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Inversion-based correction of Double-Torsion (DT)19

subcritical crack growth tests for crack profile geometry20

Seiji Nakagawaa, Yida Zhangb, Mehdi Eskandari-Ghadib, Donald W. Vascoa21

aEnergy Geosciences Division, EESA, Lawrence Berkeley National Laboratory, 1
Cyclotron Rd. MS74R316, Berkeley, 94720, CA, USA
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Abstract22

Because of its simplicity and the ability to produce a stable, slow-propagating23

crack, the Double-Torsion (DT) method has been used widely for investi-24

gating the critical and subcritical propagation of a slow-propagating tensile25

(mode-I) crack. However, to determine the complex relationship between the26

crack velocity vc vs. the strain energy release rate G (or the stress intensity27

factor K) from laboratory measurements, several corrections must be made28

to account for the impact of sample and crack geometry. Particularly, DT29

test typically produces a crack with a curved edge profile instead of a straight30

line, causing the local vc and G vary along the crack front. The experimen-31

tally measured vc and G data merely reflect collective, averaged behavior of32

the crack. This makes inversion for the intrinsic, “true” crack growth kinet-33

ics necessary, based upon the knowledge of the crack geometry. Simple and34

effective correction methods have been proposed and validated for the slow,35

chemical-reaction-controlled part (Region I) of the vc−G curve. However,36

reliable methods for the highly nonlinear, transport-dominated part (Region37

II) and its sudden transition to the dynamic propagation part (Region III)38

are still lacking. In this paper, we propose a method for determining the39

intrinsic vc−G relationship cross all three Regions based upon DT test data,40

using a simple model function and its numerical inversion. The performance41

of this approach is examined and demonstrated using both synthetic and42

laboratory data for subcritical crack growth in soda lime glass.43
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1. Introduction47

With increasing driving force, tensile (mode-I) crack propagation in brit-48

tle materials is known to exhibit complex kinetics [e.g. 1] (FIG.1). Initially, a49

crack grows slowly, but progressively faster, in a surface-reactive environment50

(Region I). This is usually followed by a stage where the velocity is relatively51

unchanged in spite of the increasing driving force, because the availability of52

the chemicals (including water) at the crack tip is limited by their transport53

along the crack (Region II). In the final stage, the stress state at the crack54

tip reaches the critical level at which the atomic bonds can break without55

the assistance of the chemical reactions (Region III). For many engineering56

problems, determining the long-term behavior in Region I, and the critical57

crack strength for rapid loading in Region III may be sufficient. However,58

crack propagation below the critical stress level—the subcritical crack growth,59

or, SCG—involves complex physico-chemical and mechanical interaction be-60

tween crack surfaces which may be separated by only a few nanometers [2, 3],61

transport of gas and liquid within the nano-confined space near the crack tip62

[e.g. 4, 5, 6], and adsorption of fluid molecules along freshly created crack63

surfaces [7, 8]. These processes manifest themselves in the crack velocity vs.64

strain energy release rate (vc−G) relationship, both as the behavior within65

individual Regions and as their transitional characteristics such as threshold66

velocities and energy release rates. Thus, for investigating the rich physics67

underlying crack propagation, we are motivated to determine the entire SCG68

behavior accurately in the laboratory.69

Because of its ability to produce a stable, slow-propagating crack, the70

Double-Torsion (DT) method has been used frequently for investigating the71

critical and subcritical propagation of a tensile crack. Its simple steps for72

determining the vc−G relationship from an experiment on a plate sample,73

which is easy to prepare, made DT tests popular. However, over the years, it74

has been recognized that the original equations used for interpreting experi-75

mental data require several corrections for the errors introduced by a range76

of factors [e.g. 9, 10] related to the sample and crack geometries.77

First, the effect of sample geometry (i.e. the ratios between the length L,78

width W , and the thickness h of a plate) can be significant and is particularly79

important. The original theory indicates that G is independent of the crack80

length a. However, experiments and numerical simulations have shown that81
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Figure 1: Typical characteristics seen in a crack propagation velocity vc vs energy release
rate G relationship for a tensile crack. Three regions with different propagation character-
istics are identified. An experimental vc−G relationship determined by a DT test (blue)
tends to overestimate the propagation velocity, with a less pronounced “plateau” in Region
II than the intrinsic relationship (red).

the actual G driving the crack is smaller than theory when a is small, and82

larger for as a approaches the length of the sample [e.g. 11]. As a result,83

experimentally obtained, uncorrected vc−G relationships are also dependent84

on a and therefore an experiment involving multiple cycles of crack growth85

within a single sample produces different vc−G curves. Ciccotti et al. [12]86

conducted a series of finite element simulations which examined the impact87

of L, W , h ratios, including the crack profile effect which will be discussed88

shortly, on the crack-length-dependent vc−G curves. Their results indicate89

that, for samples with W/L less than 3, such effect becomes non-negligible.90

From a number of simulations, tables of correction factors were obtained, for91

both crack-length dependent parameter B = B(a) and the energy release92

rate G = G(a), which have been applied to correct the experimental results93

obtained using samples with smaller W/Ls [13].94

A curved crack path also causes problems. Such a crack violates the95

original assumption of the theory—a straight crack—, resulting in increased96
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vc for a given G as the crack length increases [e.g. 14]. To keep the crack97

path straight, DT tests often involve an added guiding groove. However, this98

can also lead to erroneous increases in vc because of the locally introduced99

stress concentration around the groove. For this reason, experiments without100

a groove are preferred, with very careful alignment of the sample and the101

loading point to keep the crack path straight.102

Lastly, the crack profile within a crack plane can introduce errors which103

more difficult experiments such as the Double Cantilever Beam (DCB) test104

[e.g. 15] are not affected by. This is because a DT test typically produces105

a crack with a curved edge profile instead of a simple, straight profile per-106

pendicular to the primary plate surface. Therefore, vc and G values reported107

from DT tests are the smeared outcome of the local velocities and the energy108

release rates which are varying along the crack front. This makes inversion109

for the intrinsic, “true” vc−G relationship necessary, based upon the actual110

crack profile.111

Several simple methods are available for correcting this crack profile effect.112

Evans [16] used a tilted straight profile, which approximates a curved crack113

profile, to estimate the actual vc. Pollet & Burns [17] assumed a power-114

law relationship for the intrinsic vc−G, and obtained a simple method for115

correcting the experimental data, using a real crack profile. Although the116

Pollet-Burns method is an effective and robust correction technique for the117

slow propagation (Region I) of a crack, it does not account for the complex,118

highly nonlinear nature of a typically observed vc−G relationship which has119

three distinct regions with different behavior (FIG.1). Particularly, in Region120

II with a distinct plateau structure, the Pollet-Burns method may results in121

large errors. Quantitative and reliable methods for determining a complex122

vc−G curve are still not well developed to this day.123

In this paper, we propose a method for determining the shape of a “typ-124

ical” vc−G relationship depicted in FIG.1, from a laboratory DT test. This125

method uses a simple model function with a series of control parameters126

which are inverted for numerically. In the following, we will first introduce127

the basic equations describing how the profile-based errors are introduced128

(Sec.2.2, 2.3). Subsequently, the conventional methods are reviewed (Sec.129

2.4), and the new method is introduced (Sec. 2.5). Next, we will use synthetic130

data which simulate laboratory experiments, to examine the performance of131

this method (Secs.3.1, 3.2). The correction methods will also be used on our132

own laboratory DT test data for a soda-lime glass plate (Secs. 3.3 and 3.4).133

In both cases, the “correct” vc−G is provided by the well-accepted Wiederhorn134
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[18]’s DCB experiment on soda-lime glass. The performance and validity of135

the proposed method will be discussed, and cautions and suggestions for its136

use will be provided (Sec. 3.5). Finally, the recommended procedure for137

applying the developed correction method is summarized (Sec. 4).138

2. Crack-profile-error corrections139

2.1. Basic experimental data interpretation140

Because of its simplicity and the ability to produce a stable, slow-propagating141

crack, the Double-Torsion (DT) method has been used frequently for inves-142

tigating the critical and subcritical propagation of a tensile crack. A typical143

DT test grows a single, straight crack along the center line of a thin rect-144

angular plate which is supported at its four corners. The crack is driven by145

applying concentrated force on one plate edge to cause bending of the plate.146

For determining the vc−G relationship, at minimum, only the displacement147

∆ and the force P at the loading point and several measurements of the crack148

length a during the experiment are necessary. The backbone of this simplic-149

ity is the robust, linear relationship between the loading-point compliance150

C=∆/P and the crack length a [e.g. 19]151

C =
∆

P
= Ba+D, (1)

which is supported by both theory and experiments. Although the propor-152

tionality constant B can be determined theoretically from the sample prop-153

erties and the loading configuration, it is more reliable to obtain both B and154

the system compliance D from an actual experiment. Using Eq.(1), the crack155

velocity is determined by156

vc =
da

dt
=

1

B

d

dt

(
∆

P

)
=

1

BP

(
d∆

dt
− ∆

P

dP

dt

)
. (2)

The energy release rate G is computed by [e.g. 19]157

G =
P 2

2h

dC

da
= B

P 2

2h
, (3)

where h is the thickness of the sample. Eq.(3) indicates that G is independent158

of the crack length. The “experimental” vc−G relationship obtained from159

Eqs.(2) and (3) must be corrected for specific sample and crack geometries,160

in order to determine the true, intrinsic relationship.161
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Figure 2: Optical crack surface images of three soda lime glass samples with different crack
propagation velocities. The thickness of the samples is h=1.5 mm. Curved crack profiles
were produced by applying abrupt changes in the propagation velocity (Samples I and
II) and by instabilities of the produced crack plane caused by very fast crack propagation
(Sample III). The triangles below the images are the leading edges of the profiles measured
in FIG.3

2.2. Crack profiles generated by DT tests162

Because a DT test induces a tensile crack by bending a plate, the resulting163

stress is not uniform across the thickness, which makes the crack profile164

asymmetric and often curved. This profile, defined by x′ = f (z) where x′
165

is the distance along the length of the crack from the leading edge and z is166

the depth of the crack from the tensile side of the plate surface, respectively,167

may depend upon both crack length a and the apparent propagation velocity168

v̄c. However, it has been observed that, for a sample with the same geometry169

and material, the crack profile is not affected strongly by these factors [17].170

This rather surprising property allows us to conduct error corrections based171

upon a single crack profile which may be observed during an experiment, or172

determined from fractographic images of a crack after the experiment.173

In FIG.2, we present optical images of crack surfaces in soda lime glass174

samples from our DT tests (More epxerimental details are provided later175

in Sec.3.3). The samples were cracked under different loading rates, under176

similar relative air humidity of 30-40%. For each sample, abrupt changes in177

the loading rate resulted in a faint, crack-front profile which can be imaged178

by projecting light at an oblique angle onto the surface. For Sample I, the179

curved profiles were produced when rapid loading was applied after very slow180

propagation at v̄c ≈ 10−7 − 10−5 m/s. In contrast, in Sample II, the crack181

was first propagated at an intermediate rate of v̄c ≈ 10−4 − 10−3 m/s then182

was suddenly stopped by rapid unloading. These are approximate velocities183

determined from DT experiments via Eq.(2), without corrections for the184

crack front geometry. Reactivation of this arrested crack produced its profile.185

Lastly, for Sample III, the crack propagated in an uncontrollable fashion, at186
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a velocity of v̄c ≥ 10−2 m/s. The resulting many, clearly visible crack profiles187

were possibly caused by the dynamic instability of a propagating crack front.188

Selected crack profiles are compared for the three samples in FIG.3, fitted189

with the following continuous, monotonically increasing function which was190

found to fit very well to this data set:191

x′

h
= f(ζ) = m0

(
−π

2
ζ + tan

π

2
ζ
)
+m1ζ +m2ζ

2 (4)

where ζ = z/h. Coefficients m0, m1 and m2 are non-negative fitting pa-192

rameters. Note that for the data shown in FIG.3, the crack profiles become193

vertical at the origin, allowing us to eliminate one of the fitting parameters194

(i.e., m1 = 0). Although there are some differences (particularly, Sample195

II compared to Samples I and III), these profiles are remarkably similar, in196

spite of very different crack velocities and lengths. Note that the outlier I-9197

for Sample I was produced when the crack was reactivated after it was fully198

unloaded for 3 days. The outliers for Sample III (I-1,2,3) are possibly affected199

by the interactions between the tail end of a crack with a notch at the head200

of the sample.201

Figure 3: Crack profiles determined from photo images of the crack surfaces in FIG.2 .
The crack length and the height are normalized by the thickness of the sample h = 1.5
mm.

2.3. Fundamental equations202

As the experimental observations indicate, crack profiles from DT tests203

can be viewed approximately unchanged for different propagation velocities204
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and lengths. An important consequence of this approximation is that a205

distribution of the local crack velocities, which is for the outward expansion206

of a crack perpendicular to a crack profile, is determined once the effective207

crack velocity v̄c is provided by an experiment. Let the local crack velocity208

and strain energy release rate be vc and G, respectively. A crack front line209

segment ds to which these quantities are related forms an angle α against the210

sample surface (FIG.4). Experimentally observed α decreases monotonically211

from the leading edge of a DT crack. Considering that dz = sinαds where212

z is along the thickness of the sample, the energy balance between the local213

and the overall strain energy release rates for the crack propagating at an214

effective velocity v̄c is stated as [e.g. 17]215

Ḡ (v̄c) v̄c h =

∫
s

G (vc) vcds =

∫ h

0

G [v̄c sinα (z)] v̄cdz (5)

where h is the sample thickness. Therefore,216

Ḡ(v̄c) =
∫ 1

0

G [v̄c sinα(ζ)] dζ (6)

where ζ = z/h.217

Figure 4: Relationship between the effective crack velocity v̄c and the local crack velocity
vc. Translation of a crack profile in the x direction causes local outward expansion of the
profile with an angle α, perpendicular to the local segment ds.

To help see what Eq.(6) implies, we provide a new form of this funda-218

mental equation. By replacing the velocity and its reduction factor sinα by219

their logarithmic counterparts (i.e. ū = ln v̄c and u ′ = − ln sinα), Eq.(6)220
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can be written in a convolution form:221

Ḡ(ū) =
∫ +∞

−∞
G(ū− u ′)Λ(u ′)du ′ (7)

=

∫ +∞

−∞
Λ(ū− u ′)G(u ′)du ′. (8)

The function Λ is a dimensionless convolution kernel (or a Green’s function)222

which can be derived from the substitution of the variable from ζ to u′. First,223

a crack profile x/h = f(ζ) (e.g., Eq.(4)) with monotonically changing α(ζ)224

is determined by an experiment. Then, the function f , which computes α225

for a given ζ via df/dζ = cotα, is numerically reversed to find a function226

ζ = g(u′) which computes ζs for given α (= e−u′
)s. Using the relationship227

d2f/d2ζ = −(1/sinα2)dα/dζ,228

Λ(u′) =
dζ

du′ = 1
/du′

dζ
= 1

/du′

dα

dα

dζ
=

1 + (df/dζ)2

(df/dζ)(df 2/dζ2)

∣∣∣∣∣
ζ=g(u′)

. (9)

Note that Λ is defined 0 outside of the range (0 ≤) − ln sinαmax ≤ u ′ ≤229

− ln sinαmin.230

In FIG.5, several model crack profiles computed by Eq.(4) are presented,231

including experimental profiles for Samples I, II, and III. Corresponding232

Green functions are presented in FIG.6. A near-vertical crack front (df/dζ →233

0) and a near-straight profile (d2f/dζ2 → 0) result in a sharp peak of Λ, which234

is also evident from Eq.(9). Also, an overall tilting of the profile increases235

− ln sinαmax, which shifts the function in the positive u′ direction. For a236

curved profile, Λ becomes asymmetrically spread, causing distortions of Ḡ.237

Our objective here is to determine the intrinsic function G(vc) (or the vc−G238

relationship) from an experimentally obtained function Ḡ(v̄c) from a DT test.239

In principle, G can be determined by performing a deconvolution operation on240

Eq.(7), or by solving the integral equation Eq.(6) numerically by converting241

it into a linear system of equations. However, for the current problem, we242

found that this direct approach is highly sensitive to the noise (scatter) in the243

experimental data. Typically, the inverted model exhibits strong oscillation,244

and fails to capture the abrupt transition between the transport-dominated245

Region II and the crack behavior in vacuum in Region III (See Sec.3.2).246

Therefore, we use a more stable, indirect approach presented in Sec.2.5.247
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Figure 5: Crack profile models with a range of geometry, varying between a tilted and
straight profile to more realistic, curved profiles. The models are computed by Eq.(4)
using coefficients m0 = 0.71(1− β), m1 = 8β, and m2 = 1.93(1− β) with β=0, 0.25, 0.5,
0.75, and 0.99 for the curves a through e respectively. The experimental profiles are also
shown in broken lines. The length of the profiles is made finite (8×h) for easy comparison.

2.4. Conventional correction methods (“Shift” methods)248

Before presenting a new method, in this section, we will first revisit the249

existing correction methods and examine them in light of the fundamental250

equations presented in Sec.2.3.251

2.4.1. Evans’ correction252

Evans [16] noted that the experimentally measured crack propagation253

velocity v̄c in a DT test must be corrected when the crack front is not per-254

pendicular to the sample surface. Because the local, instantaneous crack255

growth direction is perpendicular to its leading edge, by approximating the256

crack profile as a straight line which intersects the sample surface at an angle257

α0, the local, true crack velocity was determined by258

vc = v̄c sinα0. (10)

For brittle solids such as glass and ceramic, a reduction factor of sinα0 ≈ 0.2259

was recommended.260

Introducing Eq.(10) into Eq.(6) yields Ḡ(v̄c) = G(v̄c sinα0). Substituting261

the variables as before,262

G(ū) = Ḡ(ū− ln sinα0). (11)

Comparing this result to Eq.(7), we find263

Λ(u′) = δ(u′ + ln sinα0). (12)

In FIGs 5 and 6, this result approximately corresponds to the crack model a264

which has a profile close to a straight line.265
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Figure 6: Green functions Λ for the crack profiles in FIG.5. These functions are assym-
metric, and approach a Dirac delta function for straight profiles. Also, the overall tilting
of the profile offsets the peak of the related Λ in the positive direction.

2.4.2. Pollet-Burns correction266

Because using a straight line to approximate a curved profile can intro-267

duce large errors in the estimated local crack velocities, it is desirable to take268

into account the real crack profile in the correction.269

Pollet & Burns [17] noticed that when the vc−G relationship can be270

modeled by a power law271

vc = C

(
G − G0

G0

)n

, i.e., G = G0

[
1 +

(vc
C

) 1
n

]
, (13)

introducing vc = v̄c sinα into Eq.(6) results in272

Ḡ(v̄c) = G (v̄cϕ) , or, G (v̄c) = Ḡ(v̄c/ϕ) (14)

where273

ϕ ≡
[∫ 1

0

(sinα(ζ))
1
ndζ

]n
. (15)

By replacing the variables by their logarithimic counterparts as v̄c → ū ≡274

ln v̄c, v̄c/ϕ → ū− lnϕ, we have275

G(ū) = Ḡ (ū− lnϕ) . (16)
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For ns larger than 4-5 (which is usually the case), ϕ is nearly constant276

(FIG.7). Similar to Eq.(11), Eq.(16) indicates that the intrinsic function277

G(vc) can be obtained by simple “shifting” (reducing) of an experimentally278

obtained function Ḡ(v̄c) by − lnϕ(> 0) along the logarithmically scaled ve-279

locity axis. However, the Green function Λ is determined by Eq.(9) from an280

experimental crack profile, and generally is not a Delta function.281

As a new result, we also found that the Pollet and Burns’ approach can282

be used with an exponential (or Arrhenius) vc−G relationship283

vc = v0 exp k

(
G − G0

G0

)
, i.e., G = G0

[
1 +

1

k
ln

(
vc
v0

)]
, (17)

which leads to the same result as Eq.(15) but with284

ϕ ≡ exp

∫ 1

0

ln sinα(ζ)dζ (18)

Note that this equation does not contain the exponent factor k. Also, Eq.(15)285

can be shown to converge to Eq.18 when n → ∞. (FIG.7).286

Figure 7: Reduction factor ϕ for a range of power law exponent n. The value for the
exponential law model is also shown (solid red circle). For large ns, ϕ is nearly constant,
and converges to the exponential law model.

2.5. Parameterized inversion via fitting of a specific vc−G model287

As seen in Sec.2.4, existing correction methods make an assumption of ei-288

ther a highly idealized crack profile (Evans’ correction) or a simplified (power-289

law [Pollet-Burns] or exponential-law) vc−G relationship. However, an actual,290
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curved crack profile and complex vc−G relationship can lead to large errors.291

In fact, many experimental data on brittle materials show three distinct292

regions in their vc−G relationships, as depicted in FIG.1 (refs): Region I293

can be described routinely by a power or exponential law; which gradually294

transitions to Region II where vc is much less sensitive to G; and finally, in295

Region III, the behavior follows another power or exponential law with a296

much steeper slope than Region I. The transition from II to III is usually297

abrupt, often resulting in a sharp kink in the curve. These characteristics298

were also confirmed recently by first-principle-based simulations conducted299

by the authors [20].300

To determine the complex shape of the intrinsic vc−G curve from a DT301

test while taking into account the typical curved crack profile, we propose an302

indirect inversion method based upon a simple but flexible analytical vc−G303

model.304

2.5.1. Parameterized model functions305

The model is parameterized by a limited number of control variables,306

considering the constraints provided by the aforementioned characteristics of307

experimentally observed vc−G curves:308

G (vc) =



NI∑
n=0

cInξ
n, ξ ≤ 0 (Region I)

cII0 + cII1ξ + cII2

(
1−

√
1− ξ2

)
,

0 < ξ ≤ 1 (Region II)
NIII∑
n=0

cIIInη
n, η ≥ 0 (Region III).

(19)

In Eq.(19), dimensionless local coordinates ξ and η are used, which are de-309

fined by310

ξ = (log vc − log vcT )/(log vcD − log vcT ),

η = (log vc − log vcD)/(log vcD − log vcT ), (20)

In Eq.(20), vc is the primary variable, because we will use Eq.(6) with vc =311

v̄c sinα to solve for the model. vcT and vcD are the transition crack velocities312

at the Regions I-II and Regions II-III boundaries, respectively. Requiring C0313
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and C1 continuity of the functions at vc = vcT , and C0 continuity at vc = vcD,314

we have315

cII0 = cI0,

cII1 = cI1,

cII2 = cIII0 − cI0 − cI1. (21)

Therefore, the coefficients cII0, cII1, and cII2 in Eq.(19) are not independent316

variables. In Eq.(19), the functions for Regions I and III are low-order poly-317

nomials, and we choose NI = 1 or 2 and NIII = 0 or 1, considering the quality318

of typically obtained laboratory data found in the literature (e.g., Wieder-319

horn, 1967). The equation for Region II is the key part of this model, which320

accounts for the characteristic plateau (near-constant vcs) over a range of Gs.321

The difference vcD−vcT controls the sharpness of the transition from Region322

I to Region II.323

2.5.2. Liner inversion324

Introducing Eqs.(19) into Eq.(6) results in a series of linear system of325

equations for the energy release rates predicted by the model, for apparent326

(experimentally observed) crack velocities v̄
(i)
c where i = 1, 2, .. Nobs.327

Gpre(v̄
(i)
c ) =

∫ 1

0

G
[
v̄(i)c sinα(ζ)

]
dζ = Ax (22)

where A is the coefficient matrix which is computed using Eq.(19), and x328

is a vector containing the unknown coefficients cIn and cIIIn . For NI = 2 and329
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NIII = 1,330

A =

 AI
10 AI

11 AI
12 AIII

10 AIII
11

...
...

...
...

...
AI

Nobs0
AI

Nobs1
AI

Nobs2
AIII

Nobs0
AIII

Nobs1

 ,

AI
in =

∫ 1

0

[
W I(ξ)ξn +W II(ξ)ξn

−W II(ξ)(1−
√

1− ξ2)

]
dζ, (n = 0, 1)

AI
i2 =

∫ 1

0

W I(ξ)ξ2dζ,

AIII
i0 =

∫ 1

0

[
W III(η) +W II(ξ)(1−

√
1− ξ2)

]
dζ,

AIII
i1 =

∫ 1

0

W III(η)ηdζ,

x =
[
cI0 cI1 cI2 cIII0 cIII1 .

]T
. (23)

where ξ and η are provided by Eq.(20) with vc = v̄
(i)
c sinα(ζ) for each row (or331

data point) i. The functions W I(ξ), W II(ξ), and W III(η) are the weight func-332

tions which are 1 within the related Regions (I, II, and III, respectively), and333

0 elsewhere. By comparing these predictions to the experimentally observed334

data b =
[
Ḡobs(v̄

(i)
c )

]
, we obtain the residual vector335

r =
[
Ḡobs(v̄

(i)
c )

]
−
[
Gpre(v̄

(i)
c )

]
,

= b−Ax (24)

The least-square solution for the unknown coefficients which minimizes the336

L2 norm of r is, assuming we have equal or more data points than the number337

of unknown coefficients (i.e. an over-determined problem),338

x =
(
ATA

)−1
ATb. (25)

Note that the data can be weighted by a diagonal data weight matrix WD as339

WDb, for the number of the available data in each Region and their relative340

importance (or quality). In this case, the least-square solution is given by341

x =
(
ATW 2

DA
)−1

ATW 2
Db. (26)
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2.5.3. Nonlinear inversion342

The minimized misfit r = rmin between the prediction and the data in343

the linear problem is a nonlinear function of vcT and vcD which are treated344

as constants in the linear inversion. To find the best-fit model which is345

defined by both linear parameters cIn and cIIIn and the nonlinear parameters346

vcT and vcD, we solve this nonlinear optimization problem by iteratively347

minimizing the L1 or L2 norm of the residual vector rmin. Because we need348

to solve for only two unknowns vcT and vcD, in this study, we use the Nelder-349

Mead simplex method [21] which is effective for low-dimension problems.350

The necessary inequality constrains351

0 < vcT < vcD. (27)

are applied by the penalty method.352

Initial values for vcT and vcD are needed to start this simplex inversion. In353

laboratory data, an approximate vcT can be found by identifying the inflection354

point immediately following the shoulder of an experimental v̄c−Ḡ curve,355

and reducing that by the peak shift of the Green function computed by356

Eq.(9). In FIG.8, predicted experimental v̄c−Ḡ curves are shown which are357

computed for an assumed, intrinsic vc−G relationship (bold red curve), using358

the crack profiles in FIG.5 and Eq.(6). Note that the offsets of the inflection-359

point velocities u′ from vcD are converted from base-10 to base-e (natural)360

logarithm, so that they can be compared to the offsets of the Green function361

peak in FIG.6. Also note that, as seen from Case e in FIG.8, for a crack362

profile with a near-vertical leading edge such as FIG.3, the inflection point363

directly provides vcD.364

In contrast to vcD, the gradual change between Regions I and II makes365

it difficult to identify vcT . Currently, we arbitrarily choose vcT given by366

≈ 0.3× vcD as the initial guess.367

2.5.4. Constraining Region I and III behavior368

The intrinsic vc−G relationship for Region I can be determined by using369

the shift methods described in Sec.2.4. This is because a power law is applica-370

ble for chemically controlled, slow crack propagation. The shift method may371

also be applied to the fast crack propagation in Region III. However, when372

the Green function Eq.(9) has a long “tail”, because of the smearing effect373

from Region II, the intrinsic relationship may agree with the shift method374

only asymptotically. Therefore, if good quality laboratory data are available375
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Figure 8: Identification of an approximate Region II to Region III transition velocity vcD
from an experimental v̄c−Ḡ curve and a crack profile. Here, the experimental curves
are computed from an assumed intrinsic vc−G relationship and the crack profiles a-e in
FIG.5. The offset u′ = − ln (vcD − vcI) between the inflection point velocities vcI of the
experimental curves and vcD correspond to the peak shift of the Green function given in
FIG.6.

for a broad range of crack velocities, the model functions for one (typically376

Region I) or both of these regions can be determined by simply fitting poly-377

nomials in Eq.(19) to the shifted data, without using the linear inversion.378

When both cIn and cIIIn are determined this way, the remaining unknowns are379

only the transition velocities vcT and vcD. Additionally, if the inflection point380

of an experimental v̄c−Ḡ curve can be clearly identified, vcD can be simply381

computed using the peak offset of the Green function, further reducing the382

number of unknowns, as demonstrated by FIG.8. Note that the coefficients383

cIn and cIIIn still need to be updated at each step of the nonlinear inversion,384

because they depend upon vcT and vcD.385

3. Examples and discussion386

In this section, we will examine the performance of the proposed methods387

by using both simulated (synthetic) and laboratory-measured DT test data388

on soda-lime glass.389

3.1. Synthetic data390

First, we examine the performance of the proposed methods by using391

simulated experimental data. As the “true”, intrinsic vc−G relationship,392
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we choose to use the Wiederhorn [18]’s results for soda lime glass, obtained393

via DCB tests [e.g. 15]. This is because, unlike a DT test, a DCB test394

produces a straight crack profile and does not require the the crack-profile-395

related corrections. Also, we use the relative humidity=100% case from the396

experiment, because it shows well-defined three Regions in its vc−GI curve,397

and the accompanying plot of scattered data provides us with estimates about398

the magnitude of experimental errors. Note that for the remainder of Section399

3, we will present the Widerhorn [18]’s results as a vc−G curve instead of a400

vc−KI relationship, assuming soda lime glass’s Young’s modulus E to be 72401

GPa. Because a propagating crack in DCB tests is under an approximately402

plain stress state, G and KI are related via G = K2
I /E.403

For simulating experiments, we use Eq.(6) to compute 30 data points404

in the range of 10−8 < v̄c < 10−2 m/s. Additionally, we add 0%, 2%, 5%,405

and 10% (standard deviation) of Gaussian noise to the computed logarithmic406

crack velocity, to examine the impact of experimental errors on the inversion.407

The assumed crack profile is that of Sample II, which is given in FIG.3.408

3.2. Inversion using synthetic data409

The results of the inversion are shown in FIG.9. In the figure, the black410

line is the “true” response (i.e. “correct” solution). The blue closed circles are411

computed by applying Eq.(6) to the true response, simulating what would412

be observed experimentally by a DT test. The open red circles are the413

vc−KI relationship which was obtained by applying the shift method to the414

simulated DT data. We assumed the Arrhenius model and used Eq.(18)415

to compute the shift parameter. Note that no a priori knowledge of the416

characteristics of the true response is needed by the shift method. It can be417

seen that the errors are large for the Region II part of the solutions. The418

corrected vc−KI relationships which were obtained by the proposed inversion419

method using a prescribed model are shown in red curves. Finally, the best-420

fit experimental responses predicted by the inverted models are shown in blue421

curves, which can be compared to the original simulated data (blue closed422

circles) for fit errors. For this example, both linear and nonlinear inversion423

in 2.5 were conducted simultaneously.424

The results indicate that new inversion method works well for a moderate425

levels of noise. Although increases in the noise makes transition between426

Regions I and II less accurate, overall, the plateau in the vc−G is captured427

more accurately, compared to the shift method. For a large noise level (σ =428

5 − 10%), the inversion becomes less accurate, and the shift method may429
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Figure 9: The effect of data noise (scatter) on inversion. A model (black curve) was used
to generate simulated experimental data (closed blue circles) with a range of noise levels.
The parameterized inversion was conducted (red curves) and compared to the original
model, and also to the result of the shift method (open red circles). The shift method
results in large errors in Region II, but in good agreement for Region I and for the high-
velocity end of Region III. The parameterized model performs well even when a moderate
level of noise (σ = 0.05) is present in the experimental data.

provide a more robust answer. This example also demonstrates that the430

shift method provides accurate results in Region I, and also asymptotically431

for the high-velocity part of the curve in Region III. As mentioned in 2.5.4,432

this can be used to improve the robustness of the inversion.433

For comparison, we also present the results of direct inversion based upon434

discretization of Eq.(6) with an unknown G vector. A generalized inverse of435

the coefficient matrix is computed by the singular-value decomposition (SVD)436

method [e.g. 22]. A noise-free case (σ = 0) and 2% noise case (σ = 0.02)437

are shown in FIG.10. The direct inversion performs reasonably well for the438

zero-noise case, capturing the abrupt changes around Region II part of the439

model. However, introduction of small noise results in strong oscillation of440

the solution, indicating this inversion is not stable.441

3.3. Laboratory data442

Next, we use our own DT test results for soda-lime glass samples. These443

samples are rectangular plates with length (L) × width (W ) × thickness (h)444

= 40 mm× 20 mm× 1.5 mm. In order to prevent uncontrollable catastrophic445

crack propagation, a short ( 1.5 mm) precrack was introduced by a thermal446
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Figure 10: Results of the direct inversion by solving a discrete linear system of equations
via SVD. When there is no noise (σ=0), except for the low velocity end, the intrinsic
behavior can be inverted for accurately. However, low-level noise (σ=0.02) results in
strong oscillations in the result.

shock. One of the samples (case 1) was measured for the crack profiles, which447

were presented as Sample II in FIG.s 2 and 3.448

The rectangular sample was supported by four stainless steel ball bearings449

with a diameter d=1.6 mm it its corners, and a pair of concentrated force450

was applied by the same type of ball bearings (1.6 mm apart) at the edge451

of the sample, straddling the precrack. During the experiment, the sample452

was initially loaded at a displacement rate of 1 µm/s using a piezoelectric453

linear actuator (Polytec, PICMAwalk N331.13). Once the crack started to454

grow, the displacement was held constant at multiple force intervals and the455

relaxation of the loading-point force were monitored using a load cell (Trans-456

ducer techniques, MDB-10), to determine the time-dependent compliance457

changes given in Eq.(1). Concurrently, the crack length was measured using458

an optical microscope, and correlated with the compliance.459

Once the crack velocity and the strain energy release rate were computed460

using Eqs.(2) and (3), the experimental energy release rate Ḡexp was corrected461

for the crack-length effect for the current sample geometry. For this, we used462

the following experimentally determined relationship, instead of using the463

published data based upon finite element models [12]464

Ḡ (a) = Ḡ (a)exp ×

{
e−s2/49 (a ≤ ac)

es
2/32 (a ≥ ac).

(28)
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where465

s = L(a− ac)/a
2
c , ac = (L− 0.5d)/2.

This equation was derived from multiple, repeated crack growth measure-466

ments in soda lime glass for a range of crack lengths, so that the experimental467

v̄c−Ḡ curves converged to a single curve for crack lengths a ≈ ac.468

3.4. Inversion using laboratory data469

The results for two experiments are shown in FIG.11. The dark (Case470

1) and light (Case 2) filled blue circles are the experimental data after the471

sample geometry correction by Eq.(28). First, for comparison, results of the472

conventional shift method are presented in open red (Case 1) and orange473

(Case 2) circles. Next, the results of unconstrained (i.e. both linear and474

nonlinear inversion were conducted simultaneously) inversion are shown in475

thick curves of the corresponding colors. The DT test responses predicted by476

these inverted models are also presented, showing excellent agreement with477

the experiment.478

The inverted results are then compared to the Wiederhorn’s experimental479

data in FIG.12. Our experiments were conducted under a relative humidity480

(RH) of 32 to 34% at 22◦C. The inverted results are generally in good481

agreement with the published data, slightly above the RH=30% curve.482

From FIGs.11 and 12, the new inversion method works well for Regions I483

and II, capturing the gradual transition between the Regions and the plateau484

behavior. Although the Wiederhorn[18] lacks relevant data for Region III,485

our inversions seem rather unreliable for this part. This is probably because486

the rapid relaxation of the test system introduced errors in our measurements,487

as indicated by the large differences in the two sets of data for Region III,488

compared to Regions I and II.489

When the availability of data in Region III is severely limited, additional490

constraints to the model can be applied. For example, the slope in the vc−G491

curve can be assumed, or simply given by a constant value G = Gc (critical492

energy release rate). Although this does not help determining the behavior493

of high-velocity crack propagation in Region III, it will still improve the494

accuracy of the inverted true crack behavior in and around Region II.495

3.5. Potential improvements and future directions496

Further extensions and improvements of the proposed method can be497

pursued along the following directions.498
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Figure 11: Inversion of the intrinsic response from our DT experiment on a soda lime glass
sample (solid blue circles). Inversion results for both cases with and without constraining
the Regions I and II parts via a shift method (open red circles) are shown (red and orange
curves, respectively). Predictions by the inverted models (dark and light blue curves,
respectively) are also shown for comparison with the experimental data.

First, the inversion relies upon a laboratory-observation-based assump-499

tion that for the same material and environmental conditions, the DT crack500

profile is largely unchanged for different crack lengths and propagation veloc-501

ities. This allows us to estimate quantitatively how the true, local crack prop-502

agation velocity varies along a crack front, from a single, measured effective503

propagation velocity. Currently, a theoretical explanation of this interesting504

and very useful property is lacking. For this reason, when a DT experiment505

is performed using very different testing conditions and materials, the crack506

profile has to be measured for the specific sample used in the test.507

Also, our inversion method uses a specific function to represent the crack508

behavior for Region II. The proposed simple function fits very well the soda-509

lime glass data investigated in the current study. Currently, however, there510

is no theoretical backing and guarantee that the prescribed shape of the511

function can accurately represent the intrinsic vc−G behavior of any other512

materials under different test conditions. Further validation of the proposed513
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Figure 12: Comparison of the inverted results in FIG.11 with Wiederhorn [18]’s experi-
mental data. The inversion of our own laboratory data with RH=32-34% generally shows
good agreement with the Wiederhorn’s RH=30% data.

function, and development of more sophisticated functions based upon the514

underlying physical processes may be necessary.515

Lastly, we point out that many published DT test results are not corrected516

for the crack profile effect discussed in this paper, which can leads to (1)517

overly sensitive crack velocity changes to the applied force increases in Region518

II, (2) a gradual Region II to III transition, and (3) underestimation of the519

critical energy release rate (or stress intensity factor). The proposed inversion520

method would improve the accuracy of the vc−G relationship determined by521

DT tests, which can help provide experimental data elucidating the complex522

kinetics involved in subcritical crack propagation, particularly within and523

around Region II.524

4. Conclusions525

Although the Double-Torsion (DT) test can provide the relationship be-526

tween both critical and subcritically applied driving force and the crack prop-527

agation velocity, the obtained data need to be corrected for a variety of ge-528

ometric effects to obtain the true crack growth kinetics. We propose a new529
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method for correcting for the crack-profile-induced overestimation errors in530

crack propagation velocities, using a prescribed model between the crack ve-531

locity and the energy release rate. The proposed method is validated by the532

published data and our own experimental data for soda lime glass samples533

under ambient conditions.534

Following the examples provided in Sec.3, we suggest the following pro-535

cedure to determine the intrinsic vc−G relationship based upon DT tests (see536

FIG.13):537

1. Collect low-noise data which exhibit both Regions I and III parts in538

the experimental v̄c−Ḡ curve, and also obtain a crack profile from the539

DT test540

2. Conduct the standard DT data processing, including necessary correc-541

tions for the sample geometry and crack length effect.542

3. Compute a shift parameter ϕ from the crack profile. Using ϕ, determine543

the low-velocity behavior in Region I, and high-velocity asymptotic544

behavior in Region III.545

4. Select from the v̄c−Ḡ curve a sharp change in the slope. From the546

crack-profile Green function, determine the peak velocity offset. From547

these, determine the initial estimate for the Region II-III transition548

velocity vcD, then Region I-II transition velocity vcT .549

5. Perform the iterative, combined linear-nonlinear inversion to determine550

optimal polynomial coefficients, vcD, and vcT .551

6. During the inversion, Region I and III behavior and vcD can be con-552

strained to improve the robustness of the inversion, depending on the553

quality and availability of the experimental data.554

7. Check the quality of the fit by comparing the experimental data and555

the predicted response by the inverted, vc−G model. Confirm that the556

Region I behavior agrees with the shift method in Step 3, and also that557

the Region III behavior asymptotically matches the shift method.558

Note that because the knowledge of the crack front profile is indispensable559

for using this method, the crack profile data needs to be obtained in addition560

to the loading-point displacement and reaction force, and the crack length561

from a DT test.562

The proposed method improves the validity of the vc−G relationships de-563

termined by DT tests to the Region II and III parts. This allows quantitative564

evaluation of the crack behavior controlled by—or limited by—transport of565
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fluid and dissolved chemicals near the crack tip. Using this method, results of566

DT tests can be used to investigate the impact of humidity and aqueous fluid567

chemistry on subcritical crack growth under these still not well-understood568

crack propagation regimes in brittle solids.569

Figure 13: A summary of the proposed inversion method. Experimental, overestimated
vc−G curve (blue) is corrected first by the shift method (red broken curve), which is used
to determine the behavior for Region I. Subsequently, the Regions II and III parts of the
prescribed nonlinear model (solid red line), where the shift method can be inaccurate,
are determined via linear inversion for the fitted polynomial coefficients, and nonlinear
inversion for transition velocities vcT and vcD. The initial estimate of vcT is determined
from an inflection point of the experimental curve.
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