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Geometric representations of evidence in models of decision-making
Peter D. Kvam (kvampete@msu.edu)

Department of Psychology, Michigan State University
316 Physics Rd, East Lansing, MI 48824 USA

Abstract

Traditionally, models of the decision-making process have fo-
cused on the case where a decision-maker must choose be-
tween two alternatives. The most successful of these, sequen-
tial sampling models, have been extended from the binary case
to account for choices and response times between multiple
alternatives. In this paper, I present a geometric representa-
tion of diffusion and accumulator models of multiple-choice
decisions, and show how these can be analyzed as Markov
processes on lattices. I then introduce psychological relation-
ships between choice alternatives and show how this impacts
the sequential sampling process. I conclude with two examples
showing how one can predict distributions of responses on a
continuum as well as response times by incorporating psycho-
logical representations into a multi-dimensional random walk
diffusion process.
Keywords: random walk; decision making; evidence accumu-
lation; multi-alternative; continuous response

Introduction
Traditionally, models of the decision-making process have fo-
cused on the case where a decision maker has two options
between which to choose. By far the most empirically suc-
cessful accounts of this process are sequential sampling mod-
els, which are able to reproduce decision makers’ observed
choice proportions and distributions of response times with
high fidelity.

Sequential sampling models can be broadly broken down
into two categories: diffusion models and accumulator mod-
els. The former type of model posits that a person represents
the information or evidence they have regarding the decision
as a balance between the two choice alternatives. In inferen-
tial decisions, this balance can be formally represented as the
log odds of one alternative (hypothesis) relative to another,
requiring that the sum of the log odds for all hypotheses sum
to zero (i.e. so that the probabilities of all hypotheses sum
to one). A decision is triggered when the log odds for one
hypothesis over the others exceeds a critical threshold value.

Accumulator models, by contrast, represent information or
evidence for the alternatives as separate quantities [accumu-
lators]. As a decision maker gathers or receives information,
each accumulator is updated, and a decision is triggered once
one of the accumulators reaches a critical threshold value.
However, each of the accumulators is usually assumed to be
independent such that incrementing one’s value does not af-
fect another’s.

More recently, these models have been extended to ac-
count for decisions between multiple alternatives. In the case
of models where evidence for alternatives is represented as
multiple independent accumulators (one may think of these
as ’pure’ accumulator models), this is straightforward – one
need only add an additional accumulator for each additional

choice alternative. A decision is still triggered once any of
these accumulators reach a critical threshold, so this addition
can be done ad infinitum, or at least until a modeler runs out
of computational resources.

For diffusion models, adding alternatives is only slightly
more complicated. In a 3-alternative case, rather than de-
creasing the log odds of B by 1 every time the log odds of A
increase by 1, one would have to decrease the log odds of B
and C each by 1/2 when the log odds of A increase by 1. This
ensures that the log odds across all hypotheses sums to zero /
probabilities sum to one. As more alternatives are added, this
decrement decreases so that incrementing evidence for a sin-
gle alternative by 1 also decrements all other alternatives by

1
n−1 . The same decision rule applies – once the (log odds) ev-
idence in favor of one alternative exceeds a critical threshold,
a decision is triggered.

Although assuming independence of accumulators or at
least a uniform distribution of negative evidence are conve-
nient simplifying assumptions, they are perhaps unrealistic.
A substantial body of literature has suggested that there are
often strong and unbalanced interactions between different
pairs of items in a set. For example, context effects aris-
ing from the inclusion of a third alternative – such as de-
coy, compromise, and similarity effects – substantially alter
choices between an original set of two (see e.g. Trueblood et
al., 2014). Similarly, in absolute identification tasks, adjacent
categories (e.g. 50-60 and 60-70) interact more strongly than
non-adjacent ones (50-60 and 80-90) (see Brown et al., 2008).

Models of decision making have been modified in a num-
ber of ways to account for these phenomena. For example,
decision field theory (Busemeyer & Diederich, 2002) intro-
duced an additional step in the decision process where pairs
of items are contrasted against one another before comput-
ing accumulator values. The leaky competing accumulator
model (Usher & McClelland, 2001, 2004) introduced compe-
tition and loss aversion to a similar effect, the multi-attribute
linear ballistic accumulator model (Trueblood et al., 2014)
includes pairwise comparisons as well as subjective attribute
values, and the selective attention, mapping, and ballistic ac-
cumulation model (Brown et al., 2008) specifies and utilizes
adjacency between categories to define the evidence accumu-
lation process for separate accumulators. Similarly, models
of confidence (see Pleskac & Busemeyer, 2010; Ratcliff &
Starns, 2009) specify adjacency of judgment categories using
ordinal states or accumulators.

What all of these models have in common is that they
specify psychological relationships between alternatives in a
choice set. Indeed, Trueblood et al. (2014) note explicitly
that decisions are made between the psychological represen-
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tations of alternatives rather than physical ones, and that this
is the key component allowing the different models to account
for context effects. These models each add components in
order to avoid making the simplifying assumptions of inde-
pendence and uniform negative evidence. Instead, they sug-
gest that evidence for alternative A may also be evidence for
alternative B and simultaneously be strong evidence against
alternative C.

In the next section, I examine how the psychological rela-
tionships between alternatives can be thought of as geometric
relations in a psychological space.

Geometry of evidence accumulation
In order to introduce a geometric representation of the deci-
sion process, I return first to the simple binary cases. Using
the binary choice diffusion model, one can establish a rule to
construct models relating accumulator and diffusion models,
construct geometric models of evidence accumulation among
multiple alternatives, and in turn derive a method for model-
ing evidence accumulation when the number of alternatives
is very large or continuous (infinite).

Equal relative evidence models
The basic uni-dimensional diffusion model (Ratcliff & McK-
oon, 2008) originally described the behavior of particles
along a single dimension in space. Its natural geometric ana-
logue is a random walk on a line (Figure 1A). In inference
tasks, this single dimension may correspond to the log odds
of one hypothesis (H1) relative to another (H2).

Put simply, the closer a person’s representation of evidence
(or preference) is to a boundary corresponding to a choice al-
ternative, the more they currently favor that alternative. Ev-
idence that provides support for an alternative H1 moves a
person’s state orthogonally toward the boundary correspond-
ing to H1 in direction D1 and away from the boundary H2,
which is in direction D2. This gives rise to a spatial relation-
ship between the amount of evidence (Ev) a particular piece
of evidence supporting one hypothesis H1 provides for an-
other hypothesis H2:

Ev(H2)← Ev(H1)cos(6 D1D2) (1)

In the two-alternative diffusion model, the evidence fa-
voring alternative H1 must move the state in the oppo-
site direction from evidence favoring alternative H2, so that
cos(6 D1D2) =−1.

In order to obtain the case for three alternatives, where ev-
idence for H1 decreases the log odds of H2 and H3 equally,
it must be the case that cos(6 D1D2) = cos(6 D1D3) = − 1

2
(and of course it will also be the case with cos(6 D2D3) to
conserve total log odds).1 This results in an evidence accu-
mulation process that unfolds in a plane, contained within an

1Note that this approach offers an alternative solution to the
relative-accumulator problem encountered by Nosofsky (1997),
where there was more negative evidence than positive evidence
added across accumulators if increments and decrements were re-
stricted to values of one.

equilateral triangle (Figure 1B). A decision is triggered when
a state crosses one of the sides of the triangle, each of which
corresponds to choosing one of the alternatives (see Laming,
1968, for a similar proposal).

Extending this strategy to model decisions between any
number of alternatives is relatively straightforward. In or-
der to account for decisions where there are n alternatives,
one must create a situation where there are n directions
{D1,D2, ...,Dn} satisfying the property cos(6 DiD j) =− 1

n−1 ,
i 6= j, so evidence for any alternative provides evidence
against all others equally. In the case of 4 alternatives, the
boundaries corresponding to H1−H4 would each be a plane
in a 3-dimensional space, together forming a tetrahedron
(Figure 1C), and evidence accumulation will unfold in a 3-
dimensional space.

In order to accommodate n alternatives, this would natu-
rally be extended to permit evidence accumulation in (n−1)
dimensions. The state would exist in the interior of a sim-
plex, with the choice boundaries corresponding to each of its
(n−2)-dimensional facets.

It is worth a note that the cosine relation in Equation 1
will preserve log odds in any n-dimensional space by virtue
of every integral

´
···
´ 2π

0 cos = 0. However, later examples
where decision bounds do not form regular figures show that
log odds are preserved across the theoretically possible space
of alternatives but not necessarily across all available ones.

Absolute evidence models
While it is often practically unnecessary to envision accumu-
lator models in a geometric way, doing so illustrates the psy-
chological assumptions that go into these models and allows
them to be analyzed as a random walk. In the two alternative
case, evidence in favor of H1 provides no information regard-
ing H2. Using the relationship defined by equation 1, this
means that the directions corresponding to each alternative
must be orthogonal, cos(6 D1D2) = 0. The choice boundaries
therefore form two sides of a rectangle (Figure 1D).

However, the evidence state does not immediately have a
clear log odds interpretation as it did in the diffusion models.
One could potentially address this by assuming that there are
two theoretical alternatives in directions−D1 and−D2 (if D1
and D2 are given by vectors) and anchor log odds to be zero
at the initial state. This would allow computation of relative
log odds of the hypotheses in the case a person wanted to
make a relative judgment of the two alternatives (e.g. prefer-
ence or confidence). However, doing so is not necessary for
predicting choices and response times.

Extending accumulator models to three or more alterna-
tives is relatively straightforward. One need only add addi-
tional, orthogonal dimensions to the evidence accumulation
space, then set the choice criterion and new direction Dn for
each new alternative as orthogonal to existing ones. In the
case of three alternatives, this would yield a figure bounded
by three choice criteria constituting sides of a cube (Figure
1E). For n alternatives, the orthogonal choice criteria would
compose a set of intersecting facets of an n-cube.

1099



Figure 1: Representation of a person’s accumulated evidence and choice criteria for 2-, 3-, and 4-alternative diffusion processes
(A, B, C) and 2- and 3-alternative accumulator processes (D, E). An alternative is chosen when a person’s represented evidence
(yellow / red) crosses the corresponding edge (for models A, B, and D) or face (for models C and E).

Random walks
This geometric framework lends it self to both discrete-
time and continuous-time as well as discrete-space and
continuous-space random walk representations. A discrete-
space structure can be given to the models I have described
so far by imposing a lattice structure upon them.

For example, suppose we are interested in using an equal
relative evidence diffusion model to describe how a person
sorts a color stimulus into three categories: red, blue, or
green. This corresponds to the triangular structure shown in
Figure 1B. In order to produce a discrete random walk in this
space, one can construct a triangular lattice bounded by the
three choice criteria.

In this case, a person’s internal representation of the stim-
ulus in terms of the log odds of the three hypotheses (red,
green, blue) corresponds to their position on the lattice. Ini-
tially, they might start out in the middle (unbiased / 0), but
as they view the stimulus they should sample pieces of evi-
dence that favor green, red, or blue, causing them to step at
angles π

6 , 5π

6 , or 9π

6 radians on the lattice. The probability of
taking a step in each direction is given by p (for green), q
(for red), and 1− p− q (for blue, to sum to one). The edges
of the lattice defined by choice criteria consist of absorbing
states; upon entering one of these states, the person halts the
transition process and selects the corresponding alternative.

This state transition process can be represented as a
Markov chain much as the 2-alternative diffusion model is
(see Diederich & Busemeyer, 2003), with the caveat that each
state has three rather than two transition destinations. It can
be implemented as a continuous-time random walk by intro-
ducing the standard exponentially distributed transition time
(requiring one additional sampling rate parameter), allowing
prediction of choice probabilities as well as response times
for each of the three possible choice alternatives.

Both the relative and absolute evidence models with any
number of alternatives can be described in a similar way. The

Figure 2: Lattice and state transition structure for a 3-
alternative, relative evidence model of color identification.

lattice shape will change and the number of transition desti-
nations at each step will grow along with the number of al-
ternatives, but the sampling rate and thresholds operate in a
similar way.2

Note that a person’s representation will only be able to step
toward available alternatives (not directly away from them)
– in Figure 2, this is indicated by unidirectional transitions.
Similarly, in accumulator models like the one shown in Fig-
ure 1D, the representation will only be able to step to the right
or upward. It is perhaps worth noting that the transition prob-
abilities and sampling rate in such a case can be obtained from
the accumulation rates of independent Poisson accumulators
(as in Smith & Van Zandt, 2000), making it possible to swap
between the separate race and single geometric random walk
process representations (see, e.g., Ross, 2014).

Such a random walk still requires an initial state. Bias can
be introduced by moving the initial state closer to one bound-
ary or another, and starting point variability (required for pre-

2Indeed, a fixed sampling rate but a larger number of alternatives
will yield slower response times, which may give rise to Hick’s Law
(Hick, 1952)
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dicting fast errors) can be introduced by specifying a mixed
state across starting positions.

Psychological spaces
Thus far I have focused mainly on the geometric structure of
models where evidence for one alternative has no net effect
on the evidence balance between other alternatives. How-
ever, this is often an unrealistic assumption. Returning to
color categorization, suppose that a participant must match
a stimulus to one of 4 categories: red, yellow, green, or blue.
One might expect that a stimulus emitting light peaking at a
wavelength 610 nm (orange) would provide evidence in favor
of both “red” and “yellow” responses, but provide evidence
against a “blue” or a “green” response.

In such a case, it makes little sense to treat red, yellow,
blue, and green categories as independent or equally related
alternatives. Instead, they must be related to one another by
constructing a psychological space describing the cognitive
representations of the stimulus and choice alternatives.

Doing so requires two generalizations of the framework
described in the previous section. First, the directions cor-
responding to alternatives are permitted to vary. There are
several ways to do so. For example, they could be released
to vary as free parameters – in 2 dimensions, this could sim-
ply be the angle relative to a reference direction, though this
would require more parameters when moving to 3 or more
dimensions. Alternatively, the directions could be set a pri-
ori by the modeler. This could be done by using the physical
characteristics of the stimulus, by using existing similarity
judgments, or by using existing psychological theory. I give
examples of these approaches in the next section.

Second, a person’s representation of evidence is modified
to reflect the type of information they gather from the stimu-
lus relative to the type of responses they can make. For ex-
ample, if a person is trying to reproduce the orientation of
a stimulus that can vary anywhere from 0 to π radians, they
must be able to sample and represent information that favors
any direction between 0 and π radians. This will often mean
that discrete-state Markov chain representations of the evi-
dence accumulation process are no longer possible, except as
approximations or in the rare case that the choice alternatives
are arranged in a psychological space so that their orientations
allow for a convenient lattice to be superposed upon them.

Random walks in psychological space
Instead of the discrete-state Markov chain, evidence accumu-
lation in a psychological space is enabled by utilizing a multi-
dimensional random walk. In this framework, a person’s cog-
nitive state representing evidence they have gathered from a
stimulus is described by a point in a multidimensional (e.g.
feature-based) space. As a person integrates a new piece in-
formation, this state representation is updated by drawing a
random variable φ that describes a direction in the space and
moving one unit of distance in that direction.

The distribution of φ is determined by the stimulus and the
psychological space in which it is represented. The arrival

time of each piece of evidence is again described by an ex-
ponential distribution, Exp(λ). As before, once the state rep-
resentation crosses one of the boundaries corresponding to a
choice alternative, that alternative is chosen, yielding a choice
and response time.

Examples
It is perhaps helpful to visit some examples of how to con-
struct a psychological space and sampling distribution. For
each example, we must consider several important factors:
what type of response is being elicited (are they discrete /
continuous, time-dependent?); how these responses relate to
one another in terms of their psychological representation
(are they similar, what physical dimensions overlap, how are
they processed at a sensory level?); and how a person gathers
and represents information about the stimulus relative to the
response options (how much evidence does percept X pro-
vide for alternative Y?). I do so for two cases: an orientation
estimation task where responses can fall anywhere along a
continuum and a color identification task where participants
must match a color stimulus to a set of categories.

Orientation task

Perceptual tasks often lend themselves to straightforward
psychological representations. A common stimulus used to
examine how people (as well as other animals) perceive the
orientation of objects in the world is the Gabor patch (Figure
3) (see, e.g., Wilson et al., 1983). They may be used in tasks
where participants must distinguish one from a set of stim-
uli, decide between left- or right-leaning orientation, or be
combined with color or motion. We examine the simple case
where a participant in a task must reproduce the orientation
of a Gabor patch stimulus.

Figure 3: State representation, sampling, threshold, and evi-
dence trajectories for the orientation matching task.
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Because these stimuli are symmetric across horizontal and
vertical axes, meaning they have no top and bottom, the ori-
entations of these stimuli and the possible responses to them
vary from 0 to π radians. For simplicity, assume that stimuli
at orthogonal rotations (i.e. π

2 / 3π

2 or horizontal / vertical)
provide evidence against one another. Therefore, they can be
arranged in a circle as shown in Figure 3.

In order to complete the task, a participant must gather
pieces of information from the stimulus or from memory (if
the stimulus has been removed and masked) to construct a
cognitive representation that they match to the possible re-
sponse options. Each piece of information they gather is
assumed to be pulled from a von Mises distribution.3 They
sample information until a criterion level of certainty is met,
given by the circular threshold, and the point at which the
walk crosses the threshold gives the orientation response.

The model still requires additional assumptions regarding
the initial representation of the stimulus (before information
is gathered) and specification of the sampling rate. For the
former, assume a neutral or unbiased initial state, indicat-
ing that a participant believes that all orientations are equally
likely a priori. Of course, this assumption could be modified
if the generating stimuli were not evenly distributed across
orientations or if a person was believed to be biased toward
(e.g.) a “vertical” response.

The mean of the von Mises sampling distribution (φ) can be
set directly from the stimulus, given that the true orientation
is the most likely to be sampled. Then the error, threshold,
and sampling rate are free to vary and can be estimated. In
the simple case of diffusion in 2 dimensions with a von Mises
sampling distribution and circular decision bounds, first pas-
sage times can be derived analytically (see Smith, 2016, for
a thorough discussion of this matter). However, in more com-
plex cases with different assumptions regarding non-decision
time, functional forms of starting point variability, decision
bounds, or trial-to-trial parameter variability, the model may
need to be simulated in order to compute the likelihood and/or
require approximate fitting criteria such as joint quantiles (as
in Heathcote et al., 2002).

Color identification task
I return now to the color identification task, where a partici-
pant must classify a fixed-luminosity stimulus as red, green,
yellow, or blue. Each category corresponds to a direction DR,
DG, DY , or DB.

The particular direction corresponding to each color may
be fixed or free to vary. One of the benefits of taking the ap-
proach presented here is that each direction can in fact be
fit by imbuing it with a free parameter or fixed based on
a particular theory the modeler has in mind. This allows
for model comparison between 2-dimensional representations

3This is similar to a normal distribution on a circle. Each piece
of evidence could be sampled from momentary activation across ori-
entation columns in the visual cortex. This opens up the question of
whether activation across the columns mimics a von Mises distribu-
tion, which is interesting but beyond the scope of the paper.

based purely on hue (Figure 4A), Hering’s opponent-process
representation (Figure 4B), a multi-dimensional scaled space
representation (as in Shepard, 1962)(Figure 4C), or a situa-
tion where each of the directions is given by an additional
parameter of the model.

Each of these theories makes very different predictions
about how stimuli and responses should interact. For exam-
ple, a stimulus showing light at 430 nm (violet) should result
in very long response times in hue or multidimensional scal-
ing space, but not in an opponent-process theory space. Sim-
ilarly, the multidimensional scaling space predicts far more
green-yellow and green-blue confusions than do hue or op-
ponent process constructions. Because of this, the pattern of
responses from a decision task can actually inform and dis-
tinguish between the theories used to construct the space, or
even develop better theories when parameters giving DR, DG,
DY , and DB are estimated.

As with the orientation task, a neutral initial state, von
Mises sampling distribution (or the von Mises-Fisher in a
higher-dimensional representation), and exponential arrival
times for new samples are reasonable assumptions for how
a person’s cognitive representation of the stimulus changes
over time. These can of course be modified if the base rates
of different colors or stimulus information change.

Discussion
One may wonder what the point of modeling different tasks in
this way is. The answer is many-fold. One potential use is as
a measurement model – the parameters of the model are psy-
chologically meaningful, with sampling rate describing how
quickly a person can gather new information, threshold de-
scribing the strictness with which they make decisions, and
the amount of error in drift or starting point location in the
system (e.g., in a von Mises distribution or mixed initial state)
allows us to potentially diagnose sources of bias and inaccu-
racy as with the uni-dimensional diffusion model (Ratcliff &
McKoon, 2008; Pleskac & Busemeyer, 2010).

Second, modeling decisions among many alternatives in
this way allows for testable predictions and model compar-
ison. For example, without starting point variability, the
models presented in the examples predict that response times
should be longer for larger errors. This means that one would
expect an incidental “red” response to a blue stimulus or
a left-leaning response to a right-leaning stimulus to take
longer than more similar responses like “green” or vertical-
leaning (respectively).

Furthermore, psychological representations of both stim-
uli and potential responses can be informed by established
models of how people represent objects and concepts. Sim-
ilarity judgments or categorization data can be used to con-
struct a multidimensional feature space that relates avail-
able choice alternatives, in turn making a priori predictions
about response and response time distributions about deci-
sions among them. Similarly, neural data about activity dur-
ing decision-making can be connected to the psychological
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Figure 4: Accumulation space representation for 4-category decision based on hue (A), visual opponent-process theory (B),
and Shepard (1962)’s multidimensional scaling construction of color (C).

representations of the stimuli and response alternatives.
When put together, this approach may also provide natu-

ral and parsimonious explanations of existing psychological
phenomena, such as context effects (Trueblood et al., 2014),
Hick’s law (Hick, 1952), selection of prices and certainty
equivalents (Busemeyer & Diederich, 2002), confidence and
confidence response times (Pleskac & Busemeyer, 2010; Rat-
cliff & Starns, 2009), and bow effects and lateral interactions
in absolute identification (Brown et al., 2008).

In short, I hope that the approaches and models presented
here are able to inform our understanding of the decision pro-
cess. At best, they should open up new questions as well
as bring together different perspectives and sources of data
on how to represent and process information. At worst, they
should at least provide a first approach toward modeling how
responses and response times arise when decisions are made
among many alternatives or along a continuum.
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