX and σZ are the standard

deviations of the data and embeddings. The same notion of pairwise distance correlation has

previously been used directly as a metric for global structure preservation [209, 24].

The weight of this additional loss can be used to dictate the balance between capturing

global and local structure in the dataset. In Figure 3.8, we apply this loss at four different weights,

ranging from only UMAP (left) to primarily global correlation (right). As expected, we observe

that as we weight CPearson more heavily, the global correlation (measured as the correlation of the

distance between pairs of points in embedding and data space) increases (indicated in each panel).

Notably, when a small weight is used with each dataset, local structure is largely preserved while

substantially improving global correlation.
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Figure 3.8. Global loss applied to Parametric UMAP embeddings with different weights. r2 is
the correlation between pairwise distances in data space and embedding space.
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In Figure 3.9, we show the global distance correlation plotted against two local structure

metrics (Silhouette score and Trustworthiness) for the MNIST and Macosko et al., [262] datasets

corresponding to the projections shown in Figure 3.8 in relation to each embedding from Figure

3.4. In addition, we compared TriMap [8], a triplet-loss-based embedding algorithm designed

to capture additional global structure by preserving the relative distances of triplets of data

samples. We also compared Minimum Distortion Embedding (MDE), which comprises two

separate embedding functions: a local embedding algorithm that preserves relationships between

neighbors similar to UMAP and t-SNE, and a global embedding algorithm that preserves pairwise

distances similar to MDS.

Broadly, with Parametric UMAP, we can observe the tradeoff between captured global

and local structure with the weight of CPearson (light blue line in each panel of Figure 3.9). We

observe that adding this loss can increase the amount of global structure captured while preserving

much of the local structure, as indicated by the distance to the top right corner of each panel in

Figure 3.9, which reflects the simultaneous capture of global and local relationships, relative to

each other embedding algorithm.
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134



3.5.4 Autoencoding with UMAP

The ability to reconstruct data from embeddings can both aid in understanding the

structure of non-linear embeddings, as well as allow for manipulation and synthesis of data

based on the learned features of the dataset. We compared the reconstruction accuracy across

each method which had inverse-transform capabilities (i.e. Z → X), as well as the reconstruction

speed across the neural network-based implementations to non-parametric implementations and

PCA. In addition, we performed latent algebra on Parametric UMAP embeddings both with

and without an autoencoder regularization and found that reconstructed data can be linearly

manipulated in complex feature space.

Reconstruction accuracy

We measured reconstruction accuracy as Mean Squared Error (MSE) across each dataset

(Figure 3.10; Supplementary Table 7. In two dimensions, we find that Parametric UMAP

typically reconstructs better than non-parametric UMAP, which in turn performs better than

PCA. In addition, the autoencoder regularization slightly improves reconstruction performance.

At 64 dimensions, the AE regularized Parametric UMAP is generally comparable to the AE

and VAE and performs better than Parametric UMAP without autoencoder regularization. The

non-parametric UMAP reconstruction algorithm is not compared at 64 dimensions because

it relies on an estimation of Delaunay triangulation, which does not scale well with higher

dimensions.
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Figure 3.10. Reconstruction accuracy measured as mean squared error (MSE). MSE is shown
relative to each dataset (setting mean at 1).
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Latent features

Previous work shows that parametric embedding algorithms such as AEs (e.g. Variational

Autoencoders) linearize complex data features in latent-space, for example, the presence of a

pair of sunglasses in pictures of faces (e.g. [358, 457, 386]). Here, we performed latent-space

algebra and reconstructed manipulations on Parametric UMAP latent-space to explore whether

UMAP does the same.

To do so, we use the CelebAMask-HQ dataset, which contains annotations for 40 different

facial features over a highly structured dataset of human faces. We projected the dataset of

faces into a CNN autoencoder architecture based upon the architecture defined in [179]. We

trained the network first using UMAP loss alone (Parametric UMAP), and second using the joint

UMAP and AE loss (Fig 3.11). We then fit an OLS regression to predict the latent projections

of the entire dataset using the 40 annotated features (e.g. hair color, presence of beard, smiling,

etc). The vectors corresponding to each feature learned by the linear model were then treated

as feature vectors in latent space and added and subtracted from projected images, then passed

through the decoder to observe the resulting image (as in [386]).

Figure 3.11. Reconstruction and interpolation. (A) Parametric UMAP reconstructions of faces
from a holdout testing dataset. (B) The same networks, adding latent vectors corresponding to
image features.

We find that complex latent features are linearized in latent space, both when the network

is trained with UMAP loss alone as well as when the network is trained with AE loss. For
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example, in the third set of images in Figure 3.10, a pair of glasses can be added or removed

from the projected image by adding or subtracting its corresponding latent vector.

3.5.5 Semi-supervised learning

Real-word datasets are often comprised of a small number of labeled data, and a large

number of unlabeled data. semi-supervised learning (SSL) aims to use the unlabeled data to learn

the structure of the dataset, aiding a supervised learning algorithm in making decisions about the

data. Current SOTA approaches in many areas of supervised learning such as computer vision

rely on deep neural networks. Likewise, semi-supervised learning approaches modify supervised

networks with structure-learning loss using unlabeled data. Parametric UMAP, being a neural

network that learns structure from unlabeled data, is well suited to semi-supervised applications.

Here, we determine the efficacy of UMAP for semi-supervised learning by comparing a neural

network jointly trained on classification and UMAP (Figure 3.2D) with a network trained on

classification alone using datasets with varying numbers of labeled data.

We compared datasets ranging from highly-structured (MNIST) to unstructured (CI-

FAR10) in UMAP using a naı̈ve distance metric in data space (e.g. Euclidean distance over

images). For image datasets, we used a deep convolutional neural network (CNN) which per-

forms with relatively high accuracy for CNN classification on the fully supervised networks (see

Supplementary Table 8 based upon the CNN13 architecture commonly used in SSL [326]. For

the birdsong dataset, we used a BLSTM network, and for the retina dataset, we used a densely

connected network.

Naı̈ve UMAP embedding

For datasets where structure is learned in UMAP (e.g. MNIST, FMNIST) we expect

that regularizing a classifier network with UMAP loss will aid the network in labeling data by

learning the structure of the dataset from unlabeled data. To test this, we compared a baseline

classifier to a network jointly trained on classifier loss and UMAP loss. We first trained the
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baseline classifier to asymptotic performance on the validation dataset, then using the pretrained-

weights from the baseline classifier, trained a Y-shaped network (Figure 3.2D) jointly on UMAP

over Euclidean distances and a classifier loss over the dataset. We find that for each dataset

where categorically-relevant structure is found in latent projections of the datasets (MNIST,

FMNIST, birdsong, retina), classifications are improved in the semi-supervised network over

the supervised network alone, especially with smaller numbers of training examples (Figure

3.12; Supplementary Table 8. In contrast, for CIFAR10, the additional UMAP loss impairs

performance in the classifier.

Figure 3.12. Baseline classifier with an additional UMAP loss with different numbers of labeled
training examples. Non-parametric UMAP projections of the UMAP graph being jointly trained
are shown in the bottom right of each panel. Error bars show SEM.

Consistency regularization and learned invariance using data augmentation

Several current SOTA SSL approaches employ a technique called consistency regulariza-

tion [388]; training a classifier to produce the same predictions with unlabeled data which have

been augmented and data that have not been augmented [409, 30]. In a similar vein, for each

image dataset, we train the network to preserve the structure of the UMAP graph when data have

been augmented. We computed a UMAP graph over un-augmented data and, using augmented

data, trained the network jointly using classifier and UMAP loss, teaching the network to learn

to optimize the same UMAP graph, invariant to augmentations in the data. We observe a further

improvement in network accuracy for MNIST and FMNIST over the baseline, and the augmented

baseline (Figure 3.13 left; Supplementary Table 8. For the CIFAR10 dataset, the addition of the

UMAP loss, even over augmented data, reduces classification accuracy.
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Learning a categorically-relevant UMAP metric using a supervised network

It is unsurprising that UMAP confers no improvement for the CIFAR10 dataset, as UMAP

computed over the pixel-wise Euclidean distance between images in the CIFAR10 dataset does

not capture very much categorically-relevant structure in the dataset. Because no common

distance metric over CIFAR10 images is likely to capture such structure, we consider using

supervision to learn a categorically-relevant distance metric for UMAP. We do so by training

on a UMAP graph computed using distance over latent activations in the classifier network (as

in, e.g. [60]), where categorical structure can be seen in UMAP projection (Figure 3.14). The

intuition being that training the network with unlabeled data to capture distributional structure

within the network’s learned categorically-relevant space will aid in labeling new data.

We find that in all three datasets, without augmentation, the addition of the learned

UMAP loss confers little to no improvement in classification accuracy over the data (Figure 3.13

right; Supplementary Table 8. When we look at non-parametric projections of the graph over

latent activations, we see that the learned graph largely conforms to the network’s already-present

categorical decision making (e.g. Figure 3.14 predictions vs. ground truth). In contrast, with

augmentation, the addition of the UMAP loss improves performance in each dataset, including

CIFAR10. This contrast in improvement demonstrates that training the network to learn a

distribution in a categorically-relevant space that is already intrinsic to the network does not

confer any additional information that the network can use in classification. Training the network

to be invariant toward augmentations in the data, however, does aid in regularizing the classifier,

more in-line with directly training the network on consistency in classifications [388].

3.5.6 Comparisons with indirect parametric embeddings

In principle, any embedding technique can be implemented parametrically by training

a parametric model (e.g. a neural network) to predict embeddings from the original high-

dimensional data (as in Duque et al [104]). However, such a parametric embedding is limited in

comparison to directly optimizing the algorithm’s loss function. Parametric UMAP optimizes
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Figure 3.14. Non-parametric UMAP projections of activations in the last layer of a trained
classifier for MNIST, FMNIST, and CIFAR10. For each dataset, the top row shows the ground
truth labels on above, and the model’s predictions below, in a light colormap. On top of each
projection, the labeled datapoints used for training are shown in a darker colormap.
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directly over the structure of the graph, with respect to the architecture of the network as well as

additional constraints (e.g. additional losses). In contrast, training a neural network to predict

non-parametric embeddings does not take additional constraints into account.

To exemplify this, in Figure 3.15 we compare Parametric UMAP to a neural network

trained to predict non-parametric embeddings by minimizing MSE when the number of neurons

in the network is limited. In the case of Parametric UMAP, the objective of the network is to

come up with the best embedding of the UMAP graph that it can, given the constraints of the

architecture of the network. In the indirect/MSE case, information about the structure of the

graph is only available through an intermediary, the non-parametric embedding, thus this method

cannot be optimized to learn an embedding of the data that best preserves the structure of the

graph. In other words, the indirect method is not optimizing the embedding of the graph with

respect to additional constraints. Instead, it is minimizing the distance between two sets of

embeddings. The weighted graph is an intermediate topological representation (notably of no

specific dimensionality) and is the best representation of the data under UMAP’s assumptions.

The process of embedding the data in a fixed dimensional space is necessarily a lossy one.

Optimizing over the graph directly avoids this loss. This issue also applies when incorporating

additional losses (e.g. a classifier loss, or autoencoder loss) to indirect embeddings.
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3.6 Discussion

In this paper, we propose a novel parametric extension to UMAP. This parametric form

of UMAP produces similar embeddings to non-parametric UMAP, with the added benefit of a

learned mapping between data space and embedding space. We demonstrated the utility of this

learned mapping on several downstream tasks. We showed that parametric relationships can be

used to improve inference times for embeddings and reconstructions by orders of magnitude

while maintaining similar embedding quality to non-parametric UMAP. Combined with a global

structure preservation loss, Parametric UMAP captures additional global relationships in data,

outperforming methods where global structure is only imposed upon initialization (e.g. initializ-

ing with PCA embeddings). Combined with an autoencoder, UMAP improves reconstruction

quality and allows for the reconstruction of high-dimensional UMAP projections. We also

show that Parametric UMAP projections linearize complex features in latent space. Parametric

UMAP can be used for semi-supervised learning, improving training accuracy on datasets where

small numbers of training exemplars are available. We showed that UMAP loss applied to a

classifier improves semi-supervised learning in real-world cases where UMAP projections carry

categorically-relevant information (such as stereotyped birdsongs or single-cell transcriptomes),

but not in cases where categorically-relevant structure is not present (such as CIFAR10). We

devised two downstream approaches based around learned categorically-relevant distances, and

consistency regularization, that show improvements on these more complex datasets. Parametric

embedding also makes UMAP feasible in fields where dimensionality reduction of continuously

generated signals plays an important role in real-time analysis and experimental control.

A number of future directions and extensions to our approach have the potential to further

improve upon our results in dimensionality reduction and its various applications. For example,

to improve global structure preservation, we jointly optimized over the Pearson correlation

between data and embeddings. Using notions of global structure beyond pairwise distances in

data space (such as global UMAP relationships or higher-dimensional simplices) may capture
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additional structure in data. Similarly, one approach we used to improve classifier accuracy

relied on obtaining a ’categorically relevant’ metric, defined as the Euclidean distance between

activation states of the final layer of a classifier. Recent works (e.g. as discussed and proposed in

[397]) have explored methods for more directly capturing class information in the computation

of distance, such as using the Fisher metric to capture category- and decision-relevant structure in

classifier networks. Similar metrics may prove to further improve semi-supervised classifications

with Parametric UMAP.

3.7 Acknowledgments

Work supported by NIH 5T32MH020002-20 to TS and 5R01DC018055-02 to TQG. We

would also like to thank Kyle McDonald for making available his translation of Parametric t-SNE

to Tensorflow/Keras, which we used as a basis for our own implementation.

Chapter 3, in full, is a reprint of the material as it appears in Neural Computation, 2021,

Sainburg, Tim, McInnes, Leland, Gentner, Timothy Q. The dissertation author was the primary

investigator and author of this paper.

145



Chapter 4

Parallels in the sequential organization of
birdsong and human speech

Abstract

Human speech possesses a rich hierarchical structure that allows for meaning to be altered

by words spaced far apart in time. Conversely, the sequential structure of nonhuman commu-

nication is thought to follow non-hierarchical Markovian dynamics operating over only short

distances. Here, we show that human speech and birdsong share a similar sequential structure

indicative of both hierarchical and Markovian organization. We analyze the sequential dynamics

of song from multiple songbird species and speech from multiple languages by modeling the

information content of signals as a function of the sequential distance between vocal elements.

Across short sequence-distances, an exponential decay dominates the information in speech and

birdsong, consistent with underlying Markovian processes. At longer sequence-distances, the

decay in information follows a power law, consistent with underlying hierarchical processes.

Thus, the sequential organization of acoustic elements in two learned vocal communication

signals (speech and birdsong) shows functionally equivalent dynamics, governed by similar

processes.

146



4.1 Introduction

Human language is unique among animal communication systems in its extensive ca-

pacity to convey infinite meaning through a finite set of linguistic units and rules[66]. The

evolutionary origin of this capacity is not well understood, but it appears closely tied to the rich

hierarchical structure of language which enables words to alter meanings across long distances

(i.e. over the span of many intervening words or sentences) and timescales. For example, in the

sentence, ”Mary, who went to my university, often said that she was an avid birder”, the pronoun

”she” references ”Mary”, which occurs nine words earlier. As the separation between words

(within or between sentences) increases, the strength of these long-range dependencies decays

following a power law[246, 250]. The dependencies between words are thought to derive from

syntactic hierarchies[126, 67], but the hierarchical organization of language encompasses more

than word- or phrase-level syntax. Indeed, similar power-law relationships exist for the long-

range dependencies between characters in texts[6, 105], and are thought to reflect the general

hierarchical organization of natural language, where higher levels of abstraction (e.g., semantic

meaning, syntax, words) govern organization in lower level components (e.g., parts-of-speech,

words, characters)[246, 250, 6, 105]. Using mutual information (MI) to quantify the strength of

the relationship between elements (e.g. words or characters) in a sequence (i.e., the predictability

of one element revealed by knowing another element), the power-law decay characteristic of

natural languages[250, 247, 6, 105] has also been observed in other hierarchically organized

sequences, such as music[244, 250] and DNA codons[340, 250]. Language is not, however,

strictly hierarchical. The rules that govern the patterning of sounds in words (i.e., phonology)

are explained by simpler Markovian processes[192, 167, 168], where each sound is dependent

on only the sounds that immediately precede it. Rather than following a power law, sequences

generated by Markovian processes are characterized by MI that decays exponentially as the

sequential distance between any pair of elements increases[250, 245]. How Markovian and hier-

archical processes combine to govern the sequential structure of speech over different timescales
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is not well understood.

In contrast to the complexity of natural languages, non-human animal communication

is thought to be dictated purely by Markovian dynamics confined to relatively short-distance

relationships between vocal elements in a sequence[66, 162, 25]. Evidence from a variety of

sources suggests, however, that other processes may be required to fully explain some non-

human vocal communication systems[129, 201, 368, 266, 166, 390, 434, 419, 186, 50]. For

example, non-Markovian long-range relationships across several hundred vocal units (extending

over 7.5 to 16.5 minutes) have been reported in humpback whale song[419]. Hierarchically-

organized dynamics, proposed as fundamental to sequential motor behaviors[237], could provide

an alternate (or additional) structure for non-human vocal communication signals. Evidence

supporting this hypothesis remains scarce[66, 25]. The present study examines how Markovian

and hierarchical processes combine to govern the sequential structure of birdsong and speech.

Our results indicate that these two learned vocal communication signals are governed by similar

underlying processes.

4.2 Results

4.2.1 Modeling

To determine whether hierarchical, Markovian, or some combination of these two pro-

cesses better explain sequential dependencies in vocal communication signals, we measured

the sequential dependencies between vocal elements in birdsong and human speech. Bird-

song (i.e., the learned vocalizations of Oscine birds) is an attractive system to investigate

common characteristics of communication signals because birds are phylogenetically diverse

and distant from humans, but their songs are spectrally and temporally complex like speech,

with acoustic units (notes, motifs, phrases, and bouts) spanning multiple timescales[32]. A

number of complex sequential relationships have been observed in the songs of different
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species[129, 201, 368, 266, 166, 390, 434, 76]. Most theories of birdsong sequential orga-

nization assume purely short timescale dynamics[25, 141, 187, 195], however, and rely typically

on far smaller corpora than those available for written-language. Because non-human species

with complex vocal repertoires often produce hundreds of different vocal elements that may

occur with exceptional rarity[166], fully capturing the long-timescale dynamics in these signals

is data intensive.

To compare sequential dynamics in the vocal communication signals of birds and humans,

we used large-scale data sets of song from four oscine species whose songs exhibit complex

sequential organization (European starlings, Bengalese finches[322], Cassin’s vireos[166, 165],

and California thrashers[71, 390]). We compared these to large-scale data sets of phonetically-

transcribed spontaneous speech from four languages (English[346], German[398], Italian[222],

and Japanese[264]). To overcome the sparsity in the availability of large-scale transcribed

birdsong data sets, we used a combination of hand-labeled corpora from Bengalese finches,

Cassin’s vireos, and California thrasher, and algorithmically transcribed data sets from European

starlings (Methods; Figure 4.1). The full songbird data set comprises 86 birds totaling 668,617

song syllables recorded in over 195 hours of total singing (Supplementary Table 4.1). The

Bengalese finch data was collected from laboratory-reared individuals. The European starling

song was collected from wild-caught individuals recorded in a laboratory setting. The Cassin’s

vireo and California thrasher song were collected in the wild[166, 165, 71, 19]. The diversity

of individual vocal elements (syllables; a unit of song surrounded by a pause in singing) for

an example bird for each species are shown through UMAP[280] projections in Figure 4.1a-d,

and sequential organization is shown in Figure 4.1e-i. For the human speech data sets, we used

the Buckeye data set of spontaneous phonetically-transcribed American-English speech[346],

the GECO data set of phonetically transcribed spontaneous German speech[398], the AsiCA

corpus of ortho-phonetically transcribed spontaneous Italian (Calabrian) speech[222], and the

CJS corpus of phonetically transcribed spontaneous Japanese speech[264] totaling 4,379,552

phones from 394 speakers over 150 hours of speaking (Supplementary Table 4.2).
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Figure 4.1. Latent and graphical representations of songbird vocalizations. Panels a-d show
UMAP[280] reduced spectrographic representations of syllables from the songs of single birds
projected into two-dimensions. Each point in the scatterplot represents a single syllable, where
color is the syllable category. Syllable categories for Bengalese finch (a), California thrasher (b),
and Cassin’s vireo (c) are hand-labeled. European starlings (d) are labeled using a hierarchical
density-based clustering algorithm[279]. Each column in the figure corresponds to the same
animal. Transitions between syllables (e-h) in the same 2D space as a-d, where color represents
the temporal position of a transition in a song and stronger hues show transitions that occur
at the same position; weaker hues indicate syllable transitions that occur in multiple positions.
Transitions between syllable categories (i-l), where colored circles represents a state or category
corresponding to the scatterplots in panels a-d, and lines represent state transitions with opacity
increasing in proportion to transition probability. For clarity, low-probability transitions (≤5%)
are not shown.

For each data set, we computed MI between pairs of syllables or phones, in birdsong

or speech respectively, as a function of the sequential distance between elements (Equation

(4.4)). For example, in the sequence A → B →C → D, where letters denote syllable (or phone)

categories, A and B have a sequential distance of 1, while A and D have a distance of 3. In
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Figure 4.2. MI decay of sequences generated by three classes of models. (a) MI decay of
sequences generated by the hierarchically organized model proposed by Lin and Tegmark[250]
(red points) is best fit by a power-law decay (red line). (b) MI decay of sequences generated
by Markov models of Bengalese finch song from Jin et al.[187] and Katahira et al.[195] (green
points) are best fit by an exponential decay model (green lines). (c) MI decay of sequences
generated by a composite model (blue points) that combines the hierarchical model (a) and the
exponential model (b) is best fit by a composite model (blue line) with both power-law and
exponential decays.

general, MI should decay as sequential distance between elements increases and the strength

of their dependency drops, because elements separated by large sequential distances are less

dependent (on average) than those separated by small sequential distances. To understand

the relationship between MI decay and sequential distance in the context of existing theories,

we modeled the long-range information content of sequences generated from three different

classes of models: a recursive hierarchical model[250], Markov models of birdsong[187, 195],

and a model combining hierarchical and Markovian processes by setting Markov generated

sequences as the end states of the hierarchical model (Figure 4.2). We then compared three

models on their fit to the MI decay: a three-parameter exponential decay model (Equation (4.5)),

a three-parameter power-law decay model (Equation (4.6)), and a five-parameter model which

linearly combined the exponential and power-law decay models (composite model; Equation

(4.7)). Comparisons of model fits were made using the Akaike Information Criterion (AICc)

and the corresponding relative probabilities of each model[54] (see Methods) to determine the

best-fit model while accounting for the different number of parameters in each model. Consistent
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with prior work[250, 247, 245, 246], the MI decay of sequences generated by the Markov

models is best fit by an exponential decay, while the MI decay of the sequences generated

from the hierarchical model is best fit by a power-law decay. For sequences generated by the

combined hierarchical and Markovian dynamics, MI decay is best explained by the composite

model, that linearly combines exponential and power-law decay (relative probability > 0.999).

Because separate aspects of natural language can be explained by Markovian and non-Markovian

dynamics, we hypothesized the MI decay observed in human language would be best explained

by a pattern of MI decay similar to that observed in the composite model which combines both

Markovian and hierarchical processes. Likewise, we hypothesized that Markovian dynamics

alone would not provide a full explanation of the MI decay in birdsong.

4.2.2 Speech

In all four phonetically transcribed speech data sets, MI decay as a function of inter-phone

distance is best fit by a composite model that combines a power-law and exponential decay

(Figure 4.3, relative probabilities > 0.999, Supplementary Table 4.3). To understand the relative

contributions of the exponential and power-law components more precisely, we measured the

curvature of the fit of the log-transformed MI decay (Figure 4.3d). The minimum of the curvature

corresponds to a downward elbow in the exponential component of the decay, and the maximum

in the curvature corresponds to the point at which the contribution of the power law begins to

outweigh that of the exponential. The minimum of the curvature for speech (~3-6 phones for

each language or ~0.21-0.31 seconds) aligns roughly with median word length (3-4 phones)

in each language data set (Figure 4.3e), while the maximum curvature (~8-13 phones for each

language) captures most (~89-99%) of the distribution of word lengths (in phones) in each

data set. Thus, the exponential component contributes most strongly at short distances between

phones, at the scale of words, while the power law primarily governs longer distances between

phones, presumably reflecting relationships between words. The observed exponential decay at
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Figure 4.3. Mutual information decay in human speech. (a) MI decay in human speech for
four languages (maroon: German, orange: Italian, blue-green: Japanese, green: English) as a
function of the sequential distance between phones. MI decay in each language is best fit by a
composite model (colored lines) with exponential and power-law decays, shown as a dashed and
dotted grey lines, respectively. (b) The MI decay (as in (a)) with the exponential component of
the fit model subtracted to show the power-law component of the decay. (c) The same as in (b),
but with the power-law component subtracted to show exponential component of the decay. (d)
Curvature of the fitted composite decay model showing the distance (in phones) at which the
dominant portion of the decay transitions from exponential to power law. The dashed line is
drawn at the minimum curvature for each language (English: 3.37, German: 3.57, Italian: 3.72,
Japanese: 5.74) (e)Histograms showing the distribution of word lengths in phones, fit with a
smoothed Gaussian kernel (colored line). The dashed vertical line shows the median word length
(German: 3, Italian: 4, Japanese: 3, English: 3).

inter-word distances agrees with the longstanding consensus that phonological organization is

governed by regular (or subregular) grammars with Markovian dynamics[192]. The emphasis
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of a power-law decay at intra-word distances, likewise, agrees with the prior observations of

hierarchical long-range organization in language[167, 168].

To more closely examine the language-relevant timescales over which Markovian and

hierarchical processes operate in speech, we performed shuffling analyses that isolate the in-

formation carried within and between words and utterances in the phone data sets. We defined

utterances in English and Japanese as periods of continuous speech broken by pauses in the

speech stream (Supplementary Figure 4.5; median utterance length in Japanese: 19 phones,

English: 21 phones; the German and Italian data sets were not transcribed by utterance). To

isolate within-sequence (word or utterance) information, we shuffled the order of sequences

within a transcript, while preserving the natural order of phones within each sequence. Isolating

within-word information in this way yields MI decay in all four languages that is best fit by an

exponential model (Supplementary Figure 4.6a-d). Isolating within-utterance information in the

same way yields MI decay best fit by a composite model (Supplementary Figure 4.6i,j), much

like the unshuffled data (Figure 4.3a). Thus, only Markovian dynamics appear to govern phone-

to-phone dependencies within words. Using a similar strategy, we also isolated information

between phones at longer timescales by shuffling the order of phones within each word or utter-

ance, while preserving the order of words (or utterances). Removing within-word information in

this way yields MI decay in English, Italian, and Japanese that is best fit by a composite model

and MI decay in German that is best fit by a power-law model (Supplementary Figure 4.6e-h).

Removing within-utterance information yields MI decay that is best fit by a power-law model

(English; Supplementary Figure 4.6k) or a composite model (Japanese; Supplementary Figure

4.6l). Thus, phone-to-phone dependencies within utterances can be governed by both Markov

and/or hierarchical processes. The strength of any Markovian dynamics between phones in differ-

ent words or utterances weakens as sequence size increase, from words to utterances, eventually

disappearing altogether in two of the four languages examined here. The same processes that

govern phone-to-phone dependencies also appear to shape dependencies between other levels of

organization in speech. We analyzed MI decay in the different speech data sets between words,
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parts-of-speech, mora, and syllables (depending on transcription availability in each language,

see Supplementary Table 4.2). The MI decay between words was similar to that between phones

when within-word order was shuffled. Likewise, the MI decay between parts-of-speech paralleled

that between words, and the MI decay between mora and syllables (Supplementary Figure 4.7)

was similar to that between phones (Figure 4.3a). This supports the notion that long-range

relationships in language are inter-related at multiple levels of organization[6].

4.2.3 Birdsong

As with speech, we analyzed the MI decay of birdsong as a function of inter-element

distance (using song-syllables rather than phones) for the vocalizations of each of the four

songbird species. In all four species, a composite model best fit the MI decay across syllable

sequences. (Figure 4.4, relative probabilities > 0.999; Supplementary Table 4.4). The relative

contributions of the exponential and power-law components mirrored those observed for phones

in speech. That is, the exponential component of the decay is stronger at short syllable-distances,

while the power-law component of the decay dominates longer-distance syllable relationships.

The transition from exponential to power-law decay (minimum curvature of the fit), was much

more variable between songbird species than between languages (Bengalese finch: ~24 syllables

or 2.64 seconds, European starlings ~26 syllables or 19.13 seconds, Cassin’s vireo: ~21 syllables

or 48.94 seconds, California thrasher: ~2 syllables or 0.64 seconds).

To examine more closely the timescales over which Markovian and hierarchical processes

operate in birdsong, we performed shuffling analyses (similar to those performed on speech

data sets) that isolate the information carried within and between song bouts. We defined song

bouts operationally by inter-syllable pauses based upon the species (see Methods). To isolate

within-bout information, we shuffled the order of song bouts within a day, while preserving the

natural order of syllables within each bout. This yields a syllable-to-syllable MI decay that is

best fit by a composite model in each species (Supplementary Figure 4.8a-d), similar to that
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Figure 4.4. Mutual information decay in birdsong. (a) MI decay in song from four songbird
species (purple: Bengalese finch, teal: Calofirnia thrasher, red: Cassin’s vireo, blue: European
starling) as a function of the sequential distance between syllables. MI decay in each species is
best fit by a composite model (colored lines) with exponential and power-law decays, shown as
a dashed and dotted grey lines, respectively. (b) The MI decay (as in (a)) with the exponential
component of the fit model subtracted to show the power-law component of the decay. (c) The
same as in (b), but with the power-law component subtracted to show exponential component
of the decay. (d) Curvature of the fitted composite decay model showing the distance (in
syllables) at which the dominant portion of the decay transitions from exponential to power law.
The dashed line is drawn at the minimum curvature for each species (Bengalese finch: ~24,
California thrasher: ~2, Cassin’s vireo: ~21, European starling: ~26) (e) Histograms showing
the distribution of bout lengths in syllables, fit with a smoothed Gaussian kernel (colored line).
The dashed line shows the median bout length (Bengalese finch: 68, California thrasher: 88,
Cassin’s vireo: 33, European starling: 42).
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observed in the unshuffled data (Figure 4.4). Thus, both Markovian and hierarchical processes

operate at within-bout timescales. To confirm this, we also isolated within-bout relationships by

computing the MI decay only over syllables pairs that occur within the same bout (as opposed to

pairs occurring over an entire day of singing). Similar to the bout shuffling analysis, MI decay

in each species was best fit by the composite model (Supplementary Figure 4.9). To isolate

information between syllables at long timescales, we shuffled the order of syllables within bouts

while preserving the order of bouts within a day. Removing within-bout information in this way

yields MI decay that is best fit by an exponential decay alone (Supplementary Figure 4.8e-h).

This contrasts with the results of similar shuffles of phones within words or within utterances in

human speech (Supplementary Figure 4.6e-i), and suggests that the hierarchical dependencies

in birdsong do not extend across song bouts. This may reflect important differences in how

hierarchical processes shape the statistics of both communication signals. Alternatively, this may

be an uninteresting artifact of the relatively small number of bouts produced by most birds each

day (median bouts per day; finch: 117, starling: 13, thrasher: 1, vireo: 3; see discussion).

To understand how the syntactic organization of song might vary between individual

songbirds, even those within the same species, we performed our MI analysis on the data from

individuals (Supplementary Figures 10, 4.11). One important source of variability is the size

of the data set for each individual. In general, the ability of the composite model to explain

additional variance in the MI decay over the exponential model alone correlates positively with

the total number of syllables in the data set (Supplementary Figure 4.11a; Pearson’s correlation

between (log) data set size and ∆AICc: r = 0.57, p < 0.001, n = 66). That is, for smaller

data sets it is relatively more difficult to detect the hierarchical relationships in syllable-to-

syllable dependencies. In general, repeating the within-bout and bout-order shuffling analyses

on individual songbirds yields results consistent with analyses on the full species data sets

(Supplementary Figure 4.11b-d). Even in larger data sets containing thousands of syllables,

however, there are a number of individual songbirds for whom the composite decay model does

not explain any additional variance beyond the exponential model alone (Supplementary Figure
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4.11). In a subset of the data where it was possible, we also analyzed MI decay between syllables

within a single-day recording session, looking at the longest available recordings in our data

set, which were produced by Cassin’s vireos and California thrashers and contained over 1000

syllables in some cases (Supplementary Figure 4.12). These single recording sessions show

some variability even within individuals, exhibiting decay that in some cases appears to be purely

dictated by a power law, and in other cases decay best-fit by the composite model.

4.3 Discussion

Collectively, our results reveal a common structure in both the short- and long-range

sequential dependencies between vocal elements in birdsong and speech. For short timescale

dependencies, information decay is predominantly exponential, indicating sequential structure

that is governed largely by Markovian processes. Throughout vocal sequences, however, and

especially for long timescale dependencies, a power law, indicative of non-Markovian hierarchical

processes, governs information decay in both birdsong and speech.

These results change our understanding of how speech and birdsong are related. For

speech, our observations of non-Markovian processes are not unexpected. For birdsong, they

explain a variety of complex sequential dynamics observed in prior studies, including long-

range organization[266], music-like structure[368], renewal processes[201, 129], and multiple

timescales of organization[434, 76]. In addition, the dominance of Markovian dynamics at

shorter timescales may explain why such models have seemed appealing in past descriptions

of birdsong[32, 141] and language[188] which have relied on relatively small data sets parsed

into short bouts (or smaller segments) where the non-Markovian structure is hard to detect

(Supplementary Figure 4.11). Because the longer-range dependencies in birdsong and speech

cannot be fully explained by Markov models, our observations rule out the notion that either

birdsong or speech are fully defined by regular grammars[32]. Instead, we suggest that the

organizing principles of birdsong[434], speech[66], and perhaps sequentially patterned behaviors

158



in general[237, 85], are better explained by models that incorporate hierarchical organization.

The composite structure of the sequential dependencies in these signals helps explain why Hidden

Markov Models (HMMs) and Recurrent Neural Networks (RNNs) have been used successfully

to model sequential dynamics in speech[42, 392, 153, 250, 327, 401, 357] and (to a lesser extent)

animal communication[12, 76, 321, 194, 195, 282, 361, 456, 462]. HMMs are a class of Markov

model which can represent hidden states that underlie observed data, allowing more complex

(but still Markovian) sequential dynamics to be captured. HMMs have historically played an

important role in speech and language modeling tasks such as speech synthesis[435] and speech

recognition[357], but have recently been overtaken by RNNs[392, 389, 153, 327, 401], which

model long-range dependencies better than the Markovian assumptions underlying HMMs. A

similar shift to incorporate RNNs, or other methods to model hierarchical dynamics, will aid our

understanding of at least some non-human vocal communication signals.

The structure of dependencies between vocal elements in birdsong and human speech

are best described by both hierarchical and Markovian processes, but the relative contributions

of these processes show some differences across languages and species. In speech, information

between phones within words decays exponentially (Supplementary Figure 4.6a-d), while

the information within utterances follows a combination of exponential and power-law decay

(Supplementary Figure 4.6i,j). When this within-word and within-utterance structure is removed

(Supplementary Figure 4.6), a strong power law still governs dependencies between phones,

indicating a hierarchical organization that extends over very long timescales. Like speech,

information between syllables within bouts of birdsong are best described by a combination of

power-law and exponential decay (Supplementary Figures 4.9, 4.11a,b). In contrast to speech,

however, we did not observe a significant power-law decay beyond that in the bout-level structure

(Supplementary Figure 4.11c). The absence of a power law governing syllable dependencies

between bouts must be confirmed in future work, as our failure to find it may reflect the fact that

we had far fewer bouts per analysis window in the birdsong data sets than we had utterances in

the speech data sets. If confirmed, however, it would indicate an upper-bound for the hierarchical
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organization of birdsong. It may also suggest that a clearer delineation exists between the

hierarchical and Markovian processes underlying speech than those underlying birdsong. In

speech the exponential component of the decay is overtaken by the power-law decay at timescales

less than one second (0.48-0.72 seconds; Figure 4.3a), whereas in birdsong the exponential

component remains prominent for, in some cases, over two minutes (2.43-136.82 seconds; Figure

4.4a). In addition to upward pressures that may push the reach of hierarchical processes to shape

longer and longer dependencies in speech, there may also be downward pressures that limit the

operational range of Markovian dynamics. In any case, words, utterances, and bouts are only a

small subset of the many possible levels of transcription in both signals (e.g. note < syllable <

motif < phrase < bout < song; phone < syllable < word < phrase < sentence). Understanding

how the component processes that shape sequence statistics are blended and/or separated in

different languages and species, and at different levels of organization is a topic for future work.

It is also important to note that many individual songbirds produced songs that could be fully

captured by Markov processes (Supplementary Figure 4.11). In so far as both the Markovian

and hierarchical dynamics capture the output of underlying biological production mechanisms,

it is tempting to postulate that variation in signal dynamics across individuals and species may

reflect the pliability of these underlying mechanisms, and their capacity to serve as a target (in

some species) for selective pressure. The songbird species sampled here are only a tiny subset of

the many songbirds and nonhuman animals that produce sequentially patterned communication

signals, let alone other sequentially organized behaviors and biological processes. It will be

important for future work to document variation in hierarchical organization in a phylogenetically

controlled manner and in the context of ontogenic experience (i.e., learning). Our sampling of

songbird species was based on available large-scale corpora of songbird vocalizations, and most

likely does not capture the full diversity of long- and short-range organizational patterns across

birdsong and nonhuman communication. The same may hold true for our incomplete sampling

of languages.

Our observations provide evidence that the sequential dynamics of human speech and
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birdsong are governed by both Markovian and hierarchical processes. Importantly, this result

does not speak to the presence of any specific formal grammar underlying the structure of

birdsong, especially as it relates to the various hierarchical grammars thought to support the

phrasal syntax of language. It is possible that the mechanisms governing syntax are distinct from

those governing other levels of hierarchical organization. One parsimonious conclusion is that

the non-Markovian dynamics seen here are epiphenomena of a class of hierarchical processes

used to construct complex signals or behaviors from smaller parts, as have been observed in other

organisms including fruit flies[29, 83]. These processes might reasonably be co-opted for speech

and language production[261]. Regardless of variability in mechanisms, however, the power-law

decay in information content between vocal elements is not unique to human language. It can

and does occur in other temporally sequenced vocal communication signals including those that

lack a well-defined (perhaps any) hierarchical syntactic organization through which meaning is

conveyed.

4.4 Methods

4.4.1 Birdsong data sets.

We analyzed song recordings from four different species: European starling (Sturnus

vulgaris), Bengalese finch (Lonchura striata domestica), Cassin’s vireo (Vireo cassinii), and

California thrasher (Toxostoma redivivum). As the four data sets were each hand-segmented or

algorithmically segmented by different research groups, the segmentation methodology varies

between species. The choice of the acoustic unit used in our analyses are somewhat arbitrary and

the choice of the term syllable is used synonymously across all four species in this text, however

the units that are referred to here as syllables for the California thrasher and Cassin’s vireo are

sometimes referred to as phrases in other work[166, 165, 71, 390]. Information about the length

and diversity of each syllable repertoire is provided in Extended Data Table 4.1.

The Bengalese finch data set[322, 321] was recorded from sound-isolated individuals
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and was hand-labeled. The Cassin’s vireo[166, 164, 165] and the California thrasher[71] data

sets were acquired from the Bird-DB[19] database of wild recordings, and were recorded

from the Sierra Nevada and Santa Monica mountains respectively. Both data sets are hand-

labeled. The European starling song[17] was collected from wild-caught male starlings (sexed

by morphological characteristics) one year of age or older. Starling song was recorded at either

44.1 kHz or 48 kHz over the course of several days to weeks, at various points throughout the

year in sound isolated chambers. Some European starlings were administered with testosterone

before audio recordings to increase singing behavior. The methods for annotating the European

starling data set are detailed in the Corpus annotation for European starlings section.

Procedures and methods comply with all relevant ethical regulations for animal testing

and research and were carried out in accordance with the guidelines of the Institutional Animal

Care and Use Committee at the University of California, San Diego.

4.4.2 Speech corpora.

Phone transcripts were taken from four different data sets: the Buckeye corpus of

spontaneous conversational American-English speech[346], the IMS GECO corpus of sponta-

neous German speech[398], the AsiCA corpus of spontaneous Italian speech of the Calabrian

dialect[222] (south Italian), and the CSJ corpus of spontaneous Japanese speech[264].

The American-English speech corpus (Buckeye) consists of conversational speech taken

from 40 speakers in Columbus, Ohio. Alongside the recordings, the corpus includes transcripts

of the speech and time aligned segmentation into words and phones. Phonetic alignment was

performed in two steps: first using Hidden Markov Model (HMM) automatic alignment, followed

by hand adjustment and relabeling to be consistent with the trained human labeler. The Buckeye

data set also transcribes pauses, which are used as the basis for boundaries in an utterance in our

analyses.

The German speech corpus (GECO) consists of 46 dialogs approximately 25 minutes in

length each, in which previously unacquainted female subjects are recorded conversing with one
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another. The GECO corpus is automatically aligned at the phoneme and word level using forced-

alignment[360] from manually generated orthographic transcriptions. A second algorithmic step

is then used to segment the data set into syllables[360].

The Italian speech data (AsiCA) consists of directed, informative, and spontaneous

recordings. Only the spontaneous subset of the data set was used for our analysis to remain

consistent with the other data sets. The spontaneous subset of the data set consists of 61

transcripts each lasting an average of 35 minutes. The AsiCA data set is transcribed using a

hybrid orthographic/phonetic transcription method where certain phonetic features were noted

with International Phonetic Alphabet (IPA) labels.

The Japanese speech corpus (CSJ) consists of spontaneous speech from either mono-

logues or conversations which are hand transcribed. We use the core subset of the corpus, both

because it is the fully annotated subset of the data set, and because it is similar in size to the

other data sets used. The core subset of the corpus contains over 500,000 words annotated for

phonemes and several other speech features and consists primarily of spontaneously spoken

monologues. CSJ is also annotated at the level of mora, a syllable-like unit consisting of one or

more phonemes and serving as the basis of the 5-7-5 structure of the Haiku[328]. In addition,

CSJ is transcribed at the level of Inter-Pausal Units (IPUs) which are periods of continuous

speech surrounded by an at-least 200ms pause. We refer here to IPUs as utterances to remain

consistent with the Buckeye data set.

As each of the data sets was transcribed using a different methodology, this disparity

between the transcription methods may account for some differences in the observed MI decay.

The impact of using different transcription methods are at present unknown. The same disparity

is true of the birdsong data sets.

4.4.3 Corpus annotation for European starlings.

The European starling corpus was annotated using a novel unsupervised segmentation

and annotation algorithm being maintained at GitHub.com/timsainb/AVGN. An outline of the
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algorithm is given here.

Spectrograms of each song bout were created by taking the absolute value of the one-

sided short-time Fourier transformation of the bandpass filtered waveform. The resulting power

was normalized from 0-1, log-scaled, and thresholded to remove low-amplitude background

noise in each spectrogram. The threshold for each spectrogram was set dynamically. Beginning

at a base power-threshold, all power in the spectrogram below that threshold was set to zero. We

then estimated the periods of silence in the spectrogram as stretches of spectrogram where the

sum of the power over all frequency channels at a given time-point was equal to zero. If there

were no stretches of silence for at least n seconds (described below), the power threshold was

increased and the process was repeated until our criteria for minimum length silence was met

or the maximum threshold was exceeded. Song bouts for which the maximum threshold was

exceeded in our algorithm were excluded as too noisy. This method also filtered out putative

bouts that were composed of non-vocal sounds. Thresholded spectrograms were convolved with

a Mel-filter, with 32 equally spaced frequency bands between the high and low cutoffs of the

Butterworth bandpass filter, then rescaled between 0-255.

To segment song bouts into syllables, we computed the spectral envelope of each song

spectrogram, as the sum power across the Mel-scaled frequency channels at every time-sample

in the spectrogram. We defined syllables operationally as periods of continuous vocalization

bracketed by silence. To find syllables, we first marked silences by minima in the spectral

envelope and considered the signal between each silence as a putative syllable. We then compared

the duration of the putative syllable to an upper bound on the expected syllable length for each

species. If the putative syllable was longer than the expected syllable length, it was assumed to

be a concatenation of two or more syllables which had not yet been segmented, and the threshold

for silence was raised to find the boundary between those syllables. This processes repeated

iteratively for each putative syllable until it was either segmented into multiple syllables or a

maximum threshold was reached, at which point it was accepted as a long syllable. This dynamic

segmentation algorithm is important for capturing certain introductory whistles in the European

164



starling song, which can be several times longer than any other syllable in a bout.

Several hyperparameters were used in the segmentation algorithm. The minimum and

maximum expected lengths of a syllable in seconds (ebr min, ebr max) was set to 0.25s/0.75s.

The minimum number of syllables (min num sylls) expected in a bout was set to 20. The

maximum threshold for silence (max thresh), relative to the maximum of the spectral envelope)

was set to 2%. To threshold out overly noisy song, a minimum length of silence threshold

was expected in each bout (min silence for spec), set at 0.5s. The base spectrogram (log)

threshold for power considered to be spectral background noise (spec thresh) was set at

4.0. This threshold value was set dynamically, where the minimum spectral background noise

(spec thresh min) was set to be 3.5.

We reshaped the syllable spectrograms to create uniformly sized inputs for the dimension-

ality reduction algorithm. Syllable time-axes were resized using spline interpolation to match a

sampling rate of 32 frames equaling the upper limit of the length of a syllable for each species

(e.g. a starling’s longest syllables are ~1 second, so all syllables are reshaped to a sampling rate

of 32 samples/second). Syllables that were shorter than the set syllabic rate were zero-padded on

either side to equal 32-time samples, and syllables that were longer than the upper bound were

resized to 32-time samples to fit into the network.

Multiple algorithms exist to transcribe birdsong corpora into discrete elements. Our

method is unique in that it does not rely on supervised (experimenter) element labeling, or

hand-engineered acoustic features specific to individual species beyond syllable length. The

method consists of two steps: (1) project the complex features of each birdsong data set onto a

2-dimensional space using the UMAP dimensionality reduction algorithm[280] and (2) apply

a clustering algorithm to determine element boundaries[279]. Necessary parameters (e.g. the

minimum cluster size) were set based upon visual inspection of the distributions of categories in

the 2D latent space. We demonstrate the output of this method in Figure 4.1 both on a European

starling data set using our automated transcription, and on the Cassin’s vireo, California thrasher,

and Bengalese finch data sets. The dimensionality reduction procedure was used for the Cassin’s
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vireo, Bengalese finch, and California thrasher data sets, but using hand-segmentations rather

than algorithmic segmentations of boundaries. The hand-labels are also used rather than UMAP

labels for these three species.

4.4.4 Song bouts.

Data sets were either were made available segmented into bouts by the authors of each

data set, as in the case of the Bengalese finches, or were segmented into bouts based upon inter-

syllable-gaps of greater than 60 seconds in the case of Cassin’s vireo and California thrashers,

and 10 seconds in the case of European starlings. These thresholds were set based upon the

distribution of inter-syllable gaps for each species (Supplementary Figure 4.13).

4.4.5 Mutual information estimation.

We calculated Mutual Information (MI) using distributions of pairs of syllables (or

phones) separated by some distance within the vocal sequence. For example, in the sequence

“a → b → c → d → e”, where letters denote exemplars of specific syllable or phones categories,

the distribution of pairs at a distance of ’2’ would be ((a,c),(b,d),(c,e)). We calculate MI

between these pairs of elements as:

Î(X ,Y ) = Ŝ(X)+ Ŝ(Y )− Ŝ(X ,Y ) (4.1)

where X is the distribution of single elements (a,b,c) in the example, and Y is the distribution of

single elements (c,d,e). Ŝ(X) and Ŝ(Y ) are the marginal entropies of the distributions of X and Y ,

respectively, and Ŝ(X ,Y ) is the entropy of the joint distribution of X and Y , ((a,c),(b,d),(c,e)).

We employ the Grassberger[152] method for entropy estimation used by Lin and Tegmark[250]

which accounts for under-sampling true entropy from finite samples:

Ŝ = log2(N)− 1
N

K

∑
i=1

Niψ (Ni) (4.2)
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where ψ is the digamma function, K is the number of categories (e.g. syllables or phones)

and N is the total number of elements in each distribution. We account for the lower bound

of mutual information by calculating the mutual information on the same data set, where the

syllable sequence order is shuffled:

Îsh(X ,Y ) = Ŝ (Xsh)+ Ŝ (Ysh)− Ŝ (Xsh,Ysh) (4.3)

Where Xsh and Ysh refer to the same distributions as X and Y described above, taken from

shuffled sequences. This shuffling consists of a permutation of each individual sequence being

used in the analysis, which differs depending on the type of analysis (e.g. a bout of song in the

analysis shown in Supplementary Figure 4.9 versus an entire day of song in Figure 4.4).

Finally, we subtract out the estimated lower bound of the mutual information from the

original mutual information measure.

MI = Î − Îsh (4.4)

4.4.6 Mutual information decay fitting.

To determine the shape of the MI decay, we fit three decay models to the MI as a function

of element distance: an exponential decay model, a power-law decay model, and a composite

model of both, termed the composite decay:

exponential decay = a∗ e−x∗b + c (4.5)

power-law decay = a∗ xb + c (4.6)

composite decay = a∗ e−x∗b + c∗ xd + f (4.7)
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where x represents the inter-element distance between units (e.g. phones or syllables).

To fit the model on a logarithmic scale, we computed the residuals between the log of the MI and

of the model’s estimation of the log of the MI. Because our distances were necessarily sampled

linearly as integers, we scaled the residuals during fitting by the log of the distance between

elements. This was done to emphasize fitting the decay in log-scale. The models were fit using

the lmfit Python package[319].

4.4.7 Model selection.

We used the Akaike Information Criterion (AIC) to compare the relative quality of the

exponential, composite, and power-law models. AIC takes into account goodness-of-fit and

model simplicity, by penalizing larger numbers of parameters in each model (3 for the exponential

and power-law models, 5 for the composite model). All comparisons use the AICc[54] estimator,

which imposes an additional penalty (beyond the penalty imposed by AIC) to correct for higher-

parameter models overfitting on smaller data sets. We choose the best-fit model for the MI decay

of each bird’s song and the human speech phone data sets using the difference in AICc between

models[54]. In the text, we report the relative probability of a given model (in comparison to

other models), which is computed directly from the AICc[54] (see Supplementary Information).

We report the results using log-transformed data in the main text (Extended Data Tables. 4.4,

4.3).

To determine a reasonable range of element-to-element distances for all the birdsong and

speech data sets, we analyzed the relative goodness-of-fit (AICc) and proportion of variance

explained (r2) for each model on decays over distances ranging from 15 to 1000 phones/syllables

apart. The composite model provides the best fit for distances up to at least 1000 phones in each

language (Supplementary Figure 4.14) and at least the first 100 syllables for all songbird species

(Supplementary Figure 4.15). To keep analyses consistent across languages and songbird species

we report on analyses using distances up to 100 elements (syllables in birdsong and phones

in speech). Figures 4.3 and 4.4 show a longer range of decay in each language and songbird
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species, plotted up to element-distances where the coefficient of determination (r2) remained

within 99.9% of its value when fit to 100-element distances.

4.4.8 Curvature of decay fits.

We calculated the curvature for those signals best fit by a composite model in log space

(log-distance and log-MI).

κ =
|y′′|

(1+ y′2)
3
2

(4.8)

Where y is the log-scaled MI. We then found the local minima and the following local maxima of

the curvature function, which corresponds to the ‘knee’ of the exponential portion of the decay

function, and the transition between a primary contribution on the exponential decay to a primary

contribution of the power-law decay.

4.4.9 Sequence analyses.

Our primary analysis was performed on sequences of syllables that were produced within

the same day to allow for both within-bout and between-bout dynamics to be present. To do so,

we considered all syllables produced within the same day as a single sequence and computed MI

over pairs of syllables that crossed bouts, regardless of the delay in time between the pairs of

syllables. In addition to the primary within-day analysis, we performed three controls to observe

whether the observed MI decay was due purely to within-bout, or between-bout organization. The

first control was to compute the MI between only syllables that occur within the same bout (as

defined by a 10s gap between syllables). Similar to the primary analysis (Figure 4.4), the best-fit

model for within-bout MI decay is the composite model (Supplementary Figures 4.11b, 4.9). To

more directly dissociate within-bout and between-bout syllable dependencies in songbirds, we

computed the MI decay after removing either within- or between-bout structure. To do this, we

shuffled the ordering of bouts within a day while retaining the order of syllables within each

bout (Supplementary Figure 4.11c), or shuffled the order of syllables within each bout while

retaining the ordering of bouts (Supplementary Figure 4.11d). Analyses were performed on
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individual songbirds with at least 150 syllables in their data set (Supplementary Figure 4.11),

and on the full data set of all birds in a given species. We performed similar shuffling analysis on

the speech data sets (Supplementary Figure 4.6). For speech, we shuffled the order of phones

within-words (while preserving word order) to remove within-word information, and shuffled

word order (while preserving within-word phone ordering) to remove between-word information.

We used a similar shuffling strategy at the utterance level remove within- and between-utterance

information. The speech data sets were not broken down into individuals due to limitations in

data set size at the individual level, and because language is clearly shared between individuals

in each speech data set.

To address the possibility that repeating syllables might account for long-range order,

we performed separate analyses on both the original syllable sequences (as produced by the

bird) and compressed sequences in which all sequentially repeated syllables were counted

as a single syllable. The original and compressed sequences show similar MI decay shapes

(Supplementary Figure 4.16). We also assessed how our results relate to the timescale of

segmentation and discretization of syllables or phones by computing the decay in MI between

discretized spectrograms of speech and birdsong at different temporal resolutions (Supplementary

Figure 4.17) for a subset of the data. Long-range relationships are present throughout both

speech and birdsong regardless of segmentation, but the pattern of MI decay does not follow

the hypothesized decay models as closely as that observed when the signals are discretized to

phones or syllables, supporting the non-arbitrariness of these low-level production units.

4.4.10 Computational models.

We compared the MI decay of sequences produced by three different artificial grammars:

(1) Markov models used to describe the song of two Bengalese finches[187, 195], (2) The

hierarchical model proposed by Lin and Tegmark[250], and (3) a model composed of both the

hierarchical model advocated by Lin and Tegmark and a Markov model. While these models do

not capture the full array of possible sequential models and their signatures in MI decay, they
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well-capture the predictions made based upon the discussed literature[250, 245, 246, 6, 105] and

provide an illustration of what would be expected given our competing hypotheses. With each

model, we generate corpora of sequences, then compute the MI decay of the sequences using the

same methods as with the birdsong and speech data. We also fit a power-law, exponential, and

composite model to the MI decay, in the same manner (Figure 4.2).

A Markov model is a sequential model in which the probability of transitioning to a state

(xn) is dependant solely on the previous state (xn−1). Sequences are generated from a Markov

model by sampling an initial state, x0 from the set of possible states S. x0 is then followed by a

new state from from the probability distribution P(xn|xn−1). Markov models can thus be captured

by a Matrix M of conditional probabilities Mab = P(xn = a|xn−1 = b), where a ∈ S and b ∈ S.

In the example (Figure 4.2b) we produce a set of 65,536 (216) sequences from Markov models

describing two Bengalese finches[187, 195].

The hierarchical model from Lin and Tegmark[250] samples sequences recursively in

a similar manner to how the Markov model samples sequences sequentially. Specifically, a

state x0 is drawn probabilistically from the set of possible states S as in the Markov model. The

initial state x0 is then replaced (rather than followed by, as in the Markov model) by q new states

(rather than a single state as in the Markov model), which are similarly sampled probabilistically

as P(xi|x0), where xi is any of the new q states replacing x0. The hierarchical grammar can

therefore similarly be captured by a conditional probability matrix Mab = P(xl+1 = a|xl = b).

The difference between the two models is that the sampled states are replaced recursively in

the hierarchical model, whereas in the Markov model they are appended sequentially to the

initial state. In the example (Figure 4.2a) we produce a set of 1000 sequences from a model

parameterized with an alphabet of 5 states recursively subsampled 12 times, with 2 states

replacing the initial state at each subsampling (generating sequences of length 4096).

The final model combines both the Markov model and the hierarchical model by using

Markov-generated sequences as the end states of the hierarchical model. Specifically, the

combined model is generated in a three-step process: (1) A Markov model is used to generate
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sequences equal to the number of possible states of the hierarchical model (S). (2) The combined

model is sampled in the exact same manner as the hierarchical model to produce sequences. (3)

The end states of the hierarchical model are replaced with their corresponding Markov-generated

states from (1). In the example (Figure 4.2c) we produce sequences in the same manner as the

hierarchical model. Each state of these sequences is then replaced with sequences between 2 and

5 states long generated by a Markov model with an alphabet of 25 states.

Neither the hierarchical model nor the combined model is meant to exhaustively sample

the potential ways in which hierarchical signals can be formed or combined with Markovian

processes. Instead, both models are meant to illustrate the theory proposed by prior work and to

act as a baseline for comparison for our analyses on real-world signals.

4.5 appendix

4.5.1 AICc

To calculate the AICc[54] for each competing model, we first calculated the (log scaled)

residual sum of squares as:

RSS (MI,MImodel) = (MI −MImodel)
2 (4.9)

The log-likelihood of the model can then be calculated as:

logL =−n
2

log
(

RSS
n

)
(4.10)

where n is the sample size. AIC can then be calculated as:

AIC =−2logL +2K (4.11)
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where K is the total number of parameters in the model that can be estimated. To be conservative

we used the sample bias corrected AIC, AICc, for all reported results, calculated as:

AICc = AIC+
2K(K +1)
n−K −1

(4.12)

although the correction made no difference in the results. We computed the ∆AIC as the

difference between the best-fit model and each other model:

∆AICi = AICci −min(AICc) (4.13)

Using ∆AIC for each model, we calculate the relative likelihood of that model given the data as:

ℓi = L (modeli | data) = e−
1
2 ∆AICi (4.14)

Then the relative probability of each model given the data is computed as the likelihood

of each model over the sum of the likelihood of all competing models:

P(modeli | data) =
ℓi

∑ j ℓ j
(4.15)

Finally, the evidence ratio for the best model versus any other given model is the ratio of

probabilities of any two given models.
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Supplementary Figures
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Figure 4.5. Utterance length in phones for English (a) and Japanese (b). The median utterance
length in Japanese is 19 phones and in English is 21 phones. The German and Italian data sets
were not transcribed by utterance.
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Figure 4.6. MI decay between phones in shuffled speech for different languages (maroon:
German, blue-green: Japanese, orange: Italian, green: English). All plots show the MI between
phones plotted as a function of sequential distance between phones (as in Figure 4.3). Panels
(a-d) show MI when word order is shuffled while phone order within words is preserved. In
all cases, decay is best fit by an exponential model (colored lines). Panels (e-h) show MI when
phone order within words is shuffled and word order is preserved. Italian (f), Japanese (g), and
English (h) are best fit by a composite model, whereas German (e) is best fit by a power-law
model. Panels (i) and (j) show MI when the order of utterances are shuffled and phone order
within each utterance is preserved. Both English (i) and Japanese (j) are best fit by a composite
decay model. Panels k and l show MI when phone order within utterances is shuffled, and
utterance order is preserved. English (k) is best-fit by a power-law model while Japanese (l) is
best fit by a composite model.
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Figure 4.7. MI decay between words, syllables, mora, and parts-of-speech plotted as a function of
sequential distances between each of these elements in three languages (green: English, maroon:
German, blue-green: Japanese). Not all element categories are available for all languages. For
all cases but German words, MI decay is best fit by a composite model (colored lines) with
exponential and power-law decays, shown as a dashed and dotted grey lines, respectively. The
MI decay between German words is best fit by a power-law. The minima in curvature (colored
vertical dashed lines) for words, part-of-speech, and syllables are shorter (in their respective
units) than the minima for phones in each language. For English, the minimum curvature is
at 1.7 for words, and at 1.6 for parts-of-speech. For German syllables the minimum curvature
is at 2.1. For Japanese, the minimum curvature is at 1.9 for mora, 2.1 for words, and 2.1 for
parts-of-speech. A minimum curvature is not given for German words because the decay is best
fit by a power-law model alone.
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Figure 4.8. MI decay between syllables in shuffled songs from four songbird species (purple:
Bengalese finch, teal: California thrasher, red: Cassin’s vireo, blue: European starling). All plots
show the MI between syllables plotted as a function of sequential distance between syllables
(as in Figure 4.4). Panels (a-d) show MI when bout order is shuffled and syllable order within
bouts is preserved. Decay in all species is best fit by a composite model. Panels (e-h) show MI
when syllable order within each bout is shuffled, and the order of bouts is preserved. Decay in
all species is best fit by an exponential model.
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Figure 4.9. Mutual information decay between syllables in the songs of four songbird species
(as in Figure 4.4; purple: Bengalese finch, teal: California thrasher, red: Cassin’s vireo, blue:
European starling), but when the analysis is restricted to syllable pairs that do not span multiple
song bouts. MI is plotted from a distance of 1 syllable to the median song length in syllables, to
allow a sufficient number of examples for the MI calculation.
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Figure 4.10. MI decay in the four largest data sets from individual songbirds in each species.
Plots are grouped into sets of three (in a row), corresponding to the data from a one individual
songbird (purple: Bengalese finch, teal: California thrasher, red: Cassin’s vireo, blue: European
starling). For a given bird, the three subplots from left to right show (1) the full MI decay with the
fitted model (colored line) and the individual model components (grey lines), (2) the power-law
fit to the MI when the exponential component is subtracted, and (3) exponential fit to the MI
when the power-law component is subtracted. The species, individual ID, and best-fit model is
shown in the title of the leftmost subplot.

180



181



Figure 4.11. Relative decay model fits. Scatterplots (a-d) showing the difference in model
fit (∆AICc) for the composite model versus the exponential model of MI decay for individual
songbirds (purple: Bengalese finch, teal: California thrasher, red: Cassin’s vireo, blue: European
starling) plotted as a function of the number of syllables in each individual songbird’s data set.
The black line shows a linear regression model with 95% confidence interval fit to the positive
relationship between the improvement of the composite model over the exponential model as a
function of (log) data set size. Points above zero (dashed line) are better fit by the composite
model, while points below are better fit by the exponential model. (a) MI decay for each bird
computed across all bouts within a day. (b) The same plot as in (a), but shuffling the ordering of
bouts to remove between-bout structure. (c) The same plot as in (a), but shuffling syllable order
within bouts, to remove within-bout structure. (d) The same plot as in (a), but where the analysis
is restricted to only those syllable pairs within the same song bout.
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Figure 4.12. The decay in MI between syllables in the 18 individual songbirds with the longest
available recordings in all data sets. Vireo and thrasher decay. Each set of three plots is from
either a Cassin’s vireo (red) or California thrasher (teal). The three subplots for each bird are
organized as in Supplementary Figure 4.10, showing (from left to right) the full MI decay
(colored line, with individual model components in grey), power-law fit after the exponential
component is subtracted, and exponential fit after the power-law component subtracted. The
species, individual ID, and best-fit model is given in the title of the left-most subplot.
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Figure 4.13. The intersyllable interval time in seconds for each songbird species. (a) Bengalese
finch (b) California thrasher (c) Cassin’s vireo (d) European starling.
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Figure 4.14. The goodness of fit of the composite decay model for each language as a function
of the MI analysis length. The coefficient of determination (r2) for the full composite model (top)
and the power-law component of the composite model (center). r2 is computed for fits of the
composite model on MI decay at distances of 15-1000 phones (x-axis). (bottom) ∆AICc between
composite and exponential decay models for each language as a function of the maximum phone-
to-phone distance computed (green: English, maroon: German, orange: Italian, blue-green:
Japanese).
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Figure 4.15. The goodness of fit of the composite decay model for each songbird species as a
function of the MI analysis length. The coefficient of determination (r2) for the full composite
decay model (top) and the power-law component of the composite model (center). r2 is computed
for fits of the composite model on MI decay of distances of 15-1000 syllables (x-axis). (bottom)
∆AICc between composite and exponential decay models for each species as a function of
maximum syllable-to-syllable distance computed (purple: Bengalese finch, teal: California
thrasher, red: Cassin’s vireo, blue: European starling).
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Figure 4.16. Decay of MI between syllables in the birdsong data sets after removing sequentially
repeated syllables. Data follow those in Figure 4.4 (purple: Bengalese finch, teal: California
thrasher, red: Cassin’s vireo, blue: European starling). The decay of Cassin’s vireo, California
thrasher, and European starling song is largely unaffected, whereas exponential portion of the
decay of Bengalese finch song is shifted.
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Figure 4.17. Decay in MI between song and speech signal components arbitrarily parsed at
multiple timescales. Raw waveforms are split into discrete units at three different timescales
(0.01, 0.1, and 1 second), and classified using k-means clustering. Each set of three plots in a
column shows the MI between units at one of three timescales (0.001 to 1 second, top to bottom)
as a function of the distance between units. Each column shows data for vocalizations of a single
individual (green: English, purple: Bengalese finch, blue: European starling). The analysis was
only performed on a subset of individuals/data due to the length of time required to segment,
cluster and calculate MI on small timescales with large data sets.
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Table 4.1. Birdsong dataset statistics.

Species Ben. finch Eur. starling Cass. vireo Cal. thrasher

Origin Laboratory Wild-caught Wild Wild
# individuals 4 14 50 18
# syllables 215,740 368,956 68,157 15,764
Duration (hrs.) 7.44 89.14 94.07 4.5
Hand Labelled Yes No Yes Yes
Unique syllables (median) 18.5 151.5 48 51.5
Syllables in bout (median) 68 42 7 21
Syllable length (s; median) 0.07 0.68 0.33 0.15
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Table 4.2. Language dataset statistics.

Dataset Buckeye GECO AsiCA CSJ

Language English German Italian Japanese
Transcripts 40 92 61 201
Duration (Hrs.) 37.9 39.9 35.4 37.6
# Phones 841,266 839,543 1,065,084 1,633,659
Unique phone labels 45 70 90 49

Transcription

Phone Yes Yes Ortho-phonetic Yes
Mora No No No Yes
Words Yes Yes Ortho-phonetic Yes
Syllables No Yes No No
Part of speech Yes No No Yes
Utterance Yes No No Yes
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Table 4.3. Language corpus model fit results at 100 phones of distance.

German Italian English Japanese

AICc exp -261.645 -355.721 -255.784 -401.333
composite -343.68 -566.454 -311.642 -509.903
power-law -326.137 -435.96 -279.64 -348.479

r2 exp 0.966 0.977 0.954 0.991
composite 0.986 0.997 0.975 0.997
power-law 0.983 0.99 0.964 0.985

Relative likelihood exp <0.001 <0.001 <0.001 <0.001
composite >0.999 >0.999 >0.999 >0.999
power-law <0.001 <0.001 <0.001 <0.001

Relative probability exp <0.001 <0.001 <0.001 <0.001
composite >0.999 >0.999 >0.999 >0.999
power-law <0.001 <0.001 <0.001 <0.001
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Table 4.4. Birdsong dataset model fit results at 100 syllables of distance.

Ben. finch Cal. thrasher Cass. vireo Eur. starling

AICc exp -489.251 -582.14 -637.678 -520.903
composite -586.509 -797.431 -763.787 -676.984
power-law -390.009 -698.559 -354.734 -405.85

r2 exp 0.98 0.975 0.995 0.981
composite 0.993 0.997 0.999 0.996
power-law 0.945 0.992 0.92 0.942

Relative likelihood exp <0.001 <0.001 <0.001 <0.001
composite >0.999 >0.999 >0.999 >0.999
power-law <0.001 <0.001 <0.001 <0.001

Relative probability exp <0.001 <0.001 <0.001 <0.001
composite >0.999 >0.999 >0.999 >0.999
power-law <0.001 <0.001 <0.001 <0.001
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Chapter 5

Long-range sequential dependencies pre-
cede complex syntactic production in lan-
guage acquisition

Abstract

To convey meaning, human language relies on hierarchically organized, long-range

relationships spanning words, phrases, sentences, and discourse. As the distances between

elements (e.g., phonemes, characters, words) in human language sequences increase, the strength

of the long-range relationships between those elements decays following a power law. This

power-law relationship has been attributed variously to long-range sequential organization

present in human language syntax, semantics, and discourse structure. However, non-linguistic

behaviors in numerous phylogenetically distant species, ranging from humpback whale song to

fruit fly motility, also demonstrate similar long-range statistical dependencies. Therefore, we

hypothesized that long-range statistical dependencies in human speech may occur independently

of linguistic structure. To test this hypothesis, we measured long-range dependencies in several

speech corpora from children (aged 6 months – 12 years). We find that adult-like power-law

statistical dependencies are present in human vocalizations at the earliest detectable ages, prior

to the production of complex linguistic structure. These linguistic structures cannot, therefore,

be the sole cause of long-range statistical dependencies in language.
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5.1 Introduction

Since Shannon’s original work characterizing the sequential dependencies present in

language, the structure underlying long-range information in language has been the subject

of a great deal of interest in linguistics, statistical physics, cognitive science, and psychology

[399, 381, 7, 6, 249, 151, 391, 106, 4, 284, 298, 299, 297, 246, 317, 56, 316, 78, 400, 135].

Long-range information content refers to the dependencies between discrete elements (e.g.,

units of spoken or written language) that persist over long sequential distances spanning words,

phrases, sentences, and discourse. For example, in Shannon’s original work, participants

were given a series of letters from an English text and were asked to predict the letter that

would occur next. Using the responses of these participants, Shannon derived an upper bound

on the information added by including each preceding letter in the sequence. More recent

investigations compute statistical dependencies directly from language corpora using either

correlation functions [299, 297, 7, 6, 391, 106, 284] or mutual information (MI) functions

[381, 246, 249, 151] between elements in a sequence. In both cases, dependencies are calculated

as a function of the sequential distance between pairs of elements. For example, in the sequence

a → b → c → d → e → f , at a distance of three elements, relationships would be calculated over

the pairs a and d, b and e, and c and f .

On average, as the distance between elements increases, statistical dependencies weaken.

Across many different sequence types, including phonemes, syllables, and words in both text and

speech, the decay of long-range correlations and MI in language follows a power law (Eq. 5.6)

[381, 7, 6, 249, 151, 391, 106, 4, 284, 298, 299, 297, 246, 78, 400]. This power-law relationship

is thought to derive at least in part from the hierarchical organization of language, and has been

variously attributed to hierarchical structure in human language syntax [249], semantics [7], and

discourse structure [6].

To understand the link between hierarchical sequential organization in language and

long-range sequential dependencies, it is helpful to consider both the latent and surface structure
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Figure 5.1. Comparison of long-range statistical dependencies between sequences with and
without deep latent relationships. (A) The MI between elements in an iteratively (Markov
model) generated sequence decays exponentially as a function of sequential distance. (B) An
example sequence with hierarchical latent structure. The latent distance between the two end
elements in the sequence is 6 (blue), while the sequential distance is 17 (red). (C) In sequences
with hierarchical latent structure, the sequential distance between elements is logarithmically
related to the latent distance (fit model: a∗ logx∗b + c where x is sequential distance). (D) Like
sequential distance in (A), The MI between elements in a hierarchically generated sequence
decays exponentially as a function of latent distance. (E) The MI between elements in a
hierarchically generated sequence decays following a power law as a function of sequential
distance, which is related to the exponential MI decay seen in (D) and the logarithmic relationship
between sequential and latent distance seen in (C). In (A), the probabilistic Markov model used
to generate the empirical data has 2 states with a self-transition probability of 0.1. In (C-E) a
probabilistic context-free grammar [249] with the same transition probability is used.
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of a sequence (Fig. 5.1). When only the surface structure of a sequence is available, as it is for

language corpora, a power-law decay in the MI between sequence elements gives evidence of an

underlying hierarchical latent structure. This phenomenon can be demonstrated by comparing

the MI between elements in a sequence generated from a hierarchically-structured language

model, such as a probabilistic context-free grammar (PCFG), to the MI between elements in

a sequence generated by a non-hierarchical model, such as a Markov process (Fig. 5.1). For

sequences generated by a Markov process, the strength of the relationship between elements

decays exponentially (Eq. 5.5) as sequential distance increases [249, 245] (Fig. 5.1A). In the

PCFG model, however, linear distances in the sequence are coupled to logarithmic distances

in the latent structure of the hierarchy (Fig. 5.1B-C). While information continues to decay

exponentially as a function of the distance in the latent hierarchy (Fig. 5.1D), this log-scaling

results in a power-law decay when MI is computed over corresponding sequential distances (Fig.

5.1E).

The thought that human language syntax is generated by CFGs [68] has led many to

speculate that the long-range dependencies observed in language corpora are the product of

abstract linguistic structure [7, 6, 249, 381]. Although the long-range statistical dependencies

in language corpora are clearly tied to linguistic structure [6, 7], it does not follow that this

structure is necessarily the only source for long-range dependencies in language. Indeed,

hierarchical organization is unique to neither CFGs nor human language, and diverse classes

of mechanisms, many of which are decidedly not language-like [318, 417, 125, 34, 311, 146],

are capable of generating power-law relationships. Many non-linguistic human behaviors

[77, 124, 458, 40, 237, 221], animal behaviors [83, 355, 57, 242, 29, 243], animal vocalizations

[201, 368, 266, 166, 390, 419, 186, 50, 121, 305], and other biologically-generated processes

[341, 412, 247, 340, 449, 210, 146, 59] are organized hierarchically. Likewise, long-range,

power-law distributed dependencies are observed in sequential behaviors, including whale song

[419], birdsong [381, 259], and Drosophila [29] and Zebrafish motility [142]. Instead, long-

range dependencies in language and other human behavior [85, 403, 237] may reflect more
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general biological processes inherited from the organization of underlying neurophysiological

mechanisms [434, 211, 41, 439] that are, in turn, characterized by power-law relationships in

temporal sequencing [253, 163, 332]. When viewed as an instance of this more general class of

sequentially organized behavior, one might reasonably predict that human speech should display

long-range statistical dependencies independent of linguistic structure.

To test whether long-range statistical dependencies occur independently of complex

linguistic structure in speech we used MI decay as a measure of long-range dependencies over

several speech corpora from children ranging from 6 months of age to adults [371, 263, 82, 335,

468, 48, 61, 43, 90, 271, 294, 143, 308, 320]. Because complex linguistic productions emerge

during language acquisition, we use these corpora to determine whether long-range relationships

are present in human vocalizations prior to the production of linguistically complex speech, or

whether they emerge alongside linguistically complex productions. If long-range dependencies

were to emerge over the course of development alongside complex utterances, we could conclude

that abstract linguistic structure plays a dominant role in the sequential statistical structure of

speech. However, if long-range statistical dependencies are observed in infant speech prior to the

production of structurally complex utterances, then it is likely that the long-range dependencies

observed in adult speech are not solely governed by abstract linguistic structure. Indeed, we find

that human speech exhibits long-range power-law statistical dependencies like those observed in

mature human language early in development, at 6 to 12 months of age, while children are still

in the ”babbling” stage of language development.

5.2 Methods

5.2.1 Datasets

We examined MI decay in sequences of words over nine datasets of natural speech

from English speaking children included in the CHILDES repository [263, 61, 43, 90, 271, 294,

143, 308, 320] and three datasets of sequences of phonemes from the PhonBank repository

199



[371, 82, 335, 468], both of which are part of the TalkBank repository [263]. Each dataset within

CHILDES and PhonBank was collected in a slightly different manner. In our analyses, we

included only transcripts of spontaneous speech that were collected from typically-developing

children (usually at an in-home setting with family or an experimenter). The subset of CHILDES

we used includes word-level transcripts of speech from children aged 12 months to 12 years of

age. The subset of PhonBank we used includes phonetic transcriptions of speech given in the

International Phonetic Alphabet (IPA) from children aged 6 months to four years of age. Between

the phoneme and word-level datasets, a large range of speech and language development is

covered.

For the MI analysis on phonemes, we binned transcripts into five 6-month age groups

(6-12, 12-18, 18-24, 24-30, 30-36) and one age group from 3 years to 4 years. Each transcript

was analyzed as sequences of phonemes, where phoneme distributions for each transcript are

treated independently to account for variation in acquired vocabulary across individuals during

development. Because transcript lengths varied between age groups (Fig. S1), we analyzed MI

at sequential distances up to the median transcript length for each age group. For the MI analysis

on words, we binned transcripts into four 6-month age groups (12-18, 18-24, 24-30, 30-36) and

one age group from 3 years to 12 years. We analyzed words in the same manner as phonemes1.

5.2.2 Mutual information

For each dataset, we calculate the sequential MI over the elements of the sequence dataset

(e.g. words produced by a child). Each element in each sequence is treated as unique to that

transcript to account for different distributions of behaviors across different transcripts within

datasets.

Given a sequence of discrete elements a → b → c → d → e We calculate mutual infor-

mation as:
1No 6-12 month age group was used in word-level analyses because of the sparsity of word-level productions at

that age
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I(X ,Y ) = S(X)+S(Y )−S(X ,Y ) (5.1)

Where X and Y are the distributions of single elements at a given distance. For example,

at a distance of two, X is the distribution [a,b,c] and Y is [c,d,e] from the set of element-pairs

(a− c, b−d, and c− e). Ŝ(X) and Ŝ(Y ) are the marginal entropies of the distributions of X and

Y , respectively, and Ŝ(X ,Y ) is the entropy of the joint distribution of X and Y .

To estimate entropy, we employ the Grassberger [152] method which accounts for under-

sampling true entropy from finite samples:

Ŝ = log2(N)− 1
N

K

∑
i=1

Niψ (Ni) (5.2)

where ψ is the digamma function, K is the number of categories of elements (e.g. words

or phones) and N is the total number of elements in each distribution.

We then adjust the estimated MI to account for chance. To do so, we subtract a lower

bound estimate of chance MI (Îsh):

MI = Î − Îsh (5.3)

This sets chance MI at zero. We estimate MI at chance (Îsh) by calculating MI on

permuted distributions of labels X and Y :

Îsh(X ,Y ) = Ŝ (Xsh)+ Ŝ (Ysh)+ Ŝ (Xsh,Ysh) (5.4)

Xsh and Ysh refer to random permutations of the distributions X and Y described above.

Permuting X and Y effects the joint entropy S(Xsh,Ysh) in Ish, but not the marginal entropies

S(Xsh) and S(Ysh). Îsh is related to the Expected Mutual Information [448, 180, 447] which

accounts for chance using a hypergeometric model of randomness.

Importantly, MI calculated over a sequence as a function of distance is referred to as a
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”mutual information function”, to distinguish it as the functional form of mutual information,

which measures the dependency between two random variables [246]. In the mutual information

function, samples from the distributions X and Y are taken from the same sequence, thus they

are not independent. MI as a function of distance acts as a generalized form of the correlation

function that can be computed over symbolic sequences and captures non-linear relationships

[246].

5.2.3 Fitting mutual information decay

We fit the three following models:

An exponential decay model:

MI = a∗ e−x∗b + f (5.5)

A power-law model:

MI = c∗ xd + f (5.6)

A composite model of the power-law and exponential models:

MI = a∗ e−x∗b + c∗ xd + f (5.7)

where x represents the inter-element distance between units (e.g. phones or syllables).

To fit the model on a logarithmic scale, we computed the residuals between the log of

the MI and the log of the model’s estimation of the MI. We scaled the residuals during fitting

by the log of the distance between elements to emphasize fitting the decay in log-scale because

distance was necessarily sampled linearly as integers. Models were fit using the lmfit Python

package [319] using Nelder-Mead minimization. We compared model fits on the basis of AICc

and report the relative probability of each model fit to the MI decay [55, 381].
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5.2.4 Controls

Datasets are organized hierarchically into transcripts, utterances, words, and phonemes

allowing us to shuffle the dataset at multiple levels of organization. To ensure that our MI decay

results are a direct result of the sequential organization of each dataset, we performed a control

in each dataset in which we shuffled behavioral elements within each individual transcript at

each hierarchical level. In addition, to ensure that long-range relationships were not due to trivial

repetitions of behaviors, we looked in each dataset at MI decay over sequences in which repeated

elements were removed. Finally, we analyzed transcripts from a subset of the longest individual

transcripts to confirm that our results were not the product of mixing together multiple datasets

and transcripts.

5.3 Results

Although much work has explored the information content and long-range sequential

organization of human language, relatively few studies have examined these properties in speech

[381] or language development directly. Here we investigate the long-range information present

in speech during language development using datasets from the TalkBank project [371, 263].

We first examined MI decay in sequences of phones over three datasets of natural speech

from English-speaking children included in the PhonBank repository. Across all age groups,

starting at 6-12 months of age, the decay in MI over sequences of phonemes is best fit by a

composite power-law and exponential decay model (Fig. 5.2A-C; relative probabilities 0.897

to ¿0.999; Table S2). In each age group, we observe both a clear power law prominent over

long distances (Fig. 5.2B) and a clear exponential decay at short, word-length distances (Fig.

5.2C), consistent with prior results adult speech [381]. We then examined MI decay in sequences

of words over nine datasets of natural speech from English-speaking children included in the

CHILDES repository. As with phonemes, the MI decay between words is best fit by a composite

model of power-law and exponential decay (Eq. 5.7; relative probability = 0.989 for 12-18
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Figure 5.2. Mutual Information decay over words and phonemes during development. (A) MI
decay over phonemes for each age group. MI decay is best fit by a composite model (solid
grey line) for all age groups across phonemes and words. Exponential and power-law decays
are shown as a dashed and dotted grey lines, respectively. (B) The MI decay (as in (A)) with
the exponential component of the fit model subtracted to show the power-law component of
the decay. (C) The same as in (B), but with the power-law component subtracted to show the
exponential component of the decay. (D-F) The same analyses as A-C, but for words.

months and ¿ 0.999 for all other age groups; Fig. 5.2D-F; Table S1).

As controls, we also computed the MI decay over sequences of words and phonemes

that had been shuffled to isolate sequential relationships at different levels of organization

(e.g. phoneme, word, utterance, transcript; Figs. 5.3, 5.5, 5.6). A subset of these controls

over the PhonBank dataset are shown in Fig. 5.3 while the remainder are given in Figs. 5.5

and 5.6. Consistent with Sainburg et al., [381], we observe that short-range relationships

captured by exponential decay are largely carried within words and utterances, while long-range

relationships captured by a power-law decay are carried across longer timescales between words
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Figure 5.3. MI decay between phones under different shuffling conditions. (A) An example
sequence of utterances from the PhonBank dataset. Utterances are grouped by color, words are
grouped by rounded rectangles, and phones are displayed in bold above orthographic transcrip-
tions. (B) MI decay, as in Fig 5.2 when words are shuffled within each transcript. (C) MI decay
when utterances are shuffled within each transcript. (D) MI decay when phones are shuffled
within each utterance. The best fit model is printed above each plot and is plotted as grey lies
alongside the data.

and utterances. In particular, long-range relationships are eliminated when between-utterance

structure is removed by randomly shuffling the order of words or utterances within a transcript

(Figs. 5.3B-C, 5.6C) while short timescale exponential relationships are preserved. In contrast,

long-timescale relationships are retained when within-utterance structure is removed by shuffling

words phonemes or words within utterances (Figs. 5.3D, 5.6B) or phonemes within words (Fig.

5.5C), while short-timescale relationships are largely eliminated. When MI decay is computed

over part-of-speech labels for the words in CHILDES transcripts, we find a transition from

MI decay that is best-fit by a power-law decay alone at 12-24 months of age, to MI decay
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that is best fit by a composite model of power-law and exponential decay after 24 months (Fig

5.6D). Shuffling phoneme order within transcripts removes all sequential relationships (Figs.

5.5F). Across each shuffle analysis, we observe that short-range information content captured by

exponential decay is largely captured within words and utterances, while long-range information

is carried between utterances, even during early language production.

As an additional control, to ensure that the observed MI decay patterns are not the product

of mixing datasets from multiple individuals, we also computed the MI decay of the longest

individual transcripts comprising each age cohort across both phonemes and words. The decay

of the longest individual transcripts parallels the results across transcripts shown in Fig. 5.2 (Figs.

S5, S6). We also analyzed the MI decay of transcripts when repeated elements were removed to

ensure long-range relationships were not the product of behavioral repetitions. Removing repeats

does not qualitatively alter the pattern of long-range relationships between elements (Fig. 5.7).

One reasonable hypothesis is that these long-range relationships in child speech are

driven by interaction. Child speech is produced in an interactive context with adults, thus, adult

speech could be driving the long-range relationships observed in child speech. If this were the

case, one could argue that the complex hierarchical structure underpinning the adult’s speech was

driving the long-range dependencies found in infant speech. To test whether this is the case, for

each corpus where adult speech was transcribed (nCHILDES =1630, nPhonBank =309) we tested the

effect of non-subject engagement on the improvement in model fit (∆AICc) of a power-law model

over exponential model alone. In both datasets, we observe that adult involvement (the proportion

of speech not produced by the child) provides no additional predictive information about the

improvement in fit of the power-law model over the exponential model, when controlling for the

dataset, child’s age, and length of the transcript (CHILDES: F(1,1620)=1.49, p=0.22; PhonBank:

F(1,306)=0.21, p=0.65). Although our results do not provide irrefutable evidence that the long-

range range relationships observed are driven by adult speech, these results do not rule out the

possibility. Our analyses were based on the natural variability in adult speech across corpora and

are not explicitly controlled.
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5.4 Discussion

We analyzed the long-range sequential information present in speech during child de-

velopment. We observed adult-like long-range statistical relationships [381] present as early as

6 to 12 months in phoneme sequences, and at 12-18 months in word sequences, preceding the

production of complex linguistic structure [156]. Thus, long-range statistical relationships in

speech cannot be the unique product of complex linguistic productions.

These results compel reconsideration of the mechanisms that shape long-range statistical

relationships in human language. Traditionally, the power-law decay in information between the

elements of language (phonemes, words, etc.) has been thought to be imposed by the hierarchical

linguistic structure of syntax, semantics, and discourse [7, 249, 6]. Early speech development

provides a natural experiment in which one can examine human vocal communication absent

the production of complex syntactic and semantic structures. Remarkably, even at a very early

age, prior to the production of mature syntactic structures, vocal sequences show adult-like

long-range dependencies. This does not rule out the possibility that long-range dependencies in

adult language are driven in part by linguistic structures, but the absence of these organizational

components in the youngest children indicates that other mechanisms very likely shape the

long-range structure of speech. Whether these early mechanisms are replaced by more classical

hierarchical linguistic structures over the course of development or remain important through-

out life remains a topic for future research. It is possible that multiple mechanisms impose

long-range dependencies on human speech and language, and that these operate on different

developmental timescales. The observation of similar power laws in diverse non-linguistic

behaviors reinforces the idea that multiple mechanisms can shape the sequential dynamics of

behavior, including speech. At the same time, we note that there are many potential sources for

long-range correlations in biological and physical systems that do not guarantee an underlying

hierarchical structure [318, 417, 125, 34, 311, 146]. While our results are consistent with the

notion that linguistic structure is overlaid on a more general, hierarchically organized, motor
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control structure, it is possible that the long-range dependencies observed in young children

reflect other forms of underlying processes, and that the only dependencies relevant to language

are those that emerge later with adult-like linguistic structures. Although possible, this latter idea

seems less parsimonious as it would involve a reduplication of dependencies that already exist in

the signal.

It is also possible that the long-range structure we observe is driven by external and

environmental factors, such as long-range statistics in the child’s linguistic environment. For

example, in animal behavior, long-range statistical relationships between behavioral states can

be affected by variables such as lighting environment [142]. While we did not observe that

long-range relationships were driven by interactions with adult speakers, we do not rule out

language interaction or other exogenous variables as a possible driver for the observed long-range

relationships.

Regardless of any further understanding of the specific mechanisms that underlie the

sequential dependencies in speech, clear patterns in the information conveyed across time exist

in the non-linguistic human vocal behavior. In principle, this structure is available to listeners

and can provide predictive information to any cognitive agent that engages with it. Humans are

necessarily sensitive to long-range relationships in language, and although more sparse, evidence

for long-range sensitivities outside language has also been reported, such as scale invariance in

retrospective memory tasks [274] and attention to power-law timescales in anticipation of future

events in cognitive tasks [413]. Among non-human animals the evidence supporting sensitivity

to the long-range dynamics (power-law or otherwise) of information in the environment is

not well studied, especially at long intervals. If non-human animals can perceive the long-

range statistical dependencies present in their environment, this capacity may constitute a broad

faculty of language [162], that is, a necessary, but not uniquely human, component of language.

Indeed, the presence of long-range statistical dependencies in non-linguistic behaviors and a

generalized perceptual sensitivity to them could provide a scaffold for language to evolve, and

where hierarchical syntax and semantics can be understood as later additions that exploit existing
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long-range structures and sensitivities.

5.4.1 Data Availability

The datasets can be acquired from the TalkBank repository [263] and PhonBank reposi-

tory [371]. We performed analyses over these transcripts without any modification. Example

transcripts for each dataset are displayed in the Supplementary Information. The distribution of

sequence lengths of each dataset is shown in Fig. S1. The code necessary for reproducing our

results is available on GitHub [377].

5.4.2 Author contributions

T.S., A.M., and T.Q.G. developed the study concept, contributed to the study design,

and wrote the manuscript. Data analysis was performed by T.S. All authors approved the final

version of the manuscript for submission.

209



Figure 5.4. Distribution of sequence lengths for each dataset.
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Figure 5.5. MI decay between phones under different shuffling conditions. (A) MI decay for
each age group from the entire dataset, as in Fig. 2A. The sequence above the MI decay shows
an example set of utterances of the corpus to illustrate the shuffling conditions. Utterances are
grouped by color, words are grouped by rounded rectangles, and phones are displayed in bold
above orthographic transcriptions. (B) Words are shuffled within each transcript. (C) Phones are
shuffled within words. (D) Phones are shuffled within utterances. (E) Utterances are shuffled
within each transcript. (F) Phones are shuffled within each transcript. The best fit model is
printed above each plot, and is plotted as grey lies alongside the data.

211



Figure 5.6. MI decay between words under different shuffling conditions. (A) MI decay for each
age group from the entire dataset, as in Fig. 2D. (B) Words are shuffled within each utterance.
(C) Utterances are shuffled within each transcript. (D) MI is calculated over part-of-speech
transcriptions of words. (E) Words are shuffled within each transcript. (F) Words are shuffled
within each transcript. The best fit model is printed above each plot, and is plotted as grey lies
alongside the data.
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Figure 5.7. MI decay with repeated elements removed across each dataset.
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Figure 5.8. MI decay and best fit model of five largest transcripts for each age group across
PhonBank. Transcript identity and best fit model are displayed above each plot.
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Figure 5.9. MI decay and best fit model of five largest transcripts for each age group across
CHILDES. Transcript identity and best fit model are displayed above each plot.
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Chapter 6

Prediction and probabilistic integration
underlie learned context-dependent cat-
egorical vocal sequence perception and
sensory physiology

Abstract

To distinguish between vocal elements in communication, both songbirds and humans rely

on categorical perception of smoothly varying acoustic spaces which can be biased by sequential

context. The cognitive and physiological mechanisms by which this bias occurs are not well

understood. We developed a behavioral task that modulates the predictive probability of birdsong

sequences, training European starlings to classify ambiguous syllables synthesized from samples

in the latent space of a neural network, in the context of varying predictive sequential information.

We find that song predictability biases perceptual classification of syllables, following a Bayesian

model of information integration. Using the same behavioral task, we then chronically recorded

from populations of auditory neurons while birds were engaged in the task. We find that sensory

neurons capture the uncertainty, or likelihood, in perceptual decision-making and are modulated

by the predictive information present in the syllable sequences. Rather than integrating the prior

and likelihood, as is seen in the animal’s behavior, the modulation of neurons is consistent with

an increase in perceptual acuity in the likelihood in higher probability regions of acoustic space.
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6.1 Introduction

Categorical perception (CP), the grouping of smoothly varying signals into discrete

classes, plays an important role in organizing complex experiences into a shared representational

space by enabling the abstraction and generalization of individual instances of a signal to

other instances. In humans, auditory categorical perception is fundamental to communication

through speech. The acquisition of categorical perceptual boundaries in speech is learned and

differs across languages. Infants, for example, can discriminate phonetic boundaries in speech

that adults cannot [225]. Our perception of phonemes does not occur in isolation, however.

Phonemes occur in the context of words, utterances, discourse, and environmental contexts

which provide important additional cues enabling the speech to be correctly perceived. When

sensory information is ambiguous, predictions and prior knowledge bias perception towards more

likely scenarios. For example, the Ganong effect [136] describes the tendency to shift categorical

perception of ambiguous phonemes based upon our expectations about the words they belong

within. The same ambiguous phoneme between ’/b/’ and ’/p/’ is more likely to be perceived

as ’peace’ than ’beace’ but less likely to be perceived as ’peef’ than ’beef’, because ’peace’

and ’beef’ are words, and ’beace’ and ’peef’ are not. Context-dependent categorical perception

in speech is also driven by the sequential organization of speech elements. For example, the

categorical perception of phonemes is modulated by their position within words and relative to

other phonemes [270].

Categorical perception is not unique to human speech and has been observed in a number

of sensory modalities and species [155, 225, 270]. Songbirds perceive some elements of song

categorically [350, 270] and categorical perception of song elements can be biased by sequential

context. For example, Lachlan and Nowicki [233] used playback experiments with swamp

sparrows to demonstrate that, like speech perception, categorical perceptual boundaries of

notes are modulated by their position within a song. Swamp sparrow songs are learned and

preserved across populations for generations [234], suggesting that perceptual categories and the
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modulation of categorical perception may also be learned.

In speech, it has been proposed that phoneme categorical perception can be understood

Bayesian inference over acoustic distributions [119, 324, 229]. Under this framework, biasing of

speech perception through prediction, top-down influences, and prior expectations are modeled

as probabilistic integration. The specific cognitive and neural mechanisms underlying how

predictive information and context-dependency modulate categorical perception of speech are

not well-understood, however [324].

In songbirds, less is known about the mechanisms underlying categorical perception. For

example, whether predictive information biases perception and whether perceptual biases can

similarly be explained through Bayesian integration, is unknown. Physiological investigations

into how predictive information in the songbird sensory system could provide insight into the

physiological mechanisms underlying predictive and context-dependent categorical perception.

For example, a neural correlate for categorical perception has previously been described in the

sensorimotor system of the songbird [350]. Prather et al., [350] found that in swamp sparrows,

categorical neural responses measured as action potential per stimulus, reflect natural vocal

boundaries in neurons in the auditory-motor nuclei HVC, which project to the striatal nuclei

Area X.

In this manuscript, we developed a paradigm to explicitly impose probabilistic predictive

information in a sequence of birdsong syllables and trained European starlings to classify

ambiguous syllables under varying sequential predictive information. We hypothesized that

songbird perception would follow a Bayesian account of information integration, modulating

perceptual boundaries as a function of predictive information.

We found that songbirds do integrate prior sequential information in their perception

of vocal signals and that the bias caused by this information integration is modulated by the

strength of the context and the ambiguity of the signal. Response characteristics of the birds

reflect all aspects of a Bayesian account of sequential information integration, including the prior

probabilities, likelihoods, and posterior.
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Using this behavioral paradigm, we then explored the physiological underpinnings of

categorical perception and context integration. We chronically recorded spiking activity from

populations of neurons in the primary auditory nuclei Field L, two secondary auditory nuclei that

bidirectionally project with Field L, CM, NCM, as well as NCL, a broad region lateral to NCM

that has bidirectional projections with Field L, and has variously been shown to be involved in

visual and multi-modal working memory [160, 223]. We found that neural responses reflected

variation in the behavioral uncertainty underlying decision making (i.e. the likelihood of the

Bayesian model) and that neural responses to the categorized syllable are modulated and biased

by the predictive information imposed by the preceding syllable. This bias was consistent with

a Bayesian model exhibiting increased acuity in the likelihood in high-probability regions of

acoustic space.

6.2 Results

6.2.1 Paradigm

We developed a context-dependent categorical perception paradigm in which birds

classified smoothly varying morphs of syllables of birdsong in the context of sequential predictive

information. We modeled this behavioral paradigm using a Bayesian perceptual decision-making

framework and used this model as the basis of our behavioral and physiological hypotheses.

To implement this context-related CP shift in a natural stimulus environment, we created

a two-alternative choice (2AC) category learning task in which songbirds were trained to classify

stimuli on a single dimension, represented by a smoothly varying syllable of European starling

song generated from a linear interpolation in the latent space of a deep convolutional Variational

Autoencoder (Fig 6.1A) [205]. We chose to use a neural-network-based approach to synthesize

songs rather than a single-dimensional feature like voice-onset-time, pitch-shifts, tones, or

duration, because most vocal signals, including the song of European starlings, do not vary along

single, linear, dimensions.
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Figure 6.1. Overview of behavior and hypothesis. (A) Stimuli morphs are generated as interpo-
lations projections of two song syllables in the latent space of a neural network. (B) Samples
from the 9 morphs (rows) used the birds are trained on. The reinforced category is shown above
the morphs, and the endpoints are labeled on the left and right of the morphs. (C) The behavioral
apparatus used for this experiment. The green and orange response ports correspond to the
stimuli classes in (B). (D) A psychometric curve depicting stimuli classification over one morph.
(E) Two example context cue syllables precede the reinforced syllables, holding predictive
information about the class they belong to. (F-I) A Bayesian model depicting our hypothesis.
(F) An example prior probability represents the probability of a morph stimulus given by the
preceding cue syllable (here the cue predicts a right stimulus). (G) the likelihood is given by a
Gaussian distribution centered around the true syllable presented. (H) the posterior probability
under the five cue probabilities used in this study. (I) The predicted behavior response under the
Bayesian model, depicting a shift in categorical perceptual decision making as a function of the
cue probability.
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The morphs generated from this interpolation (Fig 6.1B) were divided into at the halfway

point in the interpolation, with the first half of the morph being reinforced with a food reward

after pecking into the left response port and the second half of the morph being reinforced after a

peck to the right response port (Figure 6.1C bottom).

After training the birds on the initial classification task, yielding a psychometric function

of classifications over each morph (Fig 6.1D), a cue syllable was added preceding the target

classified syllable (i.e. the morph). Each cue syllable provides predictive information about the

category of the target stimulus (Fig 6.1E)).

We modeled our hypothesis of the effect of the cue syllable on the psychometric curve as

Bayesian integration (Fig 6.1F-I). By treating this cue stimulus as a prior probability over the

morph (Fig 6.1F) and representing the uncertainty over the stimulus in the morph as Gaussian

probability distribution centered around the true stimulus (Fig 6.1G), we predicted that the

posterior probability given sensory information and the cue stimulus (Fig 6.1H) would shift the

classification of stimuli near the boundary between the two classes in the direction predicted by

the cue stimulus (Fig 6.1I). If observed, this shift in classification based upon cue information

represents a shift in categorical perceptual decision-making through the integration of temporal

contextual information.

We trained a total of 20 European starlings on our behavioral task, performing a total of

4.8 million behavioral trials. Each subject learned the task to at least 75% accuracy (Table 6.1).

6.2.2 Context dependent shift in perceptual decision making

For each bird and morph we fit a psychometric 4-parameter logistic function (Fig. 6.2A)

to each subject’s classifications. We used the parameters of the fit psychometric model to test the

Bayesian model’s cue-dependent perceptual shift prediction. We contrast this model of behavior

with an alternative decision-making strategy, in which information is not temporally integrated

with the cue (Fig 6.2B). Under the Bayesian hypothesis, classification of the reinforced syllable

will be modulated by integrating the likelihood imposed by the stimulus with the prior imposed by
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the sequential cue (Fig 6.2B top). Under the alternative non-integration hypothesis, Information

from the cue and reinforced syllable will not be integrated, but treated as independent, resulting

in an overall shift in the probability of a left or right classification, but not a shift in the decision

boundary (inflection point; Fig 6.2B bottom). Across subjects, we observe both a shift in the

inflection point, indicative of Bayesian integration of cue and reinforced syllable, as well as

an overall shift in decision probability, indicative of a mixed reliance on cue versus reinforced

syllable (Fig 6.2C). Across each morph for each bird, we find s robust shift in the inflection point

(Fig. 6.2D; t=18.5, p=6.9e-54, n=350). This shift increases as the cue’s prediction probability

increases (Fig. 6.2E; r2=0.446, p = 1-52, n=1050).

The observed cue-related shift is predicted by the Bayesian model. For each bird’s

classification of each morph, we fit the Bayesian model to the behavioral data and predicted the

inflection point shift given each cue probability. The red dashed line in Fig. 6.2E depicts a linear

regression between the observed psychometric shift and the predicted inflection point shift from

the Bayesian model’s predictions.

6.2.3 Context dependent perceptual shift increases with uncertainty

Across subjects, we observe substantial variation in the slope of the psychometric function

fit to the bird’s behavior. Some individuals drew a much sharper categorical boundary than

others, as exhibited by a greater slope in the fit psychometric (e.g. B1432 vs B1110 in Fig.

6.2F). The slope of the psychometric also varies from morph to morph (Fig. 6.2G). The slope of

the psychometric reflects uncertainty in the Bayesian model. Under greater uncertainty about

the reinforced syllable, the Bayesian model predicts that integration of the cue stimulus will

result in a greater shift in categorical perception (i.e. the inflection point; Fig. 6.2H [35]). Our

empirical results support that hypothesis, with a smaller inflection point shift in the direction of

the cue as the slope of the psychometric steepens (Fig. 6.2I, r2=0.441, p=1e-34, n=700). The red

dashed line in Fig. 6.2I dashed line represents the Bayesian model’s prediction of the relationship

between the cue shift and the slope of the psychometric.
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6.2.4 Reaction time represent likelihood and prior probability

In addition to the animal’s decisions, we observe that the response time in making a

decision reflects both the uncertainty in decision making (the slope of the psychometric) as

well as the prior probability given by the cue. We observe that the response time is greater in

incorrect trials than correct trials (Fig. 6.2J) and that in most of the subjects (17/20) the response

time increases with proximity to the categorical boundary, indicating the increased difficulty in

classification (Fig. 6.2J). For each bird and morph, we fit an exponential decay model of reaction

time as a function of distance from the categorical boundary. In morphs where a decay was

observed (set at an r2 > 0.001 and decay range > 0.1 standard deviations) we found a strong

relationship between the exponential decay constant, and the psychometric slope (Fig. 6.2L;

r2 = 0.378, p=2e-5, n=129). Finally, we observe that the response timing is related to the prior

probability imposed by the task (Fig. 6.2M). Across subjects, response times are fastest when

the reinforced stimulus is cued, and slowest when the cue is strongest in the opposite direction.
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Figure 6.2. Overview of behavioral results. ( A) An example psychometric fit with parameters.
(B; top) An example of the context-dependent category shift as a function of cue information
hypothesis, as predicted by the Bayesian model. (B; bottom) An example of an alternative
hypothesis, in which decisions are made either using the cue or the categorical stimuli, without
integration of the two sources of information results in no category boundary shift. The corre-
sponding lines in the connected horizontal and vertical boxes indicate the shift in the inflection
point (vertical lines) as well as the and midpoint between mid and max in the psychometric
function (vertical lines). Colors indicate the cue probabilities given in Figure 6.1. (C) The
results across birds and morph indicate that both strategies from (B) are present in behavior.
(D) Cue shift between left and right cues for each morph and bird at p=0.875 and 0.75. (E)
The categorical boundary (inflection point) shifts as a function of the strength of the cue. The
Bayesian model, predicts a similar shift from the uncued data. (F) Psychometric fits for cued
conditions for each of the subjects. (G) Morphs (interpolations) vary on the slope of the fit
psychometric function, indicating variation in uncertainty in decision making by morph. (H) The
Bayesian model predicts a greater shift in categorical boundary as a function of the uncertainty
of the categorical stimulus (σ of the likelihood and slope of the psychometric model). (I) As
predicted by the Bayesian model, the shift in the categorical boundary increases as a function
of uncertainty.) (J) Response time across birds for correct versus incorrect trials. (K) Response
time over the morph for each bird. (L) Decay constants of exponential decay fit to reaction time
as a function of distance from decision boundary, in relation to the slope of the fit psychometric
function, for each bird and morph. Point colors reflect the morph categories shown in panel (G).
(M; top) The imposed prior probability in the task for each condition. (M; bottom) Reaction time
over morph for each cue condition.
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Figure 6.3. Overview of physiological paradigm and data set. (A) Continuous recordings are
performed in free moving birds syncing physiology with operant conditioning behavior. (B)
Birds are unilaterally or bilaterally implanted with 32-64 channel electrodes using 3D printed
microdrives and protective head caps. (C) Nuclei OV projects to the primary auditory region
Field L, which has bidirectionally projections with NCM and CMM. NCL, lateral to NCM,
additionally exhibits bilateral projections with Field L (not pictured). (D) A visualization of
recording sites, shown over top of the starling brain atlas [86]. (E) Amplitude-normalized voltage
traces of peak channel activity for all categorical units (see Methods 6.4.32) used in analysis for
each brain region. (F) Average trace of each unit-type cluster (G-I) Brain regions for each unit
type.
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6.2.5 Physiology paradigm

We developed a paradigm from which to record extracellular neural activity using 1-2

(unilaterally or bilaterally) implanted 32-64 channel 1-8 shank silicon electrodes from freely

behaving subjects while they engaged with the behavioral apparatus. To this end, we designed

MagPi, a Raspberry Pi-based interface between our behavioral panels and the OpenEphys neural

acquisition device to run and record behaviors in sync with 24/7 neural recordings (Fig 6.3A).

Birds were implanted with electrodes using a custom-designed 3D printed plastic microdrive and

protective cap that enabled months-long recordings (Fig 6.3B). Electrodes were implanted in

the secondary auditory regions CM (Caudal Mesopallium), NCM (Caudomedial Nidopallium),

NCL (Caudolateral Nidopallium), and the primary auditory region Field L, three adjacent and

bidirectionally connected regions of the songbird brain (Fig 6.3C,D).

We recorded from 10 subjects over a total of 222 days (5317 hours) of recordings.

Chronically implanted subjects performed over 400,000 behavioral trials during recording. In

addition, during the evening after birds had completed their behavioral trials for the day we

turned the lights out in the behavior boxes and passively played back the same morph stimuli to

the birds a total of 1.2 million times while recording.

In addition to the chronic recordings, we performed acute playback recordings of the

same stimuli under light anesthesia (urethane) with 4 untrained (naive) birds totaling 38 recording

sites across 2 bilaterally implanted 32-channel electrodes. In total, we performed over 59,000

passive playbacks with these naive birds.

Electrophysiology datasets were then spikesorted and aligned to behavioral data. Spike-

sorted units (putative single-neurons) were merged across recording sessions in order to retain

units over multiple days when possible (See 6.4.24). In total, we recorded from 14,406 units

disctributed across the four brain regions (Fig 6.3E), which were further subset into 7,923 units

used for this study on the basis of their auditory response properties (See next section). We

clustered the templates of those units into three unit types (Fig 6.3E), which were predominantly
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characterized by their spike width (Fig 6.8).

6.2.6 Quantifying response similarity and estimating a neurometric

Spike train data were analyzed as spike vectors over the categorical stimulus. For each

trial, the time histogram (bin width=10ms) of the stimulus-aligned spike train is convolved with

a Gaussian kernel (σ=25ms; Fig 6.10). Sample spike trains and trial-averaged spike vectors

are shown for a sample unit for each morph in Fig 6.4E and F. From the trial spike vectors, a

similarity matrix is computed as the cosine similarity between spike vectors (Fig 6.4I) which is

used to compute a neurometric function (Fig 6.4J). We additionally used the cosine similarity

matrix to compute a metric for a unit’s categoricality (Fig 6.4K-L; see Methods 6.4.31) which

reflects the similarity of unit responses within morph category versus between category. Using

the categoricality metric we then extracted a set of categorically-relevant auditory units (See

Methods 6.4.32). Across categorical units, we find that spike vector responses to all morphs to

be smoothly varying on average but show variability across units in the degree of smoothness

(Fig 6.4M-N).

6.2.7 Neurometric slope reflects psychometric uncertainty

Using the computed neurometric function for each behavioral unit, we find that neural

responses to morphs reflect stimulus-to-stimulus variability in decision making (i.e. the likelihood

of the Bayesian model).

We compared the slope of the neurometric function to the slope of the psychometric

function for each bird and morph 1. We find that the slope of the psychometric function reflects

the likelihood in the Bayesian model, i.e. the uncertainty in decision making. Across subjects,

we observe a significant positive correlation between the neurometric and psychometric slopes

(r2=0.115, p=3e−126, n=42551). This relationship is observed within-subject in nine of ten

subjects (Fig 6.4P). When controlling for individual variation in neurometric and psychometric

1both neurometric and psychometric slopes were scaled to the range of the neurometric function as well as log
scaled, see Methods
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Figure 6.4. Neurometric functions of single units reflect psychometric functions of perceptual
behavior. (A) Trial-by-trial behavioral data structure. (B) Spectrogram of categorical (morph)
stimulus for a single trial. (C) Spike raster for a single unit across trials. (D) A single example
spike train from (C). (E) A spike vector is computed as the spike train from (D) convolved
with a Gaussian kernel. (F) The average spike vector for the unit in (C-D) for a single morph
(AE). (G) Sample spike trains for one unit across 8 morphs. (H) Spike vector representations
of the spike trains from (G). (I) Cosine similarity matrices computed from the spike trains in
H. (J) Neurometric functions are computed from the similarity matrices in (I). CSR stands for
Categorical Similarity Ratio (see Methods 6.4.30). (K) Sample morph spike vectors (as in (H) for
units, sorted by unit categoricality. (L) Similarity matrices for the units in (K). (M) Average spike
trains across each categorical unit for morphs. (N) Average cosine similarity matrices across all
categorical units, for each morph. (O) Psychometric slope (logged and scaled by psychometric
range) versus neurometric slope (also logged and scaled by psychometric range) for each subject
and morph. Each subject is shown with a unique color and regression line. A regression line
across subjects is shown in gray. (P) The same data as in (O) z-scored by subject, where color
corresponds to morph (same color correspondence as Fig 6.2).
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slopes within birds by z-scoring the psychometric and neurometric slopes by bird, we observe

a stronger relationship (r2=0.147, p=3e−204, n=42551), where across birds the same morphs

occupy similar relative neurometric and psychometric positions 6.4Q).

6.2.8 Within subject perceptual variability is reflected in neural re-
sponse

We additionally assessed whether subject-to-subject variability in behavior (i.e. the

psychometric slope) was reflected in neural responses. We again compared the slope of the

fit psychometric function to the slope of the fit neurometric function for each unit and morph.

We performed a hierarchical regression comparing a prediction of the neurometric slope from

the morph (neurometric slope ∼ morph + subject) against a prediction of the neuro-

metric slope from the morph and the psychometric slope (neurometric slope ∼ morph +

psychometric slope + subject). We find that the psychometric function explains more vari-

ance in the neurometric function than stimulus alone (F(1,42533) = 6.65, p=0.01), suggesting

that neural responses reflect individual variability in behavior.

6.2.9 Context modulates neural response

Our behavioral results demonstrate a shift in perceptual classification of morph stimuli

biased by contextual cue information. These results suggest that underlying physiological

processes integrate information from the cue syllable with the sensory morph syllable to modulate

perceptual behavior. Whether that modulation occurs early in sensory processing, or only later,

in decision making and motor systems, is unknown. Previous work across sensory modalities,

animal models, and behavioral paradigms has established that predictive information increases

responses in motor and decision-making related brain regions [418]. In contrast, in sensory

regions, the opposite effect is observed. Activity tends to be suppressed when expectation

is greater [418]. For example, in humans, neural responses are suppressed in the primary

visual cortex when events are more likely [214]. Similar expectation-related suppression is also
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confidence interval. (D) Same as (E) for passive trials. (E) Spike rate differences within each
unit across morph interpolation points for active trials. (F) Same as (C) for passive trials. (G)
Sample unit responses for four units from the four regions recorded in this study (subjects B1170,
B1597, B1248, and B1593 from left to right). The top of each panel shows a spectrogram of the
morph stimulus played back. Below, a trace is shown for three cue conditions (No cue, P(Rl—C)
= 0.125, and P(Rl—C) = 0.875) corresponding to the average Gaussian convolved spike vector
and 95% CI for active trials. Below the trace are sample spike rasters for each cue condition,
where each row is a child. Below the rasters, the sample trace and raster plots are repeated for
the same unit in the passive trial condition.
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observed in human audition [433, 432]. In mice, primary auditory cortex modulations are also

task-related: single-unit neural responses are more categorically selective when animals are

actively classifying stimuli than during passive listening [467]. Thus, it would be reasonable

in our experiment to hypothesize that early sensory modulation will occur and be differentially

modulated during active behavior and passive listening.

To assess whether the predictive information present in the cue modulates neural re-

sponses to the morph stimulus, we measured overall spike rate changes in units as a function

of the predictive cue stimulus in active behavioral trials (Fig 6.5). Controlling for stimulus-to-

stimulus spike rate variability within each unit, we find a main effect of cue identify on spike

rate, with non-cued trials showing the highest spike rate (where spike rate is z-scored per unit;

X2(4, N = 851118) = 15162, p ¡1e-5; Fig 6.5A). To quantify the time-course of this cue-related

modulation, we measured the difference in spike rate over time for pairs stimuli presentations that

were either preceded by the same or different cue syllables (Fig 6.5B). We find that within-cue

similarity in spike rate persists throughout the categorical morph stimulus presentation in active

trials. In contrast, during passive playback, the cue-related similarity quickly decays to chance,

at around 200-300ms.

6.2.10 Expectation suppresses spike rate in predicted stimuli

We next assessed whether cue-related modulation was associated with the predictive

information present in the cue syllable. To this end, we measured the interaction between the

cue probability and the morph stimulus class, controlling for the unit’s overall response to the

stimulus and differences in response strength to each cue (Fig 6.12). During active behavior

trials, we find a significant interaction between cue probability and the morph stimulus class.

As stimulus probability increases, spike rate decreases (X2(1, N = 851118) = 392, p ¡1e-5; Fig.

6.5C). In the passive playback condition, we did not observe the same effect (Fig. 6.5D). In Fig.

6.5E,F, we plot the differences in spike rate as a function of the cue and point along the morph.

In the passive condition, while no difference between predictive probability and stimulus class
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exists, the spike rate increases with proximity to the decision boundary in the non-cued trials

relative to the cued trials (Fig. 6.5F). We additionally tested for an interaction between stimulus

probability and cue in each brain region, neuron class, subject, and morph class (Fig. 6.13). We

find consistent results in Field L, NCL, and to a lesser extent CMM, while in NCM, we observe

the opposite interaction, increased response to predicted stimuli. Results were broadly consistent

across unit classes and morphs. In birds, the interaction between predictive probability and cue

was consistent with the brain region they were recorded from.

6.2.11 Predictive response modulation is consistent with a shift in the
likelihood of Bayesian model

Having established that neural signals are modulated by the predictive cue, we next

explored how cue-related modulation reflects the similarity between neural responses.

We base our hypotheses about neural response modulation again on the Bayesian model

presented in Figure 6.1F-I, which reflects similar Bayesian models of integration in speech

perception. In particular, the perceptual magnet effect characterizes a phenomenon in categorical

phoneme perception in which speech perception is warped around categorical boundaries [224].

The Bayesian account of the perceptual magnet effect suggests that this perceptual warping is

due to a shift in the posterior probability of the stimulus toward higher probability regions of

acoustic space, resulting from the integration of prior distributional information with a noisy

representation of the acoustic stimulus [119] (Fig 6.6A). Under this model, in our task, as the

predictive probability toward one side of the morph increases (i.e. in the context of a predictive

cue), the within-category similarity of the posterior on the predicted side of the morph will

increase and the within-category similarity of the low-probability side of the morph will decrease

(Fig 6.6B). Thus, neural signals reflecting this posterior distribution will similarly increase in

similarity as a function of predictivity (Fig 6.6C,D). This model accounts for changes to the

posterior, reflecting perceptual decisions, but does not differentiate between modulations to

the likelihood. It is well established that, while physiological modulations do occur in early
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sensory regions of the brain under the context of predictive information, the manner in which

those modulations occur is qualitatively different than in decision-making regions [418]. Thus,

in Figure 6.6E we propose an extension to the Bayesian model of perceptual decision making,

reflecting modulation in the likelihood due to predictive information. In this model, predictive

information reorganizes sensory representation to increase acuity in regions of acoustic space

where events are more likely to occur. We model this as a narrowing of the likelihood (here, σ

of the Gaussian distribution) reflecting that neural resources are being redistributed to reduce

perceptual noise in regions of acoustic space that are more likely to occur. In our task (Fig

6.6F), in contrast to the posterior distribution, this model predicts that increasing acuity in the

likelihood in high-probability regions of stimulus space will result in a reduction of within-

category similarity (6.6G,H). Thus, neural signals representing a likelihood with increased acuity

would also decrease in similarity as a function of cue predictivity.

To assess whether the similarity of neural responses changed as a function of the cue,

we compared the trial-to-trial cosine similarity of the spike vector response across morphs. Our

empirical results are more consistent with the model of likelihood modulation than posterior

integration. In particular, we find that in the presence of a predictive cue, the within-category

similarity is higher in the non-predicted class than the predicted class (Fig 6.6I). The within cue

similarity across units and morphs decreases as a function of the probability of the cue class (r2

= -0.019, p=1.92e-10; n=107628; Fig 6.6J). This effect suggests that differences in predicted

regions of acoustic space are accentuated between stimuli to improve acuity. If our neural signals

had reflected the posterior, as in our behavioral results, we would have expected an effect in the

opposite direction, in which similarity would have increased within stimulus class. As in our

spike rate analyses, we repeated the similarity analysis over individual morphs, brain regions,

subjects, and unit types (Figs 6.16, 6.17). Our results parallel those in the spike rate analyses.

We observe results in CMM, Field L, and NCL, while in NCM we observe the opposite effect.

In birds, the effect was consistent with the brain regions they were recorded from. Results were

broadly consistent across morphs and unit types.
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Figure 6.6. Modulation of response similarity as a function of predictive cue probability. (A) A
summary of the perceptual magnet effect [224] and the corresponding Bayesian model [119]. (B)
Visualizing the posterior shift from (A) in the context of this manuscript’s behavioral experiment.
(C) The shift in the Bayesian model’s posterior distribution (measures as cosine similarity over
the PDF) when cued. (D) The shift in the within-category posterior cosine similarity as a
function of the probability of that class. (E) An extension to the model in (A) in which predictive
information biases the likelihood to increase acuity in high probability regions of acoustic
space. (F) Visualizing the likelihood shift from (E) in the context of this manuscript’s behavioral
experiment. (G) The shift in the Bayesian model’s likelihood distribution (measures as cosine
similarity over the PDF) when cued. (H) The shift in the within-category likelihood cosine
similarity as a function of the probability of that class. (I) The observed shift in spike train vector
cosine similarity for left-cued minus right-cued trials. The shift is depicted here averaged across
units and morphs. (J) The relationship between the probability of the stimulus class and the shift
in similarity from baseline (the non-cued condition).
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6.3 Discussion

Categorical perception involves a non-linear mapping between physical sensory signals

and their representation in perceptual space, a phenomenon whose ubiquity suggests a funda-

mental role in sensory integration. This warping of perceptual space is not fixed. Contextual

information can bias categorical perception, a phenomenon observed both in speech perception

[136] as well as in wild songbirds [233]. The neural and cognitive mechanisms underlying this

bias are not well understood. In this work, we trained songbirds on a categorical perceptual

decision-making task, in which we controlled the prior predictive contextual information present

in the task. We found that songbirds use this information to bias their perceptual decisions.

This bias is well-predicted by a Bayesian model of perceptual decision making, in which the

extent to which bias occurs reflects the prior predictive information, as well as the uncertainty

over the stimulus. These observations are consistent with Bayesian integration hypotheses of

human context-dependent categorical speech perception [324, 119]. Using the same behavioral

framework, we then chronically recorded from populations of sensory neurons while birds

were making perceptual decisions. We found that sensory responses reflect the likelihood of

behavioral responses to ambiguous syllables, indicating that the basis of categorical perception

arises early in sensory processing. We then investigated whether predictive information from

song-sequence context biases sensory processing. We found that cue probability does bias

sensory representations, suppressing spike rate. Finally, we measured the similarity between

neural responses as a function of their position along each morph for each cue condition. We

found that neural responses to stimuli belonging to the expected class of the morph were more

dissimilar, consistent with a modulation in the likelihood of our Bayesian perceptual model.

6.3.1 How is predictive information actively maintained and integrated?

The sensory populations we recorded from only tell one part of the story about prediction

and cue integration. The populations we recorded from reflected a bias imposed by predictive
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information, but not where that predictive information comes from, or how it is maintained or

integrated. In speech, ongoing work seeks to uncover the neural systems underlying predictive

information as they relate to lexical and pre-lexical feedback circuits [324]. Songbirds may

provide a useful model for understanding how temporal predictive information biases vocal

signal perception. Birdsong is underlied by both short-range acoustic structure that parallels

linguistic phonology [381, 32] as well as longer-range structure occurring across timescales.

The songbird basal ganglia, for example, is involved in the integration of sequential syntactic

information [1] and may be a valuable future target for the study of sequential information

integration. In parallel, recent work on visual working memory in corvids and pigeons has

found that lateral portions of songbird NCL show similar active maintenance patterns as human

prefrontal cortex [160, 223, 323]. Future work on songbird syntax and categorical perception

have the potential to play a key role in uncovering the physiological systems that underlie how

predictive and sequential information bias perception and recognition.

6.3.2 How do populations of neurons represent predictive information?

We recorded from a tiny fraction the neuron composing each of the brain regions used

in this study and most of the neurons we recorded from were not recorded simultaneously. For

example, out of an estimated 5 million neurons in starling NCM, we recorded from 1141 units.

The analyses we performed in this study were performed over single units rather than populations

of neurons. The Bayesian model we used to make predictions about behavior simplifies the

decision-making process into a one-dimensional acoustic space. The physiological systems

underlying these cognitive behaviors are vastly more complex, however. In future work, as our

ability to record from larger populations of neurons improves, alongside our capacity to model

high-dimensional neural populations (e.g. through machine learning [333] or topological [429]

techniques) improves, a more full picture will be available of the physiological modulations in

this experiment than can be observed across single neurons.
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6.3.3 Is there a distinction between categorical perception and percep-
tual decision making?

In our experiment, we framed our task as explicit categorical perceptual decision-making,

in which birds make decisions in order to receive a food reward. This task design differs from

the context dependency present in categorical perception in communication because in our task

an explicit perceptual decision is made. The boundary between perception and decision-making

in speech and communication is not clear. For example, the degree to which perceptions are

categorical can be dependent upon the conditions of the experimental framework [394]. Under

a Bayesian framework, the results presented here suggest a physiological distinction between

neural systems involved in representing the likelihood and prior in perception and decision

making. Further physiological investigations may prove an important resource for determining

the extent and location within processing circuits at which sensory signals are modulated to

reflect behavioral decisions and, in the case of speech, comprehension.

6.3.4 How do prediction, attention, and integration differ?

Our data suggest that neural modulation occurs in the presence of predictive information

in primary and secondary sensory regions of the songbird brain. These modulations are consistent

with a modulation of the likelihood of a Bayesian model of perception. The mechanisms

underlying that modulation are unclear. An important distinction exists between prediction,

attention, perceptual integration, and modulation. It seems reasonable to the authors that neural

resources are opportunistically dedicated to processing more likely events, resulting in greater

acuity for predicted events than unpredicted events. Our observation is not the first example

of a dynamic reorganization of the sensory brain to enhance perceptual acuity. Physiologically

probing the mechanisms underlying such a resource dedication will be necessary to tease apart

whether the observed phenomena are related to attentional mechanisms, or emerge from some

other physiological substrate.
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6.3.5 Are more natural stimulus spaces better poised for probing the
complexities of vocal communication?

Our experiment differed from many prior studies on vocal perception and perceptual

decision making in that stimuli presented varied along a complex and non-linear acoustic

continuum derived from a linear interpolation in the latent space of a neural network projection.

Prior studies on categorical perception and decision-making continuums in speech, animal

communication, and auditory neuroscience have typically relied upon simplified stimulus spaces

such as sine tones, voice onset time, or pitch-shifted stimulus. When available, simple stimulus

spaces are useful, however, much of vocal communication cannot be well described with just one

or two parameters. Our work demonstrates that ongoing advances in machine learning enable

stimulus generation that better match the complexities in the acoustic repertoires of animals,

which are often both more behaviorally relevant and physiologically salient.

6.3.6 Final note

Taken together, our results reveal novel information about the cognitive and physiologi-

cal processes underlying perception in the context of varying predictive temporal information.

Context dependency in song sequences can be modulated by predictive temporal context. That

modulation parallels the probabilistic integration observed in human phonetic perception. Cat-

egorical perception of birdsong is physiologically reflected in early auditory regions of the

songbird brain, which capture aspects of the likelihood of a probabilistic integration model.

In the context of predictive sequential information, neural responses to vocal elements are

modulated. That modulation differs during active behavior and passive listening. Finally, that

modulation is consistent with a model of increasing perceptual acuity in high probability re-

gions of acoustic space, rather than probabilistic integration, which likely occurs in downstream

decision-making regions of the brain. In full, these results help bridge research into the cog-

nitive underpinnings of language perception, animal communication, and the neuroscience of

probabilistic information integration more generally.

240



6.4 Methods

6.4.1 Summary

Experiments consisted of a behavioral component and a chronic physiology component.

The experimental protocol for the behavioral component was kept constant and underlied by the

same software and hardware in both conditions, with the addition of chronic electrophysiological

recording in the physiology component.

6.4.2 Subjects

Behavioral data was collected from 20 wild-caught European starlings of unknown sex.

Before beginning experimental training, subjects were housed in a large mixed-sex aviary. Of

the 20 starlings used for behavior, 10 individuals were used for chronic physiology. In addition,

4 behavior-naive subjects were used for acute physiological playback experiments.

6.4.3 Ethical note

All procedures were approved by the Institutional Animal Care and Use Committee of

the University of California (S05383).

6.4.4 Datasets

Our final behavioral dataset was composed of 4.8 million behavioral trials from 20

birds. Our final chronic neural dataset was composed of 402,797 behavioral trials, with 365,360

responses, a total of 1,594,257 audio playbacks, occurring over 5,345 hours (222 days) of

recording, across 10 birds. Our final acute dataset consisted of 59,533 passive playbacks under

anesthesia across 4 birds.
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Table 6.1. Behavioral datasets

Subject Number of trials Acc. (final 10k trials)
B1174 358106 0.8632
B1426 394956 0.8021
B1170 520304 0.8244
B1432 769387 0.9505
B1437 87702 0.8739
B1433 173287 0.9129
B1597 209867 0.9216
B1427 396727 0.8963
B1188 74724 0.8486
B1244 235092 0.866
B1590 169421 0.925
B1399 114908 0.9118
B1591 141700 0.8699
B1252 203956 0.9426
B1110 112694 0.7651
B1390 130094 0.8635
B1248 177069 0.8636
B1593 336716 0.8753
B1595 98607 0.8914
B1276 170278 0.9231
Total 4875595 -
Mean 243779.75 0.87954
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Table 6.2. Neural datasets

Subject Active trials Playbacks Behavioral responses Recording hours Units
Chronic
B1188 54995 105956 54636 360 218
B1595 6817 39419 6743 81 47
B1276 2 14653 0 18 33
B1426 2823 10596 2777 31 64
B1432 64124 218032 63141 533 981
B1170 34909 151886 34387 442 435
B1597 44231 203396 41533 650 1796
B1244 2689 8423 2680 19 124
B1593 110335 503133 89397 1959 1964
B1248 81872 338763 70066 1252 1042
Acute
B1239 - 8973 - 11 124
B1279 - 23463 - 22 744
B1459 - 18070 - 26 314
B1500 - 9027 - 11 37

6.4.5 Stimulus generation

Stimuli were syllables of European starling song synthesized from a Variational Autoen-

coder (VAE) trained on syllables extracted from a library of European starling song [17].

6.4.6 Training dataset

Syllables were syllabically segmented using the dynamic thresholding approach outlined

in [384] and available in the vocalization segmentation python package (https://github.com/

timsainb/vocalization-segmentation). Syllables were then zero-padded to be 1 second long.

Spectrograms of each syllable were then computed of each syllable with 128 frequency bands

spaced between 50 and 22050 Hz, and downsampled to 128 time-bins (128 Hz), resulting in a

128x128 spectrogram of each syllable, used to train the VAE.
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Table 6.3. Variational autoencoder architecture outline

Encoder Decoder
Layer Type Dimensionality Layer Type Dimensionality
input [32, 128, 128, 1] input [32, 16]
convolutional [32, 64, 64, 64] fully connected [32, 1024]
convolutional [32, 32, 32, 128] fully connected [32, 16384]
convolutional [32, 16, 16, 256] reshape [32, 4, 4, 1024]
convolutional [32, 8, 8, 512] upsample [32, 8, 8, 1024]
convolutional [32, 4, 4, 1024] convolutional [32, 8, 8, 1024]
fully connected [32, 1024] upsample [32, 16, 16, 1024]
fully connected [32, 16] convolutional [32, 16, 16, 512]

upsample [32, 32, 32, 512]
convolutional [32, 32, 32, 256]
upsample [32, 64, 64, 256]
convolutional [32, 64, 64, 128]
upsample [32, 128, 128, 128]
convolutional [32, 128, 128, 64]
convolutional [32, 128, 128, 1]

6.4.7 Neural network

The neural network architecture we used followed those in our AVGN repository

(https://github.com/timsainb/avgn paper). We used a convolutional VAE architecture with a

16-dimensional latent space. The network was trained on batches of 32 syllables at a time.

Artificial neurons used a leaky ReLu non-linearity. The network was trained with the ADAM

optimizer. The network was trained in Tensorflow.

6.4.8 Sampling and synthesis

Each syllable stimulus (used for cues and endpoints) was sampled from the original

dataset and passed through the VAE. The stimuli were chosen to be diverse, well-reconstructed

in the VAE, and roughly equidistant both in spectrogram space (both input and reconstruction) as

well as the latent space of the VAE. It is not expected that distances in spectral or neural network

latent space would have a 1:1 relationship with an animal’s perception of similarity. Morph

stimuli were then sampled as linear interpolations between the latent (16D) representations of the
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chosen stimuli. 128 points were taken in each interpolation, and passed through the decoder of

the VAE, producing the final 128 point morph. Waveform stimuli were then generated from the

spectrogram output of the decoder of the VAE using the Griffin-Lim algorithm. These waveforms

were used for stimuli playback to the birds.

6.4.9 Behavioral shaping

Shaping occurred over four stages. First, each subject was trained to obtain food from

a solenoid-powered hopper underneath the food port (Fig. 1A) by pecking the center response

port, while the bird was freely allowed to explore the behavioral apparatus. Once the bird had

pecked into the center peck port, stage two of the shaping procedure began, where the bird was

required to peck into the center of the peck port to continue receiving food. After pecking the

center port 100 times, they were transferred to stage 3. In stage three, the birds were trained to

peck the left or right peck ports, which were lit with LEDs. Finally, the birds were transferred to

stage four, where they would initiate behaviors by pecking into the center port and then either

the left or right response port (cued randomly with a flashing light) for a food reward. After

completing this shaping procedure, birds were transferred to the full task.

6.4.10 Behavioral training paradigm

Birds were initially trained to differentiate between syllables generated via the two

endpoints in a single morph. After several days of above-chance accuracy with one pair of

morph endpoints, the number of morph endpoints was increased until the birds showed above

accuracy classification of the endpoints of all 9 morph. After learning the correct response for

endpoints in each morph, birds were transferred to the full stimulus set which included 128

stimuli (linearly sampled and equally spaced in latent space) spanning each of the 9 morphs

(1152 stimuli total). After the birds were performing reliably above chance on each full morph

stimulus set for several days, we added cue stimuli preceding the categorical stimuli to provide

context-dependent information at p=0.125, p=0.25, p=0.5, p=0.75, and p=0.875.
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6.4.11 Training parameters

Several behavioral parameters were used in behavioral training, given here for repro-

ducibility. Trials were reinforced at a variable ratio of between 2-4, manually set to ensure the

bird maximally produced trials, but did not lose more than 10 grams of weight from baseline

when in the restricted feeding condition. Punishment was set at a 5-second lights-off period,

in which new behavioral trials could not be initiated. A minimum of 1 second between trials,

regardless of correctness, was imposed. Birds were given a 5-second response window after

stimuli had played back. Lighting conditions were set to match the daylight in the experimental

location (San Diego, California).

6.4.12 Cue stimulus

Like the morph stimuli, the cue stimuli are 1-second long syllables synthesized from re-

construction from the variational autoencoder. Behavioral trials were presented with one of 6 cue

conditions: no cue P(L—No Cue)=0.5 (NC), cue with no predictive information P(L—Cue)=0.5

(CN), cue left at p=.875% P(L—Cue)=0.875 (CL1), cue left at p=0.75% P(L—Cue)=0.75 (CL0),

cue right at p=.875% P(L—Cue)=0.125 (CR1), cue right at p=0.75% P(L—Cue)=0.25 (CR0).

16% of trials were presented in the no cue condition (NC). 4% of trials were presented with

the uninformative cue condition (CN). The remaining 80% of trials were evenly split between

the cue right and cue left conditions. Because the CN condition was sampled with a substan-

tially lower probability than the other conditions, resulting in a low number of total trials in

comparison to each other cue condition, it was not included in physiological analyses. In passive

physiology playback conditions, due to time constraints in playing back the full stimulus set of

128 interpolation points for each of 9 morphs and 6 cue conditions, we played back only the

87.5% predictive cue conditions in the AE and BF morphs.
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6.4.13 Psychometric fit

To assess the shift in categorical perception, in each of the birds (n=20) we fit a psycho-

metric (four-parameter logistic) function both to the overall responses to stimuli in the left and

right categories of the morph, as well as to each individual morph.

logistic(x) = max.+
min.−max.

1+( x
in f lection)

slope

6.4.14 Bayesian integration hypothesis

To formalize our hypothesis, when a stimulus varies upon a single dimension x, the

perceived value of x as a function of the true value of x and contextual cue information can be

described by Bayes’ rule:

P(xtrue | xsensed,cue)︸ ︷︷ ︸
posterior

∝ P(xsensed | xtrue,cue)︸ ︷︷ ︸
likelihood

P(xtrue | cue)︸ ︷︷ ︸
prior

(6.1)

By modulating the prior distribution of the categorical stimuli (x) with a cue, we predict

that the perception of x will shift.

Preceding each to-be-categorized target stimulus (x), the cue stimulus provides predictive

information about the category of the target stimulus. By treating this cue stimulus as a prior

probability over x, we predicted that the determined posterior probability of x given sensory

information and the cue stimulus would shift the classification of stimuli near the boundary

between the two classes in the direction predicted by the cue stimulus.

Explicitly, we treat the likelihood of a target being sensed P(xsensed | xtrue,cue) as a

Gaussian probability distribution around the true target xtrue [218, 119]:

P(xsensed | xtrue) =
1

σ
√

2π
e−

1
2

(
xtrue−xsensed

σsensed

)2

(6.2)
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and shift the prior probability as a function of the cue

P(xtrue | cue) =


cueprob xtrue > categorical boundary

1− cueprob xtrue < categorical boundary
(6.3)

where cueprob represents the predictive probability of the cue stimulus. We predict that birds will

make a categorical decision based upon the posterior,

decision(xtrue,xsensed) = P(xtrue | xsensed,cue) · category(xtrue) (6.4)

where category(xtrue) is simply the trained category label of x in the 2AC task:

category(xtrue) =


0 xtrue > categorical boundary

1 xtrue < categorical boundary
(6.5)

Under this model, the categorical decision of the bird is modulated by the prior cue

information, resulting in a shift in the categorical decision point along the stimulus dimension in

the direction predicted by the cue (Figure 6.1I).

6.4.15 Bayesian fit

In addition to fitting a psychometric function capturing the shape of the behavioral

responses, we fit a Bayesian model reflecting our probabilistic hypothesis described above. This

model used five parameters: the shape of the Gaussian of the likelihood (σsensed), a parameter

corresponding to side bias in the apparatus (γ), and parameters representing inattention to the

cue stimulus (δ ), the target stimulus (β ), and overall inattention to the task (α).

biasside(γ) = category(xtrue)(1−2(1− γ))+1− γ

likelihood = P(xsensed | xtrue,cue)(1−β )+biasside(γ)β
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posterior ∝ P(xtrue | xsensed,cue)(1−α)+biasside(γ)α

prior = P(xtrue | cue)(1−δ )+biasside(γ)δ

6.4.16 Response time

For each behavioral trial, we measured the time between the end of a stimulus presentation

and the time that a subject’s beak was detected in a behavioral response port. In Figure 6.2J-M

we found that the response time varied based upon stimuli and cue conditions. To account for

side biases in decision making (e.g. the bird having a position preference when engaging with

the behavioral apparatus that positions them further toward the left or right peckport, for each

analysis we z-scored reaction time for each bird’s responses to each interpolation and class.

To parameterize the decay in response time as a function of the distance in the morph

from the decision/class boundary, we fit the decay in response time to an exponential decay

function (Fig 6.7). We discluded three birds from analysis (B1426, B1433, B1427) who we

observed did not exhibit the same decay in reaction time as a function of distance from the

decision boundary (Fig 6.2K).

0 20 40 60
Distance from decision boundary

0.2

0.1

0.0

0.1

0.2

0.3

R
es

po
ns

e 
tim

e 
(z

-s
co

re
d 

by
 c

la
ss

)

Figure 6.7. Sample fit of response time decay for a single morph (AE) for a single bird (B1174).
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6.4.17 Chronic electrophysiology

We used 32 or 64-channel Neuronexus Si-Probes (A4x2-tet-7mm150-200-121, Buzsaki32,

Buzsaki64, A1x32-Edge5mm-20-177) implanted either unilaterally or bilaterally. Probes were

coated with PEDOT using an Intan RHD Electroplating Board no more than one week prior to

implant. Probes were mounted on 3D-printed drives (described in Section 6.4.19), which were

stereotactically implanted using the procedure outlined in Section 6.4.20. Extracellular voltages

were amplified and digitized at 30kHz using an Intan RHD recording headstage, output through

an SPI cable through an electrically assisted commutator to an Open Ephys recording system.

6.4.18 Behavioral neural acquisition interfacing with PiOperant

Behavioral and physiology were synced using a custom designed Raspberry-Pi-based

system (PiOperant) for automating our behavioral paradigm and interfacing with the OpenEphys

neural acquisition device. PiOperant interfaces with our behavioral panel using the Python

software pyoperant (https://github.com/gentnerlab/pyoperant). Behavioral states and audio

signals were input and synced with OpenEphys over two HDMI inputs (digital and analog) and a

ZMQ interface containing additional information about behavioral trials.

6.4.19 Microdrives and head caps

Microdrives and head caps were custom-designed over the course of this experiment and

were printed using a FormLabs Form3 3D printer using FormLabs standard grey resin printed at

25-50 micron resolution. Microdrives were comprised of a drive, a shuttle, and a MiniTaps 6/16”

00-90 gold screw, hand-tapped and fastened to the drive with a brass nut. The screw was used to

raise and lower the shuttle manually, at a depth of 282 microns per full rotation. Head caps were

designed to be removable enable moving probes further down, as well as easy explant and re-use

of probes.
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6.4.20 Electrode implant procedure

Subjects were given analgesia by means of a 5mg/kg dose of carprofen (Rimadyl)

administered intramuscularly. Animals were then anesthetized with a gaseous mixture of

Isoflurane/oxygen (1-2.5%, 0.7 lpm). The scalp and feathers around the scalp were then removed

and part of the skull over the y-sinus (the stereotactic reference sinus between the cerebellum and

the two hemispheres of the brain) was visible. A craniotomy was opened above the recording

site. A second craniotomy for the ground was then performed several millimeters away from the

primary craniotomy. A platinum-iridium ground wire was then inserted in the craniotomy above

the dura and glued to the skull. The baseplate for the head cap was then cemented (Metabond) to

the skull. The durotomy was then performed in the original craniotomy, and the electrode was

stereotactically lowered, attached to the microdrive at a rate of no more than 100 microns per

minute. Once the final site was reached, the microdrive was then cemented to the skull, and a

silicone base was applied above the craniotomy to prevent infection. The head cap was then

screwed into the baseplate, protecting the recording site and probe. The headstage was then

attached to the outside of the head cap.

In some individuals, multiple implants were performed in serial when one probe failed

by explanting and removing the first probe and microdrive, creating a new craniotomy in the

opposite hemisphere and durotomy, and implanting a new probe/microdrive. In one individual,

two probes/drives were implanted simultaneously one in each hemisphere.

6.4.21 Recordings and behavior blocks

Recordings were performed 24 hours per day in order to track individual neurons over

days. Recordings consisted of (1) behavior blocks, in which subjects freely interacted with the

behavioral apparatus, (2) a free feeding period, in which the behavioral apparatus presented food

to the bird without requiring the bird to perform trials, (3) a passive playback block, in which

lights were turned off and the birds were passively presented with stimuli, and (4) a sleep block,

251



in which the lights were left off and no stimuli were played back.

6.4.22 Chronic behavior blocks

Chronic behavior blocks were matched to behavior blocks without physiology. The

behavioral apparatus was left on throughout the day, allowing subjects to initiate trials through

a peck in the central peck port. Trials were intermittently reinforced with a food reward and

punished with the lights briefly turning off on incorrect trials. Using this paradigm, subjects

performed several thousand trials per day.

6.4.23 Chronic passive playback blocks

At a set time at the end of each day, we turned the lights out in the bird’s operant

conditioning block and passively played back the morph stimuli to the bird. The bird’s activity

and sleep state during this time was not monitored. The silence interval between stimuli was

randomly sampled between 1.1 and 1.5 seconds.

6.4.24 Spikesorting and merging over long-term chronic recordings

Spikesoring was performed over each 12 hour block of recording using Kilosort 2-2.5

[329] and SpikeInterface [52]. LFP was bandpass filtered between 300 and 6000 Hz and further

normalized using common median referencing. To retain units across days/sorts, we additionally

used an overlapping procedure to merge each neighboring pair of recordings together. To do so,

we took the last 30 minutes of the previous recording, and the first 30 minutes of the following

recording, and separately sorted that hour-long recording, which overlapped with the two larger

recordings. We then computed the overlap between units in the overlapping recording and each

of the two full recordings. Units were then considered to be the same unit if their ”agreement”

score (SpikeInterface; the spike coincidence of the two units) was above a set threshold (set

at 0.5). Units from each of the larger recordings that were merged with the same unit in the

overlapped recording were then merged, allowing the same unit to be tracked over multiple days.
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6.4.25 Stimulus alignment

Stimuli playback was aligned to neural data using a 1kHz sine way sent from the MagPi

behavioral control device to the OpenEphys acquisition board collected simultaneously with

neural data, alongside a binary switch indicating the onset and offset of playback. An additional

message giving information about the specific trial was sent over the local network via ZMQ.

6.4.26 Acute recording sessions

Four naive birds were acutely recorded from while passively playing back morph stimuli

under anesthesia. Birds were anesthetized with 20% urethan (7ml/kg, i.m). A metal pin was

affixed to the skull with dental cement, and a window was removed from the top layer of skull,

where a small craniotomy and durotomy were performed over the recording location. Birds were

placed in a sound-attenuated chamber (Acoustic Systems). For the acute recordings, we used

32-channel 4-shank silicon microelectrodes with large spacing (200-400um) between sites to

maximize spatial coverage across our recording sites. Electrodes were stereotactically inserted

and lowered slowly until all sites were in brain tissue, and 15 minutes were taken before

starting a recording block to allow the probe to stabilize. Auditory stimuli were presented from a

speaker mounted 20cm above the center of the bird’s head. Stimuli were played back with an

inter-stimulus interval randomly sampled between 1.1 and 1.5 seconds. Recordings were then

processed using the same pipeline as in chronic recordings.

6.4.27 Localizing units

Unit locations were defined as the location of the peak recording channel on which the

unit was present. The recording channel was determined from its position within the shank,

and the shank’s position relative to the stereotactic implant. Stereotactic implant locations were

recorded relative to the Y-sinus between the cerebellum and two hemispheres of the brain, and

the depth relative to the surface of the brain. Implant locations relative to nuclei were then

determined relative to voxel mapping of the European starling brain atlas [86], as shown in Fig
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6.3D).

6.4.28 Clustering unit spike shapes

Unit spike shapes were clustered using the Birch clustering algorithm [469] fit to the

template voltage trace of the peak channel of each unit into 5 clusters. The clusters found were

primarily observed to vary upon their spike-width, and were (post hoc) manually labeled on the

basis of spike width (i.e. wide, middle, narrow). Narrow spiking cells are generally believed to

be inhibitory, while wide-spiking cells are thought to be excitatory [23, 184]. Spike width was

negatively correlated with spike rate (logged; r2 = -0.239, p=3.58e-103, n=7923).
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Figure 6.8. Spike widths and rates for each unit type. Spike width is given as the time between
trough and peak.
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6.4.29 Neural feature representation and response similarity

We represented spike trains as vectors using the methods outlined in Fig 6.4A-F). In

particular, a PSTH of spike trains was computed with 10ms time-bins, which was then smoothed

with a Gaussian kernel with a σ of 25ms. Morphs were sampled at a resolution of 128 points.

For physiological analyses, we reduced the sampling resolution, binning the 128 interpolation

points into 16 points along the morph, thus the neural response vectors and similarity matrices

are 100 time-bins by 16 interpolation bins, and 16 interpolation bins by 16 interpolation bins,

respectively.

We computed neural response similarity as the cosine similarity of the Gaussian con-

volved spike vectors, which has been effectively used to find similarity in spike trains in the past

[120]. A number of different similarity metrics could have been used in its place, for example,

correlation coefficients [396, 429] and Euclidean distance between Gaussian convolved spike

trains. We compared the cosine similarity to the several other similarity metrics used in neural

analyses including the correlation coefficient, Euclidean distance, and Manhattan distance, and

found broadly similar results (Fig 6.9).
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Figure 6.9. Comparison of unit categoricality using cosine similarity, correlation coefficient,
Euclidean distance (1/(1+D)) and Manhattan distance (1/(1+D)).
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6.4.30 Estimating a neurometric function from the similarity matrix

The neurometric function is computed on the basis of the similarity matrix and is detailed

in Fig 6.10. For each interpolation point, we took the average of the within and between-category

similarity (SC1 and SC2) took the ratio ( SC1
SC1+SC1

) as the categorical similarity ratio. We then fit the

same four-parameter logistic function as used in the psychometric function to the categorical

similarity ratio as a function of interpolation point.
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Figure 6.10. Method for computing a neurometric function from a similarity matrix.

6.4.31 Categoricality metric

Unit categoricality was computed using the similarity matrix (as seen in Fig 6.4). The

similarity matrix used to compute a unit’s categoricality was the mean cosine similarity matrix

across interpolation responses, where the cosine similarity matrix was computed over average

response vectors for each interpolation point.

Similarity matrices were divided into four quadrants, corresponding to the within-category

similarities for each category, and the between-category similarities. Categoricality was computed

as the mean similarity in the within-category quadrants of the similarity matrix (i.e. the top left

and bottom right), minus the between category similarities.
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6.4.32 Subsetting categorical units

We operationalized behaviorally relevant, categorical, units on the basis of their response

characteristics to the morph stimuli. Categorical units were determined by a threshold set in the

categoricality metric. This threshold was set at a categoricality metric value above 0.1. These

thresholds were set based upon visual assessment of unit responses (Fig 6.11) and similarity

matrices.
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Figure 6.11. Categorical and non-categorical units, sorted by categoricality (right is greater).

6.4.33 Comparing spike rate across units, cues, and morphs

The analyses performed in section 6.2.5 were performed over unit spike-rates in response

to the morph stimuli, where spike rate was z-scored over the unit’s spike rates across all stimuli.

A figure visualizing the main effect of cue and interactions between cue probability and stimulus

class is shown in Figure 6.12. In addition, we shuffled the cue labels to ensure that our results

were not due to inherent sampling biases present in the data (e.g. a left cue is more predictive of
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a left morph point, thus more cue left to left morph point samples exist in the dataset).
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Figure 6.12. Spike rate modulation by cue. (A) Spike rate differs between stimuli. On average,
across morphs, left stimuli elicit a greater spike rate than right stimuli. (B) Within stimuli, cues
elicit differing spike rates for the same morph stimuli. Uncued trials yield the highest spike rate.
(C) Across morph stimuli, average spike rates are shown for each cue condition in passive, and
active conditions. Additionally, we perform the same analyses over data where cue labels are
shuffled in the active and passive conditions (thus, no difference between spike rates across cues
are observed). (D) The same data as the four panels from (C), subtracting the spike rate for
each stimulus averaged across cue conditions. (E) The same data as in the four panels from (D),
shown across morph sides (left and right) rather than morph interpolation points. (F) The same
data as in (E) centered for each morph at zero, to show interactions between cue conditions and
morph stimuli classes. (G) The same data as in (G) plotted for each morph stimuli class as a
function of cue probability, exhibiting the relationship between cue probability and spike rate for
each cue class.
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6.4.34 Morph class and cue interactions by subject, brain region, unit
type, and morph

In Figure 6.13 we plot the interactions between cue probability and morph stimulus class,

controlling for the overall unit’s spike rates to stimuli and a main effect of cue responses.
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Figure 6.13. Interaction between cue probability and morph stimulus class on spike rate.
Interactions are shown across four categories: Morph, brain region, subject, and unit class.
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6.4.35 Differences in spike rate as a function of time

In section 6.2.5 we compared differences in spike rate as a function of their cue (i.e.

within versus between cue).

To ensure that the effects of spike rate modulation occur between cue conditions, and

not only between cue conditions and the uncued condition (where the main effect of cue on

spike rate is greatest) we did not include the uncued condition in the spike rate differences

between cue conditions in Fig 6.5B. We only included units and stimuli where we had active and

passive behavioral trials (n units = 4668). We then, for each unit and stimulus, took the average

difference in response vectors between trials for trials with the same cue, and trials with different

cues. The difference between the average difference between cues, minus within cues, will equal

zero when there is no difference between cue conditions. To ensure that no factors exogenous to

between-cue differences are causing this effect, in Figure 6.14 we show the same analysis where

cue labels have been shuffled within stimuli.
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Figure 6.14. Spike rate differences between minus within cue categories over time. The right
panel shows the same analysis with shuffled cue labels.

6.4.36 Within cue response similarity

For each unit and cue, we computed the cosine similarity matrix across each morph.

Cosine similarity matrices were computed by taking the average cosine similarity across trials for

each interpolation point (16) in the morph. Analyses were only performed over active behavioral
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trials, where the subject provided a response. We then contrasted the cosine similarity matrices

across different cue conditions. Figure 6.15 (top left) shows the average cosine similarity across

left cues subtracted by the average cosine similarity across right cues. Blue in the top left of the

plot (the orange bounding box) depicts less similarity in the predicted left class in left-cued trials.

The reverse is true for the red in the bottom right. We measured this relationship showing that

predicted morph classes are less similar within-class in Figure 6.15 (top right). Each point and

confidence interval consists of the within-class similarity relative to the same unit’s response to

non-cued stimuli across trials. The negative relationship confirms that higher-probability cued

trials exhibit less similar responses. In a similar manner as in Figures 6.12 and 6.14, we repeated

this analysis over the same data in which cue labels had been shuffled within unit/interpolation.

In the shuffled condition, we observe that the effect is removed. Finally, we broke out the

analyses from Figure 6.15 in Figure 6.16 and 6.17, which are discussed in the main text.

263



0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P(class|cue)

0.012

0.010

0.008

0.006

0.004

0.002

0.000

 C
os

in
e 

sim
ila

rit
y 

(c
ue

 - 
no

 c
ue

)
0.015

0.010

0.005

0.000

0.005

0.010

0.015

Δ Cosine similarity
(left cue - right cue; spike vector)

Shift in within cue response similarity
by cue probability

Interpolation point

In
te
rp
ol
at
io
n
po
in
t

Interpolation point 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P(class|cue)

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

 C
os

in
e 

sim
ila

rit
y 

(c
ue

 - 
no

 c
ue

)

In
te
rp
ol
at
io
n
po
in
t

Cue shuffled

Original data

Figure 6.15. Spike vector cosine similarity and shift in similarity as a function of class probability
as seen in Fig 6.6 I and J, compared with the same analysis performed over the same dataset
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Figure 6.17. The relationship between the probability of the stimulus class and the shift in
similarity from baseline (the non-cued condition) shown in Fig 6.6J, broken out into morphs,
brain regions, subjects, and unit types.
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