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Abstract
For patients with thyroid nodules, the ability to detect and diagnose a malignant nodule is the key to creating an
appropriate treatment plan. However, assessments of ultrasound images do not accurately represent malignancy,
and often require a biopsy to confirm the diagnosis. Deep learning techniques can classify thyroid nodules from
ultrasound images, but current methods depend on manually annotated nodule segmentations. Furthermore, the
heterogeneity in the level of magnification across ultrasound images presents a significant obstacle to existing
methods. We developed a multi-scale, attention-based multiple-instance learning model which fuses both global and
local features of different ultrasound frames to achieve patient-level malignancy classification. Our model
demonstrates improved performance with an AUROC of 0.785 (p<0.05) and AUPRC of 0.539, significantly
surpassing the baseline model trained on clinical features with an AUROC of 0.667 and AUPRC of 0.444. Improved
classification performance better triages the need for biopsy.

Introduction
Thyroid nodules are circumscribed solid or fluid-filled tissue of differential composition within the thyroid that may
have malignant potential. If a suspicious neck mass is found or if symptoms of thyroid dysfunction are identified
during a physical examination, patients typically undergo an ultrasound (US) exam for further investigation. US
imaging has been widely used as a non-invasive, inexpensive, and real-time method for nodule detection. Palpable
nodules are detected in 5%-7% of adults during a physical examination. On the other hand, the rate of nodule
detection using US images is much higher and increases with age, with nodules detected in up to 70% of the
population1,2. Discovered nodules are assessed and assigned a malignancy risk score ranging from 1 (benign) to 5
(highly suspicious) defined by the American College of Radiology Thyroid Imaging Reporting and Data Systems
(ACR TI-RADS), which is calculated from the sum of points using nodule composition, echogenicity, shape,
margin, and echogenic foci3,4. Each score has a corresponding recommendation based on the size of the nodule, with
suspicious nodules recommended to undergo fine needle aspiration biopsy (FNAB) that samples cells for
cytopathologists to analyze. Cytopathologic risk of malignancy follows the Bethesda System using the following
categories: non-diagnostic (too few cells for diagnosis), benign, atypia of undetermined significance, suspicious for
follicular neoplasm, suspicious for malignancy, and malignant5,6. A significant concern is that the majority of
nodules undergoing FNAB are determined to be benign, suggesting that TI-RADS scores from the US images do not
accurately indicate the malignancy risk determined after FNAB7,8. While FNAB is minimally invasive, small risks of
bleeding and infections do exist, and for some patients, these procedures can be painful and extremely anxiety
provoking. Compounded with the high rate of benign biopsies, a clear need arises for an improved tool to accurately
predict the cytology of a nodule from the imaging data to better triage the need for biopsy.

The use of machine learning to classify cytology from thyroid US images has grown in popularity in recent years,
and existing work has explored the application of both traditional machine learning and deep learning methods9,10.
Many previous approaches include segmenting nodules from the US images, extracting radiomic features from the
segmentations, and classifying the nodule as either benign or malignant11,12. A major limitation of such an approach
is that it requires a large amount of segmented data for model training. Obtaining such data requires manual
annotations from radiologists, which is a time-consuming and labor-intensive procedure. Consequently, there is
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usually limited segmented data, which influences the learning and generalization of these models. Even current
approaches that leverage weak supervision to achieve thyroid nodule classification depend on radiologist-annotated
bounding boxes around nodules13,14. To circumvent this limitation, images without segmentations have been used as
input into classification models15,16. An additional limitation of such approaches results from the use of US images
which generally display information at different sizes and scales of magnification; yet, deep learning methods
generally require consistent input formats. As a result, distortions due to image pre-processing can impact the
portrayal of pertinent image information, and impact model training as well as generalizability.

The goal of this study was to build a weakly supervised classification model based on multiple-instance learning
(MIL)17,18 to predict the nodule cytology at the patient-level using fused information from all frames of a given
patients’ US scan. MIL has been used successfully for other problems such as breast cancer classification19, Barett’s
cancer detection20, and lung cancer diagnosis21. The benefit of MIL is that it assigns labels to bags of instances
instead of requiring a discrete label for each instance. Bags with a positive label contain at least one positive
instance, while bags with a negative label contain only negative instances. The task of MIL is to learn the instances
that contribute to a positively labeled bag; traditional MIL selects a single instance that is most representative of the
entire bag via max-pooling. On the other hand, attention-pooling with MIL (AMIL) has shown to be effective at
simultaneously considering the importance of each instance for classification22.

We apply AMIL to the cytologic diagnosis of thyroid cancer from US images. Given biopsy reports associated with
each patient, the final cytology of a set of US images for each patient can be used as a weak label for patient-level
classification; therefore, all available data can be used for model development, including frames without nodule
segmentations. We also explore the extraction of patches from US images of different sizes as input to the AMIL
model, and fusing the pooled output of the model with clinical information, including age and sex. Patching removes
the effect of pre-processing with different pad, rescale, or crop operations that could distort the underlying image
information. Using patches as input to our AMIL models also offers the ability to interpret the models’ decision by
visualizing patch-level importance across multiple US images. Lastly, we analyze the utility of ensembling AMIL
models trained on patches of different scales. Altogether, we demonstrate that the fusion of AMIL models trained on
different scales of US image patches outperforms MIL models trained on features extracted from whole-image
frames, as well as baseline machine-learning classification models trained on only clinical information.

Methods
Data

Table 1. Demographic information for samples with cytology labels (n=434).
Variable Benign Malignant
Total (N) 357 77
Sex (N,%)

M 86 (24.0%) 24 (31.2%)
F 273 (76.0%) 53 (68.8%)

TI-RADS (N,%)
1 9 (2.5%) 7 (9.1%)
2 25 (7.0%) 8 (10.4%)
3 135 (37.8%) 3 (3.9%)
4 170 (47.6%) 28 (36.36%)
5 18 (5.0%) 31 (40.3%)

Age (mean, std.) 57.35 14.60± 50.18 17.14±

All data was acquired with approval from the UCLA Institutional Review Board (IRB#19-001535). UCLA Health
implements a standard protocol using different transducers at different locations to consistently achieve full
coverage of the thyroid. Scans from patients undergoing this protocol have been aggregated into the UCLA Thyroid
RadPath research dataset over the past thirteen years. The protocol yields 20-40 US images for each patient from
different orientations and views. Cytology labels were extracted from the corresponding biopsy report for each
patient. Any patients that had an indeterminate cytology label were excluded. For patients with multiple nodules at
the time of US and biopsy, the cytology of the nodule with the highest malignancy risk was assigned as the label for
the patient. Among all patients, labels were identified for 434 patients, of which 357 were benign and 77 were
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malignant (Table 1) which provides 15,350 frames in total. Demographic information including sex, age, and
TI-RADS score were also extracted. TI-RADS scores were missing for 49% of the patients due to acquisition prior
to the implementation of the scoring system at UCLA Health. Missing scores were calculated based on TI-RADS
associated key terms found in the corresponding radiology reports.

Baseline Model
Since the TI-RADS score is used to determine if further biopsy of a nodule is needed, it should hold some predictive
power. Additionally, thyroid cancer tends to occur more often in women and at certain age ranges23 and thus the sex
and age of the patient should also hold predictive power. A logistic regression model was used to classify patients as
benign or malignant using the values for sex, age, and TI-RADS score, which established a baseline classification
performance using clinical and demographic data for later comparison against models trained using imaging data.

Multi-scale Imaging Model
The workflow for patient-level malignancy classification using US imaging data involves a series of steps (Figure
1). First, all the US images for a given patient were collected as a bag, and the bag was assigned a single
patient-level label in accordance with the MIL framework. Next, lower-dimensional feature embeddings were
extracted from either the entire US image frames, or patches of the US images. These features were passed through
an AMIL model which outputted an aggregated feature vector weighted by the attentions allocated towards each
instance. After calculating the aggregated feature representation for each patient, the feature vectors were passed
through a classification layer to generate logits indicating the probability of malignancy. Prior to the classification
layer, additional information such as clinical variables were optionally concatenated to the feature vector. The output
logits from independently trained models could also be combined to enable the ensembling of different models
trained on different scales of data, such as features from whole frames and patches of different dimensions. Given
models that were independently trained on different scales of input data, the final classification probabilities could
be averaged to ensemble the decision of each model; this method is more computationally feasible than training a
single model on multiple scales of data, as well as forces each individual model to focus on relevant information
available at each scale.

Whole Frame Feature Extraction
The extraction of lower-dimensional feature representations allows for smaller bags of feature instances to be passed
to the AMIL model. To extract features from entire US image frames, we pre-processed the multiple images for a
given patient, and passed each image through a deep feature extraction network; all the lower-dimensional
embeddings for each patient were concatenated to form a consistent patient-level bag representation. Pre-processing
of the US images ensured that the downstream feature extractor operated on consistently formatted images.
Extraneous text details were removed from the left, right, top, and bottom borders of each image by cropping 125,
140, 100, and 100 pixels, respectively. The US probe orientation marker was removed using a 25px by 25px
prototype marker to remove the patch that most likely contained the marker measured by pixel-wise difference.
Intensity standardization was achieved by rescaling the intensity to the 2nd and 98th percentiles of intensity and then
normalizing to zero mean and unit variance. All images were square-padded to 759px by 759px, which was the
largest dimension across all images. To conform to the specifications of the feature extractor, the images were
resized to 224px by 224px and duplicated along the 3 color channels. A convolutional neural network (CNN) was
used to extract lower-dimensional feature representations of higher-dimensional images. We utilized an existing
ResNet50 network architecture that was pre-trained on ImageNet to obtain meaningful features that represented the
US images in a low-dimensional vector space24. Features were obtained from the output of the third hidden layer of
the network, which consists of 1024 neurons. Concretely, each input image of dimensions R224✕224✕3 was reduced to
a R1✕1024 vector. If n individual US images were associated with a single patient, then a bag representation of the
patient was formed by concatenating the feature vectors to form a Rn✕1024matrix for each patient.

Patching
Using a pre-trained feature extractor to obtain lower dimensional representations of each frame introduces several
limitations, such as poor information representation after pre-processing and domain shift. Alternatively, we tiled
each US image into uniform patches, and utilized a trainable CNN feature extractor to learn domain-specific features
of non-distorted US data. The tiling process was parameterized by tile dimension and stride; we explored variations,
including tiles of dimension 256px by 256px and 128px by 128px. Since each of the n individual US images
associated with a single patient can be of a different size, each US image ni can yield a variable number of patches
pi. The patches across all US images were concatenated to obtain p patches, forming a Rp✕m✕m patch representation
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for each patient, where m is the patch size. Passing the patch representation through a trainable feature extractor that
reduced each m by m tile to a R1✕1024vector resulted in a final Rp✕1024bag representation for each patient.

Figure 1. Attention-pooling multiple instance learning framework with multiple scales of data. The ensemble model
consists of three parts: whole frame AMIL, patch AMIL with the patch size of 128px by 128px, and patch AMIL
with a patch size of 256px by 256px. In the whole frame AMIL, each frame was passed into a pre-trained ResNet50
to obtain 1024-dimensional feature vectors. For the patch models, the whole frames were tiled into patches of two
different sizes and then passed into trainable CNN for feature extraction. The extracted features were then
concatenated and fed into an AMIL module to obtain a single aggregated feature vector for each patient. The clinical
features can be appended to the aggregated vector, which is passed into a forward-connected layer for final
malignancy prediction. Three models were trained independently. Two ensemble models were created by averaging
the predicted probability from two patch models and all three models.

Multiple Instance Learning
Given bag representations of US imaging data for each patient, we utilized MIL to achieve thyroid nodule cytology
classification17,18. MIL uses a single label to characterize an entire bag of instances, rather than requiring explicit
information about each instance in a bag; concretely, individual US images or patches do not require independent
labels. Instead, a bag is labeled as positive if it contains at least one single positive instance, and negative otherwise.
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Therefore, the biopsy reports of a patient can be parsed to obtain a single label to characterize whether a set of
patient’s US images contains at least one malignant nodule (malignant) or not (benign). A report which mentions at
least one malignant nodule in the patient’s US images results in the set of images being labeled as malignant. Benign
bags have no malignant nodules identified in the image set. This framework allows for the patient-level
classification of thyroid malignancy in a set of US frames without requiring nodule annotations or labels for each
frame or patch.

In the MIL framework, the model must learn the instances that contribute to the bag label. To achieve this goal, the
model utilizes pooling functions after one or more learnable layers to aggregate the bag instances. We implemented
AMIL to simultaneously consider the contribution of all instances towards the bag-level classification, rather than
max-pooling which uses one instance to define a bag22. Each instance is assigned an attention score that defines the
weighted contribution of the instance when aggregating into a single feature representation for bag-level
classification. The attention scores are calculated with a gated attention layer constructed from two parallel streams
of trainable linear layers with different activation functions22.

Interpretability
In attention-based pooling, each instance is assigned an attention score representing weights when aggregating all
instances into a bag-level classification; thus, attention-based pooling enables instance-level interpretability through
directly informing which instances contribute the most towards the bag-level classification based on attention score.
For bags consisting of whole-frame features, the attention scores indicate the relative importance of each frame
towards the final contribution. For bags of patches, the attention scores reveal more granular information regarding
which patches significantly contribute to the final classification. In both cases, the attention scores were normalized,
mapped to a colormap, and reconstructed to visualize the highly-attended instances. For the AMIL models trained
on patches, these visualizations were represented as heatmaps that highlight regions of interest (Figure 2). If the
model classifies a patient as malignant, then the heatmaps indicate which regions the model weighed more when
making that decision.

Figure 2. Heatmap interpretability pipeline from attention-based pooling with multiple-instance learning. AMIL
assigns each tile with an attention score, which shows the importance of the tile toward malignancy prediction, and
aggregates all patches based on the weights. The heatmap was reconstructed by extracting the attention scores from
the AMIL module and mapping them back to the original whole frame. The high-attention regions were shown in
red, and the nodule annotations obtained from radiologists were illustrated in yellow.

Experimentation and Evaluation
Patients were divided into five different non-overlapping splits of 80% training data and 20% validation data,
stratified by the cytology labels, to achieve five-fold cross-validation. We trained different models using the same
five-fold splits. We compared three different patient bag representations: whole-frame features from ResNet50,
patch features from 256px by 256px patches, and patch features from 128px by 128px patches. We also combined
the two best models trained on the different scales of patch features and averaged the output probabilities. Lastly, we
ensembled the best models trained on the patch features and whole-frame features to obtain the final combined
configuration. In total, the best configurations of these five primary model variations are reported in the results.
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For each of the above model variations, we retrained on a grid of hyperparameters to determine the optimal
configurations. However, it is essential to underscore that we maintained the default values for all training-related
hyperparameters (such as learning rate and batch size) as well as model-specific hyperparameters (such as model
architecture) throughout the entire experimentation process. The trainable CNN that extracts features from patches
was constructed with and without Dropout layers between each convolutional layer. Prior to the final classification
layer, we either passed the aggregated features or concatenated additional clinical variables (age, sex). To train the
classification task, we compared both weighted cross-entropy loss and focal loss, to account for the class
imbalance25. Lastly, we attempted to augment the training data with random horizontal flips and random rotations
between -15 and 15 degrees.

Each model was trained with early-stopping based on minimum validation loss with a patience of 10 epochs. The
probability of predicting each patient bag in the validation set as malignant was compared against each respective
true label. The area under the receiver operating characteristic curve (AUROC) was computed to evaluate the
classification performance of the models. Given that the cytology labels are imbalanced, the area under the
precision-recall curve (AUPRC) was also used to better assess the performance of the classifier on the minority
class26. We also reported the F1 score at the threshold that yielded the maximum F1 score, and the corresponding
accuracy, precision, and recall at the same threshold. The statistical significance of proposed models relative to the
baseline was evaluated at a significance level of 0.05 using the DeLong Test for AUROC and Wilcoxon signed-rank
test for accuracy27. We also used the Benjamini-Hochberg procedure to adjust the p-values to correct for
false-discovery rate.

Results
We developed and fine-tuned three models: frame AMIL, patch (256px by 256px) AMIL, and patch (128px by
128px) AMIL. In addition, we evaluated two ensemble models that combined the two patch models and all three
models, respectively. To assess the model performance, the mean and standard deviation of AUROC, AUPRC, F1,
accuracy, precision, and recall across five folds from cross-validation were computed. The detailed experimental
results of models that yield the best AUPRC are presented in Table 2. The predicted probabilities of malignancy
across five folds were combined together to plot the ROC and PR curves of all models, shown in Figure 3.

Table 2.Model performance. Mean and standard deviation of AUROC, AUPRC, F1, accuracy, precision, and recall
across five folds (*statistically significant at a significance level of 0.05).

Models AUROC AUPRC F1 Accuracy Precision Recall
baseline 0.667 0.103± 0.444 0.133± 0.499 0.139± 0.738 0.190± 0.460 0.182± 0.658 0.221±

frame 0.636 0.038± 0.363 0.054± 0.406 0.047± 0.689 0.124± 0.351 0.122± 0.572 0.141±
patch (128) 0.742 0.101± 0.502 0.141± 0.515 0.116± 0.788 0.104*± 0.516 0.242± 0.583 0.108±
patch (256) 0.737 0.075± 0.443 0.083± 0.495 0.096± 0.765 0.077± 0.424 0.123± 0.637 0.152±
ensemble

(patch 128 and
256)

0.785 0.104*± 0.539 0.146± 0.541 0.108± 0.813 0.062*± 0.502 0.122± 0.621 0.185±

ensemble
(patch 128 and
256 and frame)

0.772 0.098*± 0.548 0.121± 0.531 0.091± 0.800 0.066*± 0.480 0.134± 0.623 0.118±

The baseline model trained on sex, age, and TI-RADS score achieved an accuracy of 0.738, AUROC of 0.667,
AUPRC of 0.444, and F1 score of 0.499. The coefficients of the logistic regression model indicated that the
TI-RADS score (0.38) and age (-0.48) are more important features than sex (-0.20). Although the model trained on
the whole frame features did not perform as well as the baseline model, the models independently trained on two
patch sizes outperformed the baseline model. Specifically, the model trained on 256px by 256px patches achieved a
higher AUROC (0.737), and the model trained on 128px by 128px patches surpassed the baseline in terms of
AUROC (0.742), AUPRC (0.502), F1 score (0.515), and accuracy (0.788, p = 0.045). Additionally, the ensemble
model that aggregates the predictions from patch models trained on 128px and 256px achieved the highest
performance in all evaluation metrics with an accuracy of 0.813 (p = 0.008), AUROC of 0.785 (p = 0.024), AUPRC
of 0.539, and F1 score of 0.541. Although the ensemble of the frame and two patch models still presented promising
results (AUROC: 0.772, p = 0.025; AUPRC: 0.548; F1: 0.531; Accuracy: 0.800, p = 0.017) compared to the
baseline, the inclusion of frame model did not lead to further improvement in the performance of the ensemble
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model. Furthermore, Figure 3 highlights the ROC and PR curves that demonstrate that the two ensemble models
achieved the best performance.

Figure 3. ROC and PR curves for all models. Predicted probabilities across five folds of each model were combined
together to create the ROC (left) and PR (right) curves. The two ensemble models demonstrate the highest area
under the curve in both ROC and PR curves.

We utilized attention scores of two distinct AMIL models, each trained on patches with 128px by 128px and 256 px
by 256px, to generate a heatmap for each frame. Examples of the resulting heatmaps for a single patient with
malignant nodules are displayed in Figure 4. The generated heatmaps highlight the region with high-level attention
in red which corresponds to the area which contains the nodules.

Figure 4. Attention heatmap for multiple US frames of a single, correctly-classified, malignant patient. The level of
attention can be inferred by the degree of redness exhibited in the image, and the nodule annotations obtained from
radiologists were illustrated in yellow. The models pay high attention to the nodule, especially along the edges of the
nodules (a-c; f-h), and also to the non-nodule hyperechoic areas (d-e; i-j).

Discussion and Conclusions
Overall, the results demonstrate that incorporating US images within an AMIL workflow improves the classification
performance of patient-level malignancy compared to baseline performance when using information from radiology
reports. When using only features from whole US frames, performance is worse than baseline, which suggests that
the pipeline involving whole-frame image pre-processing and a ResNet50 feature extractor does not yield
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comprehensive representations of the original images. On the other hand, the use of patch features results in
improvements in classification performance, indicating that patch features are more representative of the original
image information. Models trained using features from 128px by 128px patches have a more balanced precision and
recall at the maximum F1 score, while models trained using features from 256px by 256px patches are biased
towards recall. The results from the ensembled models that average the logit probabilities from individually trained
models result in significant improvement measured by AUROC. Both cases where the outputs of models trained on
different patch scales are averaged, as well as different patch scales and whole US frames, result in significant
improvement. Thus, we achieve the best performance when combining models that are independently trained on
different scales of information. Whole-frame features do not contribute to improvement in performance, suggesting
that a multi-scale approach using patch data contains the best information when assessing the malignancy of thyroid
nodules.

The heatmap visualizations show that the models pay high attention to nodule regions that are clinically relevant for
diagnosis; however, several of the images show a mix of attention towards nodule regions, nodule edges, and
non-nodule regions. Consultations with radiologists reveal that the attended areas, including false-positive regions,
correspond to calcifications along the edges of nodules, irregular edges, as well as nodule and non-nodule
hyperechoic areas. Radiologists use similar information when scoring TI-RADS, indicating that our models are
paying attention to clinically relevant regions.

Previous work in the literature achieves exceptional thyroid nodule malignancy classification by applying deep
convolutional neural networks for feature extraction and classification11,12,13,14,15; however, these studies focus on the
classification of individual nodules, whereas we pursue a more realistic approach of patient-level classification.
Furthermore, they all depend on manual annotations of the nodules, while we develop methods that are not as
dependent on such labeled data. Other work approaches the problem using a similar MIL approach as ours; however,
such work utilizes additional elastograms, as well as hand-annotated lesions28. Another approach is similar to our
end goal, but the method limits the number of images utilized for each patient, as well as evaluates on radiology
results rather than cytology results29. None of the existing work utilizes different scales of information. We
contribute a model that achieves patient-level thyroid malignancy classification without requiring annotated data,
using AMIL with multiple scales of input US image features.

One limitation of our work is the use of a dataset from a single institution without external validation. Future work
includes the curation of external data to validate our workflow. Secondly, the US images are captured at different
views resulting in intrinsic variations in scale of the field of view. Such information is relevant because consistent
patch sizes in image space may not correspond to equal sizes in true space. Future work can involve obtaining such
information and assessing the impact on models that have been calibrated to such variations.

In conclusion, we have developed a multi-scale AMIL pipeline that performs patient-level malignancy classification
from multiple thyroid US images per patient. In addition to mitigating the dependency on pre-processing and
pre-trained feature extractors, patching helped focus on different scales of data, as well as refine the interpretability
from frame-level attention to patch-level attention. We demonstrate improvement over a baseline model that uses
TI-RADS data. The clinical application of an improved model can utilize the automatic analysis of imaging data to
better discern risk of malignancy, especially for benign cases, and ultimately achieve the goal of reducing
unnecessary biopsies.
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Supplemental Information

Table 4. Hyperparameters used for the frame and patch AMIL models. We trained our models with
hyperparameters: loss functions (focal loss or weighted cross-entropy loss), augmentation (no or yes), drop-out
layers in trainable CNN (added or not added), and clinical features (included or not included). Here, we show the
hyperparameters we used for the model with the best AUPRC score.

Models Loss Function Augmentation Dropout Clinical Features Stride size
frame Focal Loss Yes - Yes -

patch (128) Weighted
Cross-Entropy Loss

Yes No No 64

patch (256) Focal Loss No Yes Yes 256

Table 5. Performance of a late fusion model. Rather than ensembling models through the averaging of output
probabilities, we also attempt an alternative approach of late fusion where aggregated feature representations are
concatenated prior to the final classification layer. We document the mean and standard deviation of AUROC,
AUPRC, F1, precision, and recall across five folds. Performance does not significantly improve upon baseline
performance, in addition to significantly slower training speed (Table 5).

Models AUROC AUPRC F1 Precision Recall
Late fusion 0.685 0.102± 0.450 0.095± 0.457 0.105± 0.489 0.221± 0.546 0.223±
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