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Abstract

The transformation of cerium oxide nanoparticles (CeO2-NPs) in soil and its role in plant uptake 

is a critical knowledge gap in the literature. This study investigated the reduction and speciation 

of CeO2-NPs in barley (Hordeum vulgare L.) cultivated in soil amended with 250 mg CeO2-NPs 

kg−1 soil. Synchrotron micro-X-ray fluorescence (μXRF) was employed for spatial localization 

and speciation of CeO2-NPs in thin sections of intact roots at the soil-root interface. Results 

revealed that Ce was largely localized in soil and at the root surface in nanoparticulate form (84–

89%). However, a few hot spots on root surfaces revealed highly significant reduction (55–98%) 

of CeO2-NPs [Ce(IV)] to Ce(III) species. Interestingly, only roots in close proximity to hot spots 

showed Ce uptake which was largely CeO2 (89–91%) with very little amount Ce(III) (9–10%). 

These results suggest that the reduction of CeO2-NPs to Ce(III) is needed to facilitate uptake of 

Ce.
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INTRODUCTION

Cerium oxide nanoparticles (CeO2-NPs) are highly stable nanoparticles that undergo very 

limited transformation in different environmental media.1 However, recent studies2–9 using 

synchrotron spectroscopic techniques showed that plants could enhance CeO2-NPs reduction 

[Ce(IV) → Ce(III)] to as much as 23% Ce(III) in soil,3 and 34% Ce(III) acetate, 22% 

Ce(III) carboxylates, 40% Ce(III) phosphate, 40% Ce(III) oxalate in hydroponic culture6,8 

(Supporting Information (SI) Table 1). These enhanced transformations have been attributed 

to root exudates (i.e. reducing substances such as organic acids, cellulosic materials, amino 

acids) that plants release when exposed to CeO2-NPs.6,8

Previously, we showed peculiar differences on the uptake and translocation of Ce in 

rice, wheat and barley cultivated to full maturity in CeO2-NPs amended soil: rice and 

barley accumulated Ce in plant tissues and grains, whereas wheat did not transport Ce to 

the aboveground tissues and grains.12–13 These plants were cultivated in similar growth 

conditions following soil exposure to CeO2-NPs. Therefore, it could be inferred that the 

discrimination on Ce uptake could have occurred through the roots wherein chemical 

environment and nanoparticle behavior in the root-soil interface controlled the differences on 

plants’ ability to transport Ce into the roots and aerial parts.

Recently, we reported a follow-up study to understand the transformation and uptake 

of CeO2-NPs in wheat. Synchrotron micro X-ray fluorescence (μXRF) and micro X-

ray absorption spectroscopy (μXAS) techniques revealed the limited transformation of 

CeO2-NPs in full profile intact root-soil system with no evidence of plant uptake or 

accumulation;10 a finding that corroborated the results from our previous study in wheat.11 

In view of these findings, assessing the speciation of Ce in the root-soil system of barley 

exposed to CeO2-NPs may yield information on how Ce is taken up by the roots and 

translocated to the grains in barley as opposed to being immobilized in wheat roots.

This study investigated the chemical fate of CeO2-NPs in the rhizosphere of barley and 

its possible role on Ce accumulation inside the roots. Since Ce was detected in the aerial 
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parts of barley, it was hypothesized that the behavior (i.e. speciation, transformation) of 

CeO2-NPs in the rhizosphere influenced the uptake of Ce in roots. Thus, this study focused 

on the speciation of CeO2-NPs in root-soil interface using synchrotron spectroscopy.

MATERIALS AND METHODS

Preparation of plants and root thin sections for synchrotron analysis

This study is a continuation of research on long-term impacts of CeO2-NPs in barley. The 

CeO2-NPs (Meliorum Technologies, Rochester, NY) are rods with primary size of (67 ± 

8) × (8 ± 1) nm (length × diameter), particle size of 231 ± 16 nm in DI water, surface 

area of 93.8 m2/g, and 95.14% purity.14 The preparation of nanoparticle suspension and 

plant cultivation were described in previous studies and given in the SI.10–13 Briefly, barley 

seedlings were cultivated in soil for 60 days in growth chamber (Environmental Growth 

Chamber, Chagrin Falls, OH) with conditions maintained at 16-h photoperiod, 20/10˚C, 70% 

humidity, 300 μmol/m2-s for the first 40 days, after which the light intensity was increased 

to 600 μmol/m2-s. One hundred mL of Yoshida nutrient solution15 (nutrient composition 

was provided in SI) was added to the pots on the day the seedlings were transplanted.

Samples for synchrotron analysis was prepared following the method described 

previously.10,16,17 Briefly, soil core was collected in a 2.5 cm × 6 cm (diameter × height) 

aluminum cylinder, wrapped in plastic, and kept frozen (−80°C). The cores were embedded 

with Spurr’s Resin, cut in half along the long axis, and 3–5 cm by 7 cm glass slides were 

glued to the cut surface to cover the entire cut surface on one half of each core. Further 

processing (i.e. cutting and polishing) produced intact root/soil thin-sections with a thickness 

of ~100 μm.

Localization and in situ speciation of Ce in intact root-soil system

The μXRF mapping and μXANES analysis of Ce at the L3 edge in the barley root-soil thin 

sections was performed at 10.3.2 X-ray Microprobe Beamline at the Advanced Light Source 

(ALS) at Lawrence Berkeley National Laboratory following the method described in Rico et 

al.10 and given in the SI. μXANES data for spots of interest as well as reference spectra were 

taken in fluorescence, using the QXAS flying-energy-scan mode of data acquisition.

Reference standard μXANES spectra for linear combination fit (LCF) were obtained from 

Ce(IV) oxide nanoparticles, Ce(III) acetate, Ce(III) carbonate, Ce(III) oxalate, and Ce(III) 

phosphate.2,3,7 The standards were prepared by blending a 1:1 (w/w) ratio of the standards 

and boron carbide (B4C) with a clean agate mortar and pestle. Small amounts of these 

mixtures were bound on Kapton tape and presented to the μXRF beamline. The beam 

energy was calibrated so that the first peak for CeO2-NPs was at 5730.39eV. Data were 

taken with a fine spacing near 5848.6eV, where a monochromator Bragg glitch served 

as an internal energy calibrant for each spectrum. The short dwell time in this region is 

the source of the noisiness of all spectra there. Because the white-line intensity is high, 

the fluorescence spectra for the Ce(III) references are very sensitive to overabsorption 

(“self-absorption”).18,19 Therefore, we took spectra at places where the intensity was high, 

for good signal, and at tiny particles, where the spectra were noisy but the same for a range 
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of particles which yielded different count rates. We thus considered that these particles were 

small enough to avoid overabsorption, and adjusted the spectra from the stronger-signal 

areas using a simple model for overabsorption with the amount of overabsorption varied 

so the spectral shapes for the strong-signal areas matched those for the tiny particles. This 

procedure gives us the signal quality from the strong-signal areas and the freedom from 

overabsorption found with small particles.

The μXANES spectra from the reference compounds were presented in Figure 1. LCF 

values obtained were not significantly different from each other so that it was difficult to 

determine the preferred Ce(III) species. Thus, LCF from one Ce(III) species was used (SI 

Table 2).

RESULTS AND DISCUSSION

The μXRF elemental maps from intact root-soil rhizosphere of treated barley revealed a 

heavy presence and wide distribution of Ce in soil. Figure 2A depicts the thin section of 

intact rhizosphere and the area (marked by the box) where elemental and chemical maps 

were acquired. The μXRF maps indicate that Ce was mostly adsorbed on the barley roots 

or aggregated in the soil just outside the roots, but was not detected inside the roots (Figure 

2B,C,D). This data is similar with our previous finding which showed high concentration 

of Ce on wheat root surface.10 Hernandez et al.4 also reported CeO2-NPs adsorption in 

mesquite root grown in hydroponic culture.

Selected hotspots were interrogated for Ce speciation, and showed that Ce was mostly in 

oxide form in spots analyzed in roots 1, 2 and 3 (Figure 2B1,C1,D1, SI Table 2). LCF 

data showed that Ce was present mostly as CeO2 (84–92%) with small amounts of Ce(III) 

species (9–15%). The μXANES of CeO2 has a distinct shoulder on the low-energy side 

not found in other Ce(IV) species, and this shoulder is seen in all our spectra for which 

the signal is good enough to see it.20 We see no evidence for any Ce(IV) species other 

than CeO2. On the other hand, the μXANES of CeO2-NP differs very little from that of 

bulk CeO2, so we cannot distinguish bulk from nano and refer to both as CeO2. This 

data demonstrates that CeO2-NPs undergo very limited transformation in barley root-soil 

system, which is consistent with our findings in wheat rhizosphere that showed only 3–12% 

reduction to Ce(III) species.10 Previous studies also showed similar results in transformation 

of CeO2-NPs to Ce(III) acetate, carboxylate, phosphate, and hydroxide in plants (SI Table 

1).3,4,5,7,9

We found Ce(III) signal near the tip of root 3, which indicates that a fraction of the CeO2 

[Ce(IV)] were reduced to Ce(III). A second chemical map of root 3 extending further down 

from the root tip was acquired at longer x-ray dwell time of 200 milliseconds (Figure 3). 

Remarkably, root 3 spots 7, 8, 9, and 10 showed reduction of CeO2 to Ce(III) species by 61, 

77%, 56%, and 98%, respectively (Figure 3E3-E6). μXRF map also revealed CeO2 inside 

barley root in the area close to where Ce(III) was detected (Figure 3E1,E2). Root 3 spots 

5 and 6 revealed that Ce was 89–91% CeO2 with small amount of Ce(III) species (9–10%) 

(Figure 3E1,E2). Based on this data, it is possible that Ce was taken up by barley roots 

as Ce(III), which got re-oxidized back to CeO2 inside the roots. Schwabe et al.21 reported 
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that pumpkin and sunflower root exudates caused dissolution of CeO2-NPs that potentially 

facilitated the root uptake of Ce(III). Perhaps barley also produced extracellular compounds 

that reduced Ce(IV) and resulted in Ce(III) uptake in roots.

This is the first time that large reduction of CeO2-NPs to Ce(III) has been recorded in soil. 

The highest value we found in literature was 48% Ce(III) phosphate in soil, and 40% Ce(III) 

phosphate and 34% Ce(III) acetate in cucumber roots grown in hydroponic culture.4,6,8 As 

noted above, our previous study on wheat exposed to CeO2-NPs at similar soil and growing 

conditions used in the current experiment only showed 3–12% reduction of CeO2 to Ce(III) 

species.10 Barley might have different root exudates than those from soybean, wheat, and 

cucumber in other experiments.4,8,10 Related study shows that plant type significantly alters 

concentrations and compositions of root exudates in stressed plants (i.e. Pb-exposed Sedum 
alfredii).22

The results also suggest that reduction sites for Ce may be highly localized since the huge 

amount of Ce(III) was observed in root 3 only. This is consistent with reports showing that 

root exudate (e.g. oxalate produced by plants) or oxidation-reduction sites tend to occur in 

isolated patches in roots.23,24 With regard to Ce(III) → CeO2 [Ce(IV)] formation inside the 

roots, this finding is consistent with a report showing uptake of Ce(III) ions that precipitated 

as CeO2-NPs in leaves.21 Current results are also in contrast with our findings in wheat 

wherein only CeO2-NPs, and no Ce(III), were detected in rhizosphere, and no Ce was 

found inside the roots.10 Both findings in wheat and barley corroborate our previous studies 

wherein aboveground accumulation of Ce was recorded in barley but not in wheat.10–12

In summary, μXAS synchrotron spectroscopy revealed root surface adsorption and soil 

agglomeration of CeO2-NPs with transformation of Ce(IV) → Ce(III) being highly localized 

in some roots. The study revealed up to 98% reduction of CeO2-NPs to Ce(III) species in 

soil-root interface which potentially facilitates root uptake of Ce(III) species. CeO2 were 

found inside roots which suggests Ce(III) oxidation to Ce(IV) once Ce(III) has moved into 

the plant. These results provide additional insights into the mechanism of Ce transport and 

accumulation in plants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ce μXANES of the Ce model compounds. The shoulder seen in CeO2 to the left of the first 

peak is not found in most other Ce(IV) compounds.
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Figure 2. 
Images of thin sections of soil profile from barley 60 days after treatment with 250 mg 

CeO2-NPs kg−1 soil. (A) Image showing intact root-soil rhizosphere. (B) tricolor μXRF 

chemical map of root 1 (red = K, green = Ce, blue = Ca). (C,D) Bicolor μXRF chemical 

map of roots 2 and 3 (red = Ce(III), green = Ce(IV)), respectively. (B1,C1,D1) Ce μXANES 

spectra from spots in root and soil. Spectra in green line represents μXANES from the 

sample, and white line represents linear combination (LC) fit. Proportions of CeO2-NPs and 

Ce(III) are values obtained from LC fits as provided in SI Table 2. μXRF mapping was 

performed with 20 × 20 μm2 step size and 50 ms dwell time. NSS is normalized sum-square 

error of the fit.
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Figure 3. 
(E) Bicolor μXRF chemical map of root 3 (red = Ce(III), green = Ce(IV)). (E1,E2) Ce 

μXANES spectra from spots 5 and 6, respectively. (E3,E4,E5,E6) μXANES spectra from 

spots 7, 8, 9, and 10, respectively. Spectra in green or yellow line represents μXANES from 

the sample, and white line represents linear combination (LC) fits. Proportions of CeO2-NPs 

and Ce(III) are obtained from LC fits as given in SI Table 2. μXRF mapping was performed 

with 20 × 20 μm2 step size and 200 ms dwell time. NSS is normalized sum-square error of 

the fit.
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