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Nearly immobile, plants have evolved new components to be able to respond to
changing environments. One example is Qua Quine Starch (QQS, AT3G30720), an
Arabidopsis thaliana-specific orphan gene that integrates primary metabolism with
adaptation to environment changes. SAQR (Senescence-Associated and QQS-Related,
AT1G64360), is unique to a clade within the family Brassicaceae; as such, the gene may
have arisen about 20 million years ago. SAQR is up-regulated in QQS RNAi mutant and
in the apx1 mutant under light-induced oxidative stress. SAQR plays a role in carbon
allocation: overexpression lines of SAQR have significantly decreased starch content;
conversely, in a saqr T-DNA knockout (KO) line, starch accumulation is increased. Meta-
analysis of public microarray data indicates that SAQR expression is correlated with
expression of a subset of genes involved in senescence, defense, and stress responses.
SAQR promoter::GUS expression analysis reveals that SAQR expression increases after
leaf expansion and photosynthetic capacity have peaked, just prior to visible natural
senescence. SAQR is expressed predominantly within leaf and cotyledon vasculature,
increasing in intensity as natural senescence continues, and then decreasing prior
to death. In contrast, under experimentally induced senescence, SAQR expression
increases in vasculature of cotyledons but not in true leaves. In SAQR KO line, the
transcript level of the dirigent-like disease resistance gene (AT1G22900) is increased,
while that of the Early Light Induced Protein 1 gene (ELIP1, AT3G22840) is decreased.
Taken together, these data indicate that SAQR may function in the QQS network, playing
a role in integration of primary metabolism with adaptation to internal and environmental
changes, specifically those that affect the process of senescence.

Keywords: SAQR, stress, senescence, Arabidopsis, QQS, starch, carbon allocation, AT1G64360

INTRODUCTION

Due to their sessile lifestyle, plants have developed various mechanisms to modulate their
internal processes and responses to external stresses by mechanisms including metabolism and
senescence. Plants are constantly modifying existing genes and evolving new genes from non-
genic sequence; these are thought to enable adaptation to exposure to changing environmental
conditions (Neme and Tautz, 2013; Arendsee et al., 2014). Many of the ∼13% of genes in the
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Arabidopsis genome (Lamesch et al., 2012) that encode proteins
with no assigned functional motifs and completely unknown
functions are relatively new species-specific (orphan) or lineage-
specific genes (Gollery et al., 2006; Neme and Tautz, 2013;
Arendsee et al., 2014). In recent years, the Arabidopsis thaliana-
specific orphan gene Qua Quine Starch (QQS, AT3G30720)
has been revealed as a component of a signaling network that
controls metabolic responses to internal and environmental
stresses (Li et al., 2009, 2015b; Arendsee et al., 2014; Li and
Wurtele, 2015). Several highly lineage-specific genes including
Constitutive Expresser of PR Genes 5 (CPR5; Jing et al., 2007)
and others (Horan et al., 2008; Mentzen and Wurtele, 2008;
Luhua et al., 2013; Arendsee et al., 2014) have been shown to be
important in enabling an organism to survive under biotic and
abiotic stresses.

The QQS gene of A. thaliana modulates carbon and nitrogen
allocation (Li et al., 2009, 2015b; Seo et al., 2011; Arendsee
et al., 2014; Li and Wurtele, 2015) via interacting with the
evolutionarily conserved transcription factor, nuclear factor
subunit C4 (NF-YC4; Li et al., 2015b). Reducing QQS expression
in A. thaliana results in a 15–30% increase in leaf starch content
and a 3–7% decrease in protein (Li et al., 2009; Li and Wurtele,
2015), whereas, QQS overexpression (OE) decreases starch by as
much as 23% and increases protein by 3% (Li and Wurtele, 2015).
Neither mutation confers a noticeable effect on plant morphology
or development. In addition, QQS expression responds actively
to abiotic and biotic stress conditions, its transcript level is
altered dramatically under those conditions, indicating QQS may
integrate A. thaliana metabolism with responses to stress (Li et al.,
2009; Seo et al., 2011; Arendsee et al., 2014; Li and Wurtele,
2015).

Several genes of unknown function have altered transcript
abundance in QQS RNAi knockdown mutant in A. thaliana
ecotype Col-0 (Li et al., 2009) in a microarray experiment using
Affymetrix ATH1 arrays. One such gene, AT1G64360 (we name
it SAQR) is up-regulated in QQS RNAi lines. This gene is also
one of the 119 genes of unknown functions that are up-regulated
twofold or more in the ascorbate peroxidase knockout (KO)
mutant apx1; the apx1 mutant shows an increased susceptibility
to light-induced oxidative stress (Davletova et al., 2005). APX1
(AT1G07890), a cytosolic hydrogen peroxide scavenger, was
found to be essential for chloroplastic protection from reactive
oxygen species damage and sufficient for this protection in the
absence of stromal/mitochondrial APX relatives (Davletova et al.,
2005). SAQR expression in leaf is up-regulated about twofold
under oxidative stress, ABA (abscisic acid) treatment and heat
stress conditions, but does not change much under osmotic
stress, salt stress, and cold stress conditions (Luhua et al., 2008).
SAQR expression in root is up-regulated about sixfold to osmotic
stress, and responds to oxidative stress, salt stress, cold stress,
ABA treatment, and heat stress (up-regulated about twofold). But
SAQR-OE lines do not show significantly increased tolerance to
oxidative stress (Luhua et al., 2008). SAQR-OE lines flower earlier
under short day (SD) conditions compared to controls (Luhua
et al., 2008).

The altered expression of SAQR under light-induced oxidative
stress, its relatively recent origin (with homologs in only five

other genomes), and the potential relationship between SAQR
and QQS motivated this study. Our working hypothesis was
that SAQR plays a role in the QQS network. Here, we use
a combination of genomic, bioinformatic, transcriptomic, and
molecular approaches to further characterize the SAQR gene in
relation to senescence, metabolism, and stress responses in the
plant.

MATERIALS AND METHODS

Plant Materials, Growth and
Transformation
Constructs of SAQR promoter::GFP/GUS (promoter region
includes 715 bp upstream of SAQR start codon) and
35S::SAQR coding sequence (CDS) were generated using
the Gateway system (Life Technologies) as previously
described (Li et al., 2007; Li and Wurtele, 2015). The primers
used were: 5′-AAAGCTTGATGGAGAAGAAAAGGT-3′
and 5′-TGTTTCACCTGCTAAGTGTCTTT-3′ for SAQR
promoter::GFP/GUS, 5′-ATGTCGTTTAGAAAAGTAGAGAA
GAA-3′ and 5′-TTAGTAATTAGGGAAGTGTTTGCG-3′
for 35S::SAQR CDS. SAQR T-DNA KO (SALK_052233C,
saqr) germplasm was ordered from the Arabidopsis Biological
Resource Center (ABRC1).

Transgenic A. thaliana plants (ecotype Columbia-0, Col-0)
were generated using the floral dipping method (Clough and
Bent, 1998) and selected as previously described (Li et al., 2007).
Plants were grown in Sun Gro Sunshine LC1 soil mix in pots in
flats in a greenhouse room at 22◦C under constant fluorescent
light, of approximately 130 µmol m−2 s−1 for most experiments.
Similar conditions but an 8 h light/16 h dark cycle was used for
the SD flowering experiment. For starch content experiments,
plants were germinated on 0.5X Murashige and Skoog medium
plates supplemented with 1% sucrose, transferred to pots with
soil and grown in a growth chamber at 22◦C under fluorescent
light of approximately 130 µmol m−2 s−1 using a long day (LD)
conditions of 16 h light/8 h dark.

5′ and 3′ RACE
Rapid amplification of cDNA ends (RACE) experiments were
performed to define the 5′ and 3′ UTRs (untranslated region)
of the SAQR gene as previously described (Li et al., 2009). The
primers used were: 5′-CGACTGGAGCACGAGGACACTGA-3′
and 5′-GAAACGAAGACATGCAGGCTC-3′ for the 5′ UTR
product, 5′-ACCAAGGCAATACATTTTACCTAA-3′ and 5′-
GCTGTCAACGATACGCTACGTAACG-3′ for the 3′ UTR
product.

Bioinformatics Analysis
MetaOmGraph was used to analyze the transcriptomic
expression pattern of SAQR using the normalized experimental
data and metadata (metadata includes gene, experiment and
sample annotations) from 71 experiments comprising 956
Affymetrix ATH1 microarray arrays [dataset “At956-2008” (Li

1https://abrc.osu.edu/
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et al., 2007, 2009; Mentzen and Wurtele, 2008)]. MetaOmGraph
is available online2.

Cis-acting motifs present within the SAQR promoter region
upstream of the transcription start site were analyzed using
Athena (O’Connor et al., 2005), Plant Care3, and the Plant
Promoter Database (Yamamoto and Obokata, 2008).

Histochemistry
Twelve independent SAQR promoter-GUS lines were screened
by GUS staining. At least five transgenic plants from each
of at least three representative independent SAQR promoter-
GUS lines were harvested at separate stages of development
and from the induction experiments. The plants were stained
according to a protocol as previously described (Li et al., 2007).
Similarly appearing seedlings were selected, one unstained was
photographed and five were processed to be stained. Staining
patterns were observed using a Zeiss Axio Zoom microscope
at the Iowa State Microscopy and NanoImaging Facility (Ames,
IA, USA).

Molecular Methods
Starch content was analyzed qualitatively by staining plants just
before flowering with I2/KI as previously described (Li et al.,
2009), and quantified using an amyloglucosidase/α-amylase and
GOPOD (Megazyme) protocol (Li et al., 2009). Experiments
were performed with two independent T2 SAQR-OE lines,
SALK_052233C (saqr), and wild type (WT) plants, with five
plants per genotype per replicate, and three replicates per
genotype. This experiment was repeated twice.

Plants/leaves were treated by one of three different dark-stress
protocols to induce senescence. For whole seedlings, plants were
grown for 1 week, and then covered with aluminum foil for 5 days
and exposed to light for 4 days (WPD); controls were kept under
constant light under the same conditions (Weaver and Amasino,
2001). For attached leaves, fully expanded true leaves attached
to 12-DAI (days after imbibition) plants were carefully covered
with aluminum foil for 3 days (DIS; van der Graaff et al., 2006).
For detached leaves, fully expanded true leaves were detached
from 12-DAI plants and floated on water in a Petri dish covered
with aluminum foil for 3 days (DET; van der Graaff et al., 2006).
Leaves in similar positions on untreated plants were used as
controls.

For experiments with stress or hormone treatment, seedlings
were excised at 12 DAI into water and either untreated or
treated with 1 µM kinetin (cytokinin; Coenen and Lomax, 1998),
500 µM hydrogen peroxide (oxidative stress; Luhua et al., 2008),
10 µM methyl jasmonate (JA; Staswick et al., 1992), or 50 µM 1-
aminocyclopropane-1-carboxylic acid (ACC; ethylene; Beaudoin
et al., 2000) for 4 days. For salt treatments, flats of 12-DAI
plants in pots were allowed to dry till they were slightly light
in weight and then watered with either filtered water or water
containing 200 mM NaCl (Wu et al., 1996) and observed after
4 days. Drought stress was simulated by allowing seedlings to go
unwatered for 15 days until wilted.

2http://www.metnetdb.org/MetNet_MetaOmGraph.htm
3http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

RNA-Seq
The SAQR-KO (saqr) line SALK_052233C and WT plants
were grown and harvested at 20 DAI, at the end of the
light cycle under LD conditions as previously described (Li
et al., 2015b). Independent randomizations for plant growth
and harvest were used for each of two biological replicates.
The RNAs were extracted and purified as previously described
(Li et al., 2015b). The 200-bp short-insert library and the
transcriptome sequencing were conducted at BGI Americas4 as
described before (Li et al., 2015b). The cleaned reads were aligned,
mapped reads were counted, and genes were tested for differential
expression to compare saqr and WT. P-values and Q-values were
generated as previously described (Li et al., 2015b). The three
genes with P-values less than 0.00001 were considered to be
differentially expressed, which led to false discovery rate control
at approximation 13% in this experiment. RNA-Seq data have
been deposited in the NCBI Sequence Read Archive5, accession
number: SRP072428.

RESULTS

Evolutionary and Structural
Characterization of SAQR
Senescence-Associated and QQS-Related is a single copy gene
that encodes an 85 amino acid protein. Five other sequenced
genomes have SAQR homologs: A. lyrata, A. halleri, Capsella
rubella, C. grandiflora, and Boechera stricta (Supplementary
Figure S1). Each of these species is in the Brassicaceae family
within a monophyletic clade (Mitchell-Olds et al., 2005; Windsor
et al., 2006). No SAQR homologs were detected in other
eukaryotes or prokaryotes, including two other sequenced
members of Brassicaceae (Yang et al., 2013): Brassica rapa and
Eutrema salsugineum.

The six species that possess a SAQR homolog belong
to a lineage of organisms that separated from the lineage
containing the Brassica and Eutrema genera about 20 million
years ago (MYA; Clauss and Koch, 2006; Domazet-Lošo et al.,
2007; Arendsee et al., 2014). The monophyletic group that
contains these six species also includes the genera Turritis,
Olimarabidopsis, Halimolobus, and Crucihimalaya (Figure 1A).
It is possible that these genera also contain a SAQR homolog,
but full genomes of members of these genera were not publicly
available as of June 12, 2016.

To experimentally confirm the SAQR mRNA sequence, RACE
and RT-PCR experiments were conducted using RNA from
A. thaliana Col-0 rosette leaves at the beginning of flowering.
The enriched mRNA covered the entirety of the SAQR CDS
(Figure 1B, Supplementary Figure S2). The 5′ UTR is identical to
that of the TAIR10-predicted model, including 58-bp nucleotides
upstream of the reported translational start site. The 3′ UTR
extends 577 bp downstream of the stop codon, which is 29 bp
shorter than the TAIR10-predicted gene model. The SAQR
homologs in Arabidopsis species and Boechera stricta have a

4http://bgi.com/us/
5https://www.ncbi.nlm.nih.gov/sra/
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FIGURE 1 | Senescence-Associated and QQS-Related (SAQR) gene and predicted protein. (A) SAQR has homologs in a monophyletic group within family
Brassicaceae. Blast searches of the NCBI database show three genera contain a SAQR homolog: Arabidopsis, Capsella, and Boechera. Blue font, genomes
containing an SAQR homolog. Underlined names, species with sequenced genomes. Green lines, the monophyletic group containing SAQR. Simplified tree
structure adapted from Koch and Kiefer (2005), Clauss and Koch (2006), Schranz et al. (2006), Windsor et al. (2006). (B) SAQR gene model, as determined by 5′

and 3′ RACE. Black boxes, 5′ and 3′ UTR; lined gray box, coding region; black line, intron; gray line, non-transcribed region. Constructs used to make the SAQR
promoter-GUS and SAQR-OE lines are pictured in relation to the gene model. The BAR, 35S, and GUS/GFP reporter are not to scale. Nucleotide positions
numbered in relation to the ATG start codon of SAQR. (C) Structural models of the SAQR protein predicted using I-TASSER. Helices are colored red; sheets, yellow;
loops, green. Image made using PyMol (DeLano and Bromberg, 2002).

similar gene structure: they are generally conserved in the 5′
UTR, CDS, and 3′ UTR regions, and the encoded proteins are
similar in length and sequence. In contrast, the translation start
site for the Capsella variant is predicted to start from an ATG
farther upstream in the 5′ UTR than the start codon for the
other four species, thus the Capsella SAQR-like protein has an
additional 38 aa in the N terminal. All SAQR homologs identified
have a single intron that follows immediately after the stop codon
(Figure 1B).

The cis-acting motifs in the SAQR promoter region upstream
of the transcription start site (−715 to −58 bp; Figure 1B)
were analyzed. The analyses indicate that this 658-bp promoter
region contains 27 cis-acting motifs (Supplementary Table S1).
These include two binding sites for AGAMOUS-LIKE 15
(AGL15). AGL15 is a nuclear protein that delays flowering
and senescence when overexpressed (Fang and Fernandez,
2002). The early flowering phenotype of SAQR-OE mutants
(Luhua et al., 2008) may be associated with the presence
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of this motif. The SAQR promoter also has 10 light-
responsive/circadian-associated regions, and multiple stress-
related motifs: a HEAT-SHOCK ELEMENT (HSE) cis-motif that
can induce genes in response to heat shock, oxidative stress,
and other stresses (Storozhenko et al., 1998); binding sites for
DEHYDRATION-RESPONSIVE ELEMENT BINDING (DREB)
proteins; an ABA signaling motif; and a salicylate response
motif.

The SAQR protein has no conserved domains. Secondary
structure predictions using I-Tasser (Roy et al., 2010) indicate
that SAQR may be composed of 10% α-helix and up to 10%
of β-strands, while the major part of the protein (78–91%)
is predicted in the loop region (Supplementary Table S2); a
single helical region is predicted (Figure 1C). Analysis of the
SAQR protein sequence using MetaDisorderMD2 (Kozlowski
and Bujnicki, 2012) indicates that it has a largely disordered
structure within two regions between amino acids 1–29 and
71–85, a somewhat more ordered section within amino acids
43–57, and a global disorder tendency of 0.642 (Supplementary
Figure S3A). “Disordered” denotes proteins lacking a fixed
tertiary structure. Interestingly, disorder does not appear to
be evolutionarily stable under random processes, and must
be specifically selected for (Schaefer et al., 2010); one of the
most highly conserved proteins in the plant kingdom, the
LATE EMBRYOGENESIS ABUNDANT (LEA) protein, EMB1
(Wurtele et al., 1993) is also one of the most disordered
(Eom et al., 1996). The term “LEA” is now broadly used to
referred to genes in any of the multiple families of genes that
are abundant during embryo desiccation, and LEAs, including
EMB1, are thought to change to an ordered conformation
under desiccation or cryodamaging conditions, and act to
stabilize cellular structures and molecules (Eom et al., 1996;
Reyes et al., 2005; Battaglia et al., 2008; Olvera-Carrillo et al.,
2011).

The predicted physical characteristics of the SAQR protein
(thought not its aa sequence) are reminiscent of a class
of LEA-like stress proteins called hydrophilins (López-
Martínez et al., 2012): a relatively small size (SAQR is 85
aa), a glycine content greater than 6% (SAQR is 9.4%), a
high hydrophilicity index (Supplementary Figure S3B), and
a predicted structure dominated by large disordered regions
and coils. Some LEAs, including several members of sub-
groups of the hydrophilins, have been experimentally shown to
confer resistance to osmotic stress and other abiotic stressors
(Shinozaki et al., 2003; Battaglia et al., 2008). A senescence-
associated LEA, SAG21 (SENESCENCE ASSOCIATED
GENE 21; LEA5), is localized in mitochondria and up-
regulated under biotic and abiotic stresses; SAG21 antisense
plants flower earlier under LD conditions (Salleh et al.,
2012).

The five stress response motifs in the promoter region
of SAQR and the hydrophilin-like physical characteristics
of SAQR protein, implicate the SAQR gene may play a
potential role in stress response. This finding led us to evaluate
the expression patterns of the SAQR gene in Arabidopsis
under conditions of developmental and environmental
stresses.

SAQR Transcript Accumulation Profile is
Influenced by Senescence and Stress
Our microarray experiment revealed that the SAQR transcript
accumulates to >2-fold greater levels in QQS RNAi mutant
compared to WT control plants, which indicates that SAQR
transcript accumulation is negatively influenced by QQS.
We evaluated global SAQR expression (Figure 2A) using
MetaOmGraph2 and a large public microarray dataset “At956-
2008” (Li et al., 2007, 2009; Mentzen and Wurtele, 2008). Under
standard growth conditions in WT plants, as shown in Figure 2A,
SAQR expression is highest in fully expanded leaves, at the base of
the mature inflorescence, in senescing leaves, and cauline leaves.
Expression is moderate within the hypocotyl and the plant rosette
prior to flowering. SAQR accumulation is below detection limits
in the roots, developing fruits, and very young seedlings and
seeds.

In addition, SAQR expression is increased after plant exposure
to drought stress, and under high-osmotic conditions in leaf
pieces enriched with guard cells. Expression of SAQR is
also increased in specific mutants of hormone metabolism or
signaling. These mutants include: abi1, ABA insensitive (Wu
et al., 2003); aba1, ABA deficient (Koornneef et al., 1982; Niyogi
et al., 1998); ein2, ethylene insensitive (Oh et al., 1997); coi1,
JA insensitive mutant (He et al., 2002); cir1, which has altered
sensitivity to ethylene, JA, and salicylate (Murray et al., 2002);
and myb29, MYB29 promotes glucose-induced biosynthesis of
aliphatic glucosinolates (Miao et al., 2013). SAQR expression is
down-regulated by 53-fold in a mute background; the MUTE
gene is required for stomatal development (de Marcos et al.,
2015).

Individual leaves undergo mitotic growth, expansion,
senescence, and death (Lim et al., 2007). Unlike for many
other species, these processes are minimally influenced by
the reproductive status of the Arabidopsis plant (Noodén
and Penney, 2001). Therefore, during vegetative growth and
reproduction, individual rosette leaves of an Arabidopsis plant
are at varying stages of the maturity/senescence program.
SAQR expression is lower in younger leaves and higher in the
oldest leaves of plants of the same age (Figure 2B; microarray
data from Schmid et al., 2005). SAQR is also more highly
expressed in the distal (older) section of a moderately mature
leaf, compared to the petiole or proximal section of that
leaf.

This increased accumulation of SAQR transcript in leaves
that are transitioning from expansion to senescence, under some
stress conditions, and in several mutants of genes of stress
hormone synthesis or signaling, further supports the relationship
between SAQR and senescence/stress.

Processes Overrepresented among
Genes Co-expressed with SAQR
To further investigate the potential function of SAQR, we
identified the genes that are highly co-expressed with SAQR
and then evaluated the overrepresentation of regulons and
pathways among these genes. To do this, we used the
Spearman’s correlation function in MetaOmGraph. We chose
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FIGURE 2 | Accumulation of SAQR (AT1G64360) mRNA. (A) SAQR expression across 956 developmental stages, environmental treatments and genetic
mutations. (B) SAQR expression in leaves at different development stages. (B) Represents data within the blue square in (A). Samples were taken from leaf number
#2-#12 in 17-DAI plants (the lower numbered leaves are older; Schmid et al., 2005). Leaf #7 of 17-DAI plants is divided into: 7P, proximal half, 7D distal half, and 7Pt,
petiole; the distal part of the leaf contains the oldest tissue. CL, cauline leaf of 21-DAI plants; SL, senescent rosette leaf of 21-DAI plants; IN1, internode 1; IN2,
internode 2. Each point on the X-axis represents SAQR expression in a given tissue sample. The Y-axis represents the normalized expression level for the SAQR
gene, mean expression level for all genes across the chip is normalized to 100, as indicated by the black arrow. mRNA transcriptome profiling dataset “At956-2008”
is visualized using MetaOmGraph software (http://www.metnetdb.org).

Spearman’s correlation to avoid the major shortcoming of
Pearson’s correlation—sensitivity to outliers (Mukaka, 2012).
This analysis indicates that 133 genes had a positive correlation
coefficient of >0.7 with SAQR across multiple environmental,
genetic and developmental conditions.

Arabidopsis genes have been globally classified into regulons
by pairwise co-expression analysis of the “At956-2008”
microarray dataset followed by Markov Chain Clustering
(MCL) of the resultant co-expression matrix (Mentzen and
Wurtele, 2008). Regulons in eukaryotes can be defined as groups
of genes that are co-expressed across multiple environmental,
developmental and genetic conditions; genes in a regulon are
predicted to play roles in a particular process, such as systemic
acquired resistance, oxidative respiration, leucine catabolism,
or sperm cell differentiation (Mentzen and Wurtele, 2008;
Mentzen et al., 2008; Borg et al., 2011). Distinct from the concept
of pathways, in which the genes have a known biochemical
function and a known relationship to one another, regulons
are derived from a computational clustering of co-expressed
genes; these genes could code for, e.g., regulatory, catalytic,
structural, or signaling proteins or non-coding RNAs. In
the analysis of Mentzen and Wurtele (2008), regulons were
numbered by size, and a predominant function/process was
assigned to each regulon based on overrepresentation analysis

of the annotations for the genes with known function in that
regulon. The genes within a regulon with no prior known
function can be considered potential candidates to play a role
in the function/process assigned to that regulon. For example,
the FAP1-3 genes were members of a regulon assigned as fatty
acid biosynthesis, based on the preponderance of genes in that
regulon being enzymes of fatty acid biosynthesis (Mentzen et al.,
2008); this regulon membership led to experimental analysis that
identified the FAP genes as regulators of fatty acid biosynthesis
(Ngaki et al., 2012).

After identifying the genes that are co-expressed with
SAQR, we checked for overrepresentation of regulons among
them (Table 1 and Supplementary Table S3). Twenty-eight of
the genes co-expressed with SAQR are involved in defense
responses; this includes almost 70% of the genes in defense-
related Regulon #25. Ten of the SAQR-co-expressed genes are
in signaling/disease resistance-related Regulon #35 (23% of the
genes in that regulon), and 12 in phloem/vascular tissues Regulon
#57 (57% of the genes in that regulon). Most other SAQR-
co-expressed genes are grouped within smaller regulons of
unspecified function, or are members of the large photosynthesis
regulon (#2). Six SAQR-co-expressed genes are not members
of any regulon (they comprise < 0.04% of this large gene
group).
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TABLE 1 | Regulons overrepresented among genes with expression patterns positively correlated with that of SAQR.

Regulon Number of genes in regulon
positively correlated with SAQR

Total number of
genes in regulon

% of regulon genes positively
correlated with SAQR

25 – Defense response 28∗∗ 69 40

2 – Photosynthesis 24∗∗ 1135 2

57 – Phloem specific
(vasculature tissues – specific)

12∗∗ 21 57

35 – Kinases, signaling, disease
resistance

10∗∗ 44 23

The 133 genes with a positive correlation coefficient of >0.7 were classified by gene membership in co-expression regulons (Mentzen and Wurtele, 2008). P-values were
calculated within R, using the Fisher’s Exact Test. mRNA transcriptome profiling dataset “At956-2008” was used. Overrepresentation ∗∗P-values < 0.001.

Using the same “At956-2008” dataset, we identified 134 genes
whose expression patterns had a negative correlation coefficient
(< −0.6) with that of SAQR, and determined the regulon
membership of this group of genes (Table 2 and Supplementary
Table S4). Over one third of the genes that negatively correlate
with SAQR are members of the mitosis regulon (#4), and two
are in the nuclear replication/chromosome organization regulon
(#47). These two processes would likely be minimal during
senescence or in times of stress.

In a second approach to develop hypotheses on SAQR
function, we identified pathways that are overrepresented among
the genes that are correlated with SAQR expression across
multiple conditions. For this, we used MetNet tools (Sucaet
et al., 2012; Li and Wurtele, 2015; Li et al., 2015a) and the
“At956-2008” dataset (Li et al., 2007, 2009; Mentzen and Wurtele,
2008). AraCyc6, AGRIS7, and MetNet8 pathways/networks were
evaluated; since there are no pathways specifically designated as
developmental or stress-response processes such as “mitosis” or
“flowering” or “defense against bacteria” in these annotations, the
overrepresentation of such processes would not be detected by
this approach.

Pathways that are highly overrepresented among the 1,250
genes (a positive Spearman correlation coefficient > 0.5 with
the SAQR transcript; Table 3) include pathways involved in
the synthesis and signaling of the defensive/stress-related
responses: JA signaling; camalexin, traumatine, ornithine, and
glucosinolates. Photosynthesis-related pathways (chlorophyll
degradation, oxygenic photosynthesis, photosynthesis light
reactions, photorespiration, sucrose synthesis, and the Calvin

6http://www.plantcyc.org/databases/aracyc/14.0
7http://agris.fao.org/agris-search/index.do
8http://www.metnetdb.org/MetNet_db.htm

cycle) are also overrepresented. These overrepresented pathways
overlap in part with the overrepresented regulons of the
genes that are positively co-expressed with SAQR in analysis
(Table 1), in which photosynthesis and defense regulons are well-
represented. The pathways overrepresented among the 596 genes
negatively correlated with SAQR expression (a negative Spearman
correlation coefficient < −0.5 with the SAQR transcript) include
glycolysis, gluconeogenesis, auxin degradation, isoleucine
degradation, and the mevalonate pathway (Table 4).

Many of the overrepresented pathways among SAQR-co-
expressed genes are related to senescence. Decreases in primary
metabolic and photosynthetic pathways are tightly linked to
senescence (Buchanan-Wollaston et al., 2003; Lim et al., 2007).
JA signaling participates in regulating senescence, as well as
pathogen stress, and JA application can induce senescence (He
et al., 2002; Devoto and Turner, 2003). The JA signaling mutant
coi1, in which the SAQR transcript is increased (Figure 2A),
shows delayed leaf senescence (Buchanan-Wollaston et al., 2005).
The auxin pathway, overrepresented among genes negatively
correlated to SAQR, may delay senescence (Mueller-Roeber and
Balazadeh, 2014). The overrepresentation of mitosis among those
genes negatively correlated to SAQR (Table 2) would be expected
of mature or senescing tissue, as cell division is curtailed in the
later stages of the life cycle of Arabidopsis leaves (Gonzalez et al.,
2012).

These findings led us to examine the relationship between
senescence and SAQR. To do this, we focused on senescence-
associated genes (SAGs), defined as genes that are differentially
expressed when senescence occurs naturally and/or is induced by
darkness (van der Graaff et al., 2006). Some SAGs have a defined
function, but notable percentages have no known function. The
approximately 2,900 SAGs that are differently regulated during
natural senescence but not under induced senescence include

TABLE 2 | Regulons overrepresented among genes with expression patterns negatively correlated with that of SAQR.

Regulon name Number of genes negatively
correlated with SAQR- in regulon

Total number of
genes in regulon

% of regulon genes negatively
correlated with SAQR

4 – mitosis 51 ∗∗ 582 9

47 – nuclear, replication,
chromosome organization

2 ∗ 26 8

The 134 genes with a negative correlation coefficient of < −0.6 were classified by gene membership in co-expression regulons (Mentzen and Wurtele, 2008). P-values
were calculated within R, using the Fisher’s Exact Test. mRNA transcriptome profiling dataset “At956-2008” was used. Overrepresentation ∗∗P-values < 0.001 and
∗P < 0.05.
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TABLE 3 | Pathways overrepresented among the transcripts positively co-expressed with SAQR.

Pathway P-value (one-tailed,
overrepresented)

Number of genes positively
co-expressed with SAQR

Total number of genes in
that pathway

Oxygenic photosynthesis 0 46 98

Photosynthesis light reactions 0 31 60

Photorespiration 0.0000001 15 30

Calvin-Benson-Bassham cycle 0.000003 15 38

Chlorophyll a degradation I 0.0002 6 10

Chlorophyll a degradation II 0.0002 5 7

Sucrose biosynthesis 0.0015 13 50

Camalexin biosynthesis 0.0035 9 31

C2 Photorespiration cycle 0.0109 2 2

Pyridoxal 5′-phosphate salvage
pathway

0.0109 2 2

Glucosinolate biosynthesis from
dihomomethionine

0.0133 12 57

Sulfate activation for sulfonation 0.0149 4 10

Glycine biosynthesis III 0.0178 3 6

Starch degradation II 0.0214 4 11

Jasmonate signaling 0.0221 6 22

Glycine biosynthesis 0.0295 4 12

Glucosinolate biosynthesis from
homomethionine

0.0374 7 31

L-Nδ-acetylornithine biosynthesis 0.0426 3 8

Traumatin and (Z)-3-hexen-1-yl acetate
biosynthesis

0.0505 4 14

Transcripts with a positive Spearman co-expression correlation coefficient > 0.5 with SAQR. MetNet Online’s “Overrepresentation Search” tool was used; this considers
pathways in AGRIS, AraCyc, and MetNet. 1,250 transcripts were identified as positively co-expressed with SAQR. Font legend: light reaction-related; Degradation and
assimilation; Biosynthesis primary metabolism; Signaling; Biosynthesis of defense compounds. mRNA transcriptome profiling dataset “At956-2008” was used.

TABLE 4 | Pathways overrepresented among the transcripts negatively correlated with SAQR.

Pathway P-value (one-tailed,
overrepresented)

Number of genes negatively
co-expressed with SAQR

Total number of genes in that
pathway

Mevalonate pathway I 0.0001 5 11

Glycolysis IV (plant cytosol) 0.0027 9 60

Isoprenoid 0.0032 5 21

AGRIS regulatory network – full 0.0059 27 323

Superpathway of geranylgeranyldiphosphate
biosynthesis I (via mevalonate)

0.0061 6 34

Isoleucine degradation I 0.0185 4 21

Gluconeogenesis I 0.0205 7 56

Acetyl-CoA biosynthesis III (from citrate) 0.0224 2 5

Glycolysis II (from fructose-6P) 0.0244 7 58

Glycolysis I 0.0288 7 60

Indole acetic acid IV 0.0297 3 14

Indole-3-acetyl-amide conjugate biosynthesis 0.0297 3 14

Indole acetic acid degradation V 0.0297 3 14

Acetyl-CoA Biotin network 0.0352 5 37

Transcripts with a negative Spearman correlation coefficient <−0.5 with the SAQR transcript. MetNet Online’s “Overrepresentation Search” tool was used; 596 transcripts
were negatively co-expressed. Font legend: degradation and assimilation; Biosynthesis primary metabolism; Signaling. mRNA transcriptome profiling dataset “At956-
2008” was used.

genes in the JA, ethylene, and salicylic acid metabolic pathways
(van der Graaff et al., 2006; Breeze et al., 2011; Allu et al., 2014)
as well as SAQR itself. Fifty-three genes – 40% of all of the genes
that are positively co-expressed with SAQR – are SAGs that are
up-regulated under natural senescence but not under induced

senescence (Supplementary Table S5). In contrast, very few genes
that are negatively co-expressed with SAQR are up-regulated
under induced senescence (Supplementary Table S6); also, few
SAQR-co-expressed genes are down-regulated under conditions
of either natural or induced senescence (Supplementary Tables
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S5 and S6). These findings are consistent with a relationship
between SAQR, SAQR-co-expressed genes and plant natural
senescence.

SAQR is Expressed in Vasculature of
Maturing and Senescing Leaves and
Tissues
To evaluate the spatial and temporal changes in SAQR expression
during development, we fused the SAQR promoter into a
construct containing the GUS tag and introduced the construct
into the Arabidopsis Col-0 background (Figure 1B; SAQR::GUS
lines). SAQR is expressed in the vasculature of the regions of
leaves and cotyledons that are approaching senescence, and
continues to increase during senescence, then reducing as the
cells die (Figure 3A). SAQR expression is detected at the tips of
the leaves, is strongest in the vasculature as senescence progresses,
and ends in the petiole. No SAQR expression was observed in
young growing tissues. No SAQR expression was detected in the
root at any stage of development (not shown). In 45-DAI plants,
the older leaves express SAQR toward the apical end, which is
where senescence first occurs. In 56-DAI plants, a stage of the
Arabidopsis lifecycle in which most leaves are senescing, SAQR
expression localizes progressively from the distal to proximal
portions of the leaf as these sections die (Figure 3B). SAQR is also
expressed in aging cauline leaves, and stigma of flowers, funiculus
and receptacle of siliques (Figure 3C).

The analysis of SAQR promoter::GUS lines is consistent
with, and expands on, the SAQR expression profile analysis.
Specifically, many of the genes in the vasculature regulon (#57)
are co-expressed with SAQR (Table 1) and SAQR expression is
localized to the vasculature (Figure 3). Also, older leaves (and
older regions of leaves) contain higher levels of SAQR transcript
(Figure 2).

SAQR is Induced under Specific
Senescence Conditions
The increased SAQR transcript in senescence-related mutants
of JA, ethylene, and ABA synthesis and signaling (Figure 2A),
and the stress-related binding motifs in the SAQR promoter
(Supplementary Table S1), implies that SAQR might be regulated
by these hormones.

To investigate which conditions of senescence might increase
SAQR expression and to identify the spatial patterns of
expression, we examined patterns of SAQR-promoter-driven
GUS expression under induced senescence (Figure 4). Because
various methods of inducing senescence activate different genes
(van der Graaff et al., 2006), we used three diverse methods to
induce senescence. (1) Young seedlings were placed in darkness
for 5 days and then exposed to constant light for 3 days (“light
stress”; Weaver and Amasino, 2001). (2) Fully expanded true
leaves attached to the plant were covered for 3 days (“dark
stress”). (3) Fully expanded true leaves were detached and floated
in water in the dark for 3 days (“dark stress of detached leaves”;
van der Graaff et al., 2006).

Under the light stress, SAQR expression was increased in
cotyledons but was reduced in true leaves compared to untreated

controls (Figure 4A, Light). We also tested the effects of three
different stresses – high salt, oxidative stress, and drought –
on SAQR expression. Plant responses differed depending on
the stress. Seedlings treated with NaCl did not show SAQR
expression (Figure 4A, Salt) even though the plants are visibly
damaged by the treatment (not shown). In contrast, seedlings
dried to wilting (Figure 4A, Drought) or those treated with
hydrogen peroxide (Figure 4B, Oxidative stress) show increased
SAQR expression in the vasculature of the cotyledon and
leaf.

Senescence-Associated and QQS-Related responds to different
senescence-associated hormones. Seedlings treated with the
artificial cytokinin (CK), kinetin, predictably were greener and
showed reduced SAQR expression (Figure 4B, Cytokinin).
Methyl JA treatments also showed reduced SAQR expression
(Figure 4B, MeJA), whereas the JA-signaling coi1 mutant showed
increased SAQR expression (Figure 2A). In contrast, treatment
with ethylene precursor increases senescence of the plant tissue
noticeably more than the control, and results in significant
increases in SAQR expression in the vasculature (Figure 4B,
ACC).

Dark stress induces senescence in mature leaves, although
somewhat different group of genes are expressed under dark
stress compared to natural senescence (van der Graaff et al.,
2006). Interestingly, SAQR expression did not change after either
dark treatment (data not shown).

These results imply that SAQR is a SAG that responds to
specific developmental signals coupled with environmental cues.
The pattern of SAQR expression from germination to maturity
implies that SAQR is up-regulated under natural senescence of
cotyledons and true leaves.

RNA-Seq of SAQR Knockout Line
To observe changes in gene expression associated with altered
SAQR expression, we sequenced the RNA of rosette leaves
of the SAQR KO line saqr and WT controls grown in
a randomized complete block design under LD conditions
and harvested at the end of the light cycle. The saqr line
SALK_052233C contains a T-DNA insertion in the SAQR
gene sequence and did not accumulate detectable SAQR RNA
(Supplementary Figure S2). We also ordered a second putative
SAQR T-DNA line, SALK_063861, from ABRC, but were
unable to confirm the insertion in the genome. In addition
to the expected decreased expression of SAQR (Supplementary
Table S7), only two other genes were significantly differentially
regulated when false discovery rate was controlled at 0.13
(Supplementary Table S7). These were a dirigent-like encoding
gene (AT1G22900) and ELIP1 (AT3G22840; EARLY LIGHT
INDUCED PROTEIN 1).

AT1G22900, which encodes a disease-responsive protein that
is a rather distant member of the dirigent family, was up-
regulated sevenfold in the saqr mutant. The “dirigent” annotation
implies an element that controls conformational chemistry
(Burlat et al., 2001); the AT1G22900 protein has 32% identity to
AT2G28670, which is required for correct localization of suberin
(Hosmani et al., 2013). AT1G22900 is expressed in leaves at a low
level under standard growth conditions; however, its expression is
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FIGURE 3 | Spatial and temporal expression of SAQR. Beta-glucuronidase activity was visualized in transgenic Arabidopsis lines containing SAQR
promoter::GUS. (A) SAQR expression in cotyledon, and first true leaf at 4, 10, 17, 30, and 45 DAI. (B) SAQR expression in 56-DAI plants in second leaf and seventh
leaf. (C) Cauline leaf at 45 and 56 DAI; inflorescence and flower in 45-DAI plants; siliques, stigmas, and receptacle at 5 days after flowering (DAF; a-c) and 12 DAF
(d-f). White bar, 200 µm; Red bar, 500 µm; Black bar, 1 mm; Blue bar, 2 mm; Green bar, 5 mm.
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FIGURE 4 | Senescence-Associated and QQS-Related expression is altered by diverse stresses. Beta-glucuronidase activity was visualized in transgenic
Arabidopsis lines containing SAQR promoter::GUS. (A) SAQR expression in cotyledon and true leaf of seedlings under environmental stresses. Seedlings grown in
soil under constant light to 15 DAI (Control); seedlings grown in soil under constant light for 7 days, placed in the dark for 5 days, and exposed to light for 3 days
(Light); seedlings grown to 15 DAI in soil under constant light in unwatered pots (Drought); and seedlings grown to 12 DAI in soil under constant light and then
treated for 4 days by watering with 200 mM NaCl (Salt). (B) SAQR expression in cotyledon and true leaf of seedlings under chemical treatments. Seedlings grown in
soil under constant light to 12 DAI were moved and placed for 4 days under constant light in: water (Control), or water plus 1 µM kinetin (Cytokinin), 50 µM of the
ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), 500 µM hydrogen peroxide (Oxidative stress), or 10 µM methyl jasmonate (MeJA).

increased in response to plant exposure to Pseudomonas syringae
(Schmid et al., 2005) and is suppressed in response to ABA
treatment of plants exposed to P. syringae (Mohr and Cahill,
2006). Thus, both SAQR and AT1G22900 appear to be involved in
stress responses, and AT1G22900 expression may be suppressed
by SAQR.

ELIP1 is decreased 3.6-fold in the saqr mutant. ELIP1 is a
member of the chlorophyll binding protein family and controls
free chlorophyll levels (Hutin et al., 2003; Casazza et al., 2005;
Yao et al., 2015). ELIP1 is expressed highly in young plants,
seeds and flowers. ELIP1 has a protective role under UV-B and
photosensitive stress in high light or cold (Hutin et al., 2003).
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FIGURE 5 | Starch content of SAQR knockout (KO) and overexpression lines. (A) KO and OE lines are visually similar to WT controls. (B) Qualitative starch
staining shows increased starch in SAQR-OE lines and decreased starch in saqr compared with WT. (C) Quantification of leaf starch levels. Data points are the
mean ± SEM (standard error of the mean) of three biological replicates, with five plants per replicate. The saqr mutant, WT control and OE mutant plants were grown
in a completely randomized design in the soil in pots under LD conditions, and harvested for starch determination at the end of the light period. Single-factor analysis
of variance (ANOVA) with Dunnett’s method was used to compare each mutant with WT. ∗P < 0.05, ∗∗P < 0.01.
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It is up-regulated quickly and transiently by light including
UV-B, and is up-regulated under a variety of stresses including
P. syringae infection (Hutin et al., 2003; Rossini et al., 2006;
Hruz et al., 2008); in spruce ELP-like proteins are induced by
weevil and western spruce budworm infection (Ralph et al.,
2007).

Phenotypic Characterization of SAQR
T-DNA Knockout and Transgenic
Overexpression Lines
Taken together, our data indicates that SAQR plays a role in
stress resistance. To directly investigate the function of SAQR
in Arabidopsis, we generated SAQR-OE lines driven by the 35S
promoter (Figure 1B). The OE plants were verified for curtailed
SAQR expression by semi-quantitative RT-PCR (Supplementary
Figure S2). When grown under constant light or under LD
conditions the KO and OE lines appear phenotypically similar
to Col-0 control plants (Figure 5A). The SAQR-OE lines show
an early-flowering phenotype (also in Luhua et al., 2008), and
fewer leaves are required for flowering (Figure 6). However,
saqr plants do not show any difference in flowering time when
grown under SD conditions (Figure 6). When plants are treated
with salt, cytokinin, or ACC, saqr and SAQR-OE mutants show
a similar visual phenotype to the WT controls (Supplementary
Figure S4).

Because alteration of QQS changes starch biosynthesis and
accumulation, and SAQR expression is up-regulated in QQS
RNAi lines, but QQS does not have significantly altered
accumulation of transcript in saqr mutant, we proposed that
SAQR might act downstream of QQS. Therefore, we evaluated
leaf starch in mutants with altered accumulation of SAQR. At the

FIGURE 6 | Senescence-Associated and QQS-Related overexpression
mutants have fewer leaves upon flowering. SAQR KO mutant, WT
control, and OE mutant plants were grown in a completely randomized design
under SD conditions. Bars represent mean ± SEM of rosette leaf count of four
to six biological replicate plants upon flowering. Single-factor analysis of
variance (ANOVA) with Dunnett’s method was used to compare each mutant
with WT. ∗P < 0.05, ∗∗P < 0.01.

end of the light cycle in plants grown in a completely randomized
design under LD conditions, leaf starch content is decreased
about 13% in the saqr mutant and increased about 20–35% in the
SAQR-OE lines, when compared to WT plants (Figures 5B,C).
Thus, permutations in SAQR expression strongly impact starch
accumulation.

DISCUSSION

Senescence in plants can be defined as the cellular signaling
program that leads to the degeneration and eventual death of
tissue. More than simply the process of aging affecting the plant,
senescence is a process that is triggered by various internal and
external factors and that serves to recycle nutrients and manage
exposure to stresses (Noodén et al., 1997; Lim et al., 2007).

Senescence is precisely induced and regulated by
development, hormones, darkness, nutrient limitation, damage
by pathogens and abiotic environmental stresses (Noodén et al.,
1997; Lim et al., 2007; Liang et al., 2014). It has been proposed
that this tightly controlled process evolved to secure maximal
nutrient efficiency under limiting conditions (Leopold, 1961;
Masclaux-Daubresse et al., 2008). During senescence, anabolic
processes like photosynthesis and metabolite synthesis are
reduced (Buchanan-Wollaston et al., 2003), while multiple
molecular components undergo controlled degradation for
transport through the phloem to the rest of the plant (Thompson
et al., 1998; Liu et al., 2008).

In Arabidopsis, each leaf has its own timeline of expansion,
maturity, and senescence, independent of the reproductive stage
of the plant; the development occurs despites the removal or
disruption of flowering tissue, with reproductive factors only
effecting individual leaves in the context of a separate, whole
plant-scale program of senescence (Noodén and Penney, 2001;
Lim et al., 2007). Under controlled, optimized conditions, each
leaf grows from a vegetative meristem, through division and
cellular expansion. Cells transition from division to expansion
starting from the tip of the leaf (Andriankaja et al., 2012;
Gonzalez et al., 2012). The leaf reaches full photosynthetic
activity by approximately 12 days and visible senescence begins
approximately 20–24 days after emergence. The yellowing of the
leaf and transfer of nutrients via the vascular system begins at this
stage, again proceeding from the tip to the base of the leaf. The
localization of SAQR expression in the vasculature and its timing
from the tip to the base of the leaf increasing just prior to the
onset of senescence, indicates a possible involvement of this gene
in nutrient recycling.

The final, destructive process, generally termed leaf “death,”
occurs 28–32 days after the leaf ’s initial emergence (Lim
et al., 2007). The speed of this process is controlled by light
dosage, individual leaves exposed to decreased light levels show
increased senescence (Nooden et al., 1996; Weaver and Amasino,
2001). As the reproductive program commences, rosette leaf
formation ceases, and nutrient allocation is shifted to the
growing reproductive structures. Increased metabolic activity
in mitochondria and peroxisomes, and decreased peroxisomal
catalase and cytosolic ascorbate peroxidase (APX1) activities
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result in a spike in the production of reactive oxygen species
(ROS; Beers, 1997; Zimmermann et al., 2006). This spike,
coupled with a general decrease in general antioxidant activity,
augments oxidative damage, and death ensues (Procházková and
Wilhelmová, 2007).

Although the molecular function of SAQR is unclear, there
are several indications of its potential biological functions
(Figure 7). Reflecting the patterns of senescence itself, during
natural senescence, SAQR is up-regulated in the cotyledons
and true leaves, whereas in light stress-induced senescence,
SAQR expression is up-regulated only in the cotyledons,
and is repressed in the true leaves. This is evidenced not
only in the SAQR expression patterns, but also by the tight
correlation of expression of many SAG genes to SAQR.
Several factors might lead to this distinction between SAQR
expression in true leaves and cotyledons. Cotyledon senescence
is less understood than leaf senescence, but the processes
have developmental and molecular differences (Du et al.,
2014). Cotyledon senescence is induced by different signals
than is true leaf senescence; it has been suggested that these
differences are due to the cotyledon’s early function as a
storage organ (Weaver and Amasino, 2001). Some sets of genes
are differentially expressed in cotyledons compared to true
leaves; many of the genes specific to or differentially expressed
in soybean cotyledons are involved in early mobilization
of nutrients, indicating a rapid transfer of resources to

the seedling (Brown and Hudson, 2015). This mimics the
nutrient transfer process that occurs under senescence of
older leaves (Diaz et al., 2008). In fact, when plant are
treated by light after dark, naturally senescing true leaves
that are already undergoing transfer of nutrients to the rest
of the plant exhibit less delay in senescence compared to
younger leaves (Weaver and Amasino, 2001). The increase
of SAQR expression in cotyledons under light stress likely
reflects this difference between cotyledons and early true
leaves.

The maltose excess 1 (mex1) mutant is a null mutant of a
chloroplastic maltose transporter (Lu et al., 2006; Stettler et al.,
2009). Young leaves of mex1 plants have increased maltose and
starch and show signs of chloroplast degradation relative to
WT plants (Stettler et al., 2009); increased maltose and starch
levels and chloroplast degradation are general characteristics of
mature/senescing leaves of WT (and mex1) plants (Stettler et al.,
2009; Avila-Ospina et al., 2014). Analysis of the transcriptomic
data from Stettler et al. (2009) shows the SAQR transcript level
is increased 3.3-fold in young leaves (leaf # 6–8) in mex1 relative
to WT, whereas in mature leaves (leaf # 13–15) SAQR transcript
level is not significantly different in mex1 and WT plants. These
data indicate that SAQR may be related to senescence, be sensitive
to changes in carbohydrate metabolism, while also playing a role
in reducing starch content, as can be seen from SAQR-OE plants
(Figure 7).

FIGURE 7 | Model of SAQR function. Decreased QQS expression or increased stress cause greater starch accumulation. SAQR expression is up-regulated by
multiple stresses and down-regulated by QQS (Li et al., 2015b), JA, and CK (data of Figure 4). Multiple stresses increase starch accumulation; QQS, MeJA (Babst
et al., 2005) and CK decrease starch accumulation. SAQR expression increases starch accumulation. Our working model is that SAQR mediates changes in starch
accumulation. SAQR expression also decreases time to flowering under short day conditions. This change in flowering time may occur via some aspect of starch
metabolism, or by a mechanism independent of starch metabolism. Green arrows, promotes; red blocked lines, represses.
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Although SAQR influences starch levels, alterations in the
expression of SAQR do not cause a notable difference in the rate
or severity of leaf senescence in plants grown under standard
conditions. This is not entirely unexpected, as genes up-regulated
under senescence have many functions: transcription factors,
catabolic enzymes (e.g., proteases and kinases), or signaling and
structural functions. Many SAG genes may not directly affect
senescence. For example, senescence is unaffected in homozygous
mutants of the cysteine protease encoding gene SAG12 (Otegui
et al., 2005).

Senescence-Associated and QQS-Related is one of the class of
mobile RNAs which are translocated in the plant (Thieme et al.,
2015). This mobility may provide a clue about its mechanism
of action. SAQR expression is predominantly confined to the
vasculature during early and mid-senescence, and its mobility
may explain how it induces the overall increase in starch that
can be seen in leaves of SAQR-OE plants. Similarly, the detection
of two binding sites of AGL15 – overexpression of which delays
flowering and senescence (Fang and Fernandez, 2002) – in
SAQR promoter, alterations in SAQR impact flowering time, with
overexpression of SAQR inducing an early flowering phenotype
(Luhua et al., 2008, and this study), combined with the location
and timing of SAQR expression, indicates that SAQR could play a
role as a mobile messenger in flowering.

CONCLUSION

Senescence-Associated and QQS-Related is a clade-specific gene,
present in three closely related Brassicaceae genera. One role of
such clade-specific genes is thought to be the adaptation of plants
to stress (Luhua et al., 2013; Arendsee et al., 2014). In this study,
we present SAQR as a component of the interconnected networks
integrating stress signaling, metabolism, and senescence. SAQR
is up-regulated in QQS RNAi mutant lines, and QQS expression
negatively affects starch levels (Li et al., 2009; Li and Wurtele,
2015). Alterations in the expression of SAQR change levels of
starch accumulation, but QQS expression is not altered in the
KO mutant. Taken together, these results indicate that SAQR
may participate in the QQS network, downstream of QQS. SAQR
is up-regulated under conditions of natural senescence, and is
co-expressed with genes involved in senescence, defense, and
stress responses, implying a complex role in the interplay between
primary metabolism and adaptation to the stresses that occur
alongside the process of senescence.

These analyses of SAQR function provide a clue as to
the mechanisms by which plants integrate metabolism with

natural and environmentally induced senescence, advancing our
fundamental knowledge of the regulatory and metabolic network
that mediates carbon allocation. The data also inform the current
view of the evolutionary significance of clade-specific genes.
A number of proteins encoded by orphans and other clade-
specific genes have defined functions (Cai et al., 2008; Heinen
et al., 2009; Knowles and McLysaght, 2009; Li et al., 2009, 2010),
and the QQS gene itself interacts with highly conserved proteins
and thus can function in multiple plant species (Li et al., 2015b). If
this is the case for SAQR, these studies provide an avenue to the
potential use of this gene to modulate stress adaptation and/or
composition for economically valuable crop plants.
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