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Abstract

Soft biological tissues often have complex mechanical properties due to variation in structural 

components. In this paper, we develop a novel UNet-based neural network model for inversion in 

elasticity (El-UNet) to infer the spatial distributions of mechanical parameters from strain maps as input 

images, normal stress boundary conditions, and domain physics information. We show superior 

performance – both in terms of accuracy and computational cost – by El-UNet compared to fully-

connected physics-informed neural networks in estimating unknown parameters and stress distributions 

for isotropic linear elasticity. We characterize different variations of El-UNet and propose a self-adaptive 

spatial loss weighting approach. To validate our inversion models, we performed various finite-element 

simulations of isotropic domains with heterogenous distributions of material parameters to generate 

synthetic data. El-UNet is faster and more accurate than the fully-connected physics-informed 

implementation in resolving the distribution of unknown fields. Among the tested models, the self-

adaptive spatially weighted models had the most accurate reconstructions in equal computation times. 

The learned spatial weighting distribution visibly corresponded to regions that the unweighted models 

were resolving inaccurately. Our work demonstrates a computationally efficient inversion algorithm for 

elasticity imaging using convolutional neural networks and presents a potential fast framework for three-

dimensional inverse elasticity problems that have proven unachievable through previously proposed 

methods.

Keywords: model-based elastography, elasticity imaging, deep learning, tissue biomechanics
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1 Introduction

Elasticity imaging is a technique to reconstruct the spatial distribution of mechanical properties 

using available deformation and force measurements. The mathematical problem in quasi-static elasticity 

imaging is inherently ill-posed because the stress distribution inside the domain cannot be measured. 

Many experimental, theoretical, and numerical studies over the past three decades have tackled this topic, 

and various methods have been introduced to solve the inverse problem [1,2].

In recent years, methods that employ neural networks with physics-based loss functions to solve 

inverse problems have become popular [3–7]. In these methods, fully connected feed forward networks 

estimate mechanical parameters (and stress fields) by taking spatial coordinates as inputs. The outputs are 

then placed in respective physical equations to construct physics-based loss functions. In the context of 

material identification in mechanics, static equilibrium equations (or more generally balance of linear 

momentum equations) contain partial derivatives of mechanical stress, physics-informed neural networks 

(PINN) methods use automatic differentiation to compute these partial derivatives [3,4,6–9] or alternative 

methods such as convolution kernels to model the equilibrium [5,10]. These studies have introduced 

strategies regarding modified loss [9], collocation and boundary points sampling [8,11], dimensionless 

posing of equations [7] and other innovations that have advanced the field in various ways. 

Fully-connected networks are not the most efficient choice for learning from spatially structured 

data [12]. This type of data, which includes data acquired from most imaging modalities, is arranged in a 

way that preserves the spatial relationships between the different data points. While fully connected 

approaches are highly expressive and powerful in learning complex nonlinear relationships between 

inputs and outputs, they take a long time to learn complex spatial patterns [7]. In addition, they become 

increasingly costly to train for deep networks or large datasets. Convolutional neural networks (CNNs), 

on the other hand, are best suited for tasks that require processing spatially structured data by sharing 
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weights and pooling layers for different regions of the image or volume. These networks seem particularly

promising to infer the nonlinear transformation between, say, strain distributions and elasticity parameter 

fields by satisfying the governing physical equations.

Several studies have already demonstrated the power of physics-informed models with CNNs and 

UNet structures (encoder-decoder CNN with skip connections between the encoder and decoder paths) in 

applied mathematics, physics, and engineering applications. These models leverage the trainability of 

these image-to-image networks as operators on spatially structured input data. Physics-informed UNets 

have been used as a super-resolution tool conserving equilibrium constraints from low-resolution 

simulated solid mechanics loadings [13]. Surrogate modeling is another area where CNNs [14], UNets

[15] a combination of multi-task learning and attention UNets [16], generative adversarial networks 

(GANs) [17–19], and deep neural operators and convolutional autoencoders [20] have been employed to 

solve multiple forward problems and generalize to new input information, aid in learning from sparse 

training data, or denoising and regularization. UNets have also shown great efficiency in learning directly 

from physics data when coupled with vision transformers [21], or for identification of elasticity 

distribution and denoising in ultrasound elastography [19]. These examples show the versatility of this 

type of network in image-to-image tasks in scientific machine learning. To the best of our knowledge, 

UNets have not been used to directly solve inverse problems in elasticity using only physics constraints.

Elasticity imaging inverse methods need relevant benchmarking examples to evaluate their 

performance in reconstruction of material parameter fields. These examples often involve circular or 

elliptical shapes embedded in a uniform background, replicating tumorous tissue behavior [6,22,23]. 

However, more complex and biologically relevant spatial distributions can demonstrate the robustness of 

these inverse methods more comprehensively and present them as potential tools for characterization of 

tissues across multiple scales. Brain tissue is comprised of many tissue subtypes with varying material 

properties as well as complex geometrical patterns [24–26], rendering it an excellent benchmarking 
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example. Furthermore, reliable mechanical characterization of the brain is crucial in clinical decision 

making and informing models of extremely important health issues such as traumatic brain injury and 

surgical planning [27,28].

We present El-UNet, an inversion physics-based neural network model based on the UNet encoder-

decoder structure, to solve inverse problems in linear elasticity. Our model solves the material parameter 

and stress distributions by taking normalized strain distributions as input images and boundary and 

domain physics information for loss function. We propose several El-UNet implementations, including 

two with self-adaptive spatial loss weighting methods, and compare how they affect accuracy in space-

dependent estimation of isotropic linear elasticity parameters in a heterogeneous 2D example. We also 

demonstrate how these models perform compared to the fully connected (dense) PINN implementation 

under equal circumstances. We show the performance of the models in estimating material parameters on 

three embedded brain tissue examples with distinct assignment of elastic modulus and Poisson’s ratio for 

white matter, gray matter, and the background. The examples differ in whether the background region is 

stiffer or softer than the brain, existence of tumor, and noisy strain input. These benchmarking examples 

reveal the robustness of the various tested models against various characterization scenarios.
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Figure 1. General overview of UNet for inversion in elasticity (El-UNet) implementation. Spatial distributions of 
strains are fed as three input channels (εxx , εyy, and εxy) to the UNet. The encoder-decoder network is five levels 
deep, increasing in number of channels from 64 in the shallowest level to 1024 in the deepest level on both the 
encoder and decoder sides. The final stage has two or five output channels, depending on whether only material 
parameters or both material parameters and stress terms are outputted. The network outputs enter physical and 
boundary mean squared error loss equations and the Adam optimizer acts on the sum of the loss functions and 
updates the network parameters. This loop is repeated until training finishes.

2 Methods

2.1 Isotropic Formulation

The elasticity equation in index notation is written as:

σ ij=C ijlm ε lm ( 0 )

where σ  and ε are the stress and strain tensors, respectively and C  is the stiffness matrix. For 

isotropic linear elasticity in two dimensions, the equations reduce to

{
σ xx

σ yy

σ xy
}=[

2 μ+λ λ 0
λ 2 μ+ λ 0
0 0 μ ]{

ε xx
ε yy

2 ε xy} ( 0 )
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where λ and μ are the Lamé parameters [29]. Elastic modulus and Poisson’s ratio for a plane strain 

problem can be derived from the Lamé parameters using:

E=
μ (3 λ+2 μ )

λ+μ v=
λ

2 ( λ+μ )
. ( 0 )

For plane stress assumptions, the following conversion should be applied when solving the inverse 

problem:

E plane stress=
E plane strain

1−v planestrain
2 , v planestress=

v planestrain

1−v plane strain
. ( 0 )

The static equilibrium equations after neglecting body forces in the system reduce to 

∂σ xx

∂ x +
∂ σ xy

∂ y =0
∂σ xy

∂ x +
∂ σ yy

∂ y =0. ( 0 )

We implement a dimensionless variation of the above equations in the inversion algorithm and use mean 

dimensions of the geometry (l 0) and maximum normal stress on the traction boundary (σ 0) as reference 

characteristic scales. Therefore Equations 2 and 5 can be written as: 

Sxx=(2 Μ+Λ ) ε xx+Λε yy

Syy=(2Μ +Λ)ε yy+Λε xx
Sxy=2Μ ε xy

( 0 )

∂S xx

∂ X +
∂ Sxy

∂Y =0
∂S xy

∂ X +
∂ Syy

∂Y =0. ( 0 )

where the upper-case letters denote dimensionless values. In-depth details regarding the dimensionless 

approach can be found in our previous publication [7].

2.2 Finite Element Simulation

We performed a finite element simulation of brain slice under tensile loading, as detailed in our 

previous work [7]. In brief, we collected a T1-weighted image of a 28-year-old male subject in a 3.0 Tesla

MRI Scanner (Skyra, Siemens Healthcare, Germany) and a 32-channel head coil (human subject imaging 
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approved by University of Arizona Institutional Review Board, February 2020). Next, we picked a 

coronal slice near the posterior side of the brain, segmented gray matter and white matter using a 

threshold, and developed a finite element model of the brain slice in ANSYS Workbench (Ansys, Inc., 

PA, USA), embedded in a rectangular hydrogel background. Finally, we loaded the entire specimen from 

the top side with uniform normal stress in the vertical direction, chosen to result in nominal axial strains 

not larger than 5% anywhere in the domain while keeping the bottom side a frictionless boundary. Here, 

the background material was chosen to be softer than the brain slice (1kPa background vs 1.5kPa/2kPa 

gray matter/white matter) (Table 1). As a second example, we added 10% Gaussian noise (with respect to 

standard deviation of signal from each strain channel) to the strain data from the soft background example

to study the robustness of the inverse models against noisy strain images. The next example involved the 

same material parameter distribution as the first example, but with an embedded higher-order stiffness 

tumor-like shape (20kPa) inside the brain geometry. Finally, we also performed a simulation with stiffer 

background material (5 kPa). We used data from the finite element simulation as input data (strains and 

stress boundary conditions) to train the inverse model as well as ground truth (full field material 

parameter and stress distributions) to compare the model estimation against. These examples comprised a 

variety of conditions that allowed us to evaluate the performance of the models in various scenarios. As 

we reported in our previous work [7], the brain tissue geometry can be considered a complex yet 

biologically relevant benchmarking example. The models that accurately resolve the distribution of 

patterns for this example are expected to perform equally well or better for simpler heterogeneous 

patterns and inclusions in elasticity imaging. 

The inverse models required exported finite element results for input and validation data. For the 

dense PINN runs, we picked training collocation points uniformly from the unstructured mesh [7], 

whereas for the UNet runs, we used the triangulation-based natural neighbor interpolation in MATLAB 

(MathWorks, MA, USA) to construct structured isotropic distributions from the unstructured mesh. The 
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domain data prepared for the dense PINN method had 14200 collocation points while the image 

dimensions for the UNet model was 142×100 resulting in 14200 pixels. Therefore, both network 

variations dealt with the same resolution of the image space. Figure 2 shows the strain distribution 

patterns and material parameter distributions from each example.

Table 1. Assigned material properties for finite-element modeling of loaded specimens.

Material Elasticity Parameters
E  (kPa) ν

White Matter 2 0.35
Gray Matter 1.5 0.4

Background
1 (soft background example)
5 (stiff background example)

0.45

Tumor 20 0.3

9

147

148

149

150

151



Figure 2. Breakdown of finite element-derived strain fields and parameter distributions used as input and validation 
data for the inverse models, respectively. All color bars have linear scaling except for the stiffness map 
corresponding to the soft background with tumor example, which has a logarithmic color bar for better visibility of 
the different regions.

2.3 El-UNet Implementation

We developed El-UNet, an encoder-decoder structure based on the original UNet architecture [30], 

to solve the inverse problem in quasi-static elasticity imaging (Figure 1). In brief, compared to the 

original work, we removed bias parameters and used batch normalization in the 3×3 double-convolution 

sections, and upsampling followed by a 2×2 convolution in the upward path of the network instead of 

transposed convolutions. Each convolution layer was followed by ReLU activation function to introduce 
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non-linearity except for the last layer, which had a linear output. All the convolutions had a stride of one, 

whereas the pooling layers had a stride of 2. A padding of 1 was used to maintain dimensions after 

convolutions. We also used resampling steps in the upward path in case the output of the double 

convolutions had dimensions not matching the skip connection image, which would occur to odd image 

dimensions due to pooling in the downward path. We used the original number of channels for the double

convolutions, i.e., 64, 128, 256, 512, and 1024 channels, respectively, moving in the downward path of 

the UNet and the reverse trend for the upward path. The network takes in a 3-channel input, each channel 

containing the normalized spatial distribution of a strain tensor term (two normal and one shear strain 

distributions) and estimates either dimensionless Lamé parameters only (P El-UNet, Figure 3A) or Lamé 

parameters and stress distributions together (PS El-UNet, Figure 3B).

Figure 3. Breakdown of the two main UNet setups used in this study in terms of network output. The main 
difference between the two is the output channels.
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For P El-UNet, the algorithm uses the isotropic linear elasticity constitutive equations to compute 

stress terms across the domain using the estimated Lamé parameters and given strains. It then computes 

the mean squared error (MSE) loss values for static equilibrium in two directions and normal stress on the

boundaries. The partial derivatives in the static equilibrium equations are approximated as finite central 

difference inside the domain and forward/backward difference on the boundaries. Following the 

dimensionless approach, the spacing for the central difference approximation is computed as:

Δx=length x /¿Δy=length y/¿ ( 0 )
where N x and N y are the number of pixels in x and y, respectively. For PS El-UNet, the algorithm 

uses a mean-squared error loss function to balance the stress distribution directly estimated by the 

network and the one computed by plugging output Lamé parameters and given strains in the constitutive 

equations. The remaining stages of the five-output implementation are like P El-UNet.

2.4 Self-adaptive Spatial Loss Weighting

We experimented with two self-adaptive loss weighting methods with the goal of speeding up 

convergence to accurate parameter distributions and better resolving the complex patterns in the images. 

We implemented these methods on the PS El-UNet configuration and, thus, named them PS El-UNet W1 

and PS El-UNet W2 (Figure 4). In the PS El-UNet W1 configuration, we created three types of trainable 

weight fields, each with values initialized at 1. These were defined as self-adaptive spatial weights for 

constitutive equations (𝜓C), static equilibrium (𝜓E) and boundaries (𝜓Sides and 𝜓TopBottom). These spatial 

weights were multiplied in an element-wise manner by the left-hand side and right-hand side of their 

corresponding mean squared error (MSE) losses and updated in the optimizer along with the network 

weights in a min-max approach as outlined in Figure 4A. The PS El-UNet W2 had the same setup as W1 

except that it did not have the static equilibrium spatial weighting, 𝜓E (Figure 4B). A similar strategy was 

previously used for fully-connected PINNs when solving the forward problem in non-Fourier heat 

conduction and had shown better convergence compared to the PINN model with no adaptive weighting 
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with equal training epochs [31]. Compared to that study, we use two variations of this method for the 

inverse elasticity problem and compare their performances with non-adaptive El-UNet in equal 

computation timeframes to assess the potential accuracy gain under similar computational cost 

circumstances.

Figure 4. Breakdown of the two self-adaptive spatial weighting approaches. The PS El-UNet W1 configuration has 
self-adaptive spatial weights for all the loss terms. PS El-UNet W2 is similar except that the static equilibrium loss is
not weighted.

2.5 Dense PINN

We compared the proposed models with our previously published fully connected physics-

informed neural network implementation for the same task to demonstrate the improvements achieved by 

the current models. For this purpose, we constructed the networks and the training pipeline as described 
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in our previous study [7]. We used the same resolution of input and boundary condition data as the UNet 

models to keep the training procedure exactly similar between them except for the model used.

2.6 Implementation and Computation Details

We wrote the codes for the UNet and PINN implementations in PyTorch v1.13.1. For all the 

models, we used the Adam optimizer with a learning rate of 0.001 with no decay settings to minimize the 

loss value and trained each model for 30 minutes on Nvidia P100 GPUs. Due to the oscillatory nature of 

loss evolution through the training process, we performed each run ten times, plotted the average output 

for visualizations, and reported means and standard deviations of quantified errors where applicable. 

Because the network state in each run was initiated randomly, the number of epochs performed during 

each run in the equal time given had a small variance. Therefore, we plotted loss and error vs. epoch 

number trends up to the minimum epoch number that all models reached for that specific example and 

model configuration. For the spatially weighted runs, while the optimizer acted on the weighted loss of 

the model, here, we report the loss associated with the physical equations in their non-weighted state. This

reporting approach allows us to compare weighted with non-weighted models in terms of the 

minimization of the physics-associated loss values. Table 2 provides a short description of all the models 

investigated in this study.

Table 2. Description of the physics-informed inversion models under study.

Model Description

Dense PINN Two multilayered fully connected networks, outputting parameter and stress
distributions (from [7])

P El-UNet UNet architecture with material parameter distributions as outputs and
normalized strain images as input channels

PS El-UNet UNet architecture with material parameter and stress distributions as outputs
and normalized strain images as input channels

PS El-UNet W1 PS El-UNet configuration with self-adaptive spatial loss weighting for all loss
terms

PS El-UNet W2 PS El-UNet configuration with self-adaptive spatial loss weighting for
constitutive equations and boundary conditions
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3 Results

3.1 Visual Depiction of Estimated Fields

The UNet results were generally more accurately resolved compared to Dense PINN (Figures 5-8). 

Starting with the example with soft background (Figure 5), the two-output implementation showed visible

artifacts, especially for the v  estimation. The Five-output implementation did not have these artifacts but 

looked less accurate in terms of overall discovered patterns. The two spatially weighted implementations 

were the closest estimation to ground truth with little artifacts.

15

228

229

230

231

232

233

234



Figure 5. Estimation and absolute relative error maps from the various physics-informed models under study for the 
soft background example. Qualitative evaluation of estimated maps reveals improved estimation of El-UNet models 
compared to Dense PINN. The weighted Unet models, namely W1 and W2 show the best results for both E and v .

Regarding the inverse run with noisy strain data, the UNet models resolved a grainy reconstruction 

of the unknown parameters (Figure 6). Here, the PINN model produced less grainy outputs but did not 

resolve the pattern as intricately as the UNet models.
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Figure 6. Estimation and absolute relative error maps from the various physics-informed models under study for the 
soft background example with noisy strain inputs. The dense PINN model provides less accurate and less grainy 
reconstruction than unweighted UNet models. The weighted and unweighted PS El-UNet models show more 
robustness against noise.

The inverse reconstruction of the brain tissue with an embedded tumor further revealed clear 

accuracy gains by the weighted El-UNet models (Figure 7). The existence of the tumor makes the Dense 

PINN less accurate even for non-tumor regions of the image. All El-UNet reconstructions have high-

fidelity E reconstructions. For v  reconstruction, however, the P El-UNet model has high horizontal 

artifacts across the entire image at the tumor level. These artifacts do not exist in the PS El-UNet 
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reconstruction, although v  estimation accuracy is visibly lower inside the tumor. Weighted PS El-UNet 

models show the best overall reconstruction of both parameters.

Figure 7. Estimation and absolute relative error maps from the various physics-informed models under study for the 
soft background example with embedded higher-order-stiffness tumor. The dense PINN model is still far from 
convergence to ground truth values. Among the El-UNet models, The weighted variations show superior 
performance, with PS El-UNet W1 having the least artifacts. All color bars have linear scaling except the stiffness 
map, which has a logarithmic color bar for better visibility of the different regions.

The stiff background example had the worst PINN and P El-UNet reconstruction of unknown 

parameters among the studied examples (Figure 8). The v  transition between the background and the gray
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matter was specifically poorly reconstructed. PS El-UNet W1 worked better than other models for the 

same example. 

Figure 8. Estimation and absolute relative error maps from the various physics-informed models under study for the 
stiff background example. The transition zone between the background and gray matter had higher reconstruction 
errors compared to soft background examples. PS El-UNet W1 shows the best estimation in terms of capturing the 
complex pattern while minimizing reconstruction artifacts.

3.2 Quantified Loss and Estimation Errors

To analyze model performance more objectively, we compared the evolution of mean estimation 

errors between the models (Figure 9). Comparing the two-output network (P El-UNet) and the five-output
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network (PS El-UNet) with PINN showed that while both models outperform the Dense PINN in E 

estimation accuracy, PS El-UNet has better v  estimation. Between the self-adaptive weighted 

configurations, PS El-UNet W1 showed estimation errors that either kept decreasing or almost plateaued 

at low values, while W2 showed a reversal for the v  estimation error in later epochs, especially visible 

with noisy strain, embedded tumor, and stiff background examples.

Figure 9. Evolution of mean absolute relative errors (solid lines) along with standard deviation (shades) associated 
with E and v  estimation across training epochs. PS El-UNet W1 has the most reliable loss and error trend.

3.3 Self-adaptive Spatial Loss Weight Distributions

The final spatial distribution of the self-adaptive spatial loss weights from the different examples 

allows us to interpret the improved performance of the weighted models (Figure 10). The regions where 
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the loss values were larger reflect where the model learned to give more weight to the corresponding loss 

term, i.e., constitutive equations (𝜓C), static equilibrium (𝜓E) and boundaries (𝜓Sides and 𝜓TopBottom).

Figure 10. The final state of learned self-adaptive spatial loss weights from the different examples and the two 
weighted models under study. constitutive equations weight: 𝜓C, static equilibrium weight: 𝜓E, and boundary 
weights: 𝜓Sides and 𝜓TopBottom. Boundary weights are plotted with a pixel offset around the 𝜓C map. The models learn to
penalize themselves more in the regions of the image where violations of the physical constraints are highest during 
training.
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4 Discussion

We introduced UNet-based models for inverse reconstruction of material properties from strain 

fields and boundary conditions in elasticity imaging, collectively named El-UNet. This paper focused on 

different variations of these models for 2D plane stress examples and compared their performance with 

one another and our previous model, which used densely connected physics-informed neural networks. 

The results visibly showed improved reconstruction by the UNet-based models, with the spatially 

weighted models showing the best performance. The weighted models were the fastest and achieved 

lowest estimation errors among the different tested models under similar computational time 

circumstances. The final weight distribution indicated the areas the model learns to penalize itself more 

while training. Tracking the error decay patterns across epochs revealed that the weighted models reach 

the lowest estimation errors and effectively discover the complex patterns much faster than the 

alternatives, making them ideal for larger datasets such as volumetric elasticity imaging.

The encoder-decoder structure and convolutional nature of the UNet clearly showed advantages 

over the fully connected implementation of PINN. The convolution kernels share weights for the different

parts of the image and recover patterns better, making them ideal for spatially structured data such as 

images and volumes. Comparing PINN with P El-UNet and PS El-UNet clearly shows El-UNet’s superior

performance in resolving accurate distribution of unknown parameters in the relatively short estimation 

time shared between all models. These improvements are evident in successful reconstruction of sharp 

gradients between different regions of the image. The weighted PS El-UNet reconstructions were 

especially superior to Dense PINN’s for embedded higher-order-stiffness tumor and stiff background 

scenarios, both of which have both provend challenging inverse problems in previous studies focused on 

inverse elasticity problems [23,32]. Moreover, trends of error decay through the course of training for the 

different models show that while PINN reaches low errors faster than the unweighted El-UNet models, 
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the errors almost plateau and the later updates only slowly decrease the estimation error of the unknown 

parameters, while El-UNet reaches lower estimation errors for unknown parameters.

Determining better performance among the models in terms of output type (P El-UNet vs PS El-

UNet) mainly came down to existence of artifacts in the reconstructed fields. In P El-UNet, the model 

only estimates the unknown parameter distributions and plugs those values, along with strains, into the 

constitutive equations to compute stress distributions. The partial derivatives of these stress values are 

then used to satisfy the static equilibrium equations. The stress in this configuration becomes directly 

correlated with material parameters and the finite difference approximation amplifies the error that exists 

in the output of the network. In addition, for the noisy strain case, the noise directly affects the computed 

stress, and enforcing static equilibrium equation is affected by the first derivatives of these noisy stress 

fields. Conversely, in the PS El-UNet, the model becomes better regularized by enforcing the constitutive 

equations as soft constraints. In other words, the MSE loss of the equilibrium equations has stress terms 

that are independent outputs of the network, themselves separately balanced by the constitutive equations’

MSE loss in a soft manner. We observed the implications of this network design choice by comparing PS 

El-UNet and P El-UNet outputs for the various examples in this study. 

We improved the convergence of the UNet-based models with the introduction of self-adaptive 

spatial loss weights with two proposed weighting schemes. The two models differed in whether they were

weighted for all their loss terms or only constitutive equations and boundary conditions. The results 

clearly showed that both weighted implementations visibly led to better reconstruction than the 

unweighted approaches. Tracking loss and mean estimation error values for the unknown parameters 

across epochs revealed that PS El-UNet W2 has a reversal behavior of v  mean estimation error in the 

noisy and stiff background examples. We speculate that when the static equilibrium loss is unweighted, 

the balance between the static equilibrium loss and constitutive equations loss tips too much over to the 

latter leading to reconstructions with artifacts.
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The final distribution of learned spatial loss weights shows the increased intensities corresponding 

to regions where the model learned to penalize itself more. Comparing these distributions with the 

estimation fields and associated error maps reveals the high-intensity weight regions overlap with high 

estimation error regions of the unweighted PS El-UNet model. Previous work on physics-informed neural

networks has shown the imbalance existing between the multi-objective loss terms resulting in poor 

convergence. However, the self-adaptive loss term weighting presented in these studies requires 

additional backpropagation for the optimizer update, does not impose spatial weighting, and has only 

been tested in fully-connected networks [33,34]. Another study on using PINN in linear elastic 

micromechanics proposed a dynamic weighting approach that increased the density of collocation points 

in the regions of the domain with high losses, effectively increasing contribution of the errors associated 

with those points to the loss function [11]. In the self-adaptive spatial loss weighting method presented in 

the current study, the additional weights do not belong to any extra deep network as they are merely 

trainable parameters. Therefore, the optimizer updates do not require backpropagation through an entire 

network for each update. Moreover, the weight updates do not change the size of the input space as 

required in the collocation points update method, effectively keeping the computational load constant 

across training. This configuration ensures that the weighted models perform with almost the same speed 

as the unweighted PS El-UNet model, as evidenced by comparing the number of finished epochs in the 

same duration between these models. This is an important implication of this approach because, at similar

computational costs, we can recover more accurate results without a priori knowledge of the problem at 

hand and the material distributions.

Solving inverse problems for more complex material models can incorporate some of the 

approaches findings presented in our study. We predict that the current methodology can be adapted for 

material models that are not strictly linear, e.g., hyperelastic inverse problems. As we have shown here 

and in our previous work [7], a practical principle to ensure convergence for these inverse models with 
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computationally efficient networks is to keep the constitutive equations posed to the optimizer linear with 

respect to the unknown parameters of interest. That is why we solve for Lamé parameters during training 

and later convert to E and v . The conventional constitutive equations for hyperelastic models, such as 

Neo-Hookean and Mooney-Rivlin solids, can be posed in a similar way, where stress is on the left hand 

side and the right hand side is an expression containing deformation-related terms, which are obtained 

through image correlation directly, and material parameters. This right-hand-side expression can be 

written in a way that is linearly with respect to the material parameters, as is the case with linear elasticity

and Lamé parameters. Therefore, we expect that adaptation to more complex models will benefit from 

these considerations. An additional consideration is that specimens with mechanical models that have 

more than additional parameters (e.g., Mooney Rivlin models with more parameters) should go under 

independent states of loading and the summation of losses from these loading should be minimized to 

ensure discovery of all parameters

It is worthwhile to mention a few limitations of El-UNet. The current model works with isotropic 

spatially structured data. While the examples covered in this work all had isotropic resolutions, 

anisotropic resolutions e.g., from ultrasound and magnetic resonance images, can be integrated into the 

model by appropriate unequal differentiation intervals in the finite difference computation stage. Although

elastography images are usually stored as rectangular structured grids, a method to map non-rectangular 

domains to rectangular ones to benefit from convolutional neural networks has been reported in the 

literature [35]. We used the simplest approximation for partial derivatives in the static equilibrium 

equations, which was prone to error amplification in some variations of our model. Alternative 

implementations have also been proposed to pose the static equilibrium equations in the form of 

convolutional layers that integrate well with the network and could potentially avoid the error-

accumulation drawbacks of finite-difference approximation [5,10,14]. Finally, while our work kept a 

traction loading with normal stress on boundaries supplied to the inverse model as physics constraints, the
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model can incorporate alternative boundary conditions such as compression or shear for other scenarios 

depending on respective requirements. 

The main ideas presented in our study, namely using UNet-based models for physics-informed 

inversion and spatial loss weighting, are the first steps to scale to 3D estimations and other material 

models such as multi-parameter orthotropic elasticity or hyperelasticity, both of which are relevant 

models in biological tissues.
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