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SUPERCONDUCTIVITY OF THE CUBIC MODIFICATION OF MbC

Louis E; Toth, Erwin Rudy, Jean Johnston,, and Earl R, . Parker+ ;- 7; Q;bf'ﬁnlp'

The superconducting transition temperatures of the metallic carbides iﬂ'Jf‘_7~’ !

and nitrides with the NaCﬂ structure are interpreted on the bast; .of the %_,iﬂ

tight-binding model of Bilz.i It is found that total valence electron |
' \ : e,

concentrations from 9 to 10 are required for high critical temperatures r_// o

in these compounds. The cubic modification (Nacz) of molybdenum carbide/4nif N~

has been found to be superconducting at 13 O°K in agreement with the

Bilz band model

* School of Mineral end Metallurgical Engineering,ﬂuniversity of Minnesota,ﬁ i
formerly, Lawrence Radiation Laboratory, Univeraity of California, Berkeley.;;

Materials Research Laboratories, AeroJet»General Corporation, Sacramento, f
California. H .

+ Department of Mineral Technology end Lawrence Radiation Laboratory,_
University of California, Berkeley. *




e minimum at the total electron concentration of 8 (per formula) and reaches a {s,

UCRL-1IbTL

INTRODUCTION ERNREN . .
| Accumulating.eVidence indicates that the‘electron~to-atom (e/a)-ratios //

o of approximately 5 or 7, '3 generally considered to be necessary for high critical
temperature superconductivity, need not always be satisfied.v Data reported )
herein indicate’ that the critical temperatures of carbides and nitrides may be~;;l”j.w“
markedly influenced by the crystal structure aS'well as by the electron-to-atom:tdi
rat101 This idea is clearly demonstrated in the investigation of the criticalv;fgi'lt

ktemperaturerf the'two crystal modifications of molybdenum carbide.: )

The observed critical temperatures of the nitrides and carbides #ith the: ' |
NaC2 structure“(Bli‘may'be'understood with the aid;of the tight-binding calcu~,?f$;*¢ﬂv
lations of‘Bilz.l According to\this model, the hardness, brittleness, and high
melting temperatures of these compounds indicate the formation of strong bonds
b-between the nonmetal p-wave functions and the sp3d hybrid functions of the

transition metal. The importance of these strong nonmetal-to-metal bonds had;f}w%k”

.been originally formulated bvaundleu and Krebs,S'iOn the basis of a tight-

binding calculation, Bilz has found that the bonding p-bands are separated by a

low density of states band from the d bands. The Fermi level for TiC, with eight Wﬁ”*"
valence electrons, lies at the top of the p-band, and TiN, with 9 electrons, ;,fytl11;"

‘1ies at the bottom of the d-band (see Fig. l) : In this model a minimnm in the

density of states occurs at spproximately 8 5 electrons. Piper? on the basis
of Hall coefficient measurements, has modified this model so that the main band :
is filled as the valence electron concentration is increased from 8 to 10._. ‘_ff

In the present paper, we shall assume that the density of states is a8’

" maximum when the total electron concentration is between 9 and 10.. With this band

f'structure, the variation of most of the critical temperatures of the transition
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metal carbides and nitrides with the NaCﬂ structure can be understoode The crit-{

~ical temperatures of the carbides. snd nitrides with 8 9, and 10 total valence -

' and the composition ve, 88 contains only 8.5 total electrons. The highest T,
. e * T . ' ‘ AR
- is for NbN with 10 total.valence\electrons. The compound VN, also containing.-'f:ﬁ o

10 valence electrons, has & lowver transition temperature, but this may be due

E and thorium,

:but also on the crystel structure.‘ For example, TaN, with 10 electrons, is

" normal down to 1. 20°K but its crystal structure is hexagonal.
MoC, and WC, with the NaCt structure may have high critical temperatures becausev
! {yvthey have 10 total electrons.‘ A cubic modification of CrC definitely does not’

':exist,T but high temperature cubic modifications hame been found for MoC and WC.

'f'ambient temperatures.v Niobium and molybdenum exist in the,same row, and 80 the

| UCRL-11471

AT
.k. i

electrons are shown in Table I. The table is arranged to place the nitrides of ’

" the IITe group metals next to the cerbides of the IVa group metals (etc.). and, fia;fuf?ﬂ‘
-~ also, arranged according to the rOW'in the periodic table of the transition
; metal. All of the‘compounds with 8 total electrons ere normal (i.e., not supers;lfhis
;_conducting above about 1°K) for both the carbides'andvnitrides,. All of the inter;:?L?:h

. stitial compounds with 9 or 10 total electrons are superconducting with the

exception of VC. This compound cannot be prepared stoichiometrically; however, '*L;ffs

'.;u to individual departures from the general band scheme as Piper’s Hall coefficient ;ﬂ,j7
- measurements of VN indicate.6 In general, the carbides and nitrides with the
- seme mumber of valence electrons have nearly the same critical temperatures.

This correlation does not seem to apply to the nitrides and;carbides of uranium:yf_ﬁpir

The critical temperature depends not only on the total number of electrons

\

k4

Inspection of this table further suggests that the three carbides, CrC,

Of these latter two cqmpounds,ombymmc can be stabilized in the cubic form at.

TR T T TR T T T

e




R = Table I | Lo
o Superconducting Properties of the Carbides and Nitrides with the NaCZt Structure*

Group IITa nitrides : . Group IVa carbides

A‘Compound Total valence Critical temperature - Compound | Total valence Critical temperature ; .
electrons ' ' electrons -

loseN |, 8 .| . Norma® TCc | 8 Normal - =
w87 | Notkmowm. 7xC 8  Normal
ltew | "8 O Normet _HfC 8  Normal _
Group IVa nitrides ' ._Group Va carbides : IR IR
- TiN 9 5 . . 5.6%K .vc*’"*, 85 . Normel |
oz |9 b e | owme | 9 | B T

-~
!
POVIRTENL LI

: HfN S 9 . B ‘6"2°K U e T Ta,c S PR 9 B 9. 7 K IRt e ‘
' | - - Group VIa carbides S IRER T

Group Va nitrides
‘loA R - -

8.2°K o cre 10 . |Does not exist with | . -

I R T I U  NaCf structure. .| . -

- 15 8° 3; o ‘MoC | 1 Present 1nvest1gation "d'"f"

Does not exist with - we |0 10 Exists at high tem- 7
NaCE structure. . . ‘ ' peratures only.

| Velues quoted are those llsted by Robert38 end Matthias et 31;9'g

VCy g8 is the highest carbon ratio which can be obtained by usual technlques, thls compositlon if/fi:
corresponds to 8 5 electrons. L E R S T e e T ERT P

TLHTT~THON Lt
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eritical temperature of MoC should be very nearly the same as that of NbN

(15.6°K). However, Matthias et‘al. have suggested that the cubic form of

lMoC should be superconducting at about 10 6°K. Their prediction was based on

test results from a series of solid solutions between refractory compounds with M{“n

.~ the NaCZ structure and the hexagonal MoC. R _ B A f;

The Cubic Form of MoC - o

" modification been found. In an investigation of the Mo-B-C ternsry system, :fff

" two .of the present authors (E,R. and L.T.

~ at the composition Mo,C and not at MoC. Independently, Clougherty et al.,

synthesized the cubilc modification of MoC by the application of high pressures‘ftﬁfi;\

obtained the cubic modification by rapidly.qpenching'samples from 2800°C onto k
T . s N . v

'8 water-cooled copper plate.
' approximately 2200°C, m-MbCl transforms very rapidly into the related hex-" .
\ b. ‘agonal WMo._C

“"established that the a~form could be stabilized by small amounts of boron,

"'g_uranium, or- thorium..,-~f

5
- IRV
oo

A high temperature phase at the compositioh'MpC, with a hexagonal unit .ﬁ‘i

" cell, has been known to exist for some time Mt Only recently has the cubicf,:g;

)12 found in arc-melted samples a ~

new phase with an NaCs (Bl) crystal structure at the approximate composition’ Mo
N . : .
3 l 9 0 1°

it was also dlscovered that the hexagonal form of molybdenum cerbide formed .
13 0

372

and temperstures. They confirmed the M°302 composition for the hexagonal phasef@ff‘g'l7

and also found that the cubic modification existed at the composition MoCl -x flfa“
AU

(reported as MoC, To4x by Clougherty 3) _One of the present authors (E.R.)

On the basis of these experiments, it wasg established that the cubic modi-_- e

filcetion a-=MoC. crystallizes from the molten state at about 2600°C. At

1-x

(see Fig. 2) Below lh50°0, n—Mb decomposes slowly into..

372 32 o
Mo,C (vhich has orthorhombic crystal structure) and free carbon.,\It vas further

1h

After a careful examination of this area of the ternary diagram;fjizlrli' !
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The crystal structure of the hexagonal Mo302 18 very closely related to “ih;”wfl

that of the cubic modification. Nowotny et al.ll have found that this phase"ﬁi.“.f"
' “has a hexagonal unit cell belonging to the D6h space group with an ABCACB,:}~
ABCACB sequential ordering of the atomic planes of the Mo atoms.- This unit cell
contains as a subcell the Bl sequential ordering ABC, ABC. -(See Fig. 2~% |

Recent,thermochemicei date indicate that the transition from the'n-MOBCe to

m-MoCl_x is an order-disorder transition;T the carbon atoms in 'q-Mo3 o appear it

.°:to be ordered, while in a-MoC they occupy random octrahedral sites.

1-x _
In the present investigation, these experiments on molybdenum carbide“:iifff N
 were repeated to determine the superconducting eritical temperature of bothfpfaflttfﬁ

]

the o and n forms.

-

\

EXPERIMENTAL S /

The materials for this investigation consisted of 99, 9+% molybdenum powder :7"

(< T4 microns; impurities: W 200 ppm, C 2k ppm, 0, 2l ppm, and Si 100 ppm),

' amorphous boron powder (96% B, the rest mainly B X 3) and lampblack. Well-

- mixed powders placed in a graphite die were hot pressed'at temperatures thatsf-{sp”

would just start the melting reaction. Since Mo.C, is stable in the preseneeii{‘i“f:.nm

‘372
of graphite, there was no reaction with the graphite die.

-~

Series of samples in the Mo-C binary system were _quenched from five different
’5 temperatures: 1650, 2200, 2320, 2&15, ‘and 2650°C. - The samples from the 1650,,w,;w”
'.;2200, 2320, and 2415°C: treatments were qnenched in liquid tin, and the samplesx
from 2650°C in oil. In order to quench the samples in tin, the hot-pressed 'ry'i'd
jsamples were placed in a grsphite die, the bottom end of which was shortened
r._so that the die could be broken with the epplication of pressure. A graphite
"plunger sealed off the top end of the die and transmitted pressure. The,

:;samples were first held at the chosen temperatures for 10 minutes.» This period'

i




";'that might have been formed by reactions with tin or oxygen. The samples

‘;z: lines in the cubic phase) showed that the samples quenched from 2200°C were N

"lt partially transfommmd.from the cubic phase into the hexagonal phase. ‘The sam-

-_UéRL-11h7l E |

- was adequate for the formation of the hexagonal phase as well as for the cubic ;

i' phase, which forms’ very rapidly. Pressure was then applied, the bottom of thel ,
‘r die broke off, and the sample dropped into a molten’ tin bath., To quench the fﬁjyx o
lvr meterial from the molten state, samples’ were placed in a graphite die having

bl‘a 1 mm diameter hole in the end of the-die, the samples vere heated to 2650°C .

(which is above their melting temperature), and pressure was then applied to

:'the plunger to force the molten samples out -the small hole and into the oil. jp
~ The outer surfaces of the quenched samples were ground off to remove any phases: ?f;ly
ﬂ’,quenched in tin were in one piece, but the samples quenched in oil were in the 3fgf

| iform of small beads. The phases present in the samples were identified by

X~Tay techniques, The quenched samples were also examined with metallography @H~;? ol
'3techniques.12 o
. EXPERIMENTAL RESULTS S L 7‘__{ﬂ

The results of the x-ray anelysis are listed in Table II.f The - samples

quenched from 1650°C showed only the hexagonal n—Mb the samples from 2200 c iuhsff:

372
vere meinly n-Mo.C, but had pertislly trensformed. into a-MoC, __, while the,-fl'

~

1ex" "The trans—;

formation from the cubic phase to the hexagonal phase\involves only a shift in-

samples quenched from 2320, 2&15 and 2650°C were- mainly a~MoC
the sequential ordering (see Fig. 2); hence, this transformation proceeds at .

an extremely rapid rate. An intensity comparison of - the (012) and (204) lines};'

in the x-ray pattern of the hexagonal phase (the same’ a8 the (111) and (200)

. Ples quenched at 2320, 2#15 and 2650°C were mainly cubic but some of the hex-'

- agonal phase was present., (See Fig. 3)




.;.;phase, vhich could not be completely arrested..

'-7'critical temperatures varying from 9.5 to 11 0°K. - These temperatures are

“(.fffcritical temperatures for any: binary phase. This value is exceeded by only

| '°*ﬁfsix binary B-tungsten phaseslé and by NbN.’ Since the transition to the hexagonal

t”x;withe critical temperature of pure aaMbC

‘ .,‘_ The critical temperature of the a—MoC .Quenched from 2&15 c in Sn wass
ﬂ'v'13 0°K with the transition extending from 13 5°1c to 12 5'1( (see Table :1:1) E
- No variation could be detected in T with either a change in composition or :
 with the slight addition of-boron. The relative insensitivity of T to changes
in composition is due to the small range of composition over which oc--MoCl -y
d_‘.exists. The limited range of composition is related to its limited stability.;
*:y The samples quenched from 2650°C in oil hed broad transitions partly due to .i

:? the small particle size of the specimen which resulted from brittle shatteringpf
‘ﬁc_ upon quenching and partly due to the partisl transformation- to the hexagonal di“
| The critical temperature of‘the pure hexagonal n~Mb3 2 quenched from
11650°C was 9,0°K with the width of the transition being about 0.4°K. Tnis’
. temperature is nearly the.same as the 9.26°K'reported by'Matthias and Hulmlsé

- for arc-melted specimens.’ The specimens quenched from-2200°c into tin had:"

intermediate between those for the pure cubic phase and the pure hexagonal
: phase. X-ray analysis of the sample with the. transition temperature of ll O°.
showed that it contained the most amount of the Iﬂ phase of any of’ the sample'

quenched from 2200°C

DISCUSSION

. '/‘

The observed critical temperature of 13 0°K for or.-M'oCl is the highest

known critical temperature for any binary carbide and is one of the highest

75phase from the cubic phase was never completely arrested, it is possible that

l is»e en higher




Table II.A

X-Ray Findings and Crltical Temperatures in the Mo B~C Ternary System

L i _ _ Critical - o
B Semﬁie cozggigiieﬁ‘ éhaeeylukr‘ :nlf: Heafi _ a:ezgzﬁizuis Width of
<} No. Mo - B=C Treatment transition transition
1 | 600 - ko 'n:M0302 + trace Mo,,C | H.P. + 1650°c sn 9.0°K 0.4k
o 58 - 0 - ko "'M°3C H.P. + 1650°C 8n 9.0°%K - 0.2°K
"3 50 -0 -0 | Moy + adoc, H.P. + 2200°C Sn 11.0°% 0.5°K
L | 59-0-M n-Mo3 A H.P. + 2200°C Sn  9.6°K - 2.2°K
5 | 58-0-ke n-Mo3Cé “H.P. + 2200°C Sn. 9.5°1'c_f CLLUTK
6 59 - 0 - 41 | a-MoC, _ + trace q-'Mo3c2 | H.P. +2320°C sn 12.0°K RS- S
7 |56 -0-u4s. a-MoC, __ + trace n-Mo,C, H.P. + 2415°C Sn 13.0°K ' 1,0°K12¥‘ﬂ1
8 |60-0-80 | adoc, -+ 1-Mo,C, H.P. + 2650°C oil 12.2°K 2.9% -
9 |¥T-3-51 | ahoC, .+ oG, CH.P o+ 26%0°Coil | 12.5% 3.0%




uu,_ temperature of NbN. The present results and survey of the literature (Table I)

dﬂff;above 5°K. The probable explanation for the unusually high T for 7~ Mo3C2 is

{fﬂ“that its crystal structure is very closely related to’ that of a=-MoC - ‘The

-9~ .7 UCRL-L1TL

The critical temperature‘for aeMoC is nearly the same as the critical -’W

suggest that the general features of the superconducting critical temperatures

f of the carbides and nitrides with the Bl structure can be explained with aid of

'the band models proposed by Bilzl and Piper.6 . The density of states is a minlmumjnffl~e

pa—

at a total valence electron concentration of about 8 (or 8.5) and increases to

@ maximmn at abous 10 (or slightly less). A;though the general superconducting - .

‘?f'features can be explained with this band model, the details of the band struc- -;11~f:5
f ture appear.to vary from element to element. rFor example{.the critical‘temper-'

e atures of Bl solid solutions'between NbC and TaC have been found to go through vif;.;
'( a maximu‘m;l7 this result cannot\pe explained with thislsimple model. .
It is important to emphasize. that the electron concentrations needed forjr

high T 's in these compounds also depend upon the crystal structure. These ;;?if:iﬁéi‘f
requirements for total number of electrons are not the same as the electron—toef&_fi‘°s
atom ratios postulated by Matthias for the trensition metals where the density R
~of states does not seem to vary significantly with changes in crystal structure;lg

The influence of crystal structure is‘clearly seen for TaN, with lO_elec~:ﬁ

‘-trons, vhich is not superconducting, probably because of 1ts hexagonal crystal o

structuree Its influence is further demonstrated by examining the crystal

structure of fi= Mo302,;which hes a relatively high critical temperature for a _‘}?;f_nﬁ'v

~ bexagonal crystal. With the exception of'technetium and MoN, elements and con‘l?-._‘ff

pounds crystallizing in a hexagonal structure seldom become superconducting

1-x°.
unit cell is Just two NaCt unit cells placed on top of one anothér in an in-'

verted order (Fig. 2) If the compound is only partially transformed from the'




cubic to the hexagonal, the critical temperature is 1ntermediate between that s
of the pure cubic and pure hexagonal. This result suggests that there 1s a ‘
'gradual electronic change which averages over the structural-changes. The “flf!'rﬁ,;,fc
"difference in the critical temperature of the two crystal modifications .of MoC :}. |
’ . . ' .’ : v ’;:f .
again indicates that both the electron concentration and the crystal structure
are important factdrs in determining T ' |
- ‘ . FERN Q
“ “
- '\'s " . ‘ v . '.; v .
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.Figure'i‘-

V.Here Z'refers to the sum of the:valence electrons ofithe metal—-and”

‘”Figure 3 -

'in Bilzl for the carbides and nitrides with the Nacz structure.‘gzn

_diffractometer results of samples six and seven are very nearly

~12- C T yeRL-11kTL

‘Figufélcaption§'>

The variation in the density of states with energy according-,,A}_

. . .
. oy

nonmetal atdms.,“

The crystal structure of ﬂﬁMD302 and aprCl showing the sequential

ordering of the'atomic plenes., In n-Mo302 “the positions of the

carbon atoms are not known. The figure shbws only the possiblej'”"

" location of the carbon atoms and corresponds to the formula -

MoC, not Mo302.

L "v'\'

Diffractometer results showing the transformation in crystal struc-‘

ture from n-Mo C, (sample 3) to aiMoC (samples 6 end T).

alike even though one Bample.has & higher‘transition QemperatureJ.

than the other.
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report, or that the use of any information, appa--
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
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