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Abstract

Winner-take-all (WTA) mechanisms are an important compo-
nent of many cognitive models. For example, they are often
used to decide between multiple choices or to selectively di-
rect attention. Here we compare two biologically plausible,
spiking neural WTA mechanisms. We first provide a novel
spiking implementation of the well-known leaky, competing
accumulator (LCA) model, by mapping the dynamics onto a
population-level representation. We then propose a two-layer
spiking independent accumulator (IA) model, and compare its
performance against the LCA network on a variety of WTA
benchmarks. Our findings suggest that while the LCA net-
work can rapidly adapt to new winners, the IA network is bet-
ter suited for stable decision making in the presence of noise.
Keywords: Neural Engineering Framework; Nengo; winner-
take-all; decision making; mutual inhibition; neural competi-
tion; dynamical systems

Introduction
Winner-take-all (WTA) networks are mechanisms that se-
lect the largest value among a number of inputs. More pre-
cisely, given a D-dimensional vector corresponding to the
non-negative utility of D different choices, the desired out-
put is positive for the dimension with highest utility (i.e., the
“winner”) and zero for all others. This mechanism is regu-
larly employed as a component of cognitive models involving
selective attention (e.g., Itti, Koch, & Niebur, 1998; Standage,
Trappenberg, & Klein, 2005) and decision making, where
the action with the highest utility is selected to drive be-
haviour (e.g., O’Reilly, 1998).

A large body of literature examines the optimality of WTA
mechanisms and their consistency with neurobiological and
psychological data (e.g., Bogacz, Brown, Moehlis, Holmes,
& Cohen, 2006; Gold & Shadlen, 2007; Smith & Ratcliff,
2004). Here, we investigate the suitability of two different
WTA mechanisms in the context of neurally plausible cogni-
tive modelling. In particular, we map each mechanism onto
a network of spiking neurons, and then compare them using
a set of functional benchmarks that are normative in nature.
The first mechanism we consider is an implementation of the
leaky, competing accumulator (LCA) model from Usher and
McClelland (2001). The LCA model and variants have been
widely used, for example in versions of the Temporal Context
Model (Sederberg, Howard, & Kahana, 2008), and in work
on the Remote Associates Test models (e.g., Kajic, Gosmann,
Stewart, Wennekers, & Eliasmith, 2017). The second mecha-
nism we consider is the independent accumulator (IA) model
that we propose here, which involves a secondary threshold-
ing layer that is recurrently connected to a primary integrating
layer.

To implement each model, we use the Neural Engineering
Framework (NEF; Eliasmith & Anderson, 2003) to map the
model’s dynamics onto populations of spiking neurons. In
the remainder of the paper, we provide a short introduction to
the NEF, describe our implementation of the two WTA mech-
anisms, present our benchmarks, and finally discuss some re-
sulting implications for cognitive modelling.

Methods
The Neural Engineering Framework
The Neural Engineering Framework (NEF; Eliasmith & An-
derson, 2003) is a method for mapping a cognitive model, de-
scribed using mathematical equations, onto a spiking neural
network. We now describe the aspects of this framework that
are relevant to this work, by summarizing its three principles:
representation, transformation, and dynamics.

Principle 1: Representation We define the representation
of a scalar value x(t) by an encoding and decoding with re-
spect to some population of neurons. The encoding of x(t)
into a spike train ai(t) for neuron i is given by:

ai(t) = Gi

[
αieix(t)+ Jbias

i

]
, (1)

where αi is a gain factor, ei is an encoder that determines a
neuron’s tuning curve, Jbias

i a bias current, and Gi [·] is the
neural nonlinearity. Here, we use spiking, leaky integrate-
and-fire (LIF) neurons for Gi [·], and set the encoders to one.
Decoding weights di are then used to approximate the repre-
sented value x̂(t) from the activity of the population of neu-
rons by:

x̂(t) = ∑
i

di
[
(ai ∗h)(t)

]
, (2)

where h(t) = τ−1
s exp(−t/τs) is an exponentially decaying

synaptic filter with time-constant τs, and ∗ is the convolution
operator. The decoding weights are obtained by least-squares
optimization of the error Ex = |x− x̂|. For the transmission
of a value from one population to another, the connection
weights are given by:

Wi j = α je jdi. (3)

Principle 2: Transformation By finding alternate decod-
ing weights d f

i with the error given by E f (x) =
∣∣ f (x)− x̂

∣∣, arbi-
trary linear and nonlinear functions f (x) can be approximated
in the connections between neural populations.
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Principle 3: Dynamics Given some desired nonlinear dy-
namics for the state variable x(t):

∂x
∂t

= g(x), (4)

we can map these dynamics onto a recurrent transformation,
by harnessing the synaptic filter mentioned in Principle 1. In
particular, for the exponentially decaying h(t) we may apply
Principle 2 to the recurrent transformation f (x) = τsg(x)+ x
to ensure that x(t) obeys Equation 4.

Leaky, competing accumulator model
Using the principles of the NEF, we have implemented the
widely-used leaky, competing accumulator (LCA) model pro-
posed by Usher and McClelland (2001). The dynamics (see
Fig. 1a) for each state variable xi(t), 1 ≤ i ≤ D, where D is
the number of choices, are given by:

∂xi

∂t
=

ρi− kxi−β ∑
j 6=i

x j

 1
τ
, xi ≥ 0, (5)

where ρi is each external input, k is the leak rate, β the lateral
inhibition, and τ the integration time-constant. This model
essentially integrates each input ρi with a leak term (−kxi),
minus competition from every other variable (β∑ j 6=i x j). Sup-
posing ρi > ρ j for all j 6= i, a WTA mechanism should indi-
cate that i is the winning choice. Setting k = β = 1 will guar-
antee that the winning state xi converges to the value of the
largest input ρi, while each losing state x j ( j 6= i) converges
to zero. Other choices of k merely alter the effective τ and
the effective gain on the input, while other choices of β will
produce unwanted behaviours (see supplementary analysis).

We implement Equation 5 with the NEF by using one pop-
ulation of neurons for each xi, and applying Principle 3 to
each population. By appropriately selecting the gain and bias
parameters from Principle 1, we ensure that each state vari-
able is rectified (xi ≥ 0) as required. We believe this imple-
mentation is novel as it does not interpret each xi as a distinct
neural firing rate, but rather as a population-level represen-
tation distributed across any number of spiking neurons. In
effect, heterogeneous spike trains are weighted by optimal
decoding weights to precisely implement the stated dynam-
ics. This allows us to attain greater biological realism without
altering the dynamics prescribed by Equation 5.

Independent accumulator model
The other WTA mechanism that we investigate is our pro-
posed independent accumulator (IA) model (see Fig. 2). We
use the term ‘independent’ to refer to the fact that there are
no direct interactions between each accumulator, unlike in the
LCA model which has direct competition between states. To
enable a form of competition, we add a second thresholding
layer that projects back to self-excite and mutually-inhibit the
first layer. We now provide the details of each layer – again
implemented using the principles of the NEF.
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Figure 1: Example time course of the state variables in
the LCA (top) and IA (bottom) networks with three choices
(D = 3). The vector of inputs is [0.8,0.7,0.6].

The first layer consists of a separate integrator population
(i.e., accumulator) for each state variable xi(t), 1 ≤ i ≤ D.
The second layer consists of independent, non-recurrent pop-
ulations that receive input from the first layer in a one-to-
one fashion. From the second layer, we decode the func-
tion x̄i := Θ(xi−ϑ) where Θ is the Heaviside function, and
ϑ = 0.8 is a fixed threshold value that determines how much
evidence needs to be accumulated to produce an output. The
Heaviside decoded output of layer 2 projects back to layer 1
to add x̄i− β̄∑ j 6=i x̄ j to the input of xi. Since intuitively the
largest input will accumulate the fastest, once this reaches the
threshold ϑ it will self-excite and inhibit all other state vari-
ables. Fixing β̄ = 2 ensures that the losing state variables will

ρ1 x1 x̄1

ρ2 x2 x̄2

...
...

ρD xD x̄D

Layer 1 Layer 2Inputs

Figure 2: Independent accumulator (IA) network. Neural
populations are denoted by circles labelled with their repre-
sented state variable. Arrows denote excitatory connections,
while lines ending in circles denote inhibitory connections.
The second layer computes x̄i := Θ(xi−ϑ).
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go to zero (see supplementary analysis). This is summarized
more precisely by the following dynamics (see Fig. 1b):

∂xi

∂t
= ρi

1
τ1

+

x̄i− β̄ ∑
j 6=i

x̄ j

 1
τ2
, xi ≥ 0. (6)

Notably, this takes the form of Equation 5 after substituting
τ = τ1, k = −τ1/τ2, and β = β̄τ1/τ2, with the only remain-
ing difference being the Heaviside nonlinearity applied to the
state feedback. Thus, in contrast to the continual competition
occurring in the LCA model, the threshold ϑ is a free param-
eter that controls how much evidence needs to be integrated
before enabling any competition between states. Instead of
directly manipulating ϑ, we opt to change τ1, which has a
comparable effect due to the leak-free integration.

Note that the decoded output from layer 2 of the IA net-
work has higher variance than the LCA network (Fig. 1), but
the separation of the output for different choices is more rel-
evant than the variance in interpreting the output.

Benchmarks
To test and compare the two WTA mechanisms we provide
an input of ρi = u− s(1−δ1i)+ηi, where u is the magnitude
of the largest input, s > 0 is the target separation relative to
all other inputs, δ is the Kronecker delta, and ηi is Gaussian
(white) noise with standard deviation σ. Thus, without loss
of generality, the first state variable receives the largest in-
put u plus noise, and all other state variables receive a noisy
input that is smaller by s. It is important to note that u not
only determines the size of the largest input, but also the gen-
eral baseline of inputs. Since all of the runner-ups have equal
magnitude, this represents the most difficult scenario for the
networks, where all potential choices must be considered. As
s→ 0 the problem also becomes more difficult because the
utilities of the choices are closer together. We use u = 1 un-
less indicated otherwise, and set the number of choices to
D = 10. Furthermore, we increment the noise variance to
highlight successes and failures as the task becomes increas-
ingly difficult with more noise. This allows us to determine
which functions are performed robustly by each network. In
both WTA models we use 200 neurons per choice. In the IA
network this is split into 150 neurons for each layer 1 popula-
tion and 50 neurons for each layer 2 population. All remain-
ing network parameters are summarized in Table 1.

To evaluate the two mechanisms on the previously defined
input, we use a number of separate metrics. First, we deter-
mine whether the model is able to form a clear decision within
one second. To be counted as ‘clear’, at least one output must
remain above 0.15 across the time interval (1s,2s] while all
other outputs remain below this threshold. This lower bound
of 0.15 was chosen to ensure that noise on a zero output is
not mistaken for a non-zero output. Note that this metric re-
quires that the decision does not change throughout the time
interval. This does not take into account whether the winning
output actually corresponds to the largest input. However, for

Table 1: Summary of parameter values.
LCA time-constant τ = 0.1s
LCA recurrency parameters k = β = 1
IA accumulation time-constant τ1 = 0.1s, 0.5s
IA feedback time-constant τ2 = 0.1s
IA threshold ϑ = 0.8
IA recurrency parameters β̄ = 2
Recurrent synaptic time-constant τs = 0.1s
Feed-forward synaptic time-constant τs = 0.005s
Output decoding synaptic time-constant τs = 0.01s

some models it is more desirable to produce a clear incorrect
decision than an unstable incorrect decision. In other situa-
tions, though, the correctness of the decision may be of higher
importance. Thus, we consider a trial ‘correct’ if the model
forms a clear decision, and the largest output corresponds to
the true largest input. Measurement of correct trials forms our
second benchmark.

We use two additional benchmarks on the set of all trials
with a clear decision. First, it is important to consider the
speed at which the network can make decisions. We there-
fore define the ‘decision time’ as the length of time it takes to
fulfil the conditions of a clear decision. Second, the correct-
ness metric only considers the final averaged output during a
time interval. It is possible for a network to produce transient
outputs before the final decision is reached. In the context of
a larger model, this can become a problem because the tran-
sient output might be prematurely interpreted as a decision.
Thus, we define it as the ‘highest output of a losing choice’
during the whole simulation.

Results
We find that the ability to form a clear decision of the LCA
network decreases with more noise and less target separation
(see Fig. 3). Also, the magnitude of the inputs has an im-
portant influence. For a small inputs with u = 0.2 the winner
will mostly not exceed the 0.15 threshold with noise present.
The best performance is achieved with medium inputs with
u = 0.6. Higher inputs make it more likely that runner-ups
will exceed the 0.15 threshold, especially with a small target
separation. In contrast to the LCA network, the IA network
manages to form a clear decision in every trial (not explicitly
shown in Figure 3, but all data points fall on the grey line).

Interestingly, for all clear decisions the correct winner was
determined by the LCA network. Thus, a plot of correct tri-
als looks identical to Figure 3, with slightly different error
bars. While always reaching a clear decision, the decisions of
the IA network are not always correct. Overall, the IA perfor-
mance tends to be worse than the LCA performance for a high
input magnitude, but better for smaller inputs (Fig. 4a, b). We
can greatly improve the IA performance by increasing τ1 to
0.5 s which slows down the integration of evidence (Fig. 4c).
This improves the IA performance to be above the LCA per-
formance for high baselines, but it will also increase the de-
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Figure 3: Fraction of trials with a clear decision for the LCA network (which also exactly matches the fraction of correct trials).
Each plot shows data for a different input magnitude u. Error bars denote bootstrapped 95% confidence intervals. The grey
horizontal line indicates the optimum, which coincides with the performance of the IA network.

cisions times of the IA network. For a low baseline with
u = 0.2, it makes the IA network unable to decide within the
allocated time frame, but given more time it would still reach
a decision.

As shown in Fig. 5a, the time required to reach a decision
in the LCA network depends mostly on the size of inputs and
target separation. We averaged over the different noise condi-
tions because the noise influence on the timing was minor. In
the IA network the largest input is the most important factor
(dashed vs. solid lines in Fig. 5b). Depending on this magni-
tude, the network can either be faster or slower than the LCA
network, but it will need more time given a value of τ1 that
achieves the same fraction of correct responses as the LCA
network. There is also a slight influence of target separation
and input noise, with an interaction of these two parameters
(solid lines in Fig. 5).

Finally, looking at the transient responses indicates that
both models might produce outputs of losing choices. For the
LCA network the magnitude of the transient response mainly
increases with the amount of noise (Fig. 6a). For the IA net-
work, transient outputs are smaller in noisy conditions, but
can be higher than for the LCA network in less noisy condi-
tions with small target separations. The magnitude of such
transient responses is reduced by adjusting τ1 to 0.5, at the
cost of a slower decision.

Discussion
We have shown that neither network performs better on all
benchmarks, but rather each is better suited for different pur-
poses. For instance, the LCA network can determine the cor-
rect winner more quickly, and, given that a conclusive deci-
sion was made, it always selects the correct winner. However,
under noisy conditions it may fail to produce a clear output at
all, and thus not make a decision. This can be problematic for
cognitive models that must form a clear decision (even when
it may be incorrect). The IA network might not be able to
identify the correct winner as quickly or as reliably (depend-
ing on the choice of τ1), but given enough time it will eventu-

ally arrive at a decision and produce a clear output. This is a
direct consequence of the thresholding on the state feedback,
which prevents competition from occurring until a sufficient
amount of evidence has accumulated. This also enables the
IA network to react to small inputs. In addition, the IA net-
work is easily extendible to allow dynamic control of the de-
cision speed, by supplying an external bias to layer 2 to adjust
the ϑ threshold.

The LCA network is especially well-suited for situations
where a decision needs to be continuously adjusted. The dy-
namics constantly push the winning state variable to the mag-
nitude of the largest input, while adapting to input changes
along a time-scale of τ. This makes it quick to respond to
changes in the input for smaller τ, but leads to randomly
switching outputs due to noise.

In contrast, the IA network is better suited for situations
where a discrete sequence of decisions is required. After se-
lecting a winner, the model’s decision will persist due to self-
excitation, even in the absence of input. Thus, after making
a decision, it is necessary to reset the model by inhibiting the
winning accumulator. This limits how quickly successive de-
cisions can be made and reduces the ability to react to chang-
ing inputs. However, once a decision is made, the network
provides a stable output. For example, we intend to use the
IA network in a model of free recall to output a sequence of
WTA responses. In this case, the model requires stable recall
in the presence of noise, even if each response may not be the
“true” winner.

Both models might produce a transient response that may
be interpreted as a decision, which can make the detection
of decisions problematic. This is of special relevance when
incorporating the networks into larger cognitive models. For
the LCA network, the transient behaviour is inherent to its
design; there will always be an initial rise of all state vari-
ables (that receive input) before the mutual inhibition grows
strong enough to push them back to zero. In the IA network,
however, such transient responses may be avoided by choos-
ing appropriate τ1 and ϑ. It should be noted that other recur-
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Figure 4: Fraction of correct trials for the IA network. Each plot shows data for a different combination of input magnitude u
and integration time-constant τ1. Error bars denote bootstrapped 95% confidence intervals. The grey horizontal line indicates
the optimum.
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minimal effect on decision times. (Right) Mean decision times for the IA network with input magnitude u = 0.2 (solid) and
u = 1 (dashed). Error bars denote bootstrapped 95% confidence intervals.

rently connected readout mechanisms have been proposed for
the two choice case that produce bursting outputs somewhat
comparable to the IA network (Lo & Wang, 2006). However,
the evidence integration in the Lo and Wang (2006) model
uses competition via pooled inhibition, making it more simi-
lar to the LCA then the IA network.

We have not yet investigated the agreement of these mech-
anisms with neurobiological and behavioural data, although
this has been done before for other WTA networks (Gold &
Shadlen, 2007; Smith & Ratcliff, 2004). The implementation
in spiking neurons, however, provides some basic biological
plausibility and more readily permits comparisons with neu-
ral data. In particular, the IA network predicts that the firing
rates for neurons in the first layer will rise up to a threshold,
and that neurons in the second layer will not become active
or inhibit the first layer until reaching this threshold. Neurons
in the macaque lateral intraparietal area exhibit a similar step
response (Latimer, Yates, Meister, Huk, & Pillow, 2015). In
contrast, the LCA network predicts that the firing of any neu-
rons will proportionately inhibit all other neurons that do not
represent the same state. With regard to behavioural data, dif-
ferent effects for decision times are predicted as the number

of choices increases: for the LCA network decisions become
slower due to the mutual interaction, but for the IA network
decisions will take less time because only a single accumula-
tor needs to exceed the threshold. Nevertheless, evidence for
one network does not exclude the possibility that the other
network is employed for different tasks or by different brain
areas. Relatedly, it might be more plausible to distribute the
representation of all state variables over a single population of
neurons. This is directly supported by the NEF, but we chose
to leave this to future work to keep the current analysis free
from potential interactions of the state variables introduced
by such a distributed representation.

We also did not look at at the influence of the number of di-
mensions D in detail. For higher D, we see reduced accuracy
overall since each additional choice has a baseline chance to
win due to noise. Nevertheless, the results that we discuss
here are qualitatively similar.

One critique of non-leaky accumulator models is that their
ability to discriminate the largest input increases indefinitely
with time (Usher & McClelland, 2001) and that there is no
sensible stopping criterion. However, this assumes that the
time to reach a decision has no cost. If time-to-decision has a
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Figure 6: Transient response (highest output of losing choices) for the LCA and IA network. Error bars denote bootstrapped
95% confidence intervals. The grey horizontal lines show the optimum.

cost, then it will at some point exceed the gain achieved from
making a correct decision. Furthermore, this argument as-
sumes integration with perfect accuracy. But, with networks
built using the NEF, the representation of each state variable
has limited precision, and so an ideal trade-off must be found.

To conclude, we investigated two spiking neural networks
computing a winner-take-all function based on the leaky,
competing accumulator model and a novel two-layer inde-
pendent accumulator model. While both perform the same
basic tasks, they fail in different ways as each task scales
in difficulty via increased noise or less separation between
choices. From a modelling perspective, this makes each net-
work more useful for different situations. The LCA model
is better for continuous updating of decisions, whereas the
IA network is better suited for more discrete decisions in
the presence of noise. It is left to future work to investigate
whether these two distinct mechanisms can be identified from
either behavioural or neurophysiological data.

Notes
Source code and supplementary analysis are available at
https://github.com/ctn-waterloo/cogsci17-decide.
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