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Class II HLA interactions modulate genetic risk for multiple 
sclerosis
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# These authors contributed equally to this work.

Abstract

Association studies have greatly refined the understanding of how variation within the human 

leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which 

major effects are modulated by interactions is poorly characterized. We analyzed high-density 

SNP data on 17,465 cases and 30,385 controls from 11 cohorts of European ancestry, in 

combination with imputation of classical HLA alleles, to build a high-resolution map of HLA 

genetic risk and assess the evidence for interactions involving classical HLA alleles. Among new 

and previously identified class II risk alleles (HLA-DRB1*15:01, HLA-DRB1*13:03, HLA-

DRB1*03:01, HLA-DRB1*08:01 and HLA-DQB1*03:02) and class I protective alleles (HLA-

A*02:01, HLA-B*44:02, HLA-B*38:01 and HLA-B*55:01), we find evidence for two 

interactions involving pairs of class II alleles: HLA-DQA1*01:01–HLA-DRB1*15:01 and HLA-

DQB1*03:01–HLA-DQB1*03:02. We find no evidence for interactions between classical HLA 

alleles and non-HLA risk-associated variants and estimate a minimal effect of polygenic epistasis 

in modulating major risk alleles.

Since the earliest reports of association between multiple sclerosis and genetic variation in 

the HLA genes1, linkage screens2,3 and association studies4–11, together with imputation of 

classical HLA alleles from linked SNP data9,12–14, have established the key factors driving 
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patterns of association. In populations of northern European origin, risk is dominated by the 

HLA-DRB1*15:01 allele, with additional effects from class II risk alleles (HLA-

DRB1*03:01 (refs. 15,16) and HLA-DRB1*13:03 (refs. 4,9)) and class I protective alleles, 

including HLA-A*02:01 (ref. 9), HLA-B*44:02 (ref. 7) and HLA-B*38:01 (ref. 14). In 

addition, deviation from an additive model has been reported for some variants, with 

evidence that HLA-DRB1*15:01 exerts a dominant effect and HLA-DRB1*03:01 exerts a 

recessive effect17. However, the extent to which the effects of classical HLA alleles are 

modulated by interactions with alleles from other loci within or outside the HLA region 

remains to be established. Several studies have suggested the presence of such 

interactions17–21, although these did not achieve genome-wide significance or take account 

of linkage disequilibrium (LD) between alleles, population stratification and departures from 

additivity, any of which could either obscure or create false signals suggesting biological 

interaction. Furthermore, mouse models have indicated the presence of functional 

interactions between class II alleles22, although whether equivalent epistasis also occurs in 

humans is unknown. Interactions between classical HLA alleles and non-HLA risk-

associated loci have been described previously for coding variation in the antigen-processing 

ERAP1 gene and the class I HLA-B*27 allele in ankylosing spondylitis23, HLA-C*06 in 

psoriasis24 and HLA-B*51 in Behçet’s disease25, findings that provide insights into the 

putative mechanisms of these diseases. However, thus far, no such interactions have been 

reported for multiple sclerosis.

RESULTS

To assess the evidence for interactions involving classical HLA alleles influencing genetic 

risk for multiple sclerosis and quantifiable features of the disease, we analyzed patterns of 

HLA association in 17,465 multiple sclerosis cases and 30,385 controls from across 11 

independent cohorts genotyped as part of the Immunochip study (Supplementary Table 1). 

Classical HLA alleles were imputed at HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1, 

HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5 and HLA-DPB1 from linked SNP data 

using previously published methods12,13,26. Using cross-validation, we estimate the 

accuracy at four-digit resolution to be between 0.95 and 0.99 across loci for a posterior 

probability threshold of 0.7 and call rates of between 0.90 and 1.00 across loci 

(Supplementary Table 2), except for HLA-DPB1, for which limited training data were 

available, leading to a low call rate of 0.85 although the accuracy was 0.98. Uncertainty in 

HLA imputation, which is well calibrated13, was accounted for in our model analysis 

(Online Methods and Supplementary Fig. 1). Validation accuracy for all alleles reported here 

is shown in Supplementary Table 3. Population stratification within each cohort was 

controlled for by including the first five principal components of ancestry as covariates.

Our analysis had four goals: (i) to define the key components of genetic risk for multiple 

sclerosis arising from classical HLA alleles; (ii) to test for interactions among classical HLA 

alleles; (iii) to test for interactions between classical HLA alleles and non-HLA loci 

associated with multiple sclerosis; and (iv) to estimate the contribution of polygenic epistasis 

as a modulator of risk conferred by classical HLA alleles. We first used three stepwise 

approaches to construct a general logistic model of HLA risk for multiple sclerosis (Online 

Methods): analysis of the UK data set, guided initially by prior knowledge, followed by 
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validation of known and new effects through fixed-effect meta-analysis across cohorts; an 

automated model search involving mega-analysis of all alleles at four-digit resolution; and 

an augmented automated model search involving additional groupings of alleles at 

serological (two-digit) resolution and sharing of amino acid residues at variable positions, 

similar to an approach used in earlier work14. Our goal was to identify strong and repeatable 

signals of association most likely driven by classical HLA alleles and all other effects within 

the HLA region of comparable importance that cannot easily be attributed to classical HLA 

alleles. Only alleles with a fixed-effect meta-analysis P value of <1 × 10−9 are reported, a 

conservative threshold chosen to identify factors with compelling evidence for association 

(approximately equivalent to P = 0.001 after correcting for genome-wide multiple testing). 

Deviations from additivity were considered in both the manually guided and automated 

approaches. The results from the three approaches identified a consistent set of factors, 

although there was some variation in the ranking and identity of the focal variants in cases 

where the LD between alleles was strong (Supplementary Fig. 2). A consensus approach 

was used to summarize the findings.

A high-resolution map of HLA risk for multiple sclerosis

Across multiple cohorts of European ancestry, we found that the architecture of genetic risk 

for multiple sclerosis was dominated by a series of class II risk alleles (consistent with most 

risk signals being driven by alleles at HLA-DRB1) and a series of protective signals driven 

by class I alleles (Fig. 1 and Table 1). Risk was dominated by the well-characterized HLA-

DRB1*15:01 allele (odds ratio (OR) = 3.92; fixed-effect meta-analysis under a model 

including all reported effects, P = 2 × 10−686), which was partially dominant (homozygous 

OR = 8.30, P = 8.5 × 10−22 for the homozygote correction term, a measure of the deviation 

from additivity of the homozygous odds ratio). We also found largely recessive risk for 

HLA-DRB1*03:01 (heterozygous OR = 1.16, P = 3.5 × 10−8; homozygous OR = 3.47, P = 

1.3 × 10−30), additive risk effects from HLA-DRB1*13:03 (OR = 2.62, P = 6.2 × 10−55) and 

HLA-DRB1*08:01 (OR = 1.55, P = 1 × 10−23), and a dominant risk effect from HLA-

DQB1*03:02 (heterozygous/homozygous OR = 1.30, P = 1.8 × 10−22). Protective alleles 

included HLA-A*02:01 (OR = 0.67, P = 7.8 × 10−70), along with HLA-B*44:02 (OR = 

0.78, P = 4.7 × 10−17), HLA-B*38:01 (OR = 0.48, P = 8.0 × 10−23) and HLA-B*55:01 (OR 

= 0.63, P = 6.9 × 10−11), which, except for HLA-B*55:01, have been reported previously as 

being associated7,9,14,17, although HLA-B*38:01 was not reported at genome-wide 

significance. We found departure, albeit weak, from additivity at HLA-A*02:01 

(homozygous OR = 0.56, homozygous correction P = 3.3 × 10−5; the protective effect was 

weakly dominant), which is important to include for analyses of interactions.

For several alleles, there were a number of SNPs and classical alleles at other loci in strong 

LD (Table 1), and these cannot be excluded as potential determinants of the signal. In 

addition, we found evidence for risk variants in the vicinity of HLA-DPB1 that correlated 

with HLA-DPB1*03:01 (OR = 1.33, P = 5 × 10−36) but, as previously reported9,14,27, were 

strongest at rs9277565 (OR = 1.32, P = 2.1 × 10−52; r2 = 0.50). We also identified a 

missense variant in LTA, the gene encoding lymphotoxin α (rs2229092: C-allele OR = 1.33, 

P = 1.7 × 10−22), which is in LD (r2 ~0.50) with multiple other SNP variants in the samples 
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of European ancestry from the 1000 Genomes Project and weak association (r2 = 0.29) with 

the previously reported haplotype in MICB-LST1 (ref. 14).

After accounting for these effects, no other classical HLA allele was associated in the UK (P 
< 1 × 10−5), replicated in the meta-analysis (P < 1 × 10−9) and identified by the automated 

model searches. The analysis of alleles grouped by serological activity or sharing of encoded 

amino acid residues led to similar conclusions as the analysis based on four-digit alleles; 

however, it identified a protective effect for HLA-B alleles that shared a cysteine residue at 

position 326 (OR = 0.84, P = 1.2 × 10−24), and these alleles somewhat reduced the inferred 

protective effect of HLA-B*44:02 (although the latter remained genome-wide significant in 

a fixed-effect meta-analysis that included both). The grouping approach identified one 

shared amino acid residue (a serine at position 57 in HLA-DRβ1) that captured the risk 

associated with HLA-DRB1*08:01 and HLA-DRB1*13:03, although a model with separate 

effects for the two loci is preferred. The grouping approach also identified a homozygous 

protective effect for HLA-DQB1 alleles encoding a glycine residue at position 70, although 

this signal was better explained by an interaction.

Interactions among classical HLA alleles

Having defined the major loci affecting multiple sclerosis risk and their marginal mode of 

action, we next investigated evidence for interactions between the classical HLA alleles 

identified above and all other classical HLA alleles, within the UK cohort (Fig. 2a and 

Supplementary Fig. 3). We found evidence for a strong protective effect of HLA-

DQA1*01:01 only in the presence of HLA-DRB1*15:01 (Fig. 2a), which replicated in meta-

analysis (OR = 0.65, P = 1.3 × 10−17; Fig. 1). The strongest signal was seen at HLA-

DQA1*01:01; however, this allele was in LD with HLA-DRB1*01:01 (r2 = 0.6 in the UK), 

which also showed strong association (OR = 0.66, P = 5 × 10−12). The interaction can also 

be explained as occurring between HLA-DRB1*15:01 and the presence of two copies of 

HLA-DQB1 alleles encoding a glycine residue at position 70 (OR = 0.60, P = 8 × 10−33), 

with the evidence for the involvement of HLA-DQA1*01:01 being stronger in the UK but 

weaker in the combined analysis (Supplementary Table 4). A second allelic interaction 

involving HLA-DQB1*03:02 and HLA-DQB1*03:01 was also identified (Figs. 1 and 2a), 

such that the latter abolished the risk associated with the former (OR in the presence of 

HLA-DQB1*03:02 = 0.60, P = 7.1 × 10−12). No other pairs of alleles showed strong 

evidence for interaction within the UK cohort (P < 1 × 10−5) and/or replicated in meta-

analysis.

Interactions with non-HLA risk loci

We then tested for association between classical HLA alleles and 98 independent and 

previously identified non-HLA variants that influence risk for multiple sclerosis11. We found 

no evidence for interactions outside the HLA region involving any of the identified classical 

HLA alleles (Fig. 2b and Supplementary Fig. 4). Similarly, we found no evidence for 

interactions between classical HLA alleles and the effects of all non-HLA variants combined 

in a single risk score (Fig. 2c and Supplementary Fig. 5). We note that, initially, no departure 

from additivity was included for HLA-A*02:01, which led to inflation of the interaction 

terms with non-HLA associated alleles. This inflation disappeared when the partially 
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dominant effect of HLA-A*02:01 was included in the model, illustrating how failing to 

include departures from additivity can generate false evidence of interaction (Supplementary 

Fig. 6). Similar patterns were observed if the non-additive term for HLA-DRB1*15:01 was 

not included (Supplementary Fig. 6).

Testing for polygenic epistasis

Despite the lack of evidence for specific interactions, it is nevertheless possible that the 

effects of individual classical alleles are modulated by many weak effects at many loci 

across the genome. Such polygenic epistasis could be manifest by an elevated contribution 

of background relatedness to variation in disease risk in individuals who carry a specific risk 

allele. In theory, it would be possible to estimate separate random-effects components for 

additive and interacting components of background risk. However, in practice, such 

components are highly correlated, which makes efficient estimation for very large kinship 

matrices impractical. However, an alternative approach is to estimate the difference between 

cases and controls in the effect of background relatedness on predicting the allele of interest 

(Supplementary Note). In effect, this approach builds upon the intuition that genetic 

interactions generate LD that is manifest only in cases. Moreover, effects can be estimated 

using existing linear mixed-model methodology28, and simulations demonstrated that a 

study of this size is well powered to detect substantial epistasis if present (Supplementary 

Note). We applied the approach independently to the key associated classical HLA alleles 

and combined the results across cohorts through meta-analysis (Fig. 3). We found that, 

although the point estimate of the contribution of polygenic epistasis was substantial for 

some loci, the P value for a nonzero polygenic epistatic component was never less than 0.05, 

and, for the two most significant alleles (HLA-DRB1*15:01 and HLA-A*02:01), the point 

estimate was close to zero. Moreover, HLA-B*38:01, which showed the strongest effect, in 

being a rare allele might have greater population stratification than common alleles29, and a 

related estimator put the epistatic component for this allele at 0 (Supplementary Note). 

Overall, we conclude that there is no strong evidence for major polygenic epistasis 

modulating influence on classical HLA allele risk for multiple sclerosis.

Genetic influences on disease features

Finally, we considered whether HLA factors influence phenotypic features, including age at 

onset (n = 11,019), disease severity (MS severity score; n = 8,065) and clinical course 

(comparing primary progressive with relapsing onset disease; n = 12,450) (n is the number 

of cases for which data were available); Supplementary Table 5). First, we tested for 

association with an HLA-specific risk score obtained by multiplying the odds ratios of each 

individual’s geno-types across loci. We found evidence for association between the HLA 

risk score and age at onset (P = 6.6 × 10−10; Fig. 4a), which was driven by the HLA-

DQB*06:02–HLA-DRB1*15:01 haplotype (with each allele of HLA-DQB1*06:02 reducing 

age at onset by 0.72 years, P = 2 × 10−8; comparable to previous estimates9,30) (Fig. 4b) and 

the HLA-DQA*01:01–HLA-DRB1*01:01 haplotype (with each copy of HLA-DRB1*01:01 

increasing age at onset by ~1.4 years, P = 2 × 10−8) (Fig. 4c). Data for other alleles on these 

haplotypes are shown in Supplementary Figure 7. The preferred model for age at onset 

within the UK cohort included additive and independent effects for HLA-DQB1*06:02 and 

HLA-DRB1*01:01, although these alleles are in strong positive LD with HLA-DRB1*15:01 
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and HLA-DQA1*01:01, respectively (r = 0.97 and 0.76), and there was only a small 

difference in likelihood in comparison to a model involving these alleles (Supplementary 

Table 4). When the entire cohort was considered, the age-at-onset effect was better explained 

by a recessive effect for HLA-DQB1 alleles encoding a glycine at position 70 

(Supplementary Table 4), again without evidence for an interaction. Consistent with earlier 

observations, we found no strong or consistent associations with other disease features9 nor 

did we find evidence for interactions. In summary, genetic factors within the HLA region 

have only a weak effect on any aspect of disease subphenotype, and, where they do have an 

effect, it is in a manner broadly consistent with overall risk for multiple sclerosis, although 

without evidence for the interactions identified for disease risk.

DISCUSSION

Our results establish important features of the architecture of genetic risk for multiple 

sclerosis. In particular, a picture of relative simplicity emerges, with a series of class II risk 

alleles (consistent with most being driven by HLA-DRB1) alongside a series of protective 

class I alleles and with no strong contribution to disease severity or clinical course. Such 

findings are in direct contrast to the complexity found in inflammatory bowel diseases 

(IBD)31. Rather, we find a landscape largely absent of statistical interactions involving 

classical HLA alleles at the loci studied, although there are occasional substantial 

modulating effects for particular allelic combinations. These findings raise questions about 

disease mechanisms that require analysis in functional studies. For example, the finding that 

the protective effect of the HLA-DQA1*01:01–bearing haplotype is restricted to HLA-

DRB1*15:01 carriers suggests the possibility of a process mediated by T cell receptor cross-

reactivity (as proposed for HLA-DRB1*15:01–HLA-DRB5 interactions32). In contrast, the 

lack of interactions between class I and class II alleles suggests that the respective risk and 

protective effects of alleles within these two systems may act through very different 

mechanisms. The presence of multiple protective alleles, including rare alleles with strong 

effects (HLA-B*38:01, frequency ~1.1% in UK controls; HLA-B*55:01, frequency ~1.8% 

in UK controls), raises the question of whether carriers of these different alleles share related 

immunological properties that can potentially be manipulated through therapeutic 

intervention. More generally, although more might be learned from the use of even larger 

sample sizes, our finding of a modest contribution of interactions to variation in genetic risk 

suggests that epistasis involving classical HLA alleles does not contribute substantially to 

missing heritability33 in multiple sclerosis.

ONLINE METHODS

Data

The data consist of 11 country-level cohorts of European ancestry from Australia and New 

Zealand (AUSNZ), Belgium (BEL), Denmark (DEN), Finland (FIN), France (FRA), 

Germany (GER), Italy (ITA), Norway (NOR), Sweden (SWE), the UK (UK) and the United 

States (USA). In total, there were 47,850 individuals, and the per-population breakdown of 

the sample sizes, after quality control and exclusions, can be found in Supplementary Table 

1. Full details of the quality control that was performed can be found in the supplementary 
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materials of the first multiple sclerosis Immunochip analysis11. Briefly, sample-level quality 

checks included sex checks (samples excluded if the reported sex was inconsistent with the 

one observed on the basis of sex chromosome markers), call rate (samples were excluded if 

the call rate was <98%), autosomal heterozygosity (samples were excluded if more than 3 

s.d. from the mean), ambiguity or inconsistency in the Sequenom fingerprint ID and an 

excess of identity-by-descent (IBD) sharing (PI_HAT > 0.25). Contrary to the previous 

analysis11, here we have included individuals who overlapped with those included in the 

2011 GWAS9.

SNP-level quality control was carried out for each population separately, using individuals 

who passed sample quality control. The quality control consisted of checking (in the 

following order) whether the SNPs had a call rate of <98%, had a Hardy-Weinberg 

equilibrium P value of <1 × 10−5, exhibited differential missingness between cases and 

controls with a P value <1 × 10−3 or were monomorphic. Only SNPs that passed quality 

control in all populations were kept. Principal components were also calculated separately 

for each population, using the samples and an LD-pruned set of SNPs that passed quality 

control. An 1,330 additional samples were removed as being outliers from the principal-

component analysis (PCA). Further details on the choice of SNPs for the PCA calculations 

can be found in ref. 11. Full sample and SNP exclusion lists by cohort can be found in 

Supplementary Tables 10 and 11 of ref. 11, respectively. In total, in this study, we considered 

6,218 SNPs from within the extended MHC region34, from 29.9 Mb to 33.6 Mb (hg19/

GRC37) on chromosome 6.

Imputation of HLA alleles

Classical HLA types were imputed using the program HLA*IMP:02 (ref. 13). Briefly, 

HLA*IMP:02 uses a graphical representation of the haplotype structure (‘haplotype graph’) 

in the extended MHC region to statistically infer a sample’s classical HLA alleles. For this 

study, we created a haplotype graph from a pan-European reference panel 

(GS&HLARES_EU from ref. 26) combining sample data from the CEU34, CEU+ (ref. 34), 

1958 British Birth Cohort and HLARES13,26 data sets.

GS&HLARES_EU comprises 6,056 SNPs across the extended MHC (as defined in ref. 26) 

and a varying number of individuals with classical HLA type data available (1,864 

individuals with at least one 4-digit allele defined for HLA-A; 2,630 for HLA-B; 1,502 for 

HLA-C; 366 for HLA-DQA1; 2,031 for HLA-DQB1; 2,414 for HLA-DRB1; 74 for HLA-
DPB1; and 282 individuals with at least one 2-digit allele available for HLA-DRB3; 282 for 

HLA-DRB4; 282 for HLA-DRB5).

In the process of standard HLA*IMP:02 preimputation quality control, all SNPs with more 

than 20% ‘missing data’ in the multiple sclerosis data set were removed, and, for 

complementary SNPs, strandedness was aligned to HapMap. These steps were carried out 

with the standard HLA*IMP front end and are described in detail in the supplementary 

information of the 2011 GWAS9.

HLA alleles were imputed at a four-digit resolution for the loci HLA-A, HLA-C, HLA-B, 

HLA-DRB1, HLA-DQA1, HLA-DQB1 and HLA-DPB1 and at a two-digit resolution for the 
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loci HLA-DRB3, HLA-DRB4 and HLA-DRB5 as no four-digit resolution data were 

available as reference for the latter.

Validation of classical allele imputation for reported alleles

We assessed imputation accuracy by conducting a 2/3 (training) – 1/3 (validation) cross-

validation experiment on samples of known HLA types, used as a reference panel for the 

imputation. We employed the same statistical model and the identical set of informative 

SNPs as were employed in the analysis. At four-digit resolution, without imposing a 

threshold for calling on the posterior probabilities (call rate = 100%), the accuracy ranged 

from 0.9 to 0.99 (Supplementary Table 2).

We also investigated the sensitivity, specificity and positive predictive value (PPV) of all 

alleles found to be associated with multiple sclerosis or secondary phenotypes 

(Supplementary Table 3). Specificity was extremely high across all putatively associated 

alleles. Sensitivity and PPV were above 90% for all alleles found to be associated, apart 

from HLA-B*38:01 (PPV = 0.89), HLA-DRB1*08:01 (PPV = 0.84) and HLA-DRB1*01:01 

(sensitivity = 0.82, PPV = 0.90). No systematic pattern in misimputation was found for 

HLA-B*38:01, whereas the majority of misimputations for HLA-DRB1*01:01 and HLA-

DRB1*08:01 were with other alleles of the same two-digit type (for example, HLA-

DRB1*01:03 and HLA-DRB1*08:02, respectively).

Building a model of HLA risk for multiple sclerosis

Our aim was to identify the key classical HLA drivers of genetic risk for multiple sclerosis 

and other effects within the region that are of comparable significance but are not explained 

through LD to specific HLA alleles. We used three different approaches to build such a 

model, taking a consensus strategy to summarize the findings.

Approach 1: manually curated search with UK focus

Approach 1 focused initial discovery on the UK cohort, which is the largest of all and most 

closely matched to the imputation training data, and then combined evidence across all 

cohorts using fixed-effect meta-analysis to confirm (validate and replicate) the association, 

estimate effect size (odds ratios) and test for potential heterogeneity between cohorts. We 

recognize that if HLA allele imputation were perfect and population stratification were 

completely controlled, this approach would lose power relative to a simple joint analysis. 

Our approach, therefore, is conservative but robust to particular failures in imputation or 

control of population stratification.

We started by incorporating in our model the four HLA alleles that were found to be 

significantly associated with multiple sclerosis in the 2011 GWAS9, namely HLA-

DRB1*15:01, HLA-DRB1*13:03, HLA-DRB1*03:01 and HLA-A*02:01. As anticipated, 

these all replicated in the fixed-effect meta-analysis. Given that our training data only 

allowed two-digit resolution of HLA-DRB5 alleles, it was not possible for us to fully resolve 

the relative contributions of the tightly correlated HLA-DRB5*01:01 and HLA-

DRB1*15:01 alleles. On the basis of the known LD of virtually 100% between HLA-
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DRB1*15:01 and HLA-DRB5*01:01 in populations with European ancestry, the relative 

contribution of either allele to multiple sclerosis cannot be addressed in this study.

We then employed a stepwise logistic regression approach where additional parameters 

(both HLA alleles and SNPs in the MHC region) were considered for addition to the model 

if the strength of association in the relevant conditional analysis within the UK cohort had P 
< 1 × 10−5. We only report effects that had combined P < 1 × 10−9 in the fixed-effect meta-

analysis of the model containing all other alleles identified through this iterative process (the 

‘full’ model). Five principal components were included as covariates in all models (these 

principal components were calculated from SNPs across the genome, not including any from 

the extended MHC region, as described in the 2013 multiple sclerosis Immunochip study11). 

Sex was not included as a covariate. Where appropriate, we employed likelihood-ratio tests 

(LRTs) to choose among competing models where they were nested and the Bayesian 

information criterion35 (BIC) otherwise. The Supplementary Note provides details of the 

models considered and the steps taken at each stage of the selection procedure. A summary 

of the factors identified at each step is shown in Supplementary Figure 2.

To check consistency, we also rebuilt the model without any prior inclusion. All the alleles 

and effects reported were included, although in a slightly different order. In particular, the 

risk effect of HLA-DRB1*03:01 appears later (although it is still included).

Approach 2: automated model search at four-digit HLA alleles with cross-cohort mega-
analysis

To approach the construction of a general model for HLA allele risk for multiple sclerosis in 

a manner that was not guided by prior knowledge, we used an automated model search 

strategy in which all cohorts were considered jointly (referred to as a mega-analysis). Before 

analyses, we took the following steps: (i) we set the threshold for imputation to be 0, that is, 

taking the allele call with the highest posterior probability in each case and treating it as 

fixed. This step is needed to enable appropriate model comparison between loci. By way of 

comparison, setting a threshold of 0.5 would remove 2.2% of the imputed genotypes across 

loci. (ii) We removed alleles with a combined frequency after imputation across cohorts of 

0.5%. This step removed 55 alleles of 232 across the loci considered. (iii) We removed 

alleles imputed to be in perfect association (r2 = 1) with each other. This step removed 8 of 

177 alleles. (iv) We removed individuals for whom the imputed allele was not present in the 

IMGT database. This step removed 530 of 47,849 individuals.

Starting with a baseline model including effects for each cohort (as a factor) and principal 

components, at each stage, we performed logistic regression on disease risk for every 

classical HLA allele in turn, considering a general geno-type model (separate coefficients for 

each genotype). Consequently, the allele that led to the highest increase in likelihood was 

identified, and, in a separate step, the Bayesian information criterion (BIC) was used to 

decide whether the effect was best described as additive, recessive, dominant or general. A 

range of strategies for backward elimination were considered, although in practice no allele 

was ever removed. The model selection process was run until the BIC no longer increased. 

However, only effects that also achieved P < 1 × 10−9 in the fixed-effect meta-analysis are 
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reported. A summary of the factors identified at each step and how these relate to the factors 

identified by the other approaches is shown in Supplementary Figure 2.

We note that we also considered an automated search including SNP variants. However, 

because most classical HLA alleles are well tagged by at least one (and often many) SNP 

within the region, we commonly observed that effects that are typically interpreted as being 

driven by classical HLA alleles were assigned to SNPs (potentially owing to errors in 

imputation and/or chance fluctuations in association). We therefore only considered classical 

HLA alleles in the automated approach, although we compared results to the manually 

curated selection process to check consistency.

Approach 3: automated model search augmented with allele groupings at the two-digit 
level and by sharing of amino acids at variable residues

Previous research has demonstrated that some association between groups of classical HLA 

alleles and genetic risk for disease can be explained by the sharing of particular amino acid 

residues at variable sites within the mature protein14. We therefore considered a separate 

automated model search strategy on the combined cohorts in which we augmented the set of 

HLA alleles by genotypes at allele groups defined by both two-digit resolution and the 

sharing of specific amino acid residues at variable sites. Group membership was inferred 

from the imputed allele at four-digit resolution. Aligned amino acid sequences for the 

imputed alleles were obtained from IMGT on 4 March 2015. In a few instances, full amino 

acid sequences were not available for all alleles imputed.

We took the following steps: (i) we set the threshold for imputation to be 0, that is, taking 

the allele call with the highest posterior probability in each case and treating it as fixed. (ii) 

We removed alleles or allele groups with a combined frequency after imputation across 

cohorts of 0.5%. This step removed 108 alleles and allele groups of 454 across the loci 

considered. (iii) We removed alleles or allele groups imputed to be in perfect association (r2 

= 1) with each other. This step removed 22 of 346 alleles and allele groups. (iv) We removed 

individuals for whom the imputed allele was not present in the IMGT database. This step 

removed 530 of 47,849 individuals.

We considered a general genotype model for each allele or allele group at each step, starting 

from a baseline model with coefficients for each cohort and principal components. At each 

stage, the allele or allele group leading to the greatest increase in likelihood was identified, 

and BIC was used to assign additive, dominant, recessive or general models. The procedure 

was run until BIC no longer increased, although only effects that achieved P < 1 × 10−9 in 

the fixed-effect meta-analysis are reported. A summary of the effects identified at each stage 

is shown in Supplementary Figure 2.

Consensus strategy and comparison

The three model selection strategies identified a series of related although non-identical 

effects (Supplementary Fig. 2). Moreover, in two cases, the effects identified by the 

automated approaches were better described as interactions. For example, the homozygous 

protective effect identified as associated with HLA-DQB1 alleles with a glycine at residue 
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70 in step (vii) of the augmented model selection process was better explained (the data 

were 400 times more likely) through an interaction with HLA-DRB1*15:01.

Integrating uncertainty in classical allele imputations

To ensure that the identified associations were not affected by imputation quality, additional 

analyses where conducted where the uncertainty associated with imputation (quantified by 

the posterior probability of each call) was incorporated into the logistic regression 

framework, with numerical optimization used to find maximum-likelihood estimates. 

Specifically, for every classical allele, we fitted logistic models with additive and non-

additive effects for HLA-DRB1*15:01 and HLA-A*02:01, the top five principal components 

and the allele in question (with the disease model inferred from the initial analysis), with no 

uncertainty (alleles treated as perfectly measured) and with uncertainty (integrating out 

uncertainty in the genotype). Correspondence in the effect sizes and statistical significance 

are shown in Supplementary Figure 1.

Secondary phenotypes

Secondary phenotypes, including clinical course (primary progressive versus relapsing 

remitting multiple sclerosis), severity (calculated by the multiple sclerosis severity score, 

MSSS, which reflects the rate at which patients affected with the disease accumulate 

disability36) and age at onset were available for a proportion of the samples studied 

(Supplementary Table 5). We used a combination of manually curated and automated 

searches to explore genetic associations to secondary phenotypes. Details are provided in the 

Supplementary Note.

Interactions among classical HLA alleles

To investigate potential interactions between the HLA alleles included in our model and 

other HLA alleles, we first ran models with (i) two parameters (one additive and one 

homozygote correction term) to model the effects of HLA-DRB1*15:01 and HLA-A*02:01; 

(ii) parameters for each of the top five principal components; (iii) a single parameter 

included for each other SNP or HLA allele identified as associated with multiple sclerosis in 

this analysis (additive on the log-odds scale for all alleles apart from HLA-DRB1*03:01 and 

HLA-DQB1*03:02, where a recessive and a dominant effect, respectively, were assumed); 

(iv) a single parameter (additive on the log-odds scale) for each other HLA allele in turn; 

and (v) an interaction term, which models the effect of each other HLA allele in the presence 

of the allele under consideration. Quantile-quantile plots of the interaction term for these 

analyses are shown in Figure 2 and Supplementary Figure 3 for the UK cohort.

Interactions between classical HLA alleles and non-HLA associated loci

We assessed evidence of interaction between HLA risk alleles and non-HLA risk loci 

associated with multiple sclerosis identified in the recent Immunochip study11, by fitting 

models with (i) risk parameters for the classical HLA allele as identified above (Table 1); (ii) 

parameters for the top five principal components; (iii) a parameter for the non-HLA variant 

(additive on the log-odds scale); and (iv) an interaction parameter for the effect of the non-

HLA SNP in the presence of the classical HLA allele in question. Quantile-quantile plots of 
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the interaction term for these analyses are shown in Figure 2 and Supplementary Figure 4 for 

the UK cohort.

For HLA-A*02:01, initial evidence for deviation from the expected uniform distribution of P 
values led to the identification of a weak non-additive effect of the allele, correction for 

which removed any evidence for HLA–non-HLA interactions (Supplementary Fig. 6).

We also asked whether the effect of HLA alleles on multiple sclerosis risk was stratified by 

the cumulative risk from the non-HLA effects. To do this, we divided the samples (combined 

cases and controls within the UK cohort) into quartiles of non-HLA risk score (RS), defined 

by combining information across the L loci found associated in ref. 11. Specifically, the RS 

for an individual j was calculated as

where Gij ∈{0,1,2} is the genotype for non-HLA SNP i and bi is the corresponding inferred 

log-odds risk ratio. Results are shown in Figure 2 and Supplementary Figure 5.

Estimating the contribution of polygenic epistasis to HLA allele risk

To assess whether many weak effects spread across the genome modulate the genetic risk for 

multiple sclerosis arising from classical HLA alleles, we developed and validated a new 

statistical approach that exploits the idea that interactions generate case-only LD among 

interacting alleles. Full details of the method are provided in the Supplementary Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of genetic effects in the HLA region influencing risk for multiple sclerosis. The 

relative locations of the classical HLA loci are shown (central bar) along with forest plots for 

each of the major effects identified. Each forest plot shows the estimated odds ratio from the 

cohort-specific logistic model and the 95% confidence interval, with point size proportional 

to sample size and the cohorts ordered by size (Supplementary Table 1). The bottom point 

for each locus and the corresponding red dashed line show the result from fixed-effect meta-

analysis (META). Plot background indicates the nature of the effect: none, main effect; blue, 

departure from additivity; pink, interaction. The lead allele for each signal is indicated. The 

solid black line represents OR = 1 for additive effects and the expected homozygote effect 

for departures from additivity. Curly brackets represent an indicator function that combines 

heterozygotes and homozygotes into a single category. HOM, homozygote.
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Figure 2. 
Evidence for interactions with associated HLA alleles. Results are shown here for HLA-

DRB1*15:01 (top row), HLA-A*02:01 (middle row) and HLA-DQB1*03:02 (bottom row). 

Results for the other associated HLA alleles are shown in Supplementary Figures 3–5. (a) 

Quantile-quantile plot showing the distribution of P values for the interaction terms between 

the indicated multiple sclerosis–associated allele and all 152 other classical HLA alleles 

analyzed. (b) Quantile-quantile plot showing the distribution of P values for the interaction 

terms with the 98 previously identified non-HLA multiple sclerosis–associated alleles11. In 

each plot in a and b, the red line represents the expected relationship, and dashed lines 

represent the 95% confidence interval. (c) The effect of the indicated allele among 

individuals stratified in quartiles by a combined non-HLA risk score. The point estimate and 

95% confidence interval for effect size are estimated independently for each quartile of non-

HLA genetic risk. For each plot, the dashed and dotted lines represent the combined point 

estimate and 95% confidence interval, respectively. All analyses are for the UK cohort only. 

Interaction analyses included all non-epistatic effects within the model of Figure 1, 

including non-additive effects of the indicated allele.
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Figure 3. 
Estimates of polygenic epistasis influencing the effects of major HLA loci on multiple 

sclerosis. Point estimates (X’s) and 95% confidence intervals (lines; floored to zero) are 

shown for the ratio of the standard deviation in effect induced by genome-wide polygenic 

epistasis to the absolute magnitude of the average effect size for classical HLA alleles 

influencing risk of multiple sclerosis. Results are shown from fixed-effect meta-analysis 

across cohorts. Under a simple model (Supplementary Note), this factor can be estimated by 

comparing the difference in apparent heritability for major alleles between cases and 

controls. The dashed lines at 0 and 1 indicate, respectively, the case with no epistasis and the 

case where the standard deviation in the epistatically induced effect equals the average main 

effect.
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Figure 4. 
HLA effects on age at onset. The point estimate and 95% confidence interval are shown for 

each cohort (with the area of each square proportional to sample size) along with the meta-

analysis estimate (META; brown dashed line). (a) Forest plots showing fixed-effect meta-

analysis of the effect of combined HLA risk score (Online Methods) on age at onset of 

multiple sclerosis. (b,c) Meta-analysis of the effects of the HLA-DRB1*15:01 (b) and HLA-

DRB1*01:01 (c) alleles on age at onset (results for HLA-DQB1*06:02 and HLA-

DQA1*01:01 are shown in Supplementary Fig. 7).

Moutsianas et al. Page 20

Nat Genet. Author manuscript; available in PMC 2016 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Moutsianas et al. Page 21

Table 1

HLALA alleles and SNSNPs found to be significantly associated with multiple sclerosis in this study

HLA allele or 
SNP Parameter

Frequency in
UK/all controls

FEM P valuea

FEM ORb

(95% CI)c
HLA alleles in LD

(UK controls)d
SNPs in 

LD
(UK 

controls)e

HLA-DRB1*15:01 Additive effect
Homozygote correction

0.143/0.134 <1 × 10−600

8.5 × 10−22
3.92 (3.74–4.12)
0.54 (0.47–0.61)

HLA-DQB1*06:02,
HLA-DRB5*01, 
HLA-DRB5
negative (r2 > 0.9),
HLA-DQA1*01:02 
(r2 > 0.8)

rs3135391, 
rs3135388,
rs3129889, 
rs9271366
(r2 > 0.95)

HLA-A*02:01 Additive effect
Homozygote correction

0.276/0.285 7.8 × 10−70

3.3 × 10−5
0.67 (0.64–0.70)
1.26 (1.13–1.41)

None rs4713274, 
rs9295825,
rs2517840, 
rs2523822
(r2 > 0.9)

HLA-DRB1*03:01 Additive effect
Homozygote correction

0.143/0.124 3.5 × 10−8

1.3 × 10−30
1.16 (1.10–1.22)
2.58 (2.19–3.03)

HLA-DQA1*05:01,
HLA-DQB1*02:01
(r2 > 0.95), HLA-
DRB3*01,
HLA-B*08:01 (r2 > 
0.5)

rs2854275 
and five 
more
SNPs with 
r2 > 0.95

HLA-DRB1*13:03 Additive effect 0.009/0.010 6.2 × 10−55 2.62 (2.32–2.96) None None

HLA-DRB1*08:01 Additive effect 0.020/0.027 1.0 × 10−23 1.55 (1.42–1.69) HLA-DQA1*04:01 
(r2 > 0.95),
HLA-DQB1*04:02 
(r2 > 0.9)

rs7775055, 
rs4713586
(r2 > 0.9)

rs9277565[T] Additive effect 0.206/0.204 2.1 × 10−52 1.32 (1.27–1.36) HLA-DPB1*03:01 
(r2 > 0.5)

rs9277561, 
rs9277567
(r2 > 0.95)

HLA-B*44:02 Additive effect 0.114/0.093 4.7 × 10−17 0.78 (0.74–0.83) HLA-C*05:01 (r2 > 
0.5)

rs9266773 
(r2 > 0.95)

HLA-B*38:01 Additive effect 0.011/0.018 8.0 × 10−23 0.48 (0.42–0.56) None None

HLA-B*55:01 Additive effect 0.018/0.016 6.9 × 10−11 0.63 (0.55–0.73) None rs3819284, 
rs3093547
(r2 > 0.5)

HLA-DQA1*01:01 Additive effect in
the presence of
HLA-DRB1*15:01

0.144/0.147 1.3 × 10−17 0.65 (0.59–0.72) HLA-DQB1*05:01,
HLA-DRB1*01:01
(r2 > 0.5)

rs13193645 
(r2 > 0.95)

rs2229092[C] Additive effect 0.060/0.063 1.7 × 10−22 1.33 (1.26–1.41) None None

HLA-DQB1*03:02 Dominant effect 0.105/0.105 1.8 × 10−22 1.30 (1.23–1.37) HLA-DQA1*03:01 
(r2 > 0.5)

rs3957146, 
rs3998159
(r2 > 0.95)

HLA-DQB1*03:01 Allelic interaction with
HLA-DQB1*03:02

0.187/0.194 7.1 × 10−12 0.60 (0.52–0.69) None rs2858312 
(r2 > 0.5)

a
Fixed-effect meta-analysis (FEM) P value from the full model. The order of reporting follows a manually curated approach.

b
Estimated odds ratio (OR) from fixed-effect meta-analysis.

c
95% confidence interval (CI) from fixed-effect meta-analysis.

d
All HLA alleles with r2 >0.5 in the UK cohort are shown, classified with r2 thresholds of 0.95, 0.9, 0.8 and 0.5.

e
Only the most strongly associated SNPs in the UK cohort are shown, classified with r2 thresholds of 0.95, 0.9, 0.8 and 0.5.
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